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We propose a methodology to address the programmability issues derived from the emergence of new-
generation shared-memory NUMA architectures. For this purpose, we employ dense matrix factorizations 
and matrix inversion (DMFI) as a use case, and we target two modern architectures (AMD Rome and 
Huawei Kunpeng 920) that exhibit configurable NUMA topologies. Our methodology pursues performance 
portability across different NUMA configurations by proposing multi-domain implementations for DMFI 
plus a hybrid task- and loop-level parallelization that configures multi-threaded executions to fix core-to-
data binding, exploiting locality at the expense of minor code modifications. In addition, we introduce a 
generalization of the multi-domain implementations for DMFI that offers support for virtually any NUMA 
topology in present and future architectures.
Our experimentation on the two target architectures for three representative dense linear algebra 
operations validates the proposal, reveals insights on the necessity of adapting both the codes and their 
execution to improve data access locality, and reports performance across architectures and inter- and 
intra-socket NUMA configurations competitive with state-of-the-art message-passing implementations, 
maintaining the ease of development usually associated with shared-memory programming.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

Power, performance, area, cost and time-to-market have been 
key drivers for the adoption of heterogeneous integration tech-
nologies. As Moore’s Law scaling is nearing its end, the traditional 
monolithic silicon chip, for which a flaw in one part can make the 
entire device unusable, is being abandoned in favor of systems-
on-chip (SoC), composed of multiple small chiplets leading to less 
complex integrated circuits, which can be built in the most effi-
cient manufacturing process according to their characteristics. Ad-
vanced packaging technologies and substrate design, which allows 
for much higher bandwidth between chiplets, have enabled inte-
grating chiplets from different manufacturing process flows into a 
single package [2,11,22,26]. Thus, disintegrating complex chips im-
proves yield and reduces costs, while accommodating more easily 
specialized systems, with the net result of being nowadays adopted 
by most major hardware manufacturers in their current micropro-
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cessor designs [29,30,48]. In addition, industry leaders in semi-
conductors, packaging, IP suppliers, foundries, and cloud service 
companies are currently standardizing an open chiplet ecosystem: 
the Universal Chiplet Interconnect Express (UCIe) for integrating 
chiplets in future semiconductor designs [44]. This hardware dis-
aggregation paradigm matches the high configurability needed in 
some scenarios. For instance, when targeting multi-tenant scenar-
ios, (either multi-application, multi-container or multi-VM –Virtual 
Machine–), resource management capabilities provide a fine-grain 
mechanism to monitor, handle and reduce resource contention, im-
proving the efficiency and predictability of executions [25,31,50]. 
However, portability on such novel architectures becomes a chal-
lenge, due to their complex and configurable memory hierarchies.

These new programmability and performance portability chal-
lenges directly translate into complex and fine-grained application-
level adaptation, with significant impact on underlying scientific 
libraries, in which many applications and frameworks delegate to 
obtain performance. Among them, dense linear algebra libraries 
in general, and matrix factorization routines in particular, are the 
foundation in the quest for performance and scalability in novel 
applications in science and engineering; in the afore-described sce-
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nario, these fundamental libraries will suffer from the rapid evolu-
tion on the complexity of architectures, and hence techniques and 
methodologies for rapid adaptation will become mandatory.

1.1. Configurable NUMA memories

Memory is a key shared resource across applications, with a 
critical impact on performance. In the last years, the memory 
wall [28,47] has been tackled via NUMA (Non-Uniform Memory 
Access) architectures together with multi-socket platforms [23,35]. 
Unfortunately, this comes at the cost of increasing the design space 
and introducing a considerable burden on the programmers’ shoul-
ders, who now have to avoid remote memory accesses as well as 
to control thread-to-core pinning [21,33,38]. To partially alleviate 
this situation, NUMA-aware optimizations have been introduced in 
most levels of the software stack, including applications [13,43,49], 
libraries and middleware [32,36], hardware-software co-design of 
runtime and operating systems [9,24,39], hypervisors [46], and 
container orchestrators [16].

The NUMA configuration of recent architecture designs from 
AMD (e.g., Zen2) [30] and Huawei (Kunpeng) [48] can be modi-
fied off-line at boot time. An appropriate selection of the NUMA 
scheme, depending on the server target applications, is therefore 
crucial to achieve the goals of isolation and contention control. Un-
fortunately, this hampers performance portability for parallel codes 
that need to span across multiple NUMA nodes, on the same or 
across different sockets.

As a motivational example, consider the results in Fig. 1. The 
experiment was carried out on Rome, a multi-core AMD-based 
server equipped with two sockets and 64 cores per socket.1 The 
experiment computes an LU factorization with partial pivoting [18]
for a large square matrix dimension (of order 30720) using a 
LAPACK-style coding [5] and parallelization scheme, where all 
multi-threaded parallelism is extracted from within the Basic Lin-
ear Algebra Subprograms (BLAS) [15]. The number of BLAS threads 
varies between 1 and 128. The matrix is generated and remains 
on the first NUMA node during the complete execution, and we 
configure the server with three distinct numbers of NUMA nodes 
per socket (NPS): 1 (red line), 2 (blue line), and 4 (green line). 
This experiment illustrates that the scalability heavily degrades as 
the number of threads span across the two physical sockets, as 
would be expected on a typical NUMA multi-socket setup. In ad-
dition, the possibility of configuring different number of NUMA 
NPS implies that the performance variability depends on the spe-
cific setup, and yields a variety of scalability degrees depending on 
the selected NUMA topology. Ideally, multi-threaded applications 
should be flexible enough to handle this variation in the hardware 
topology with minimal modifications to their source code.

1.2. Contributions

In this paper, we address the programmability and performance 
portability challenges introduced by reconfigurable NUMA archi-
tectures in new generation processors for a specific domain, dense 
linear algebra (LA), demonstrating that it is possible to simultane-
ously integrate NUMA-awareness into popular algorithms for dense 
matrix factorizations and inversion (DMFI) while still controlling 
the inherent complexity of code development for this type of ar-
chitectures. In more detail, we make the following contributions:

• We expose the significant performance penalty introduced by 
NUMA-oblivious implementations on current servers.

1 The complete details of the Rome platform are provided in Section 4.1.
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Fig. 1. Speed-up for an LU factorization with partial pivoting on a dual-socket AMD 
Zen2 architecture (Rome) for different configurations of NUMA nodes per socket 
(NPS). The speed-up is calculated with respect to a sequential implementation run-
ning on a single core of the machine.

• We demonstrate that a high-level approach towards design-
ing LA algorithms can substantially alleviate the development 
effort for the programmer, while increasing performance in 
situations in which LA algorithms span across multiple NUMA 
domains. Concretely, we provide a generic NUMA-aware rou-
tine for DFMI that comprises only 32 lines of code (including 
comments).

• We validate our approach via a complete experimental evalua-
tion of three DMFI kernels on two state-of-the-art dual-socket 
NUMA architectures, namely: an AMD Rome server with 128 
cores and up to 16 NUMA NPS, and an ARM-based Huawei 
Kunpeng server with 96 cores and 2 NUMA NPS.

The rest of the paper is structured as follows. Section 2 pro-
vides a common algorithmic framework for DMFI that will be 
the baseline for NUMA-aware implementations. Section 3 provides 
the necessary modifications on the common algorithmic frame-
work to adapt it to NUMA architectures. Section 4 evaluates the 
NUMA-aware DMFI implementations on two different NUMA ar-
chitectures, and places the shared-memory implementations into 
context, comparing them with state-of-the-art distributed-memory 
codes. Section 5 closes the paper with a number of relevant con-
cluding remarks and avenues for future work.

