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Abstract 11 

Practical recovery of a non-renewable nutrient, such as phosphorus (P), is essential to support modern agriculture in the 12 

near future. The high P content of urine, makes it an attractive source for practicing the recovery of this crucial nutrient. 13 

This paper presents the experimental results at pilot-plant scale of struvite crystallization from a source-separated urine 14 

stream using two different magnesium sources, namely magnesium chloride and seawater. The latter was chosen as 15 

sustainable option to perform P-recovery in coastal areas. Real seawater was used to assess in a more realistic way its 16 

efficiency to precipitate P as struvite, since its composition (with noticeable concentration of ions such as Ca2+, SO4
2-, 17 

Na+,…) could lead to the formation of impurities and other precipitates. 0.99 grams of struvite were obtained per litre of 18 

urine irrespective of the operational conditions tested. In all tested conditions, precipitation efficiencies exceeded 90% 19 

and recovery efficiencies were higher than 87%, with an average struvite crystal size higher than 110 µm (and up to 320 20 

µm, depending on the experimental conditions) in the harvested struvite samples. Almost pure struvite was obtained 21 

when MgCl2 was used as precipitant, while amorphous calcium phosphate and other impurities appeared in the 22 

precipitates using seawater as magnesium source. However, the lower settling velocity of the amorphous precipitates in 23 

comparison with the struvite precipitates suggest that their separation at industrial scale could be relatively 24 

straightforward. 25 

 26 

Keywords phosphorus recovery; struvite; urine; crystallization; seawater  27 

 28 

 29 

 30 
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1. INTRODUCTION 31 

Spontaneous precipitation of P-precipitates on internal pipe walls and surface equipment of 32 

Wastewater Treatment Plants (WWTPs) is possible due to the phosphorus (P) content in wastewater 33 

(Ohlinger et al., 1998; Barat et al., 2009). This unexpected precipitation can lead to operational 34 

problems such as scale formation, which results in reduced diameter or even blocked pipelines and 35 

higher operational costs in the sludge handling facilities (Neethiling and Benisch, 2004). Moreover, 36 

when this nutrient is not removed from wastewater at WWTPs, it reaches surface aquatic 37 

ecosystems promoting eutrophication (an adverse response of the natural ecosystem characterized 38 

by an accelerated plant and algal growth) and algae blooms. 39 

 40 

Phosphorus is a crucial and non-renewable nutrient essential for modern agriculture which requires 41 

extra P to maximize crop yields. The primary source for P-fertilisers is a limited resource, 42 

phosphate rocks, which current reserves are predicted to be exhausted within the next century 43 

(Cordell et al., 2009, Li et al., 2019). Although phosphorus can be removed from wastewaters by 44 

chemical precipitation and/or biological processes, the application of technologies for phosphorus 45 

recovery is of major interest due to its marketable value. Indeed, extensive research has been carried 46 

out in the last years and is expected to gather worldwide momentum in the near future (Birnhack et 47 

al., 2015).  48 

 49 

Approximately 17% of the total phosphorus in phosphate rock mined specifically for food 50 

production is lost in human excreta via wastewater, mainly in urine (Cordell, 2010). In this context, 51 

phosphate recovery from urine is an attractive choice, because phosphorus is present in inorganic 52 

form not bonded to the organic matter and urine represents only 1% of the total volume of 53 

wastewater while contains up to 50 % of the total phosphate load in municipal wastewaters 54 

(Wilsenach et al., 2007; Mo and Zhang, 2013). Although different technologies can be used to 55 

recover phosphorus from urine, chemical precipitation in the form of minerals with direct 56 
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application to agriculture such as struvite (MgNH4PO4·6H2O) is being intensively studied by the 57 

scientific community (Rahman et al., 2011; Matynia et al., 2013; Capdevielle et al., 2013; Barbosa 58 

et al., 2016). Magnesium ammonium phosphate (MAP or struvite) is a slow-release fertiliser that 59 

can be produced from urine, being a solid free from micro-pollutants (Ronteltap et al., 2007). Its 60 

purity and low heavy metal content (Latifian et al., 2012; Muhmood et al., 2018) contribute to the 61 

marketable value of struvite. This ecological fertiliser can complement or partially replace 62 

conventional chemical fertilisers to satisfy modern agriculture P requirements.  63 

