
Journal of Parallel and Distributed Computing 175 (2023) 51–65

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

Programming parallel dense matrix factorizations and inversion for

new-generation NUMA architectures

Sandra Catalán a, Francisco D. Igual a, José R. Herrero b, Rafael Rodríguez-Sánchez a, Enrique
S. Quintana-Ortí c,∗
a Departamento de Arquitectura de Computadores y Automatica, Universidad Complutense de Madrid, Madrid, Spain
b Departament d’Arquitectura de Computadors, Universitat Politecnica de Catalunya, Barcelona, Spain
c Departamento de Informatica de Sistemas y Computadores, Universitat Politecnica de Valencia, Valencia, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 April 2022
Received in revised form 29 December 2022
Accepted 5 January 2023
Available online 13 January 2023

Keywords:
NUMA architectures
Chiplets
Dense linear algebra
Shared memory programming
Portability

We propose a methodology to address the programmability issues derived from the emergence of new-
generation shared-memory NUMA architectures. For this purpose, we employ dense matrix factorizations
and matrix inversion (DMFI) as a use case, and we target two modern architectures (AMD Rome and
Huawei Kunpeng 920) that exhibit configurable NUMA topologies. Our methodology pursues performance
portability across different NUMA configurations by proposing multi-domain implementations for DMFI
plus a hybrid task- and loop-level parallelization that configures multi-threaded executions to fix core-to-
data binding, exploiting locality at the expense of minor code modifications. In addition, we introduce a
generalization of the multi-domain implementations for DMFI that offers support for virtually any NUMA
topology in present and future architectures.
Our experimentation on the two target architectures for three representative dense linear algebra
operations validates the proposal, reveals insights on the necessity of adapting both the codes and their
execution to improve data access locality, and reports performance across architectures and inter- and
intra-socket NUMA configurations competitive with state-of-the-art message-passing implementations,
maintaining the ease of development usually associated with shared-memory programming.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

Power, performance, area, cost and time-to-market have been
key drivers for the adoption of heterogeneous integration tech-
nologies. As Moore’s Law scaling is nearing its end, the traditional
monolithic silicon chip, for which a flaw in one part can make the
entire device unusable, is being abandoned in favor of systems-
on-chip (SoC), composed of multiple small chiplets leading to less
complex integrated circuits, which can be built in the most effi-
cient manufacturing process according to their characteristics. Ad-
vanced packaging technologies and substrate design, which allows
for much higher bandwidth between chiplets, have enabled inte-
grating chiplets from different manufacturing process flows into a
single package [2,11,22,26]. Thus, disintegrating complex chips im-
proves yield and reduces costs, while accommodating more easily
specialized systems, with the net result of being nowadays adopted
by most major hardware manufacturers in their current micropro-

* Corresponding author.
E-mail address: quintana@disca.upv.es (E.S. Quintana-Ortí).
https://doi.org/10.1016/j.jpdc.2023.01.004
0743-7315/© 2023 The Author(s). Published by Elsevier Inc. This is an open access artic
creativecommons .org /licenses /by-nc -nd /4 .0/).
cessor designs [29,30,48]. In addition, industry leaders in semi-
conductors, packaging, IP suppliers, foundries, and cloud service
companies are currently standardizing an open chiplet ecosystem:
the Universal Chiplet Interconnect Express (UCIe) for integrating
chiplets in future semiconductor designs [44]. This hardware dis-
aggregation paradigm matches the high configurability needed in
some scenarios. For instance, when targeting multi-tenant scenar-
ios, (either multi-application, multi-container or multi-VM –Virtual
Machine–), resource management capabilities provide a fine-grain
mechanism to monitor, handle and reduce resource contention, im-
proving the efficiency and predictability of executions [25,31,50].
However, portability on such novel architectures becomes a chal-
lenge, due to their complex and configurable memory hierarchies.

These new programmability and performance portability chal-
lenges directly translate into complex and fine-grained application-
level adaptation, with significant impact on underlying scientific
libraries, in which many applications and frameworks delegate to
obtain performance. Among them, dense linear algebra libraries
in general, and matrix factorization routines in particular, are the
foundation in the quest for performance and scalability in novel
applications in science and engineering; in the afore-described sce-
le under the CC BY-NC-ND license (http://

https://doi.org/10.1016/j.jpdc.2023.01.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.01.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:quintana@disca.upv.es
https://doi.org/10.1016/j.jpdc.2023.01.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Catalán, F.D. Igual, J.R. Herrero et al. Journal of Parallel and Distributed Computing 175 (2023) 51–65
nario, these fundamental libraries will suffer from the rapid evolu-
tion on the complexity of architectures, and hence techniques and
methodologies for rapid adaptation will become mandatory.

1.1. Configurable NUMA memories

Memory is a key shared resource across applications, with a
critical impact on performance. In the last years, the memory
wall [28,47] has been tackled via NUMA (Non-Uniform Memory
Access) architectures together with multi-socket platforms [23,35].
Unfortunately, this comes at the cost of increasing the design space
and introducing a considerable burden on the programmers’ shoul-
ders, who now have to avoid remote memory accesses as well as
to control thread-to-core pinning [21,33,38]. To partially alleviate
this situation, NUMA-aware optimizations have been introduced in
most levels of the software stack, including applications [13,43,49],
libraries and middleware [32,36], hardware-software co-design of
runtime and operating systems [9,24,39], hypervisors [46], and
container orchestrators [16].