2. Parallel dense matrix factorizations and inversion

In this section, we offer a brief review of blocked LA algorithms 
for DMFI, and describe three main options to exploit thread-level 
parallelism for these types of operations on multicore architec-
tures.

For the presentation of all our LA algorithms, in the remain-
der of the paper we will consider an m × n matrix A where, for 
simplicity, we assume that m, n are both integer multiples of the 
algorithmic block size b. Furthermore, we will consider a parti-
tion of A into mb × nb = m/b × n/b blocks, each of dimension 
b × b. In our Matlab-like notation, A(c1 : c2, d1 : d2) denotes the 
submatrix of A that spans the intersection between the row-blocks 
c1, c1 +1, . . . , c2 and the column-blocks d1, d1 +1, . . . , d2, compris-
ing the entries in the intersection of rows (c1 − 1) · b + 1, (c1 − 1) ·
b +2, . . . , c2 ·b and columns (d1 −1) ·b +1, (d1 −1) ·b +2, . . . , d2 ·b
of the matrix. Also, matrix indices start at 1. For simplicity, we 



S. Catalán, F.D. Igual, J.R. Herrero et al. Journal of Parallel and Distributed Computing 175 (2023) 51–65
1 void DMFI( matrix A, i n t nb )
2 {
3 f o r ( i n t k = 1; k <= nb; k++ ) {
4 // Factorize panel k
5 PF( A(:, k) );
6 // Update panels 1 : k − 1 w.r.t. panel k
7 LU( A(:, k), A(:, 1 : k − 1) );
8 // Update panels k + 1 : nb w.r.t. panel k
9 TU( A(:, k), A(:, k + 1 : nb) );

10 }
11 }

Listing 1: Simplified routine for DMFI.

define the final row/column block of a matrix with the keyword 
“end”.

2.1. Common algorithmic skeleton

Listing 1 displays a blocked algorithm for a “generic” matrix 
factorization expressed with a high level of abstraction. At the k-th 
iteration of the loop, the algorithm first computes the factorization 
of the k-th column-block of the matrix via routine PF (for panel 
factorization), to then update the leading and trailing submatrices 
(that is, the blocks to the left and right of the k-th column-block) 
respectively via routines LU and TU (for leading and trailing up-
dates, respectively).

The algorithmic skeleton in Listing 1 accommodates a number 
of matrix operations for the solution of linear systems, including 
the LU and QR factorizations, as well as matrix inversion via Gauss-
Jordan elimination [18]. For example, for the LU factorization, PF
decomposes (the diagonal and subdiagonal blocks in) the “curren-
t” (i.e., the k-th) panel into the product of a unit lower triangular 
matrix L and an upper triangular matrix U , integrating partial piv-
oting for numerical stability [18]:

Pk

[
A(k,k)

A(k + 1 : mb,k)

]
=

[
L(k,k)

L(k + 1 : mb,k)

]
U (k,k); (1)

LU then simply applies the row permutations dictated by the piv-
oting scheme, in Pk , to the leading submatrix:[

A(k,1 : k − 1)

A(k + 1 : mb,1 : k − 1)

]
; (2)

and TU applies the same row permutations to the trailing subma-
trix (omitted for brevity), followed by the (unit) lower triangular 
solve:

U (k,k + 1 : nb) := L(k,k)−1 · A(k,k + 1 : nb) (3)

and the submatrix update:

A(k + 1 : mb,k + 1 : nb) := A(k + 1 : mb,k + 1 : nb)

− L(k + 1 : mb,k) · U (k,k + 1 : nb).
(4)

In rough detail, for the QR factorization, PF decomposes the di-
agonal and subdiagonal blocks of the current panel into the prod-
uct of an orthogonal matrix Q and an upper triangular factor R
(though the orthogonal matrix is rarely built explicitly); TU ap-
plies the orthogonal transforms to the trailing submatrix, and LU
does not perform any operation. For matrix inversion, PF decom-
poses the current panel via Gauss-Jordan transforms, while LU and
TU apply the corresponding row permutations and transforms to 
the leading and trailing submatrices.

In general, the realizations of these three matrix operations 
overwrite their input matrix operand with their corresponding out-
puts. Also, choosing a “sufficiently” large value b for the blocked 
procedure in Listing 1 raises the ratio between floating-point oper-
ations and memory accesses, in principle improving performance. 
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1 void DMFI_TP( matrix A, i n t nb )
2 {
3 #pragma omp p a r a l l e l
4 #pragma omp s i n g l e
5 f o r ( i n t k = 1; k <= nb; k++ ) {
6 // Factorize panel k
7 #pragma omp t a s k depend( inout: A(:, k) )
8 PF( A(:, k) );
9

10 // Update panels 1 : k − 1 w.r.t. panel k
11 f o r ( i n t j = 1; j < k; j++ )
12 #pragma omp t a s k depend( in: A(:, k),
13 inout: A(:, j) )
14 LU( A(:, k), A(:, j) );
15
16 // Update panels k + 1 : nb w.r.t. panel k
17 f o r ( i n t j = k + 1; j <= nb; j++ )
18 #pragma omp t a s k depend( in: A(:, k),
19 inout: A(:, j) )
20 TU( A(:, k), A(:, j) );
21 }
22 }

Listing 2: Simplified routine for DMFI, with TP extracted via OpenMP tasks.

Hereafter we will abstract ourselves from these internal details and 
the practical implementation of the operations in (1)–(4), as they 
are not relevant for the techniques described in this work.

2.2. Multi-threaded parallelizations

Multi-threaded BLAS. The conventional (or default) parallel real-
ization of a DMFI in LAPACK [5] extracts all parallelism from a 
multi-threaded instance of the BLAS [15]. In turn, the kernels of 
such a multi-threaded BLAS internally exploit loop parallelism, and 
they are implemented as blocked algorithms that carefully re-use 
some parts (blocks) of the matrix to take advantage of the pro-
cessor cache hierarchy [19,27,45]. For architectures with a small 
number of cores, this approach provides a portable solution with 
fair performance.

Task parallelization via a runtime. In the last years, a pure task-
parallel (TP) solution for LA algorithms has been investigated in a 
number of projects [1,6,14,34]. In these efforts:

1. TP is explicitly exposed by dividing the LU and TU operations 
into multiple finer-grain blocks/tasks;

2. Task dependencies are annotated with the appropriate direc-
tives/clauses; and

3. The result is passed to a runtime system that orchestrates the 
parallel execution.

Listing 2 exemplifies the application of this approach to the generic 
algorithm for DMFI, with tasks annotated using the OpenMP task 
construct.
Hybrid parallelization. A third approach, which combines task-
parallelism with BLAS-level loop-parallelism [10,12], renders an 
alternative with significant performance advantages over the two 
previously described in this section. For our generic skeleton for 
DMFI, this hybrid approach can be formulated, using OpenMP, as 
illustrated in Listing 3. There, the OpenMP sections construct is 
equivalent to a task parallelization when there are no inter-task 
dependencies. In addition, the LU and TU “tasks” internally invoke 
a multi-threaded instance of BLAS, yielding the hybrid (or two-
level) parallelization scheme.