 64 

Many works have already reported struvite recovery from wastewater. Some of them have focused 65 

on urine P-recovery as it has been considered one of the most suitable sources for practicing it due 66 

to its simplicity and economics (Mihelcic et al., 2011; Dai et al., 2014), but only a few of these 67 

studies have used seawater as low-cost magnesium source (Rubio-Rincon et al., 2014). In addition, 68 

most of the researches published so far have performed batch recovery experiments at lab-scale 69 

(Zamora et al., 2017) with P-rich solutions. The conclusions of these studies are difficult to scale-up 70 

in real applications (Li et al., 2019) due to the short-term of the experiments and the complexity of 71 

the crystallisation process regarding to the crystalliser hydraulics, start-up procedure, solids 72 

harvesting, etc., thus, limiting a wide spread implementation in industry. Therefore, in this work the 73 

main research effort is to assess P-recovery at pilot-scale and long-term experiments using MgCl2 74 

and seawater as magnesium sources, so as to get valuable results directly applicable from a practical 75 

and engineering point of view. Although different sustainable magnesium sources are reported in 76 

literature (Kirinovic el al., 2017; Kiani et al., 2019), seawater was chosen as a low-cost and 77 

sustainable option to perform the P-recovery process in coastal areas. Real seawater from the 78 

Mediterranean Sea was used to assess its efficiency to precipitate P as struvite in a more realistic 79 

way, since its composition (with noticeable concentration of ions such as Ca2+, SO4
2-, Na+,…) could 80 

lead to the formation of impurities and other precipitates. Therefore, the major objective of this 81 
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work is to assess the efficiency of the pilot-scale crystallisation reactor to achieve phosphorus 82 

recovery producing high quality struvite in long-term experiments. 83 

 84 

2. MATERIALS AND METHODS 85 

 86 

2.1 Experimental set-up 87 

 88 

Figure 1 shows a scheme of the pilot plant used in this struvite precipitation research. As can be 89 

seen in Figure 1, the pilot plant consists of a glass stirred crystallisation reactor (20.55 L of volume) 90 

equipped with three pumps for influent (synthetic urine), magnesium source (seawater or 91 

magnesium chloride) and sodium hydroxide (for pH control) dosing through three independent 92 

stainless steel injection tubes, and two balances to monitor the magnesium and sodium hydroxide 93 

flows. The precipitation reactor is divided into two parts: the reaction zone (4.95 L in the bottom 94 

part), designed according to the typical dimensions of a perfectly mixed reactor and the top part 95 

which is the settling zone (15.60 L), that prevents fine particles from being lost with the effluent. 96 

Solid harvesting was carried out by settling. A solid trap was installed at the bottom part of the 97 

reaction zone (see snapshot detail in Figure 1a), and was connected to the reactor through a manual 98 

valve. This purge system allows the harvesting of the larger struvite crystals while the lower size 99 

solids remain growing within the reactor. When solid harvesting was desired, the trap was filled 100 

with the crystallisation effluent to avoid the hydrodynamic drag of the fluid velocity when the 101 

manual valve was opened. This allowed the lower size struvite crystals (with low settling velocity) 102 

remain in suspension within the reaction zone of the crystallisation reactor. Once opened the valve 103 

that connects the reaction zone with the solid trap, only the larger struvite crystals (able to settle) 104 

fell into the trap and were harvested from the reactor. When a prefixed height in the solid trap was 105 

achieved (the trap was roughly calibrated for different solid quantities in grams), the valve was 106 

closed and the trap emptied. Samples from the harvested mixture were used for further analytical 107 



5 

determinations such as solid size distribution, particles composition or weight of harvested struvite. 108 

A detailed description of the pilot plant can be seen in Pastor et al. (2008a). 109 

 110 
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(a) (b) 