The NUMA configuration of recent architecture designs from
AMD (e.g., Zen2) [30] and Huawei (Kunpeng) [48] can be modi-
fied off-line at boot time. An appropriate selection of the NUMA
scheme, depending on the server target applications, is therefore
crucial to achieve the goals of isolation and contention control. Un-
fortunately, this hampers performance portability for parallel codes
that need to span across multiple NUMA nodes, on the same or
across different sockets.

As a motivational example, consider the results in Fig. 1. The
experiment was carried out on Rome, a multi-core AMD-based
server equipped with two sockets and 64 cores per socket.1 The
experiment computes an LU factorization with partial pivoting [18]
for a large square matrix dimension (of order 30720) using a
LAPACK-style coding [5] and parallelization scheme, where all
multi-threaded parallelism is extracted from within the Basic Lin-
ear Algebra Subprograms (BLAS) [15]. The number of BLAS threads
varies between 1 and 128. The matrix is generated and remains
on the first NUMA node during the complete execution, and we
configure the server with three distinct numbers of NUMA nodes
per socket (NPS): 1 (red line), 2 (blue line), and 4 (green line).
This experiment illustrates that the scalability heavily degrades as
the number of threads span across the two physical sockets, as
would be expected on a typical NUMA multi-socket setup. In ad-
dition, the possibility of configuring different number of NUMA
NPS implies that the performance variability depends on the spe-
cific setup, and yields a variety of scalability degrees depending on
the selected NUMA topology. Ideally, multi-threaded applications
should be flexible enough to handle this variation in the hardware
topology with minimal modifications to their source code.

1.2. Contributions

In this paper, we address the programmability and performance
portability challenges introduced by reconfigurable NUMA archi-
tectures in new generation processors for a specific domain, dense
linear algebra (LA), demonstrating that it is possible to simultane-
ously integrate NUMA-awareness into popular algorithms for dense
matrix factorizations and inversion (DMFI) while still controlling
the inherent complexity of code development for this type of ar-
chitectures. In more detail, we make the following contributions:

• We expose the significant performance penalty introduced by
NUMA-oblivious implementations on current servers.

1 The complete details of the Rome platform are provided in Section 4.1.
52
Fig. 1. Speed-up for an LU factorization with partial pivoting on a dual-socket AMD
Zen2 architecture (Rome) for different configurations of NUMA nodes per socket
(NPS). The speed-up is calculated with respect to a sequential implementation run-
ning on a single core of the machine.

• We demonstrate that a high-level approach towards design-
ing LA algorithms can substantially alleviate the development
effort for the programmer, while increasing performance in
situations in which LA algorithms span across multiple NUMA
domains. Concretely, we provide a generic NUMA-aware rou-
tine for DFMI that comprises only 32 lines of code (including
comments).

• We validate our approach via a complete experimental evalua-
tion of three DMFI kernels on two state-of-the-art dual-socket
NUMA architectures, namely: an AMD Rome server with 128
cores and up to 16 NUMA NPS, and an ARM-based Huawei
Kunpeng server with 96 cores and 2 NUMA NPS.

The rest of the paper is structured as follows. Section 2 pro-
vides a common algorithmic framework for DMFI that will be
the baseline for NUMA-aware implementations. Section 3 provides
the necessary modifications on the common algorithmic frame-
work to adapt it to NUMA architectures. Section 4 evaluates the
NUMA-aware DMFI implementations on two different NUMA ar-
chitectures, and places the shared-memory implementations into
context, comparing them with state-of-the-art distributed-memory
codes. Section 5 closes the paper with a number of relevant con-
cluding remarks and avenues for future work.

2. Parallel dense matrix factorizations and inversion

In this section, we offer a brief review of blocked LA algorithms
for DMFI, and describe three main options to exploit thread-level
parallelism for these types of operations on multicore architec-
tures.

For the presentation of all our LA algorithms, in the remain-
der of the paper we will consider an m × n matrix A where, for
simplicity, we assume that m, n are both integer multiples of the
algorithmic block size b. Furthermore, we will consider a parti-
tion of A into mb × nb = m/b × n/b blocks, each of dimension
b × b. In our Matlab-like notation, A(c1 : c2, d1 : d2) denotes the
submatrix of A that spans the intersection between the row-blocks
c1, c1 +1, . . . , c2 and the column-blocks d1, d1 +1, . . . , d2, compris-
ing the entries in the intersection of rows (c1 − 1) · b + 1, (c1 − 1) ·
b +2, . . . , c2 ·b and columns (d1 −1) ·b +1, (d1 −1) ·b +2, . . . , d2 ·b
of the matrix. Also, matrix indices start at 1. For simplicity, we

S. Catalán, F.D. Igual, J.R. Herrero et al. Journal of Parallel and Distributed Computing 175 (2023) 51–65
1 void DMFI(matrix A, i n t nb)
2 {
3 f o r (i n t k = 1; k <= nb; k++) {
4 // Factorize panel k
5 PF(A(:, k));
6 // Update panels 1 : k − 1 w.r.t. panel k
7 LU(A(:, k), A(:, 1 : k − 1));
8 // Update panels k + 1 : nb w.r.t. panel k
9 TU(A(:, k), A(:, k + 1 : nb));

10 }
11 }

Listing 1: Simplified routine for DMFI.

define the final row/column block of a matrix with the keyword
“end”.