Our solution does not employ the concept of task in the 
OpenMP “sense”. Instead, our tasks refer to the “individual routi-
nes” which are encountered during the execution of the algorithm, 
such as (PF, LU, TU, etc.). Furthermore, our algorithms do not rely 
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1 void DMFI_HP( matrix A, i n t nb )
2 {
3 f o r ( i n t k = 1; k <= nb; k++ ) {
4 // Factorize panel k
5 PF( A(:, k) );
6 #pragma omp p a r a l l e l s e c t i o n s num_threads(2)
7 {
8 #pragma omp s e c t i o n
9 // Update panels 1 : k − 1 w.r.t. panel k

10 LU( A(:, k), A(:, 1 : k − 1) );
11 #pragma omp s e c t i o n
12 // Update panels k + 1 : nb w.r.t. panel k
13 TU( A(:, k), A(:, k + 1 : nb) );
14 } }
15 }

Listing 3: Simplified routine for DMFI, with hybrid parallelism extracted via OpenMP 
sections plus invocations to multi-threaded BLAS from within LU and TU.

on the underlying runtime to detect task dependencies dynami-
cally, at execution time.

3. NUMA-aware parallel dense matrix factorizations and 
inversion

The parallel approaches described in Section 2 in general hit a 
memory wall when a thread running in a particular core has to 
access data that lies in a different NUMA Node. As a result, the 
data must be transferred over the NUMA connection, at a slow 
rate due to contention and data movement across the network, 
increasing the time cost of the global computation.

In this section we advocate a programming approach for DMFI, 
with a high level of abstraction, that nonetheless is aware of the 
underlying NUMA memory organization. In the following we will 
consider a generic NUMA architecture composed by a set of NUMA 
nodes (NN); all the explanations hereafter are valid for any num-
ber of NNs, and independent of the “distance” between the core 
and the data (viewed as an abstraction of the cost of moving to a 
specific core a piece of data from a specific memory address that 
can be local or remote to the core, depending on the NN to which 
the core belongs to and where the memory is allocated to).

3.1. Strategies for NUMA-aware DMFI

Ensuring that a thread mostly access data that is in the lo-
cal NN requires an explicit control of two key aspects: (i) the 
data allocation policy across NNs; and (ii) the workload distribu-
tions across threads/cores within the multi-core system. We next 
comment how to deal with them depending on the parallelization 
approach.

On the one hand, when parallelism is extracted only at the loop 
level, as is the case of LAPACK when linked with a multi-threaded 
version of the BLAS, the threads should majorly execute those loop 
iterations that operate with local data, which would require a com-
plete rewrite in order to obtain a NUMA-aware BLAS. Although it 
is possible to use NUMA-aware capabilities within the BLAS (e.g., 
BLIS [40] includes NUMA-aware multi-threaded implementations), 
not all BLAS realizations support this feature.

On the other hand, when parallelism is exploited at the task 
level, the worker threads should mostly run those tasks that in-
volve only local data. This variant requires the use of NUMA-aware 
task schedulers, in which metrics for estimating the memory dis-
tance are integrated within the Task Dependency Graph (TDG) in 
order to expose and exploit NUMA locality. While this has been 
prototyped by some task schedulers (e.g., OmpSs [3,8,37]), NUMA 
support in this type of system software is not widely extended and 
requires a complex development and runtime logic in order to be 
effective.
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In summary, for high performance, both approaches require a 
careful orchestration of both data and workload distributions, pre-
senting many similarities with distributed parallel programming, 
including the code complexity of the latter. A hybrid solution, in 
which parallelism is extracted simultaneously at the loop and task 
levels, offers a simpler mechanism to map DMFI to NUMA ar-
chitectures, provided the three following techniques are properly 
combined in order to tackle the intricacies of NUMA systems:

1. Thread placement and binding to cores, to ensure that locality in 
data references is consistent across the complete operations;

2. Data partitioning, so that data structures are correctly scat-
tered across NNs and hence accessed locally by the appropri-
ate threads; and

3. NUMA-aware parallel algorithms to take into account both 
workload and data distribution that favors NUMA-aware data 
accesses.

In the following, we describe a common NUMA-aware frame-
work for DMFI. For this purpose, we revisit some of the ideas intro-
duced in previous works for hybrid parallel programming for DMFI 
on shared-memory [12] and distributed-memory architectures [7], 
while adapting and extending them to be efficiently mapped to 
modern NUMA architectures. The goal is hence to obtain NUMA-
aware realizations for DMFI routines that fulfill the following con-
siderations:

1. Matrices are logically and physically partitioned into domains
that, on a NUMA architecture, should be distributed and re-
side on different NNs throughout the complete operation. Note 
that the domain is a purely software artifact (and hence, they 
should be explicitly addressed from the codes), while the NN
reflects a hardware concept. Intuitively, the ultimate goal is to 
establish generic and simple mechanisms to expose the domains 
in code, and to then map the exposed domains to the NNs at run-
time.

2. At runtime, threads are deployed following a hierarchical 
structure, with a first level of parallelism in which a single 
thread is bound to a specific NN (concretely, to those cores 
that are close to that NN); and a second level of parallelism 
which inherits the thread-to-core assignment to execute each 
task in parallel.

3. A constant thread-to-core (and to-memory) assignment is 
in place throughout the complete computation, applying the 
owner-computes rule on the corresponding domain [20].

The baseline hybrid algorithm in Listing 3 needs to be slightly 
modified to ensure a fine-grain, explicit control of the thread-
to-task assignment and that the work distribution is consistent 
through the loop iterations of the DMFI. Listing 4 shows the pro-
posed modifications to the implementation, showing a generic 
DMFI that replaces the use of OpenMP sections by an explicit 
thread identifier query and work distribution. This will be our 
baseline for the discussion on NUMA-aware DMFI executions. In 
this specific example, PF is always assigned to Thread 1, while LU,
TU are respectively assigned to Threads 1, 2 throughout the whole 
computation. (For consistency with the notation for matrix indices, 
the threads identifiers are numbered starting at 1.)

3.2. Data partitioning into multiple domains

In our solution we adopt a cyclic block-column distribution 
of the matrix, generating multi-domain logical and physical rep-
resentations of the original matrix. The number of domains is 
configurable; for example, decomposing a matrix A into four do-
mains means that the matrix panels A(:, 1), A(:, 5), A(:, 9), . . . are 
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1 void DMFI_NUMA_HP( matrix A, i n t nb )
2 {
3 f o r ( i n t k = 1; k <= nb; k++ ) {
4 #pragma omp p a r a l l e l num_threads(2)
5 {
6 i n t thid = omp_get_thread_num() + 1;
7
8 i f ( thid == 1 )
9 // Factorize panel k

10 PF( A(:, k) );
11 }
12 #pragma omp p a r a l l e l num_threads(2)
13 {
14 i n t thid = omp_get_thread_num() + 1;
15
16 i f ( thid == 1 )
17 // Update panels 1 : k − 1 w.r.t. panel k
18 LU( A(:, k), A(:, 1 : k − 1) );
19
20 i f ( thid == 2 )
21 // Update panels k + 1 : nb w.r.t. panel k
22 TU( A(:, k), A(:, k + 1 : nb) );
23 }
24 }
25 }

Listing 4: Simplified routine for DMFI, with hybrid parallelism extracted via OpenMP 
plus invocations to multi-threaded BLAS from within LU and TU, including a fine-
grain control of thread-to-task assignment.

