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Abstract 

In the internet age, a proliferation of services appear on the web. Errors in 

using the internet service or app are dynamically introduced as new 

devices/interfaces/software are produced and are found to be incompatible 

with an app that is perfectly good for other devices. The number of users who 

can detect various errors changes dynamically: for instance, there may be 

new adopters of the software over time. It may also happen that an old user 

might upgrade and thus run into new incompatibility errors.  Allowing new 

users and errors to enter dynamically poses considerable modeling and 

estimation difficulties. In the era of Big Data, methods for dynamically 

updating as new observations arise are important. Traditional models for 

detecting errors have generally assumed a finite number of errors. We 

provide a general model that allows for a procedure for finding maximum 

likelihood estimators of key parameters where the number of errors and the 

number of users can change.  

Keywords: Errors in software apps; Big Data; reliability; software 

development and testing. 
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1. Introduction 

The internet and mobile have changed the way that software is distributed and used. Cloud 

computing, open source software and continuous connectivity, in particular, allow for the 

operation and connection of many services, many applications, many devices and many 

users. The advent of the Internet of Things will magnify the criticality of securing 

uninterrupted operation and connectivity. As early as the 1990s, there was a recognized 

need for research in the economics of software development and maintenance (e.g. Banker 

et al. 1998 and Chan et al.1994). Issues such as the timing of software releases, the 

development and management of interoperability, and the allocation of resources to testing 

are critical to management. Once software is released, it is important to have models that 

track errors as software is being used. Real-time detection of errors encountered by users is 

often the norm. There is a need, therefore, for research that builds on the new realities of 

the software industry and that leads to practical tools.  

We concentrate on the probability of errors in software, which must be a parameter of any 

managerial model and can directly affect managerial decisions such as when to stop 

software testing and how to it. We are interested in the behavior of errors over time because 

software management is dynamic.   

Finding errors is like fishing and open computer systems are analogous to a pond linked to 

the ocean. Our proposed model describes fishing in an ocean rather than the pond of 

previous models. In a pond, the rate of catching fish depends on how many are left in it.  

When the pond is opened to an ocean, waves bring in new fish and will not find all the fish 

when confronted with a practically infinite stream of fish coming in from the ocean.  The 

potential number of failures due to communication software, printers, operating systems 

and I/O devices is practically infinite.  In the new context of open systems, we distinguish 

between errors of content and errors of incompatibility. The former are code contained in 

the system that is incorrect with respect to its specification (e.g., an incorrect loop or a 

select construct that does not cover all required cases). The latter are code that is 

incompatible with conditions external to the specified system, e.g., problems in working 

parallel to new versions of other packages.  

In this paper, our focus is the interaction between the system and its environment: hence the 

notion of incompatibilities.  This shift has already occurred in industry.  For example, 

Mercury Interactive, a software testing company, realized back in 1998 that current 

software, unlike the past, cannot be contained in a single system (see Forbes, 1998).  A 

similar shift is needed in the operations research modeling of error detection, for instance 

by extending extant models to include different patterns of error behavior and detection that 

break the assumptions of instant removal of detected errors and of no new sources of errors 

126



Wilson, J.;Te’eni, D . 

  

  

(e.g., Gaudoin, 1999; Yang et al., 2016). Another example is the distinct behavior of 

performance errors that occur after release (Zaman et al., 2012). 

A failure is an unexpected result of a program execution.  Failures are the external 

phenomena that the user experiences.  An error (or fault) is incorrect code that, under 

certain conditions, will produce a failure.  Errors are hidden from the user but are perceived 

as the cause of failures.  Therefore the more failures experienced, the more errors assumed 

to exist in the software.  A failure is related to a specific error, called a detected error.  

Several failures may be related to the same error, in which case there would only be one 

detected error. In reliability growth models, for instance, the number of errors is supposed 

fixed at the time a prototype is produced and the goal is to systematically eliminate them. 

(See, e.g., Heydari and Sullivan, K. M. 2017). 

Open systems are related one to another.  An error may be the result of a combination of 

conditions in two distinct applications that is incompatible with the code. Errors of 

incompatibility are practically endless and cannot be determined as a function of the code 

alone. This is different to traditional models. 

We develop a general framework for modelling errors that are continually created. A 

probabilistic model is formulated that can lead to the development of the likelihood 

function from which estimates can be derived. This is a complex process since at any 

period an error may have been introduced at any previous time. In addition, only some 

users can detect a new error since they are the only ones to have upgraded and thus only 

they can be exposed to a current error of incompatibility. 

 

2. Model Development 

The intuitive discussion is now formulated mathematically.  Certain practices may blur 

some of the theoretical distinctions made above.  For instance, a Beta site may fall between 

testing and production and actual reports of failures may entangle the two types of errors.  