2.1. Common algorithmic skeleton

Listing 1 displays a blocked algorithm for a “generic” matrix
factorization expressed with a high level of abstraction. At the k-th
iteration of the loop, the algorithm first computes the factorization
of the k-th column-block of the matrix via routine PF (for panel
factorization), to then update the leading and trailing submatrices
(that is, the blocks to the left and right of the k-th column-block)
respectively via routines LU and TU (for leading and trailing up-
dates, respectively).

The algorithmic skeleton in Listing 1 accommodates a number
of matrix operations for the solution of linear systems, including
the LU and QR factorizations, as well as matrix inversion via Gauss-
Jordan elimination [18]. For example, for the LU factorization, PF
decomposes (the diagonal and subdiagonal blocks in) the “curren-
t” (i.e., the k-th) panel into the product of a unit lower triangular
matrix L and an upper triangular matrix U , integrating partial piv-
oting for numerical stability [18]:

Pk

[
A(k,k)

A(k + 1 : mb,k)

]
=

[
L(k,k)

L(k + 1 : mb,k)

]
U (k,k); (1)

LU then simply applies the row permutations dictated by the piv-
oting scheme, in Pk , to the leading submatrix:[

A(k,1 : k − 1)

A(k + 1 : mb,1 : k − 1)

]
; (2)

and TU applies the same row permutations to the trailing subma-
trix (omitted for brevity), followed by the (unit) lower triangular
solve:

U (k,k + 1 : nb) := L(k,k)−1 · A(k,k + 1 : nb) (3)

and the submatrix update:

A(k + 1 : mb,k + 1 : nb) := A(k + 1 : mb,k + 1 : nb)

− L(k + 1 : mb,k) · U (k,k + 1 : nb).
(4)

In rough detail, for the QR factorization, PF decomposes the di-
agonal and subdiagonal blocks of the current panel into the prod-
uct of an orthogonal matrix Q and an upper triangular factor R
(though the orthogonal matrix is rarely built explicitly); TU ap-
plies the orthogonal transforms to the trailing submatrix, and LU
does not perform any operation. For matrix inversion, PF decom-
poses the current panel via Gauss-Jordan transforms, while LU and
TU apply the corresponding row permutations and transforms to
the leading and trailing submatrices.

In general, the realizations of these three matrix operations
overwrite their input matrix operand with their corresponding out-
puts. Also, choosing a “sufficiently” large value b for the blocked
procedure in Listing 1 raises the ratio between floating-point oper-
ations and memory accesses, in principle improving performance.
53
1 void DMFI_TP(matrix A, i n t nb)
2 {
3 #pragma omp p a r a l l e l
4 #pragma omp s i n g l e
5 f o r (i n t k = 1; k <= nb; k++) {
6 // Factorize panel k
7 #pragma omp t a s k depend(inout: A(:, k))
8 PF(A(:, k));
9

10 // Update panels 1 : k − 1 w.r.t. panel k
11 f o r (i n t j = 1; j < k; j++)
12 #pragma omp t a s k depend(in: A(:, k),
13 inout: A(:, j))
14 LU(A(:, k), A(:, j));
15
16 // Update panels k + 1 : nb w.r.t. panel k
17 f o r (i n t j = k + 1; j <= nb; j++)
18 #pragma omp t a s k depend(in: A(:, k),
19 inout: A(:, j))
20 TU(A(:, k), A(:, j));
21 }
22 }

Listing 2: Simplified routine for DMFI, with TP extracted via OpenMP tasks.

Hereafter we will abstract ourselves from these internal details and
the practical implementation of the operations in (1)–(4), as they
are not relevant for the techniques described in this work.

2.2. Multi-threaded parallelizations

Multi-threaded BLAS. The conventional (or default) parallel real-
ization of a DMFI in LAPACK [5] extracts all parallelism from a
multi-threaded instance of the BLAS [15]. In turn, the kernels of
such a multi-threaded BLAS internally exploit loop parallelism, and
they are implemented as blocked algorithms that carefully re-use
some parts (blocks) of the matrix to take advantage of the pro-
cessor cache hierarchy [19,27,45]. For architectures with a small
number of cores, this approach provides a portable solution with
fair performance.

Task parallelization via a runtime. In the last years, a pure task-
parallel (TP) solution for LA algorithms has been investigated in a
number of projects [1,6,14,34]. In these efforts:

1. TP is explicitly exposed by dividing the LU and TU operations
into multiple finer-grain blocks/tasks;

2. Task dependencies are annotated with the appropriate direc-
tives/clauses; and

3. The result is passed to a runtime system that orchestrates the
parallel execution.

Listing 2 exemplifies the application of this approach to the generic
algorithm for DMFI, with tasks annotated using the OpenMP task
construct.
Hybrid parallelization. A third approach, which combines task-
parallelism with BLAS-level loop-parallelism [10,12], renders an
alternative with significant performance advantages over the two
previously described in this section. For our generic skeleton for
DMFI, this hybrid approach can be formulated, using OpenMP, as
illustrated in Listing 3. There, the OpenMP sections construct is
equivalent to a task parallelization when there are no inter-task
dependencies. In addition, the LU and TU “tasks” internally invoke
a multi-threaded instance of BLAS, yielding the hybrid (or two-
level) parallelization scheme.