1 void Copy_NUMA_HP_4D( matrix A,
2 matrix D1, D2, D3, D4,
3 i n t nb )
4 {
5 i n t kd;
6
7 #pragma omp p a r a l l e l num_threads(4) p r i v a t e(kd)
8 {
9 i n t thid = omp_get_thread_num() + 1;

10
11 f o r ( i n t k = thid; k <= nb; k+=4 ) {
12 kd = (k − 1) / 4 + 1;
13 switch( thid ) {
14 case 1: // Copy to D1
15 Copy( A(:, k), D1(:,kd) ); break;
16 case 2: // Copy to D2
17 Copy( A(:, k), D2(:,kd) ); break;
18 case 3: // Copy to D3
19 Copy( A(:, k), D3(:,kd) ); break;
20 case 4: // Copy to D4
21 Copy( A(:, k), D4(:,kd) ); break;
22 }
23 }
24 }
25 }

Listing 5: Simplified parallel routine for copying a matrix A into four domains, in-
cluding a fine control of thread-to-task assignment.

mapped to panels D1(:, 1), D1(:, 2), D1(:, 3), . . . of a local ma-
trix D1. Panels A(:, 2), A(:, 6), A(:, 10), . . . are mapped to D2(:, 1), 
D2(:, 2), D2(:, 3), . . . in a different local matrix D2; and so on.

Listing 5 provides a realization of a parallel routine with fine-
grain task-to-thread assignment for the copy of a matrix A into 
four domains: D1, D2, D3, D4. A multi-domain matrix genera-
tion routine would follow a similar scheme to the copy routine. 
This type of parallel manipulation of multiple logical and physical 
domains will be leveraged in Section 3.4 to attain a physical dis-
tribution of domains across NNs. At this point we note that, even 
though a 2D cyclic partitioning in general provides higher paral-
lel scalability than a simpler 1D distribution, the number of NNs 
in current NUMA architectures is moderate, in the range 2–16, and 
therefore a cyclic column-block may be sufficient from the per-
spective of parallel performance.
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3.3. Multi-domain hybrid parallel algorithm for DMFI

Listing 6 generalizes the hybrid parallel code in Listing 3 to op-
erate on an input matrix partitioned into four domains (the same 
ideas apply to other number of domains). In this example, the code 
deploys a first level of parallelism in which four threads (in the 
following, we will refer to each thread in the first-level as a Way) 
execute the main DMFI building blocks in an order established by 
the programmer.

The code remains quite simple and structured: at each iteration, 
the current panel is factorized by a distinct Way, and the column-
blocks to the left and right in the four domains are then updated 
with respect to the factorized panel. From the programming point 
of view, most of the implementation details remain hidden inside 
the kernels PF, TU, LU, which contain exactly the same code as in 
the case without support for multiple domains. The programming 
burden is thus reduced to determining the correct starting block 
indices when accessing the contents of D1, D2, D3, D4.

The multi-domain algorithm represents a first effort toward 
work assignment to Ways as, for each iteration, each domain is up-
dated (written) by the same thread, following the owner-computes
rule. This work-assignment is not mandatory for correctness, but 
will be basic for the NUMA-aware realizations discussed next.

3.4. NUMA-aware multi-domain DMFI executions

A NUMA-aware execution of the multi-domain algorithm de-
picted in Listing 6 should perform a fine-grain control on thread 
placement and work assignment in order to increase the number 
of local memory accesses and control the distribution of threads to 
NNs. Specifically, our proposal combines the use of OpenMP run-
time environment variables and the multi-domain DMFI algorithms 
on four intimately related dimensions yielding a methodology for 
a NUMA-aware execution:

1. Place definition. We employ the OMP_PLACES environment 
variable to match the physical NUMA topology of the under-
lying architecture with the logical thread topology considered 
by the OpenMP runtime. Hence, for example, on a 2-socket, 
128-core machine with two NNs (one per socket), comprising 
64 consecutive cores each, this definition would set

OMP_PLACES={0:64:1},{64:64:1}

whereas a configuration of the same machine to define two 
NNs per socket (comprising 32 consecutive cores each) would 
employ

OMP_PLACES={0:32:1}, {32:32:1},\\
{64:32:1},{96:32:1}

2. Thread-to-core binding. Consider a NUMA-aware execution with 
a total of NT threads mapped to 4 NNs. We should then deploy 
4 Ways, each one creating NT /4 threads per BLAS invoca-
tion and in charge of updating one domain. In a NUMA-aware 
execution, the Ways need to be scattered across OpenMP 
places (following a spread OpenMP binding policy at the first 
thread level), and threads deployed within BLAS calls should 
inherit the thread-to-place binding of each original Way (fol-
lowing a close OpenMP binding policy on the second thread 
level). For this purpose, the value of the OMP_NUM_THREADS
and OMP_PROC_BIND environment variables should be fixed 
as

OMP_NUM_THREADS="4,$NT_PER_BLAS_CALL"
OMP_PROC_BIND="spread,close"
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1 void DMFI_NUMA_HP_4D( matrix D1, D2, D3, D4,
2 i n t nb )
3 {
4 i n t kd, km;
5
6 f o r ( k = 1; k <= nb; k++ ) {
7 kd = (k − 1) / 4 + 1;
8 km = (k − 1) % 4 + 1;
9 switch ( km ) {

10 case 1:
11 #pragma omp p a r a l l e l num_threads(4)
12 {
13 i n t thid = omp_get_thread_num() + 1;
14
15 i f ( thid == 1 ) // Fact. panel k in D1
16 PF( D1(:, kd) );
17 }
18 #pragma omp p a r a l l e l num_threads(4)
19 {
20 i n t thid = omp_get_thread_num() + 1;
21
22 // Update of panels 1 : k − 1 w.r.t. panel k
23 // omitted for brevity
24 // Update panels k + 1 : nb w.r.t. panel k
25
26 switch( thid ) {
27 case 1: // Update D1 w.r.t D1.
28 TU( D1(:, kd), D1(:, kd + 1 : end) ); break;
29 case 2: // Update D2 w.r.t D1.
30 TU( D1(:, kd), D2(:, kd : end) ); break;
31 case 3: // Update D3 w.r.t D1.
32 TU( D1(:, kd), D3(:, kd : end) ); break;
33 case 4: // Update D4 w.r.t D1.
34 TU( D1(:, kd), D4(:, kd : end) ); break;
35 } }
36 break;
37 case 2:
38 #pragma omp p a r a l l e l num_threads(4)
39 {
40 i n t thid = omp_get_thread_num() + 1;
41
42 i f ( thid == 2 ) // Fact. panel k in D2
43 PF( D2(:, kd) );
44 }
45 #pragma omp p a r a l l e l num_threads(4)
46 {
47 i n t thid = omp_get_thread_num() + 1;
48
49 // Update of panels 1 : k − 1 w.r.t. panel k
50 // omitted for brevity
51 // Update panels k + 1 : nb w.r.t. panel k
52
53 switch( tid ) {
54 case 1: // Update D1 w.r.t D2
55 TU( D2(:, kd), D1(:, kd + 1 : end) ); break;
56 case 2: // Update D2 w.r.t D2
57 TU( D2(:, kd), D2(:, kd + 1 : end) ); break;
58 case 3: // Update D3 w.r.t D2
59 TU( D2(:, kd), D3(:, kd : end) ); break;
60 case 4: // Update D4 w.r.t D2
61 TU( D2(:, kd), D4(:, kd : end) ); break;
62 } }
63 break;
64 case 3:
65 // Code ommitted for brevity
66 case 4:
67 // Code ommitted for brevity
68 } }
69 }

Listing 6: Simplified routine for DFMI using a multi-domain scheme with hy-
brid parallelism extracted via OpenMP parallel regions plus invocations to multi-
threaded BLAS from within LU and TU.

The use of this specific combination of hierarchical parallelism, 
thread-to-core binding, and definition of places yields a proper 
distribution of threads across NNs throughout the computa-
tion, and can be adapted (departing from the same multi-
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domain DMFI code) to different NUMA topologies without 
code modifications, provided the number of domains exposed 
in the code matches the target number of NNs.