Figure 1. (a) Scheme of the struvite precipitation pilot-plant with snapshot of the purge system for struvite crystal 112 

harvesting (b) Picture of the whole pilot-plant used in this study. 113 

 114 

2.2 Substrates 115 

 116 

The crystallisation reactor was fed with synthetic urine that reproduce the ions concentrations 117 

observed in urine stored during three days (Table 1) and diluted according to the typical dilution 118 

rate 1:4 in no-mix toilets (Udert et al., 2003). Previous studies have shown that after three days of 119 

hydrolysis, urine has suitable characteristics to recover P by crystallisation (pH around 8, and N/P 120 

molar ratio above the stoichiometric requirements). Since the longer the storage time, the larger the 121 

storage tank required, a three-day storage time was selected for urine. The reagents used to prepare 122 

the synthetic substrate were: CaCl2∙2H2O, MgCl2∙6H2O, NaCl, Na2SO4, Na3C6H5O7∙2H2O, 123 

KH2PO4, KCl, NH4Cl and (NH4)2CO2.  124 
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 125 

Table 1. Synthetic urine used in the experimentation. Compounds concentration is expressed in mg/L 126 

Na+ Cl- K+ SO4
2- Ca2+ Mg2+ PO4-P NH4-N pH 

583 1037 320 617 56 13 196 378 8.0 

 127 

Ammonium concentration in urine exceeds that required for complete phosphorus recovery, but 128 

magnesium content is insufficient. The magnesium ions needed for struvite formation were 129 

provided by magnesium chloride (MgCl2∙6H2O) solution in the first set of experiments, and by 130 

Mediterranean seawater in the second set, since it is a low-cost sustainable option in coastal areas. 131 

Magnesium chloride was chosen because it allows obtaining the desired Mg/P molar ratio without 132 

modifying the pH. The reagent solution used in the experiments was adjusted to 1300 mg Mg2+/L 133 

(similar concentration of Mg found in seawater) making it possible a direct comparison with the 134 

results obtained with seawater as magnesium source. Along each experiment the pH was adjusted 135 

with a sodium hydroxide (NaOH) solution (0.3 M) added on demand through a peristaltic pump.  136 

 137 

2.3 Analytical Methods 138 

 139 

PO4-P, NH4-N, NO3-N, NO2-N total phosphorus (TP), total nitrogen (TN) and chemical oxygen 140 

demand (COD) analysis were performed in accordance with Standard Methods (APHA, 2012). 141 

Total phosphorus of the crystallisation effluent was analysed acidifying the samples to pH around 2-142 

3, ensuring that all phosphorus became soluble, and then analysed as PO4-P. Soluble calcium, 143 

magnesium, potassium, sodium, chloride and sulphate were analysed by ion chromatography 144 

(Metrohm IC). Alkalinity was measured by titration using the method proposed by Moosbrugger et 145 

al. (1992). For the analysis of soluble components, samples were previously filtered through 0.45 146 

µm filters. 147 

 148 
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The precipitated solids obtained in the crystalliser were recovered from the reaction zone and were 149 

air dried at room temperature. Scanning Electron Microscopy (SEM) coupled to energy-dispersive 150 

X-ray spectroscopy (EDS) was used to determine the morphology and composition of the harvested 151 

crystals as well as the main ions spatial distribution. The presence of P, N, Mg, Ca and K were 152 

searched by EDS microanalysis by means of a XL-30 ESEM (Philips, Eindhoven, Netherlands). 153 

Struvite samples were attached to the SEM stub using silver lacquer. Then, the SEM stub with the 154 

sample was introduced into the XL-30 and the pressure was diminished until 10-5 bar. After that, the 155 

sample surface was visualised and an area was selected for the microanalysis. The spot-size value 156 

was modified until a Dead Time (DT) around 30% was achieved. 157 

 158 

Crystal size distribution was determined by Malvern particle-sizer (Mastersizer 3000; measuring 159 

range 100 nm – 3 mm). The central value of the distribution was used as representative size and its 160 

evolution along the experiments is presented in the results and discussion section. 161 

 162 

Finally, the solids were analysed by X-Ray Powder Diffraction (XRD) in order to check whether 163 

struvite crystals were formed. The equipment used for X-ray analyses was a D8 Avance A25 164 

powder diffractometer (Bruker, Karlsruhe, Germany). About 0.01 g of sample were placed in a 165 

sample holder and then into the X-ray chamber at 1200 ºC. A scanning step of 0.02 º and a pass of 166 