Our solution does not employ the concept of task in the
OpenMP “sense”. Instead, our tasks refer to the “individual routi-
nes” which are encountered during the execution of the algorithm,
such as (PF, LU, TU, etc.). Furthermore, our algorithms do not rely

S. Catalán, F.D. Igual, J.R. Herrero et al. Journal of Parallel and Distributed Computing 175 (2023) 51–65
1 void DMFI_HP(matrix A, i n t nb)
2 {
3 f o r (i n t k = 1; k <= nb; k++) {
4 // Factorize panel k
5 PF(A(:, k));
6 #pragma omp p a r a l l e l s e c t i o n s num_threads(2)
7 {
8 #pragma omp s e c t i o n
9 // Update panels 1 : k − 1 w.r.t. panel k

10 LU(A(:, k), A(:, 1 : k − 1));
11 #pragma omp s e c t i o n
12 // Update panels k + 1 : nb w.r.t. panel k
13 TU(A(:, k), A(:, k + 1 : nb));
14 } }
15 }

Listing 3: Simplified routine for DMFI, with hybrid parallelism extracted via OpenMP
sections plus invocations to multi-threaded BLAS from within LU and TU.

on the underlying runtime to detect task dependencies dynami-
cally, at execution time.

3. NUMA-aware parallel dense matrix factorizations and
inversion

The parallel approaches described in Section 2 in general hit a
memory wall when a thread running in a particular core has to
access data that lies in a different NUMA Node. As a result, the
data must be transferred over the NUMA connection, at a slow
rate due to contention and data movement across the network,
increasing the time cost of the global computation.

In this section we advocate a programming approach for DMFI,
with a high level of abstraction, that nonetheless is aware of the
underlying NUMA memory organization. In the following we will
consider a generic NUMA architecture composed by a set of NUMA
nodes (NN); all the explanations hereafter are valid for any num-
ber of NNs, and independent of the “distance” between the core
and the data (viewed as an abstraction of the cost of moving to a
specific core a piece of data from a specific memory address that
can be local or remote to the core, depending on the NN to which
the core belongs to and where the memory is allocated to).

3.1. Strategies for NUMA-aware DMFI

Ensuring that a thread mostly access data that is in the lo-
cal NN requires an explicit control of two key aspects: (i) the
data allocation policy across NNs; and (ii) the workload distribu-
tions across threads/cores within the multi-core system. We next
comment how to deal with them depending on the parallelization
approach.

On the one hand, when parallelism is extracted only at the loop
level, as is the case of LAPACK when linked with a multi-threaded
version of the BLAS, the threads should majorly execute those loop
iterations that operate with local data, which would require a com-
plete rewrite in order to obtain a NUMA-aware BLAS. Although it
is possible to use NUMA-aware capabilities within the BLAS (e.g.,
BLIS [40] includes NUMA-aware multi-threaded implementations),
not all BLAS realizations support this feature.

On the other hand, when parallelism is exploited at the task
level, the worker threads should mostly run those tasks that in-
volve only local data. This variant requires the use of NUMA-aware
task schedulers, in which metrics for estimating the memory dis-
tance are integrated within the Task Dependency Graph (TDG) in
order to expose and exploit NUMA locality. While this has been
prototyped by some task schedulers (e.g., OmpSs [3,8,37]), NUMA
support in this type of system software is not widely extended and
requires a complex development and runtime logic in order to be
effective.
54
In summary, for high performance, both approaches require a
careful orchestration of both data and workload distributions, pre-
senting many similarities with distributed parallel programming,
including the code complexity of the latter. A hybrid solution, in
which parallelism is extracted simultaneously at the loop and task
levels, offers a simpler mechanism to map DMFI to NUMA ar-
chitectures, provided the three following techniques are properly
combined in order to tackle the intricacies of NUMA systems:

1. Thread placement and binding to cores, to ensure that locality in
data references is consistent across the complete operations;

2. Data partitioning, so that data structures are correctly scat-
tered across NNs and hence accessed locally by the appropri-
ate threads; and

3. NUMA-aware parallel algorithms to take into account both
workload and data distribution that favors NUMA-aware data
accesses.

In the following, we describe a common NUMA-aware frame-
work for DMFI. For this purpose, we revisit some of the ideas intro-
duced in previous works for hybrid parallel programming for DMFI
on shared-memory [12] and distributed-memory architectures [7],
while adapting and extending them to be efficiently mapped to
modern NUMA architectures. The goal is hence to obtain NUMA-
aware realizations for DMFI routines that fulfill the following con-
siderations:

1. Matrices are logically and physically partitioned into domains
that, on a NUMA architecture, should be distributed and re-
side on different NNs throughout the complete operation. Note
that the domain is a purely software artifact (and hence, they
should be explicitly addressed from the codes), while the NN
reflects a hardware concept. Intuitively, the ultimate goal is to
establish generic and simple mechanisms to expose the domains
in code, and to then map the exposed domains to the NNs at run-
time.