3. Workload distribution. Considering that the OpenMP implemen-
tation maintains the thread identification across parallel re-
gions, the workload control in Listing 6 would suffice to assure 
that each deployed Way and BLAS threads spawned within it 
fulfill the owner-compute rule throughout the complete opera-
tion.

4. Thread-to-data affinity. Finally, a mechanism to ensure that the 
data accesses from within a Way or from the internal BLAS 
threads are local, so that the updates are performed within the 
local NN, is mandatory to prevent remote memory accesses. 
For this condition to hold, each Way in the domain creation 
depicted in Listing 5 should be mapped to a core bound to a 
different NN, in order to exploit the first-touch page allocation 
policy present in modern operating systems.2 This mapping, 
however, is already active provided the aforementioned (1)
place definition, (2) thread-to-core mapping, and (3) workload 
distribution are used, and hence a NUMA-aware implementa-
tion (with local domain updates) will be consistently used.

3.5. Generalization to any number of NUMA nodes

Although the multi-domain algorithms are easy to derive, their 
implementation can be tedious when the number of domains is 
large. Hence, generalizing the implementation to be independent 
of the number of domains becomes very useful for code and per-
formance portability across NUMA architectures as it requires min-
imal (or no) code modifications. An excerpt of the solution is given 
in Listing 7, for a configuration with nd NUMA domains. Note that 
we employ an array of domain descriptors as the source of the 
DMFI, with as many elements as domains conform the operation; 
this structure is the multi-domain representation of the matrix A, 
and in practice could be defined as an object that abstracts away 
the intricacies of managing a multi-domain representation of the 
matrix. The listing also includes an excerpt of a generic implemen-
tation of the routine that copies the contents of a plain matrix A to 
the nd domains. With these two generic implementations, the de-
velopment of multi-domain codes for DMFI becomes simple, and 
enables the extensive performance evaluation for different NUMA 
topologies in Section 4.

4. Experimental results

The experimental evaluation in this section pursues three main 
objectives. First, to demonstrate that our NUMA-aware shared-
memory approach toward obtaining efficient parallel DMFI imple-
mentations is valid for systems with a variable number of NNs, 
and to illustrate the implications of a proper domain number se-
lection in relation with the number of NNs in the system; these 
results are given in Sections 4.2 to 4.4. Second, to compare the 
attained performance with message-passing implementations for 
DFMI (ScaLAPACK and SLATE); as reported in Section 4.5. Third, to 
demonstrate that the proposed approach is portable across a num-
ber of routines (LU, QR and Inversion) and new-generation NUMA 
architectures; this is done in Section 4.6. We employ the GFLOPS 
rate (billions of floating point operations per second) as the main 
performance metric in all subsequent experiments, and we use 
double-precision arithmetic. The reported results are the best from 
a large number of repetitions per experiment in order to reduce 
variability. As the two target architectures are quite novel from 

2 An execution of the factorization executable using numactl -localalloc
would be necessary if the first-touch policy is not in place.
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1 // Generic multi-domain DMFI.
2 void DMFI_NUMA_HP_generic( matrix D[nd],
3 i n t nb, i n t nd )
4 {
5 i n t kd, km;
6
7 f o r ( i n t k = 1; k <= nb; k++ ) {
8 kd = (k − 1) / nd + 1;
9 km = (k − 1) % nd + 1;

10
11 #pragma omp p a r a l l e l num_threads(nd)
12 {
13 i n t thid = omp_get_thread_num() + 1;
14
15 // Factorize panel k in Domain km

16 i f ( thid == km )
17 PF( D[km](: , kd) );
18 }
19
20 #pragma omp p a r a l l e l num_threads(nd)
21 {
22 i n t thid = omp_get_thread_num() + 1;
23
24 // Update of panels 1 : k − 1 w.r.t. panel k
25 // omitted for brevity
26
27 // Update panels k + 1 : nb w.r.t. panel k
28 // Each thread updates the proper domain
29 i n t ki = (km <= thid) ? kd + 1 : kd;
30 TU( D[km](: , kd), D[thid](: , ki : end) );
31 }
32 }
33
34 // Generic copy of matrix A into domains
35 void Copy_NUMA_HP_generic( matrix A, matrix D[nd],
36 i n t nb, i n t nd )
37 {
38 i n t kd;
39
40 #pragma omp p a r a l l e l num_threads(nd) p r i v a t e(kd)
41 {
42 i n t thid = omp_get_thread_num() + 1;
43
44 f o r ( i n t k = thid; k <= nb; k+=nd ) {
45 kd = (k − 1) / nd + 1;
46 // Copy to the corresponding Domain
47 Copy( A(:, k), D[thid](:, kd));
48 }
49 }
50 }

Listing 7: Simplified routine for DFMI, generalized for nd NUMA domains, and with 
NUMA-aware hybrid parallelism extracted via OpenMP parallel regions plus invoca-
tions of multi-threaded BLAS from within LU and TU.

the perspective of their NUMA characteristics, Section 4.1 provides 
their detailed description.

All the performance results in the following exclusively consider 
the cost of the factorizations/inversion while the time devoted to 
create and/or distribute data across domains is not included. The 
reason is two-fold: First, a sequential implementation of the rou-
tine Copy_NUMA_HP_generic in Listing 7 entails a time penalty 
between 6 and 15% for problems of relatively large dimension; in 
this line, we can expect a significantly smaller impact when using 
a parallel copy routine to saturate the memory bandwidth. Second, 
in a natural scenario, these routines maintain the matrix operand 
distributed across the NUMA nodes prior and after the invocation 
of the corresponding routines, hence making it unnecessary (an 
inefficient) to perform a data distribution to/from NUMA domains 
every time a DMFI routine is executed.

4.1. Experimental setup

4.1.1. Rome

Rome is a dual-socket multi-core server equipped with two 
AMD EPYC 7742 processors with 64 cores each, configured in our 
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setup to run at 2.25 GHz. The cache hierarchy per socket com-
prises 4 Mbytes of L1 cache (32 Kbytes per core), 32 Mbytes of L2 
cache (512 Kbytes per core), and 256 Mbytes of L3 cache divided 
into 16 modules of 16 Mbytes, local to each cluster of 4 cores. 
The server features 512 Gbytes of DDR4 (3200 MHz) RAM mem-
ory. The memory controller supports up to 8 memory channels, for 
an aggregated peak theoretical bandwidth of 204 Gbps. The chip is 
logically divided into four quadrants, each one comprising 16 cores 
and associated with two memory channels.

The basic compute unit (core) in Rome implements the Zen2 
micro-architecture, a superscalar design supporting vector instruc-
tions of up to 256 bits. Cores are grouped within the Rome SoC 
(System on Chip) into Core-Complexes (CCX). Each CCX in Rome

is composed of 4 cores3 sharing 16 Mbytes of L3 cache. CCXs are 
grouped in pairs to conform a CCD (Core/Cache Die), which are in 
turn logically and physically distributed into 4 quadrants, with 2 
CCDs per quadrant. CCDs are actually the basic chiplet (die) unit 
within the processor, and scalability across products in the same 
family is attained by means of CCD replication. In Rome, the 8 
CCDs (chiplets) are interconnected via a ninth I/O die, which man-
ages intra-socket (die-to-die) and inter-socket communication via 
the so-called Infinity fabric. A pair of memory channels, each one 
bound to two RAM DIMMs, is bound to each quadrant. Fig. 2 de-
picts the global structure of the Rome processor employed in our 
tests, and a detail of the CCX structure.

