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Abstract

Usually, fuzzy metric spaces are endowed with crisp topologies or crisp

uniformities. Nevertheless, some authors have shown how to construct

in this context different kinds of fuzzy uniformities like a Hutton [0, 1]-

quasi-uniformity or a probabilistic uniformity.

In 2010, J. Gutiérrez Garćıa, S. Romaguera and M. Sanchis [7] proved

that the category of uniform spaces is isomorphic to a category whose

objects are sets endowed with a fuzzy uniform structure, i. e. a family

of fuzzy pseudometrics satisfying certain conditions. We will show here

that, by means of this isomorphism, we can obtain several methods to

endow a uniform space with a probabilistic uniformity. Furthermore,

we obtain a factorization of some functors introduced in [6].
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1. Introduction

The problem of finding appropriate notions for topological concepts in the fuzzy

context has been a fruitful and influential area of research. In particular, the quest

for finding suitable notions of fuzzy metric, fuzzy uniformity and fuzzy proximity

has deserved a lot of attention during the last decades [1, 3, 5, 11, 12, 13, 14, 10, 9,

17], etc. Nevertheless, there are not too many results about how to reconcile the

theory of fuzzy metric spaces with that of fuzzy uniform spaces. In crisp theory,

there is a standard procedure which allows to construct a uniformity by means

of a metric providing a good behaviour as from a categorical point of view as

with respect to some uniform properties like precompactness and completeness.

However, this procedure is not clear at all in the fuzzy theory.

In [8, 9] Höhle gave a method to construct a probabilistic uniformity and a Lowen

uniformity from a probabilistic pseudometric. Recently in [6] different procedures

to endow a fuzzy metric space with a probabilistic uniformity are studied. The

categorical behaviour of these constructions is analyzed as well as their induced

fuzzy topologies. From that study we can deduce that some of that constructions

have not suitable properties since, for example, they don’t preserve fuzzy uniformly

continuous functions.

The present work is a continuation of the search for a standard procedure of

endowing a fuzzy metric space with a probabilistic uniformity. In particular, here

we are interested in the following issue. In the classical theory, there is a canonical

procedure to construct a uniformity from a (pseudo)metric and this construction

factorizes by means of a certain family of pseudometrics called a gauge.

Met

(X, d)

Gau

(X,Dd)

Unif

(X,Ud)

We wonder whether we can obtain a similar diagram when we consider the different

procedures considered in [6] of inducing a probabilistic uniformity from a fuzzy
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(pseudo)metric. We will show that the answer is affirmative and as a byproduct of

our work we obtaing different ways of endowing a uniform space with a probabilistic

uniformity.

2. Fuzzy gauge bases

Classical uniformities admit several equivalent definitions among which we can

emphasize the following three: by entourages of the diagonal; by uniform covers;

by pseudometrics. This last approach is based on the fact that every uniformity

can be obtained as the supremum of a collection of uniformities generated by a

family of pseudometrics called a gauge [2]. In fact, the category of uniform spaces

is isomorphich to the category of gauge spaces.

In [7] it is introduced the category of fuzzy uniform spaces which can be consi-

dered as a fuzzy counterpart of the category of gauge spaces. In order to give its

definition, we present other notions that will be useful later on. In the following,

when we refer to a fuzzy (pseudo)metric it is in the sense of Kramosil and Michalek

[13] and we presuppose that the reader is familiarized with the basic theory of fuzzy

pseudometric spaces (terms and undefined concept can be consulted in [6, 7]). The

category of fuzzy pseudometric spaces and uniformly continuous functions (resp.

fuzzy uniformly continuous functions) will be denoted by FMet (resp. FMet̥).

Definition 1. A fuzzy gauge base on a nonempty set X is a pair (B, ∗) where ∗

is a continuous t-norm and B is family of fuzzy pseudometrics on X with respect

to the t-norm ∗ which is closed under finite infimum.

Every fuzzy gauge base (B, ∗) on a nonempty set X induces a uniformity UB on X

given by UB =
∨

(M,∗)∈B UM where UM is the usual uniformity having a countable

base which is associated with a fuzzy (pseudo)metric (M, ∗) (cf. [4]). UB has as

a base the family {UM,ε,t : (M, ∗) ∈ B, ε ∈ (0, 1], t > 0} where UM,ε,t = {(x, y) ∈

X ×X : M(x, y, t) > 1− ε} (cf. [7, Proposition 3.4]). The topology generated by

the uniformity UB will be denoted by τ(B).