2. At runtime, threads are deployed following a hierarchical
structure, with a first level of parallelism in which a single
thread is bound to a specific NN (concretely, to those cores
that are close to that NN); and a second level of parallelism
which inherits the thread-to-core assignment to execute each
task in parallel.

3. A constant thread-to-core (and to-memory) assignment is
in place throughout the complete computation, applying the
owner-computes rule on the corresponding domain [20].

The baseline hybrid algorithm in Listing 3 needs to be slightly
modified to ensure a fine-grain, explicit control of the thread-
to-task assignment and that the work distribution is consistent
through the loop iterations of the DMFI. Listing 4 shows the pro-
posed modifications to the implementation, showing a generic
DMFI that replaces the use of OpenMP sections by an explicit
thread identifier query and work distribution. This will be our
baseline for the discussion on NUMA-aware DMFI executions. In
this specific example, PF is always assigned to Thread 1, while LU,
TU are respectively assigned to Threads 1, 2 throughout the whole
computation. (For consistency with the notation for matrix indices,
the threads identifiers are numbered starting at 1.)

3.2. Data partitioning into multiple domains

In our solution we adopt a cyclic block-column distribution
of the matrix, generating multi-domain logical and physical rep-
resentations of the original matrix. The number of domains is
configurable; for example, decomposing a matrix A into four do-
mains means that the matrix panels A(:, 1), A(:, 5), A(:, 9), . . . are

S. Catalán, F.D. Igual, J.R. Herrero et al. Journal of Parallel and Distributed Computing 175 (2023) 51–65
1 void DMFI_NUMA_HP(matrix A, i n t nb)
2 {
3 f o r (i n t k = 1; k <= nb; k++) {
4 #pragma omp p a r a l l e l num_threads(2)
5 {
6 i n t thid = omp_get_thread_num() + 1;
7
8 i f (thid == 1)
9 // Factorize panel k

10 PF(A(:, k));
11 }
12 #pragma omp p a r a l l e l num_threads(2)
13 {
14 i n t thid = omp_get_thread_num() + 1;
15
16 i f (thid == 1)
17 // Update panels 1 : k − 1 w.r.t. panel k
18 LU(A(:, k), A(:, 1 : k − 1));
19
20 i f (thid == 2)
21 // Update panels k + 1 : nb w.r.t. panel k
22 TU(A(:, k), A(:, k + 1 : nb));
23 }
24 }
25 }

Listing 4: Simplified routine for DMFI, with hybrid parallelism extracted via OpenMP
plus invocations to multi-threaded BLAS from within LU and TU, including a fine-
grain control of thread-to-task assignment.

1 void Copy_NUMA_HP_4D(matrix A,
2 matrix D1, D2, D3, D4,
3 i n t nb)
4 {
5 i n t kd;
6
7 #pragma omp p a r a l l e l num_threads(4) p r i v a t e(kd)
8 {
9 i n t thid = omp_get_thread_num() + 1;

10
11 f o r (i n t k = thid; k <= nb; k+=4) {
12 kd = (k − 1) / 4 + 1;
13 switch(thid) {
14 case 1: // Copy to D1
15 Copy(A(:, k), D1(:,kd)); break;
16 case 2: // Copy to D2
17 Copy(A(:, k), D2(:,kd)); break;
18 case 3: // Copy to D3
19 Copy(A(:, k), D3(:,kd)); break;
20 case 4: // Copy to D4
21 Copy(A(:, k), D4(:,kd)); break;
22 }
23 }
24 }
25 }

Listing 5: Simplified parallel routine for copying a matrix A into four domains, in-
cluding a fine control of thread-to-task assignment.

mapped to panels D1(:, 1), D1(:, 2), D1(:, 3), . . . of a local ma-
trix D1. Panels A(:, 2), A(:, 6), A(:, 10), . . . are mapped to D2(:, 1),
D2(:, 2), D2(:, 3), . . . in a different local matrix D2; and so on.

Listing 5 provides a realization of a parallel routine with fine-
grain task-to-thread assignment for the copy of a matrix A into
four domains: D1, D2, D3, D4. A multi-domain matrix genera-
tion routine would follow a similar scheme to the copy routine.
This type of parallel manipulation of multiple logical and physical
domains will be leveraged in Section 3.4 to attain a physical dis-
tribution of domains across NNs. At this point we note that, even
though a 2D cyclic partitioning in general provides higher paral-
lel scalability than a simpler 1D distribution, the number of NNs
in current NUMA architectures is moderate, in the range 2–16, and
therefore a cyclic column-block may be sufficient from the per-
spective of parallel performance.
55
3.3. Multi-domain hybrid parallel algorithm for DMFI

Listing 6 generalizes the hybrid parallel code in Listing 3 to op-
erate on an input matrix partitioned into four domains (the same
ideas apply to other number of domains). In this example, the code
deploys a first level of parallelism in which four threads (in the
following, we will refer to each thread in the first-level as a Way)
execute the main DMFI building blocks in an order established by
the programmer.