Given this die, cache hierarchy and memory topology, the Rome

SoC offers the possibility of establishing (via BIOS setup) several 
Nodes Per Socket (NPS) configurations, which ultimately impact the 
NUMA topology visible for users and the OS, in terms of logic dis-
tance, modifying the System Locality Distance Information Table 
(SLIT)4 [41] as well as the effective bandwidth that can be attained 
by means of assignment of memory channels to specific cores in 
the SoC. Specifically, in Rome, the following configurations for NPS 
are available:

NPS1 interleaves the eight channels in the socket for their use by 
all cores in the processor; hence, the complete socket is con-
figured as a single NN (typical in common multi-socket NUMA 
setups). In our dual-socket setup, NPS1 yields 2 NNs.

NPS2 interleaves the four channels in each half of the chip for 
exclusive use of the corresponding cores; hence, each half is 
configured as an NN. In our dual-socket setup, NPS2 yields 4 
NNs.

NPS4 interleaves the two channels in each quadrant for exclusive 
use of the corresponding cores; hence, each quadrant is con-
figured as an NN. In our dual-socket setup, NPS4 yields 8 NNs.

LLCasNUMA considers each CCX as a single NN, offering 16 NNs 
per socket; the utility of this setup lies in a complete resource 
isolation (including LLC) that is desirable in some multi-tenant 
setups in datacenters. In our dual-socket setup, LLCasNUMA 
yields 32 NNs.

From the software side, Rome runs a Linux 5.10 machine using 
the GNU Compiler suite version 8.3 and AOCL version 3.1.0.

4.1.2. Kunpeng

Kunpeng is a dual-socket multi-core server equipped with two 
Huawei Kunpeng 920 processors with 48 cores each, configured 
in our setup to run at 2.6 GHz. The cache hierarchy per socket 
comprises 3 Mbytes of L1 cache (64 Kbytes per core), 24 Mbytes 
of L2 cache (512 Kbytes per core), and 48 Mbytes of L3 cache (1 

3 2-way SMT per core is supported, though in our experiments this capability was 
disabled.

4 Typically queried from the user space via numactl -H.
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Fig. 2. Memory hierarchy and core layout of Rome.

Mbyte per core). The server features 256 Gbytes of DDR4 (2933 
MHz) RAM memory. Similar to Rome, the memory controller sup-
ports up to 8 memory channels, for an aggregated peak theoretical 
bandwidth of 204 Gbps.

The basic computing unit (core) within Kunpeng is the TaiS-
han v110 core, an ad-hoc implementation of the ARM v8.1 (with 
selected extensions from the ARM v8.2 specification) and support 
for 128-bit NEON vector instructions. Cores are grouped within the
Kunpeng SoC into CPU clusters (CCLs), each comprising 4 TaiShan 
v110 cores. At a higher level, the chip is composed by three dies 
(chiplets), namely: two Super CPU Clusters (SCCL) compute dies 
and one Super IO Cluster (SICL). Each SCCL is composed by a vari-
able number of CCLs (in our case 6 CCLs, for a total amount of 24 
cores per SCCL), a memory controller, and an LLC cache block. Core 
scalability within the SCCL chiplet is based on replication of CCLs 
within it. Communication across cores in an SCCL is implemented 
via a ring topology, with the SICL die in charge of managing inter-
die communication. The SICL also includes three Hydra links for 
inter-socket communication, with an aggregated peak bandwidth 
of 90 Gbytes per second. Table 1 offers a comparison of the mem-
ory access characteristics at the distinct levels on Kunpeng. Espe-
cially interesting for us are the two main bandwidth/latency gaps 
for inter-die and inter-socket communications, which will heav-
ily impact the final performance on remote memory accesses that 
need to traverse those levels.

Fig. 3 depicts the global structure of the Kunpeng processor 
employed in our tests, and a detail of the CCL structure. In this 
case, NUMA effects within the server can appear across chips, and 
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Table 1
Theoretical memory bandwidth and latency for a 
multi-socket Kunpeng 920 architecture (source: [48]).

Bandwidth (GB/s) Latency (ms)

Core (L1) 6000 <2
L2 6000 <4
L3 3000 <15
Inter-die 400 <30
Main memory 200 <90 – 110
Inter-socket 50-90 <230

Fig. 3. Memory hierarchy and core layout of Kunpeng.

across the two SCCLs (with proprietary LLCs) within each chip, for 
a total of 4 NNs. We have not investigated in possible modifica-
tions of the NUMA topology as we did in Rome.

From the software side, our experiments were deployed on a 
Linux 5.4.0 machine using the GNU Compiler suite version 10.1 
and ARMPL (ARM Performance Libraries) version 21.1.

4.2. Impact of NPS on performance

The goal of the first round of experiments is three-fold: First, 
to compare the performance improvements of our multi-domain 
DMFI implementations with classic single-domain (LAPACK-style) 
DMFI implementations; second, to evaluate the potential improve-
ments in performance of the multi-domain NUMA-aware DMFI 
executions compared with their NUMA-oblivious counterparts, in 
which the OS is in charge of data distribution and workload assign-
ment; and third, to assess how the number of domains selected 
from the library are directly related with the performance im-
provement as the number of NPS (and hence the number of NNs 
in the whole system) is increased.

In this case, we select a specific DMFI (the QR factorization), 
and Rome as the target architecture. Similar qualitative results 
were observed for the rest of DMFI (LU and matrix inversion). 
The reason for selecting Rome was its ability to experiment with a 
larger variety of NPS configurations, which illustrates the flexibility 
of our solution.
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Fig. 4 reports the performance results on three different config-
urations of the server: NPS1 (top plot), NPS2 (middle), and NPS4 
(bottom) for increasing problem dimensions. Each group of bars 
reports the performance for a specific problem dimension, for dif-
ferent library setups:

• 1 domain, no NUMA (dark blue bar): DMFI with a single data 
domain, extracting parallelism at only one level (within BLAS 
calls), and delegating the control of thread-to-core affinity and 
data allocation to the OS.

• X domains, no NUMA (light version of the corresponding color): 
DMFI with X data domains, extracting parallelism at two lev-
els, and delegating the control of thread-to-core affinity and 
data allocation to the OS (as explained in Section 3.3).

• X domains, NUMA (dark version of the corresponding color): 
DMFI with X data domains, extracting parallelism at two lev-
els, and explicitly controlling thread-to-core affinity and data 
allocation (as explained in Section 3.4).

For the multi-domain experiments, we execute the DMFI codes 
for 2, 4, 8 and 16 domains. In all cases, our executions comprise 
the 128 cores, that is, the complete (dual-socket) machine.

A number of conclusions can be extracted from the analysis of 
the results:

• In general, the use of our multi-domain NUMA-aware DMFI 
implementation outperforms the classic single-domain ap-
proach. This difference in performance becomes more visible 
as the dimension of the matrices grows, and as the number 
of NPS is increased, as in such scenario(s), it is more challeng-
ing for the OS to find an optimal allocation scheme for data 
and/or a proper thread-to-data binding.

• For each selection of the number of domains, comparing 
the NUMA-aware implementations with their counterparts in 
which the OS manages data affinity for each NUMA setup, 
the benefits in terms of performance are evident in all cases. 
This fact reveals the importance of exposing multiple domains 
within the code as well as to manually control, at execution 
time, the affinity of threads to cores and hence to data do-
mains.

• Regarding the relationship between the number of NNs and 
the number of domains, the performance boost appears in all 
cases exactly when the number of domains matches the num-
ber of NNs (that is, two domains for NPS1, four domains for 
NPS2, and eight domains for NPS4). This establishes the mini-
mum number of domains that should be configured according 
to the underlying NUMA setup and, more importantly, demon-
strates the necessity of a flexible shared-memory DMFI library 
implementation that can accommodate any number of NNs for 
performance portability.