Definition 2 (cf. [7]). Let (X,B1, ∗) and (Y,B2, ⋆) be two spaces endowed with

two fuzzy gauge bases. A mapping f : X → Y is said to be
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• fuzzy uniformly continuous if for every (N, ⋆) ∈ B2 and t > 0 there exist

(M, ∗) ∈ B1 and s > 0 such that M(x, y, s) ≤ N(f(x), f(y), t) for all

x, y ∈ X ;

• uniformly continuous if for each (N, ⋆) ∈ B2, ε ∈ (0, 1] and t > 0 there

exist (M, ∗) ∈ B1, δ ∈ (0, 1] and s > 0 such that N(f(x), f(y), t) >

1 − ε whenever M(x, y, s) > 1 − δ. This is equivalent to assert that f :

(X,UB1)→ (Y,UB2) is uniformly continuous.

Notice that every fuzzy uniformly continuous function is uniformly continuous but

the converse is not true (see [15, Example 3.17]). We denote by BFGau (resp.

BFGauu) the category whose objects are the spaces endowed with a fuzzy gauge

base and whose morphisms are the fuzzy uniformly continuous functions (resp.

uniformly continuous functions). Of course BFGau is a subcategory of BFGauu.

Definition 3 ([7, 15]). Given a fuzzy gauge base (B, ∗) on a nonempty set X

define:

• B≤ = {(N, ∗) fuzzy (pseudo)metric on X : there exists (M, ∗) ∈ B such

that M(x, y, t) ≤ N(x, y, t) for all x, y ∈ X, t > 0}.

• 〈B〉 = {(N, ∗) fuzzy (pseudo)metric on X : for all t > 0 there

exist (M, ∗) ∈ B and s > 0 such that M(x, y, s) ≤ N(x, y, t) for all x, y ∈

X}.

• B̃ = {(N, ∗) fuzzy (pseudo)metric on X : for all ε ∈ (0, 1] and t > 0 there

exist s > 0, (M, ∗) ∈ B such that M(x, y, s)− ε ≤ N(x, y, t) for all x, y ∈

X}.

• B̂ = {(N, ∗) fuzzy (pseudo)metric on X : for all ε ∈ (0, 1] and t > 0 there

exist δ ∈ (0, 1], s > 0, (M, ∗) ∈ B such that M(x, y, s) > 1 − δ implies

N(x, y, t) > 1− ε}.

Observe that B ⊆ B≤ ⊆ 〈B〉 ⊆ B̃ ⊆ B̂. Furthermore, if:

• B≤ = B then (B, ∗) is called a fuzzy gauge;

• 〈B〉 = B then (B, ∗) is called a probabilistic uniform structure;

• B̃ = B then (B, ∗) is called a Lowen uniform structure;

• B̂ = B then (B, ∗) is called a fuzzy uniform structure.
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A fuzzy uniform space is a triple (X,M, ∗) such that X is a nonempty set and

(M, ∗) is a fuzzy uniform structure on X.

Remark 4. We notice that the mapping E
≤ : BFGau→ BFGau leaving morphisms

unchanged and such that E
≤(X,B, ∗) = (X,B≤, ∗) is an endofunctor on BFGau.

This can be done for all the operators considered in the above Definition except

for ,̂ for which we have to consider the category BFGauu instead of BFGau.

We consider the following categories whose morphisms in all cases are the fuzzy

uniformly continuous functions except in the last one where uniform continuous

functions are considered:

• FGau whose objects are all spaces endowed with a fuzzy gauge;

• PSUnif whose objects are all spaces endowed with a probabilistic uniform

structure;

• LSUnif whose objects are all spaces endowed with a Lowen uniform struc-

ture;

• FUnif whose objects are all fuzzy uniform spaces.

Theorem 5 ([7]). Let (X,U) be a uniform space and (X,M, ∗) be a fuzzy uniform

space. Let us consider:

• (ϕ∗(DU ), ∗) the fuzzy uniform structure on X given by ϕ∗(DU ) = {(M, ∗) :

UM ⊆ U};

• ψ(M) is the family of all pseudometrics d on X such that Ud ⊆ UM.

Then:

(i) Φ∗ : Unif → FUnif(∗) is a covariant functor sending each (X,U) to

(X,ϕ∗(DU ), ∗);

(ii) Ψ : FUnif(∗) → Unif is a covariant functor sending each (X,M, ∗) to

(X,UM) = (X,Uψ(M));

(iii) Φ∗ ◦Ψ = 1FUnif(∗) and Ψ ◦ Φ∗ = 1Unif .
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3. Probabilistic uniformities

Definition 6 ([8, Definition 2.1], [11], [14]). A probabilistic uniformity on a

nonempty set X is a pair (U, ∗), where ∗ is a continuous t-norm and U is a prefilter

on X ×X such that:

(PU1) U(x, x) = 1 for all U ∈ U and x ∈ X ;

(PU2) if U ∈ U then U−1 ∈ U where U−1(x, y) = U(y, x);

(PU3) for each U ∈ U there exists V ∈ U such that V 2 ≤ U where V 2(x, y) =
∨
z∈X V (x, z) ∗ V (z, y).