The code remains quite simple and structured: at each iteration,
the current panel is factorized by a distinct Way, and the column-
blocks to the left and right in the four domains are then updated
with respect to the factorized panel. From the programming point
of view, most of the implementation details remain hidden inside
the kernels PF, TU, LU, which contain exactly the same code as in
the case without support for multiple domains. The programming
burden is thus reduced to determining the correct starting block
indices when accessing the contents of D1, D2, D3, D4.

The multi-domain algorithm represents a first effort toward
work assignment to Ways as, for each iteration, each domain is up-
dated (written) by the same thread, following the owner-computes
rule. This work-assignment is not mandatory for correctness, but
will be basic for the NUMA-aware realizations discussed next.

3.4. NUMA-aware multi-domain DMFI executions

A NUMA-aware execution of the multi-domain algorithm de-
picted in Listing 6 should perform a fine-grain control on thread
placement and work assignment in order to increase the number
of local memory accesses and control the distribution of threads to
NNs. Specifically, our proposal combines the use of OpenMP run-
time environment variables and the multi-domain DMFI algorithms
on four intimately related dimensions yielding a methodology for
a NUMA-aware execution:

1. Place definition. We employ the OMP_PLACES environment
variable to match the physical NUMA topology of the under-
lying architecture with the logical thread topology considered
by the OpenMP runtime. Hence, for example, on a 2-socket,
128-core machine with two NNs (one per socket), comprising
64 consecutive cores each, this definition would set

OMP_PLACES={0:64:1},{64:64:1}

whereas a configuration of the same machine to define two
NNs per socket (comprising 32 consecutive cores each) would
employ

OMP_PLACES={0:32:1}, {32:32:1},\\
{64:32:1},{96:32:1}

2. Thread-to-core binding. Consider a NUMA-aware execution with
a total of NT threads mapped to 4 NNs. We should then deploy
4 Ways, each one creating NT /4 threads per BLAS invoca-
tion and in charge of updating one domain. In a NUMA-aware
execution, the Ways need to be scattered across OpenMP
places (following a spread OpenMP binding policy at the first
thread level), and threads deployed within BLAS calls should
inherit the thread-to-place binding of each original Way (fol-
lowing a close OpenMP binding policy on the second thread
level). For this purpose, the value of the OMP_NUM_THREADS
and OMP_PROC_BIND environment variables should be fixed
as

OMP_NUM_THREADS="4,$NT_PER_BLAS_CALL"
OMP_PROC_BIND="spread,close"

S. Catalán, F.D. Igual, J.R. Herrero et al. Journal of Parallel and Distributed Computing 175 (2023) 51–65
1 void DMFI_NUMA_HP_4D(matrix D1, D2, D3, D4,
2 i n t nb)
3 {
4 i n t kd, km;
5
6 f o r (k = 1; k <= nb; k++) {
7 kd = (k − 1) / 4 + 1;
8 km = (k − 1) % 4 + 1;
9 switch (km) {

10 case 1:
11 #pragma omp p a r a l l e l num_threads(4)
12 {
13 i n t thid = omp_get_thread_num() + 1;
14
15 i f (thid == 1) // Fact. panel k in D1
16 PF(D1(:, kd));
17 }
18 #pragma omp p a r a l l e l num_threads(4)
19 {
20 i n t thid = omp_get_thread_num() + 1;
21
22 // Update of panels 1 : k − 1 w.r.t. panel k
23 // omitted for brevity
24 // Update panels k + 1 : nb w.r.t. panel k
25
26 switch(thid) {
27 case 1: // Update D1 w.r.t D1.
28 TU(D1(:, kd), D1(:, kd + 1 : end)); break;
29 case 2: // Update D2 w.r.t D1.
30 TU(D1(:, kd), D2(:, kd : end)); break;
31 case 3: // Update D3 w.r.t D1.
32 TU(D1(:, kd), D3(:, kd : end)); break;
33 case 4: // Update D4 w.r.t D1.
34 TU(D1(:, kd), D4(:, kd : end)); break;
35 } }
36 break;
37 case 2:
38 #pragma omp p a r a l l e l num_threads(4)
39 {
40 i n t thid = omp_get_thread_num() + 1;
41
42 i f (thid == 2) // Fact. panel k in D2
43 PF(D2(:, kd));
44 }
45 #pragma omp p a r a l l e l num_threads(4)
46 {
47 i n t thid = omp_get_thread_num() + 1;
48
49 // Update of panels 1 : k − 1 w.r.t. panel k
50 // omitted for brevity
51 // Update panels k + 1 : nb w.r.t. panel k
52
53 switch(tid) {
54 case 1: // Update D1 w.r.t D2
55 TU(D2(:, kd), D1(:, kd + 1 : end)); break;
56 case 2: // Update D2 w.r.t D2
57 TU(D2(:, kd), D2(:, kd + 1 : end)); break;
58 case 3: // Update D3 w.r.t D2
59 TU(D2(:, kd), D3(:, kd : end)); break;
60 case 4: // Update D4 w.r.t D2
61 TU(D2(:, kd), D4(:, kd : end)); break;
62 } }
63 break;
64 case 3:
65 // Code ommitted for brevity
66 case 4:
67 // Code ommitted for brevity
68 } }
69 }

Listing 6: Simplified routine for DFMI using a multi-domain scheme with hy-
brid parallelism extracted via OpenMP parallel regions plus invocations to multi-
threaded BLAS from within LU and TU.