The mathematical formulation ignores such difficulties and assumes, for simplicity, some 

additional constraints as discussed below.  Moreover, one general functional form is built, 

which will describe both pre and post-release stages.  For clarity of presentation, we use the 

term users to denote both units of testing and units of use, although the former relates to the 

pre-release stage and the latter to the post-release stage. 

There are three aspects to modelling this problem: (1) The process whereby customers, 

internet users, arrive to use the app and perhaps cancel their subscriptions at a later time; (2) 

The modelling of who upgrades their software/equipment and thus may encounter new 

errors of incompatibility; (3) The error detection process which involves modelling the 

arrival of new errors into the system and the number of users who can detect them. 
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The description will be given for a general continuous time process. (Unfortunately, in 

order to capture the real time complexity of the various processes, a lot of notation and 

definitions are involved.) Then, the simpler case of discrete time periods will be considered. 

2.1. The Arrival and Cancellation Processes 

Suppose the      denotes the number of new customers who use the software at time  . For 

instance,      could represent the number of people who sign up at time   for an online 

transcription service such as that provided by Nuance. Over time, some subscribers will 

cancel and no longer use the service. Let      denote the time a customer who signed up at 

time    cancels the service. (A very large value for      means that the customer never 

cancels.) 

2.2. The Upgrade Process 

For an individual completely current at time   (i.e. someone who is “new” at time   or who 

has been using the system before time and upgrades at time  ), let      denote the time this 

customer next upgrades. (A very large value for      means that the customer never 

upgrades.) 

Let        denote the number of people who were current at time  , did not upgrade 

between times   and  , but did upgrade at time  . The quantity        is a function of     , 

     and       for    . 

2.3. The Error and Detection Processes 

At time  , let      denote the number of new errors that are introduced into the system. For 

instance, a new version of the iPad might be introduced at time  . A subscriber using the 

software with this device might ultimately encounter an incompatibility error: the software 

works perfectly well but there is an as yet undiscovered error when the new device is used. 

Prior to the introduction of the new iPad, this error did not exist. 

Let      denote the number of users who can detect new errors introduced at time  .  (     

will depend on the variables     ,      and     ) If one assumes that users who adopted 

prior to time   cannot detect errors introduced at time  , then       is simply equal to     ,  

the number of new users introduced at time  .  This can be a reasonable assumption if one 

assumes that most users will not upgrade to new technology until a fair amount of time has 

elapsed.  However, it is not necessary to make this assumption: any upgrade pattern can be 

accommodated. 

For an error introduced at time  , let        denote the probability that a user current at 

time   detects an error during period number     given that the user has not detected it 

prior to this period. 
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2.4. Analysis for Discrete Time Periods 

In this paper, we will concentrate on the special but useful case where tracking is done over 

discrete periods. This is often the most realistic way to proceed and gives some useful 

practical and theoretical results. In order to make this clear the notations           ,     , 

    )  and       will be replaced, respectively, by   ,   ,   ,     and   , where   

         denotes the period (    correponds to release of the app,     corresponds to 

the end of the first period, etc. The quantity        will be replaced by and      where   and 

 with      are period numbers. 

2.5. Example: Discrete Time Periods 

Assume that no one cancels a subscription. Suppose that, at the beginning of any time 

period, a user who is current in the prior period will upgrade with probability 0.1 (i.e. is an 

“early adopter”) , a customer who was last current two periods ago will upgrade with 

probability .15, those last current three  periods ago will upgrade with probability 0.3 and 

those current more than three four periods ago will definitely upgrade. Then the probability 

distribution for   , the time at which a customer current at time   will upgrade is given by: 

   {

     with pro a ility  . 
    with pro a ility ( . )( .  )    .   

    with pro a ility ( . )( .  )( . )    .    

    with pro a ility                         

 

 

Let        denote the value of a Binomial random variable with parameters   and  . The 

number who can detect errors at time 0 is   , the initial number of subscribers. At the end 

of period 1, the number of people who can detect new errors at time 1 equals the number of 

new subscribers      plus the number who have upgraded from form time -         , i.e  

                 .  

Using a similar argument, the number of subscribers who can detect errors at any time   can 

be found. For instance, the values of      and      are as follows: 

                                          

                 +  (                )                            .  

Values for      can also be found.        is the number of customers who were current at 

time   and upgrade at time     and thus equals            .        is the number of 

people current at time   who do not upgrade at time     but do upgrade at time     and 

thus equals                    . Similarly,        =                            

and        =                             . 
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3. Discrete Time Periods and Constant Error Detection Probability 

In this section, the problem will be simplified. We assume that          and that 

      . Ultimately, The goal is to estimate the quantities  ,   and 

     or, equivalently,   . (In the case of a subscription service    is known but in other 

cases-for instance “free” software, the num er of initial users may not  e known.) 