0.02 s were fixed as working constants. 167 

 168 

2.4 Experimental procedure 169 

 170 

The experimental work was divided into two sets of long-term experiments (see Table 2 for 171 

experimental conditions) carried out using the synthetic urine defined in Table 1. The shortest 172 

experiment lasted 15 days while the longest experiment 34 days, thus making it possible to 173 

reproduce the long-term real operation of the crystalliser, studying relevant engineering issues for 174 
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practical application such as the stability of the process or the evolution of the crystals size. In the 175 

first set of experiments, magnesium chloride (MgCl2∙6H2O) was used as magnesium source, while 176 

in the second set, Mediterranean Seawater provided the magnesium ions required for the struvite 177 

precipitation. In all the experiments, the crystalliser was operated in continuous mode for the liquid 178 

phase and in batch-wise mode for the solid phase. 179 

 180 

Table 2. Experimental conditions of the seven experiments. 181 

Set Experiment Mg source 

Duration 

(d) 

pH 

Molar ratio 

(Mg/P) 

HRT 

(h) 

Set 1 

Exp 1 

MgCl2∙6H2O 

27 

8.8 1 

4.35 

Exp 2 30 3.26/2.45* 

Exp 3 

Exp 4 

15  

17 

1.5 

1/0.5* 

 Exp 5 

Seawater 

34 

8.8 1 4.35 

Set 2 

Exp 6 

Exp 7 

21 

30 

* Within these experiments different hydraulic retention times (HRT) were tested (i.e., a different HRT was applied without starting a 182 

new experiment). 183 

 184 

Synthetic urine fed to the crystallisation reactor had a high pH but not enough to counteract the pH 185 

decrease caused by the crystallisation process. According to Pastor et al., (2008a) the pH value in 186 

the crystallisation reactor is an important parameter to achieve suitable efficiencies, and are 187 

maximized at pH=8.8. Therefore, all experiments were performed at this pH value, and this 188 

parameter was controlled at the desired set-point adding NaOH on demand using a fuzzy-logic 189 

control algorithm (Chanona et al., 2006). 190 

 191 
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In each experiment, samples from the effluent were taken on a daily basis to measure pH, 192 

conductivity, alkalinity, total phosphorus, orthophosphate, ammonium, magnesium, calcium, 193 

potassium, chloride and sodium. 194 

 195 

Two types of efficiencies were calculated to evaluate the phosphorus precipitation process: 196 

precipitation and recovery efficiencies. These efficiencies were calculated along each experiment 197 

with the average values obtained from the analyses. Precipitation efficiency (Eq. 1) represents the 198 

process efficiency from a thermodynamic point of view since with enough residence time, 199 

supersaturation can be almost completely consumed. Recovery efficiency (Eq. 2) takes into account 200 

both precipitation and crystal growth efficiencies. It is calculated as the percentage of the total 201 

phosphorus entering the crystallisation reactor that is not lost with the effluent (i.e., total 202 

phosphorus entering the reactor minus total phosphorus leaving the reactor). The difference 203 

between both efficiencies corresponds to the fine crystals that are lost with the effluent of the 204 

crystallisation reactor. 205 

 206 

𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑐𝑦 =
 𝑃𝑂4 − 𝑃𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡  −  𝑃𝑂4 − 𝑃𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡  

𝑃𝑂4 − 𝑃𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡
∙ 100 %

 

Eq. 1 

Recovery efficiency =
𝑇𝑃𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 − 𝑇𝑃𝑒𝑓𝑓𝑙 𝑢𝑒𝑛𝑡