The use of this specific combination of hierarchical parallelism,
thread-to-core binding, and definition of places yields a proper
distribution of threads across NNs throughout the computa-
tion, and can be adapted (departing from the same multi-
56
domain DMFI code) to different NUMA topologies without
code modifications, provided the number of domains exposed
in the code matches the target number of NNs.

3. Workload distribution. Considering that the OpenMP implemen-
tation maintains the thread identification across parallel re-
gions, the workload control in Listing 6 would suffice to assure
that each deployed Way and BLAS threads spawned within it
fulfill the owner-compute rule throughout the complete opera-
tion.

4. Thread-to-data affinity. Finally, a mechanism to ensure that the
data accesses from within a Way or from the internal BLAS
threads are local, so that the updates are performed within the
local NN, is mandatory to prevent remote memory accesses.
For this condition to hold, each Way in the domain creation
depicted in Listing 5 should be mapped to a core bound to a
different NN, in order to exploit the first-touch page allocation
policy present in modern operating systems.2 This mapping,
however, is already active provided the aforementioned (1)
place definition, (2) thread-to-core mapping, and (3) workload
distribution are used, and hence a NUMA-aware implementa-
tion (with local domain updates) will be consistently used.

3.5. Generalization to any number of NUMA nodes

Although the multi-domain algorithms are easy to derive, their
implementation can be tedious when the number of domains is
large. Hence, generalizing the implementation to be independent
of the number of domains becomes very useful for code and per-
formance portability across NUMA architectures as it requires min-
imal (or no) code modifications. An excerpt of the solution is given
in Listing 7, for a configuration with nd NUMA domains. Note that
we employ an array of domain descriptors as the source of the
DMFI, with as many elements as domains conform the operation;
this structure is the multi-domain representation of the matrix A,
and in practice could be defined as an object that abstracts away
the intricacies of managing a multi-domain representation of the
matrix. The listing also includes an excerpt of a generic implemen-
tation of the routine that copies the contents of a plain matrix A to
the nd domains. With these two generic implementations, the de-
velopment of multi-domain codes for DMFI becomes simple, and
enables the extensive performance evaluation for different NUMA
topologies in Section 4.

4. Experimental results

The experimental evaluation in this section pursues three main
objectives. First, to demonstrate that our NUMA-aware shared-
memory approach toward obtaining efficient parallel DMFI imple-
mentations is valid for systems with a variable number of NNs,
and to illustrate the implications of a proper domain number se-
lection in relation with the number of NNs in the system; these
results are given in Sections 4.2 to 4.4. Second, to compare the
attained performance with message-passing implementations for
DFMI (ScaLAPACK and SLATE); as reported in Section 4.5. Third, to
demonstrate that the proposed approach is portable across a num-
ber of routines (LU, QR and Inversion) and new-generation NUMA
architectures; this is done in Section 4.6. We employ the GFLOPS
rate (billions of floating point operations per second) as the main
performance metric in all subsequent experiments, and we use
double-precision arithmetic. The reported results are the best from
a large number of repetitions per experiment in order to reduce
variability. As the two target architectures are quite novel from

2 An execution of the factorization executable using numactl -localalloc
would be necessary if the first-touch policy is not in place.

S. Catalán, F.D. Igual, J.R. Herrero et al. Journal of Parallel and Distributed Computing 175 (2023) 51–65
1 // Generic multi-domain DMFI.
2 void DMFI_NUMA_HP_generic(matrix D[nd],
3 i n t nb, i n t nd)
4 {
5 i n t kd, km;
6
7 f o r (i n t k = 1; k <= nb; k++) {
8 kd = (k − 1) / nd + 1;
9 km = (k − 1) % nd + 1;

10
11 #pragma omp p a r a l l e l num_threads(nd)
12 {
13 i n t thid = omp_get_thread_num() + 1;
14
15 // Factorize panel k in Domain km

16 i f (thid == km)
17 PF(D[km](: , kd));
18 }
19
20 #pragma omp p a r a l l e l num_threads(nd)
21 {
22 i n t thid = omp_get_thread_num() + 1;
23
24 // Update of panels 1 : k − 1 w.r.t. panel k
25 // omitted for brevity
26
27 // Update panels k + 1 : nb w.r.t. panel k
28 // Each thread updates the proper domain
29 i n t ki = (km <= thid) ? kd + 1 : kd;
30 TU(D[km](: , kd), D[thid](: , ki : end));
31 }
32 }
33
34 // Generic copy of matrix A into domains
35 void Copy_NUMA_HP_generic(matrix A, matrix D[nd],
36 i n t nb, i n t nd)
37 {
38 i n t kd;
39
40 #pragma omp p a r a l l e l num_threads(nd) p r i v a t e(kd)
41 {
42 i n t thid = omp_get_thread_num() + 1;
43
44 f o r (i n t k = thid; k <= nb; k+=nd) {
45 kd = (k − 1) / nd + 1;
46 // Copy to the corresponding Domain
47 Copy(A(:, k), D[thid](:, kd));
48 }
49 }
50 }

Listing 7: Simplified routine for DFMI, generalized for nd NUMA domains, and with
NUMA-aware hybrid parallelism extracted via OpenMP parallel regions plus invoca-
tions of multi-threaded BLAS from within LU and TU.

the perspective of their NUMA characteristics, Section 4.1 provides
their detailed description.