In this case, the pair (X,U, ∗) is called a probabilistic uniform space.

If U also satisfies
∨
ε∈(0,1](Uε − ε) ∈ U for each family {Uε : ε ∈ (0, 1]} ⊆ U then

(U, ∗) is called a Lowen uniformity and (X,U, ∗) is a Lowen uniform space.

A function f : (X,U, ∗) → (Y,V, ⋆) between two probabilistic uniform spaces is

said to be uniformly continuous if (f × f)−1(V ) ∈ U for all V ∈ V, i.e. for every

V ∈ V there exists U ∈ U such that

U(x, y) ≤ V (f(x), f(y)) for all x, y ∈ X.

We denote by PUnif (resp. LUnif) the category of probabilistic uniform spaces

(resp. Lowen uniform spaces) and uniformly continuous functions. For a fixed

continuous t-norm, PUnif(∗) (resp. LUnif(∗)) is the full subcategory of PUnif (resp.

LUnif) whose objects are the probabilistic uniform spaces (resp. Lowen uniform

spaces) with respect to ∗.

Theorem 7 ([14]). Let X be a nonempty set, U be a uniformity on X and (U, ∗)

be a Lowen uniformity on X. Define

ω(U) = {U ∈ IX×X : U−1((α, 1]) ∈ U for all α ∈ I1} and

ι(U) = {U−1((α, 1]) : U ∈ U, α ∈ I1}.

Then the functor ω∗ : Unif → LUnif(∗) given by ω∗((X,U)) = (X,ω(U), ∗) and

which leaves morphisms unchanged is fully faithful while the functor ι : LUnif →

Unif given by ι((X,U, ∗)) = (X, ι(U)) and which leaves morphisms unchanged is
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faithful. Furthermore, ι ◦ ω∗ = 1Unif so Unif is isomorphic to a full subcategory of

LUnif(∗).

Remark 8. It is proved in [16] that LUnif is a coreflective full subcategory of

PUnif and the coreflector is the functor S : PUnif → LUnif which leaves morphisms

unchanged and which assigns to every probabilistic uniformity (U, ∗) its saturation

(Ũ, ∗) where Ũ = {
∨
ε∈(0,1](Uε − ε) : (Uε)ε∈(0,1] ∈ U(0,1]}.

4. Probabilistic uniformities on a uniform space

Next we propose some methods to endow a uniform space (or equivalently a fuzzy

uniform space) with a probabilistic uniformity.

Proposition 9. Consider the mappings

Λs,Υs : BFGau→ PUnif, Γs, ωs : BFGauu → PUnif

leaving morphisms unchanged and acting on objects as:

(1) Λs(X,B, ∗) = (X,UB, ∗) where (UB, ∗) is the probabilistic uniformity which

has as a base the family {UMε,t : ε ∈ (0, 1], t > 0, (M, ∗) ∈ B} where

UMε,t(x, y) = (1− ε)→M(x, y, t) =
∨
{λ ∈ [0, 1] : (1− ε) ∗ λ ≤M(x, y, t)}

for all x, y ∈ X.

(2) Υs(X,B, ∗) = (X,UHB , ∗) where (UHB , ∗) is the probabilistic uniformity

which has as a base the family {Mt : t > 0, (M, ∗) ∈ B} and Mt(x, y) =

M(x, y, t) for all x, y ∈ X.

(3) Γs(X,B, ∗) = (X,U01

B , ∗) where (U
01

B , ∗) is the probabilistic uniformity which

has as a base the family {1U : U ∈ UB} and 1U is the characteristic func-

tion of U.

(4) ωs(X,B, ∗) = (X,ω(UB), ∗).

Then Γs, ωs,Λs,Λ
H
s are covariant functors.

Remark 10. Notice that composing the above mappings with the functor Φ∗ (see

Theorem 5) we obtain several methods to construct a probabilistic uniformity from

a crisp uniformity.
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In [6] several functors from FMet to PUnif were considered. It is natural to wonder

if they factorizes by means of some subcategory of BFGauu.

Proposition 11. The following diagrams commute:

(1) FMet

(X,M, ∗)

FUnif

(X, M̂, ∗)

PUnif

(X,U01

M , ∗)

LUnif

(X, Ũ01

M , ∗)

Ê Γs

Γ S

Υ

where Γ is the restriction of Γs to the full subcategory FMet of BFGauu.

(2) FMet̥

(X,M, ∗)

PSUnif

(X, 〈M〉, ∗)

PUnif

(X,UHM , ∗)

LUnif

(X, ŨHM , ∗)

LSUnif

(X, 〈̃M〉, ∗)

〈E〉 Υs

Υ S

Υs

Ẽ

where Υ is the restriction of Υs to the full subcategory FMet̥ of BFGau.
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