𝑇𝑃𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡
∙ 100 %

 
Eq. 2 

 207 

3. RESULTS AND DISCUSSION  208 

 209 

All the experiments in the pilot-plant crystallisation reactor were performed at pH=8.8, Mg/P molar 210 

ratio of 1, 400 rpm stirring rate and started-up with 80 grams of struvite crystals as initial seed to 211 

avoid fouling on the reactor walls. These initial conditions were determined in a set of preliminary 212 

experiments. In these preliminary experiments, different strategies to avoid fouling on the reactor 213 
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walls were tested, such as starting-up the experiment with low pH and low Mg/P ratio and gradually 214 

increase them until reaching the desired set-points for the experiment, or using different grams of 215 

struvite crystals as initial seed of the experiment. Figure 2 shows some pictures from these 216 

preliminary experiments. Fouling on the internal reactor walls of the reaction zone as well as on the 217 

metallic stirrer occurred during the start-up of the experiment seeded with 9 grams of struvite 218 

crystals (see Figures 2a, 2b). The fouling was consequence of high supersaturation of the reactants 219 

concentration (i.e., NH4-N, PO4-P, Mg2+) in the reaction zone, promoting primary nucleation 220 

instead of crystal growth. Conversely, no fouling occurred in the experiments started-up with 80 221 

grams of struvite crystals as initial seed (see Figure 2c). The main conclusion of these preliminary 222 

experiments was that with enough struvite seed in the reactor, no fouling occurred making it 223 

unnecessary taking any other measure to avoid supersaturation conditions.  224 

 225 

   

(a) (b) (c) 

Figure 2. Pictures of some preliminary experiments: (a) Fouling on the internal reactor walls of the reaction zone 226 

during the start-up of an experiment seeded with 9 grams of struvite crystals after 3 days of operation (b) fouling on the 227 

metallic stirrer (same experiment as before) (c) reaction zone during the start-up of an experiment seeded with 80 grams 228 

of struvite crystals after 30 days of operation. 229 

 230 

 231 

 232 
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3.1 Experiments with MgCl2 as Mg source 233 

 234 

Figure 3 shows the temporal evolution of different monitored parameters in the struvite 235 

precipitation experiments that used MgCl2 as precipitant: solid concentration in the reaction zone, 236 

size of the solid crystals from the reaction zone (RZ Size) and from the harvest zone (HZ Size), as 237 

well as the precipitation and recovery efficiencies along each experiment. As can be seen in Figure 238 

3a, after starting the first experiment (HRT=4.35 h), the concentration of solids in the reaction zone 239 

increased, precipitation and recovery efficiencies quickly achieved high values (exceeding 90% at 240 

day 7), and both efficiencies began to separate around day 12, reflecting the presence of fine solids 241 

that were lost with the effluent. This difference in precipitation and recovery efficiencies was due to 242 

operating problems with the magnesium dosage (caused by scale deposits inside the magnesium 243 

injection pipeline), and when solved (with acid cleaning and regular maintenance of the injection 244 

pipeline) both efficiencies tended to converge again (day 16). Crystal harvesting from the 245 

precipitation reactor (at days 16, 21 and 26) allowed the solid concentration in the reaction zone to 246 

be relatively steady, enabling suitable continuous operation of the crystallisation process.  247 

 248 

Struvite crystal size in the reaction zone followed a similar pattern to the solid concentration 249 

evolution, which can be clearly observed in Figure 3a. From day 3 onwards the crystal size was 250 

clearly visible at bare eye (> 100 m), and a noticeable difference in size can be observed between 251 

the struvite crystals from the reaction zone (RZ Size) and the harvest zone (HZ Size). This size 252 

dissimilarity is consequence of the harvesting system implemented, which included a solid trap in 253 

the lower part of the reaction zone (see Figure 1a), acting as a settler, which was connected to the 254 

reactor through a manual valve. This purge system allowed the harvesting of the larger struvite 255 

crystals while keeping the lower size solids in suspension inside the reactor and letting them grow. 256 

 257 

 258 
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The experimentation results evidenced that the crystallisation process can continuously operate with 259 

hydraulic retention times (HRT) as low as 0.5 hours (Figure 3) achieving consistently phosphorus 260 

precipitation and recovery efficiencies higher than 90%. The lower the HRT the higher struvite 261 

harvesting to maintain a steady solid concentration in the reaction zone (from 190 g of struvite per 262 

week at 4.35 hours to 1610 g per week at 0.5 hours; resulting in 0.99 g of struvite per litre of urine). 263 