• According to AMD’s documentation, NPS4 is the recommended 
NUMA setup in order to attain optimal aggregated memory 
bandwidth. While this usually holds for multi-application en-
vironments in which applications are confined and mapped 
to different NNs, our observations reveal that this is not the 
case when there is only one application which spans across 
multiple NNs. Here, when respecting a correct distribution of 
domains to NNs, the best configuration is that which reduces 
the number of NNs (NPS1), with performance dropping pro-
gressively as the number of nodes for the same experiment 
conditions increases.

Additionally, Fig. 5 (left) reports the performance for the LL-
CasNUMA configuration, in which 16 NNs are set per socket. In 
this case, the results correspond to an execution on a single socket 
(64 cores). Our goal here is to demonstrate that a NUMA-aware 
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Fig. 4. Comparative performance results for the QR factorization under different NPS 
configurations on Rome.
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Fig. 5. Comparative performance results for the QR factorization the LLCasNUMA configuration on Rome. Left: using 1 socket and up to 16 domains; Right: using 2 sockets 
and up to 32 domains.
execution with a number of domains which matches the number 
of NNs is also profitable when employing a single socket. In this 
case, the NUMA-aware execution with 16 domains (dark-red bar) 
again delivers the highest performance. However, the NUMA ef-
fects on performance are less evident in these cases, and actually, 
for this type of regular codes (from the perspective of memory ac-
cesses), the basic single-domain codes (dark-blue bar) are rather 
competitive. Our guess is that the management of homogeneous 
distances across all NNs within a single socket helps the OS to map 
the threads close to the corresponding NN, and also that potential 
performance (latency or bandwidth) penalties associated with re-
mote data accesses are not as dramatic as in multi-socket setups. 
To close this first round of experiments, Fig. 5 (right) reports equiv-
alent results using the LLCasNUMA setup on both sockets of Rome. 
Again, the fine-grain NUMA node distribution in this setup blurs 
the benefits of increasing the number of domains in the NUMA-
aware codes. Here, the largest leap in performance arises when 
moving to two domains, as the logical distance between NUMA 
nodes across both sockets is, proportionally, the main source of in-
efficiency in the NUMA-oblivious implementation. In other words, 
LLCasNUMA and NPS1 are the most similar NUMA setups available 
in the machine for this type of compute-intensive implementa-
tion. Note that, differently from the single-socket setup, the use of 
a LAPACK-like 1-domain implementation introduces a significant 
performance penalty.

4.3. Performance counters

Hardware performance counters can help to explain the differ-
ence in performance between NUMA-aware and NUMA-oblivious 
executions observed in the previous section. PMUs (Performance 
Monitoring Units) in modern NUMA architectures provide detailed 
information about the number of accesses to local and remote 
DRAM. In order to support the results reported in the previous sec-
tion, we leverage the PMU in Rome in order to gather events that 
correspond to remote DRAM accesses; these events are provided 
by the Core Performance Monitor Counters (PMC) of the PMU; see 
[4] (section 2.3.2, LS Events).

Fig. 6 reports an execution trace comparing the distribution 
of the remote DRAM accesses for two different executions of 
the same multi-domain QR factorization, using NUMA-aware (blue 
line) and NUMA-oblivious (brown line) execution setups. The spe-
cific event from the PMC is 0x043 (Data Cache Refills from System), 
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Fig. 6. Comparative timeline of the remote RAM accesses for a QR factorization (m =
n = 1, 024, b = 256) in Rome for a NUMA-aware and a NUMA-oblivious execution.

specifically activating the event LS_MABRESP_RMT_DRAM (DRAM 
accesses from another die). NPS1 and two domains were used for the 
experiment, even though similar qualitative results were observed 
for other configurations. The codes were instrumented using PAPI 
6.0.0. The timeline in the Figure delivers a much higher rate of 
remote memory accesses in the NUMA-oblivious execution com-
pared with that of its NUMA-aware counterpart, which explains 
the difference in performance, and hence the necessity of a com-
bined multi-domain code for DMFI and a NUMA-aware execution.

4.4. Performance portability

The goal of this section is to provide evidence on the per-
formance portability of our NUMA-aware codes for DMFI across 
the different NPS configurations in Rome, and expose how the 
performance degrades as the number of NNs is increased. To ac-
complish the study, we conduct a comparative study of the qual-
itative and quantitative performance of our solution, taking the 
General Matrix-Matrix Multiplication (GEMM hereafter) as a base-
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Table 2
Performance portability study of GEMM and QR across different NPS configurations on Rome, using 128 threads.

NUMA-aware NUMA-oblivious

GEMM QR (multi-domain) GEMM QR (1 domain) QR (multi-domain)

Max. Relative Max. Relative Max. Relative Max. Relative Max. Relative
GFLOPS to NPS1 GFLOPS to NPS1 GFLOPS to NPS1 GFLOPS to NPS1 GFLOPS to NPS1

NPS1 3,237 – 1,958 – 2,734 – 1,346 – 1,550 –
NPS2 2,924 90.3% 1,732 88.4% 1,788 65.3% 732 54.3% 1,440 92.9%
NPS4 1,723 53.2% 1,470 75.1% 1,652 60.4% 527 39.2% 1,371 88.5%
LLCasNUMA 3,045 94.1% 1,762 89.9% 2,506 91.6% 998 74.1% 1,517 97.8%
line. GEMM usually serves as a realistic benchmark to evaluate the 
maximum attainable performance of an architecture for compute-
intensive applications. Hence, this study also aims at illustrating 
the gap (in terms of raw performance) between the DMFI and
GEMM for each configuration.

Table 2 reports the results of the study using the complete
Rome machine (128 cores). The values there include the maximum 
performance (in terms of GFLOPS) attained for the QR factoriza-
tion and GEMM, and the relative performance compared with the 
best NUMA configuration (in our observations, NPS1) for each rou-
tine. For clarity, we divide the following discussion into two parts, 
targeting NUMA-aware and NUMA-oblivious executions.

4.4.1. NUMA-aware implementations
The left part of Table 2 reports the performance portability 

results for the best NUMA-aware execution of our multi-domain 
codes as reported in Figs. 4 and 5 (right). For GEMM, we have 
conducted an evaluation of AOCL considering a NUMA-aware dis-
tribution of threads, following the directives presented in [40], in 
which the number of thread groups in the outer AOCL loop (re-
ferred as JC in that work) is manually set to match the number of 
NNs in the NPS setup (e.g., 2 for NPS1, 4 for NPS2, and so on). This, 
in turn, yields a NUMA-aware AOCL implementation for GEMM and 
hence a fair baseline for the comparison.

The results show that the relative performance compared with 
NPS1 follows a similar trend for our DMFI and GEMM: The perfor-
mance degrades in a similar ratio as the number of NNs increases, 
and offers a decent degradation for LLCasNUMA. As mentioned in 
Section 4.2, the NUMA setup for LLCasNUMA yields logical dis-
tances similar to those in NPS1, hence the higher comparative 
performance in this case (94.1% for GEMM and 89.9% for the QR 
factorization compared with NPS1).

Regarding the maximum observed performance, the QR factor-
ization attains rates between a 60% (for NPS1) and 85% (for NPS4) 
compared with those in GEMM. This reduction in performance is 
common in DMFI, and is explained by the bottleneck introduced 
by the panel factorization; all in all, our maximum performance 
is comparable with that in alternative implementations such as 
ScaLAPACK or SLATE. (To be shown in Section 4.5.)