Consider a particular user who has the potential to discover a particular error.  Then   

denotes the probability that this user discovers this error during any given period.  All users 

and all errors are assumed to be independent. (In a more general setting non-indepence may 

be allowed. For instance,   , the number of errors introduced at time  , could have a 

distribution where the number if errors introduced in a given period depends on those 

introduced in a prior period. However, here we will focus on the simpler case of indepence 

which is difficult in its own right.) The  , however, may have interpretations that depend on 

the context:  one   may be used for errors of content while a different   might be used for 

errors of incompatibility. Let        denote the probability that an error introduced at time 

k is detected for the first time during period i. This quantity can be shown to satisfy the 

following (proof omitted): 

                                 , 

where                  ∑               
           ) and            

∑        
           ). 

This quantity is key to writing down the likelihood. Suppose one has collected the data 

       —the numbers of errors observed during each of the first   periods. Then the goal 

is to find the values of  ,   and   that maximize the probability of observing this data 

stream.  For given values of the parameters, it is necessary to construct an expression for 

          , the probability of observing        .  Note that  

                ∏   

 

   

              

where       is the probability of serving x1 errors during the first period and 

                is the conditional probability of observing    errors during period   given 

that          were discovered during the previous periods. (These probabilities, of course, 

depend on the values of the parameters  ,   and  .) From the expression above for        

and noting that the number of errors observed in a given period is binomial with number of 

trials equal to the number of people who can detect an error, the above likelihood may be 

calculated. (It is somewhat complex since, during a given period one has to keep track of 

when errors were introduced and which consumers can see them.) In the worst case 

scenario, a grid search can be performed over the possible values for the quantities  ,   and 
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  in order to find maximum likelihood estimates. For given values of the quantities  ,   and 

 , the arrival of new data entails only a minor calculation to update the likelihood values. 

Thus in a big data context, the size of the data set does not hinder computational efficiency. 

From the expression for        the expected number of errors detected during period   

equals 

        ∑         
 

   
 

The variance of the number of errors detected in period   is given by 

                 ∑                  
 

   
 

Note that for given values of  ,   and  ,  the above expressions  are straightforward to 

evaluate.   

From a management viewpoint, the above expressions can become effective tools.  For 

many processes, control charts have become an important managerial tool for tracking 

quality, including software maintenance (Haworth, 1996).  Control charts can be 

constructed tracking software errors: at the end of each period, compute the maximum 

likelihood estimate for the parameters; then compute the mean curve for the number of 

errors and the upper and lower control limits using the above expressions.  Most 

applications of control charts are relatively straightforward and result in a constant central 

line.  For software error tracking, however, the situation is more complex.  For instance, the 

central line of a control chart based on the above expressions are not constant but its 

interpretation is similar to those of industrial applications.  Points outside the upper and 

control limits indicate to the manager that the process is “out of control.”  This would 

happen, for instance, if any of the assumptions of the software error model were suddenly 

violated. The above expressions for mean and variance are therefore useful not only for 

predicting the flow of software errors but can also be used to warn a manager that the 

underlying marketplace is changing in an unexpected manner.   

 

4. Conclusions 

Traditionally, errors were defined within the system’s  oundaries.  Goel (    ) suggests 

that “software faults can  e attri uted to an ignorance of the user requirements, ignorance 

of the rules of the computing environment, and to poor communication of software 

requirements  etween user and the programmer …” (i id. p.  4  ).  This perspective 

focuses on mistaken code and is manifested in the quests for estimating error frequency 

according to various characteristics of the code. Now, with software being used by many 
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users on the internet and mobile, errors rather than being drawn from a finite pool are 

constantly being introduced. In this paper, we shift the focus to the interaction between the 

system and its environment which leads to the notion of incompatibilities. The importance 

of incompatibility errors will grow with the growing impact of cloud computing and Big 

Data (Wang and Wu, 2016) as well as the Internet of Things (Prehofer, 2015). We 

formulate a robust and general model. In a Big Data setting, there is more freedom in 

allowing for more complex models since estimation of certain quantities (such as 

cancellation patterns and customer flow) is now much easier due to the sheer size of the 

data set. Error detection, even in a Big Data, context requires careful modelling since by 

design, even in large data sets, there is (and should be) a paucity of observations. We show 

how to calculate key quantities needed to construct the likelihood equation from which 

maximum likelihood estimators may be derived. A follow-up paper, rather than considering 

a grid search for finding these estimators will provide an algorithmic procedure that 

removes the need for a grid search. The important special case of discrete time periods and 

a constant rate of error introduction has been condidered in detail. 
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