The main effect of lowering the HRT was observed on the average size of the harvested struvite 264 

crystals (and mainly on the size of solids from the harvest zone) that decreased from around 300 m 265 

at 4.35 hours to less than 200 m at 0.5 hours. To enable visual correlation patterns between the 266 

different measured parameters and the HRT (i.e., the operational variable modified in each 267 

experiment), a scatterplot of all variables is shown in Figure 4. As can be seen in Figure 4a no 268 

significant difference existed in the recovery efficiencies achieved at the different HRT tested 269 

(independently of the solid concentration in the reaction zone, which is influenced by the crystal 270 

solid harvesting), while the harvested struvite crystals reduced in size as the HRT decreased for 271 

values lower than 2.45 hours (Figure 4b). At higher HRT values the size of harvested struvite 272 

crystals remained similar. An analogous correlation pattern was observed for the struvite crystals 273 

from the reaction zone.  274 

 275 

 276 
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(c) (d) 

Figure 3. Time course evolution of recorded parameters in the struvite precipitation experiments that used MgCl2 as 277 

precipitant: (a) Experiment 1 – HRT=4.35 h (b) Experiment 2 – HRT =3.26 h and 2.45 h (c) Experiment 3 – HRT =1.5 278 

h (d) Experiment 4 – HRT=1 h and 0.5 h. Parameters shown: Solid concentration in the reaction zone (RZ 279 

Concentration), size of the solid crystals from the reaction zone (RZ Size), size of the crystals from the harvest zone 280 

(HZ Size), precipitation efficiency and recovery efficiency. Days when struvite crystals were harvested from the 281 

crystallisation reactor are labelled with a vertical dashed line. Each vertical solid line signals a change in the HRT 282 

within the experiment (i.e., a different HRT was applied without starting a new experiment). 283 

 284 
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Figure 4. Hydraulic retention time versus recorded parameters in the struvite precipitation experiments that used MgCl2 287 

as precipitant. Parameters shown in: (a) Solid concentration in the reaction zone, precipitation efficiency and recovery 288 

efficiency; (b) Size of the solid crystals from the reaction zone (RZ Size) and size of the crystals from the harvest zone 289 

(HZ Size).  290 

 291 
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 292 

3.2 Experiments with seawater as Mg source 293 

 294 

Another set of crystallisation experiments was performed using seawater instead of magnesium 295 

chloride as precipitant. As previously indicated, seawater was chosen as a low-cost and sustainable 296 

option to perform the P-recovery process in coastal areas. Real seawater from the Mediterranean 297 

Sea was used to assess its efficiency to precipitate P as struvite in a more realistic way. Average 298 

composition of the seawater used for the crystallisation experiments is shown in Table 3. As can be 299 

seen in this table, seawater presents noticeable concentration of ions such as Ca2+, SO4
2-, Na+,… 300 

which could lead to the formation of impurities and other precipitates. 301 

 302 

Table 3. Average seawater composition of the samples from the Mediterranean Sea used in the experimentation. 303 

Average values and Standard Deviation of 70 samples. Compounds concentration is expressed in mg/L, Alkalinity as 304 

mgCaCO3/L and Conductivity in mS/cm. 305 

Na+ Cl- K+ SO4
2- Ca2+ Mg2+ PO4-P NH4-N NO2-N NO3-N Alkalinity Conductivity pH 

10947 20639 468.7 3022.3 441.6 1322 0.025 0.34 0 0.04 102.7 53 7.90 

±1185 ±2168 ±34.6 ±345.7 ±52.9 ±124.4 ±0.005 ±0.12  ±0.02 ±5.1 ±6 ±0.04 

 306 

Figure 5 shows the temporal evolution of different monitored parameters in the struvite 307 

precipitation experiments that used Mediterranean Seawater as magnesium source: solid 308 

concentration in the reaction zone (RZ Concentration), size of the solid crystals from the reaction 309 

zone (RZ Size) and from the harvest zone (HZ Size), as well as the precipitation and recovery 310 

efficiencies. All experiments were carried out at the highest HRT tested in the MgCl2 set of 311 

experiments (4.35 h). 312 

 313 

As can be seen in Figure 5, precipitation efficiency with seawater was consistently over 90%, while 314 

the recovery efficiency was close to 90% (88.9% on average). Although general patterns and 315 
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behaviour with seawater were similar to the results of MgCl2 as precipitant (compare Figure 3a with 316 