4.4.2. NUMA-oblivious implementations
The right part of Table 2 reports the results for the best NUMA-

oblivious execution of our multi-domain codes as reported in 
Figs. 4 and 5 (right). In this case, for GEMM we just set the total 
number of threads for the AOCL execution (128), and delegate the 
actual thread distribution to the library. Hence, we can consider 
this GEMM instance as NUMA-oblivious. The table also includes 
the execution of a 1-domain QR factorization linked with AOCL 
(configured using 128 threads), that mimics the implementation 
of the LAPACK’s dgeqrf routine and serves here as a baseline for 
the performance comparison with a NUMA-oblivious DMFI.

The conclusions in this case are qualitatively similar to those 
observed for the NUMA-aware case: the performance experiments 
a similar degradation with the NPS variation. In terms of abso-
lute performance comparison with GEMM, the difference with our 
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DMFI solution is similar to that in the NUMA-aware experiments. 
In both cases, the NUMA-oblivious executions suffer a similar per-
formance reduction w.r.t. their NUMA-aware counterparts. How-
ever, the degradation is dramatically milder for our multi-domain 
DMFI codes (even on a NUMA-oblivious execution) than those 
for GEMM and for LAPACK’s dgeqrf; this observation reinforces 
the relevance of exposing multiple domains from the code, which 
eases the task of NUMA-aware thread binding for the operating 
system, enhancing performance portability.

4.5. Comparison with message-passing libraries

In order to put in context the raw performance of our shared-
memory NUMA-aware implementations of DMFI, next we com-
pare them with a message-passing realization of the same matrix 
operation. Specifically, Fig. 7 reports a comparative study of the 
performance of the QR factorization in ScaLAPACK [7] (using ver-
sion 2.2.0 of the library) and SLATE [17] (version 2022.07.00) on
Rome, deploying different combinations of processes and threads 
per process, and launching the grid of processes using the -map-
by-socket option of mpirun (OpenMPI 4.1.3 was employed as 
the message-passing library). Proceeding in this manner, processes 
are spread across NUMA nodes, and threads within processes 
(deployed by BLAS calls) inherit the affinity of the parent pro-
cess. Following the owner-computes rule, this yields a NUMA-aware 
message-passing implementation, enabling a fair comparison with 
our approach. The results comprise all combinations of number of 
MPI processes (from 2 to 8) and process grid dimensions (p × q) 
for ScaLAPACK. Here, instead of reporting the best performing vari-
ant in terms of number of domains for our shared-memory codes, 
we only report the results for the variant that matches the number 
of NNs for each NPS configuration.

The first observation is that, in contrast with our shared-
memory codes, ScaLAPACK does not adhere to the rule of deploy-
ing as many processes as NNs are available. Contrarily, the perfor-
mance for the message-passing codes keeps ramping up with the 
number of processes till the optimal performance point, that in all 
cases occurs for the highest number of processes. Especially for 
large matrices, our codes outperform those in ScaLAPACK for NPS1 
and NPS2; however, ScaLAPACK is the best option for the optimal 
combination of processes and thread per process in the NPS4 case. 
In the case of SLATE, for brevity and given the similar qualitative 
behavior for the aforementioned process setups, we only report the 
performance of the optimal configuration. In this case, our obser-
vations yield a general inferior performance than that observed for 
ScaLAPACK and for our shared-memory proposal. Actually, the be-
havior of both ScaLAPACK and SLATE is significantly different from 
that of the shared-memory solution, as no performance penalty is 
observed in the former as the number of NNs is increased. The 
comparison needs to be completed by remarking that programma-
bility is one of the key advantages of our codes compared with 
ScaLAPACK’s (or other message-passing infrastructures), so that the 
lower development effort for DMFI in our case can make up for the 
small loss in performance.
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Fig. 7. Performance comparison between message-passing codes (ScaLAPACK) and 
our NUMA-aware shared-memory codes on Rome.

4.6. Overall NUMA-aware DMFI performance

Finally, we investigate on the performance of the different DMFI 
NUMA-aware implementations (LU, QR and Inversion) using our 
shared-memory approach. In this case, and for the sake of brevity, 
the evaluation is reported only for Kunpeng, even though similar 
qualitative results have been observed in Rome (actually, the per-
formance plots reported in Figs. 4 and 5 already illustrated such a 
study for the case of the QR factorization in Rome).

Fig. 8 reports the performance attained by the three DMFI rou-
tines deployed in Kunpeng, featuring 4 NNs. In all cases, the ex-
periments comprise executions for a single domain (delegating the 
NUMA control to the OS), and 2, 4 domains, with and without con-
trol of NUMA aspects. The qualitative results observed are similar 
to those observed in Rome: the peak performance is attained ex-
clusively for the case of 4 domains with NUMA control, and this 
configuration, matching with the number of NNs in the system, 
obtains the most relevant performance boost. The performance re-
sults also reveal that the observations are consistent for the three 
routines, which generalizes the detailed conclusions extracted for 
the case of the QR factorization in Rome, and also demonstrates 
that our strategy is portable across different NUMA architectures 
(and operations).

5. Concluding remarks

In this paper, we have designed and described in detail a 
methodology to systematically develop parallel codes for DFMI tar-
geting state-of-the-art NUMA architectures. Specifically, we address 
the complexity associated with programming novel NUMA topolo-
gies, with multiple NUMA nodes per socket and configurable mem-
ory setups on modern multi-core machines. We have extended 
the classic shared-memory hybrid parallelization scheme, in which 
parallelism is extracted simultaneously at the loop and task levels, 
to accommodate an execution of the algorithms that is aware of 
the NUMA features of the target platform. The result is a generic 
NUMA-aware routine for DFMI that comprises only 32 lines of code 
(and comments).

Our strategy is based on the formulation of multi-domain codes 
for DMFI, and on a proper runtime setup that fixes the compu-
tation of a specific domain to those threads that remain close 
(in terms of core-to-memory distance) to the data throughout the 
computation. Our methodology addresses the following three key 
aspects: (i) data must be logically and physically partitioned into 
domains that reside in different NNs; (ii) threads are deployed hi-
erarchically and mapped to the corresponding NUMA node; and, 
(iii) once deployed, threads cannot migrate from one core to an-
other. In addition, we have introduced a methodology to derive im-
plementations which are independent of the number of domains, 
further easing the development process and virtually offering sup-
port any NUMA topology.

A complete performance evaluation in two modern NUMA ar-
chitectures demonstrates that our NUMA-aware implementations 
for DMFI are valid for systems with a variable number of NNs, 
showing results that outperform the conventional NUMA-oblivious 
counterparts. In addition, we have reported performance on a par 
with well-known message passing libraries for dense linear alge-
bra, with the advantage of a much simpler programming. Finally, 
we have demonstrated the portability of the approach showing the 
performance results of different DMFI.

It is known that the parallel performance of the hybrid par-
allelization scheme can be limited when any of the tasks is by 
nature difficult to parallelize at loop level and lies in the criti-
cal path of the overall operation. In the case of DMFI, this feature 

is usually encountered for the PF operation. Look-ahead (LA) [42]
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Fig. 8. Performance results for different DMFI implementations on Kunpeng.

is a technique that, integrated within DMFI, reduces the bottle-
neck imposed by PF by implementing a sort of software pipelining 
that breaks the strict dependencies between that operation and the 
panel updates (TU and LU) being computed in the same iteration. 
However, its implementation is not straightforward and presents 
challenges when multi-domain algorithms need to be derived. This 
effort is left as part of future work.
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