5a), remarkable differences can be observed. The main difference between both precipitants is the 317 

struvite crystal solid size, which is in this case (Mediterranean Seawater as magnesium source) 318 

clearly smaller. Both crystal sizes were smaller, the solids from the reaction zone (90 m vs 150 319 

m) and the harvested solids (125 m vs 300 m). This reduction in the crystal solid size can be 320 

due to the higher concentration of calcium in the seawater. Several authors (Le Corre et al., 2005; 321 

Wang et al., 2005; Pastor et al., 2008b) have reported the influence of calcium concentration on 322 

struvite formation, evidencing a reduction in crystal size and a higher presence of amorphous form 323 

at the expense of the typical cuboid crystals of struvite as the concentration of calcium increased. Le 324 

Corre et al. (2005) indicated that Ca/Mg molar ratio of 0.5 inhibited struvite growth, generating 325 

amorphous calcium phosphate precipitated on struvite surface; and Ca/Mg molar ratio above 1 gave 326 

rise to the formation of an amorphous precipitate rather than crystalline struvite. Pastor et al. 327 

(2008b) observed a lower struvite formation at Ca/Mg molar ratio of 1.6. Gao et al. (2018) observed 328 

that the increase of Ca2+ concentration influenced potassium struvite crystallization from urine due 329 

to the formation of calcium phosphate. Li et al. (2016) also observed that a calcium concentration 330 

with a calcium to magnesium ratio of less than one helps increase the particle size of the crystals 331 

without negatively impacting on the product purity. Thus, the particle size can potentially be used to 332 

infer the product purity. However, these effects are less potent at a high ammonia nitrogen 333 

concentration, which diminishes the negative impact of calcium. In this work, the Ca/Mg ratio was 334 

0.2 and 0.4 for the experiments using magnesium chloride and seawater, respectively. The Ca/Mg 335 

ratio slightly increased when seawater was used, which could favour the reduction of the crystal 336 

solid size observed in these experiments.  337 

 338 

Another difference in the experiments with seawater as magnesium source is the presence of 339 

impurities and amorphous precipitates. Although the Ca/Mg molar ratio increase observed in 340 

seawater experiments was not high enough to inhibit struvite formation, this increase could help to 341 
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give rise to the formation of this amorphous precipitate. Figure 6 shows their presence in the solid 342 

trap. However, a clear difference was observed in the settling velocity of the struvite crystal solids 343 

and the amorphous precipitates, which as can be seen in Figure 6, rested as a layer on top of the 344 

struvite. This clear difference in the two layers formed naturally within the solid trap suggest that 345 

the separation of the amorphous matter from the struvite crystals at industrial scale could be 346 

possible and relatively straightforward. Anyway, specific experiments would be required to 347 

evaluate the feasibility of this separation and its associated economic cost. In the remaining 348 

experiments (Figures 5b and 5c), with durations up to 30 days, similar results were observed (high 349 

precipitation and recovery efficiencies and the crystal size of the crystals from the harvest zone 350 

noticeable higher than the solids from the reaction zone).  351 
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Figure 5. Time course evolution of recorded parameters in the struvite precipitation experiments that used 352 

Mediterranean Seawater as magnesium source: (a) Experiment 5 (b) Experiment 6 (c) Experiment 7. All experiments 353 

were performed at 4.35 hours of HRT. Parameters shown: Solid concentration in the reaction zone (RZ Concentration), 354 

crystals solid size in the reaction zone (RZ Size), crystals solid size of the harvest zone (HZ Size), precipitation 355 

efficiency and recovery efficiency. Days when struvite crystals were harvested from the crystallisation reactor are 356 

labelled with a vertical dashed line. 357 

 358 

 359 

Amorphous
matter

Struvite
crystals

 

 

Figure 6. Picture of the solid trap with harvested solids from the crystallisation reactor at the end of the Experiment 5. 360 

 361 

Several SEM images of the struvite precipitates from Experiment 5 carried out using seawater 362 

(upper part of the figure) and from Experiment 1 carried out using magnesium chloride (bottom 363 

part) as precipitants are shown in Figure 7. As can be seen in Figure 7a, the amorphous matter not 364 

only grew independently of struvite but also grew, covered and merged several orthorhombic 365 

struvite crystals. The calcium mapping (Figure 7b) clearly revealed the presence of calcium in this 366 

unstructured matter, which could probably be a mixture of calcite and amorphous calcium 367 

phosphate. In contrast, perfect cuboid crystals (Figures 7 d, 7e, 7f) were observed in the 368 

experiments were magnesium chloride was used as precipitant. Moreover, the qualitative 369 

composition (expressed as percentage of N, P, Mg and C) of the harvested crystals obtained by 370 

EDS, shown in Figure 8, revealed the presence of calcium in the precipitates formed in Experiment 371 

5 carried out using seawater. 372 
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 373 

Finally, to further understand the nature of the precipitates formed according to the magnesium 374 

source, XRD was used to determine the identity of the precipitates. The XRD pattern of the 375 

precipitates from experiments 1 and 5 are shown in Figure 9. The XRD patterns from samples 376 

obtained in the magnesium chloride experiments matched well with the peaks for pure struvite. In 377 

samples from seawater experiments, the diffractogram revealed some background noise, which 378 

indicated the presence of amorphous precipitate. 379 

 380 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 7. (a) SEM image of precipitates from the largest experiment carried out using seawater as magnesium source 381 

(Experiment 5) where an amorphous matter growing on several cuboid struvite crystals can be seen (b) Calcium 382 

mapping (c) Magnesium mapping. Bottom figures correspond to SEM images from experiments using MgCl2 as 383 

precipitant (d,e) Experiment 1 – HRT=4,35 h (f) Experiment 2 – HRT=3,26 h.  384 

 385 

 386 
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Figure 8. X-ray microanalysis results for the struvite obtained from (a) Experiment 1 (using MgCl2 as Mg source) and 387 

(b) Experiment 5 (seawater as Mg source). 388 
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Figure 9. X-ray diffraction spectra of the precipitates from Experiment 1 (MgCl2 was used as Mg source) and 390 

Experiment 5 (seawater was used as Mg source), together with the standard struvite pattern. 391 

 392 

4. CONCLUSIONS 393 

In this work, interesting experimental results at pilot-plant scale of struvite crystallization from 394 

urine using magnesium chloride and Mediterranean Seawater as magnesium sources are presented, 395 

thoroughly analysed and discussed. The main conclusions that can be drawn from this study are: 396 
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 Struvite crystallization in the pilot-scale reactor can be stable, with high P precipitation and 397 

recovery efficiencies (exceeding 90% and 87%, respectively), achieving 0.99 grams of 398 

struvite per litre of urine irrespective of the variations in the operational conditions. 399 

 To avoid fouling on the reactor walls due to primary nucleation instead of crystal growth, it 400 

is of paramount importance starting-up the process with enough struvite seed in the reactor. 401 

 Crystal solids harvesting from the precipitation reactor allow the solid concentration in the 402 

reaction zone to be relatively steady which is important to enable suitable continuous 403 

operation of the crystallisation process.  404 

 Settling allows the harvesting of the larger struvite crystals while the lower size solids 405 

remain in the reactor making it possible its growth. 406 

 The hydraulic retention time (HRT) does not affect the phosphorus precipitation and 407 

recovery efficiencies, but as the HRT decreases the harvested struvite crystals tend to be 408 

smaller.  409 

 Larger struvite crystals were obtained (around 2-fold) using magnesium chloride instead of 410 

seawater as magnesium source. 411 

 Using seawater as low-cost magnesium source to perform P-recovery from urine in coastal 412 

areas is feasible. High phosphorus precipitation and recovery efficiencies are possible (close 413 

to 90%) with struvite crystals visible at bare eye (> 100 m).  414 

 Impurities appeared in the P-precipitates using seawater as struvite magnesium source. The 415 

lower settling velocity of the amorphous precipitates in comparison with the struvite 416 

precipitates suggest that their separation at industrial scale could be relatively 417 

straightforward. 418 

 419 

 420 

 421 
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