All the performance results in the following exclusively consider
the cost of the factorizations/inversion while the time devoted to
create and/or distribute data across domains is not included. The
reason is two-fold: First, a sequential implementation of the rou-
tine Copy_NUMA_HP_generic in Listing 7 entails a time penalty
between 6 and 15% for problems of relatively large dimension; in
this line, we can expect a significantly smaller impact when using
a parallel copy routine to saturate the memory bandwidth. Second,
in a natural scenario, these routines maintain the matrix operand
distributed across the NUMA nodes prior and after the invocation
of the corresponding routines, hence making it unnecessary (an
inefficient) to perform a data distribution to/from NUMA domains
every time a DMFI routine is executed.

4.1. Experimental setup

4.1.1. Rome

Rome is a dual-socket multi-core server equipped with two
AMD EPYC 7742 processors with 64 cores each, configured in our
57
setup to run at 2.25 GHz. The cache hierarchy per socket com-
prises 4 Mbytes of L1 cache (32 Kbytes per core), 32 Mbytes of L2
cache (512 Kbytes per core), and 256 Mbytes of L3 cache divided
into 16 modules of 16 Mbytes, local to each cluster of 4 cores.
The server features 512 Gbytes of DDR4 (3200 MHz) RAM mem-
ory. The memory controller supports up to 8 memory channels, for
an aggregated peak theoretical bandwidth of 204 Gbps. The chip is
logically divided into four quadrants, each one comprising 16 cores
and associated with two memory channels.

The basic compute unit (core) in Rome implements the Zen2
micro-architecture, a superscalar design supporting vector instruc-
tions of up to 256 bits. Cores are grouped within the Rome SoC
(System on Chip) into Core-Complexes (CCX). Each CCX in Rome

is composed of 4 cores3 sharing 16 Mbytes of L3 cache. CCXs are
grouped in pairs to conform a CCD (Core/Cache Die), which are in
turn logically and physically distributed into 4 quadrants, with 2
CCDs per quadrant. CCDs are actually the basic chiplet (die) unit
within the processor, and scalability across products in the same
family is attained by means of CCD replication. In Rome, the 8
CCDs (chiplets) are interconnected via a ninth I/O die, which man-
ages intra-socket (die-to-die) and inter-socket communication via
the so-called Infinity fabric. A pair of memory channels, each one
bound to two RAM DIMMs, is bound to each quadrant. Fig. 2 de-
picts the global structure of the Rome processor employed in our
tests, and a detail of the CCX structure.

Given this die, cache hierarchy and memory topology, the Rome

SoC offers the possibility of establishing (via BIOS setup) several
Nodes Per Socket (NPS) configurations, which ultimately impact the
NUMA topology visible for users and the OS, in terms of logic dis-
tance, modifying the System Locality Distance Information Table
(SLIT)4 [41] as well as the effective bandwidth that can be attained
by means of assignment of memory channels to specific cores in
the SoC. Specifically, in Rome, the following configurations for NPS
are available:

NPS1 interleaves the eight channels in the socket for their use by
all cores in the processor; hence, the complete socket is con-
figured as a single NN (typical in common multi-socket NUMA
setups). In our dual-socket setup, NPS1 yields 2 NNs.

NPS2 interleaves the four channels in each half of the chip for
exclusive use of the corresponding cores; hence, each half is
configured as an NN. In our dual-socket setup, NPS2 yields 4
NNs.

NPS4 interleaves the two channels in each quadrant for exclusive
use of the corresponding cores; hence, each quadrant is con-
figured as an NN. In our dual-socket setup, NPS4 yields 8 NNs.

LLCasNUMA considers each CCX as a single NN, offering 16 NNs
per socket; the utility of this setup lies in a complete resource
isolation (including LLC) that is desirable in some multi-tenant
setups in datacenters. In our dual-socket setup, LLCasNUMA
yields 32 NNs.

From the software side, Rome runs a Linux 5.10 machine using
the GNU Compiler suite version 8.3 and AOCL version 3.1.0.

4.1.2. Kunpeng

Kunpeng is a dual-socket multi-core server equipped with two
Huawei Kunpeng 920 processors with 48 cores each, configured
in our setup to run at 2.6 GHz. The cache hierarchy per socket
comprises 3 Mbytes of L1 cache (64 Kbytes per core), 24 Mbytes
of L2 cache (512 Kbytes per core), and 48 Mbytes of L3 cache (1

3 2-way SMT per core is supported, though in our experiments this capability was
disabled.

4 Typically queried from the user space via numactl -H.

S. Catalán, F.D. Igual, J.R. Herrero et al. Journal of Parallel and Distributed Computing 175 (2023) 51–65
Fig. 2. Memory hierarchy and core layout of Rome.

Mbyte per core). The server features 256 Gbytes of DDR4 (2933
MHz) RAM memory. Similar to Rome, the memory controller sup-
ports up to 8 memory channels, for an aggregated peak theoretical
bandwidth of 204 Gbps.

The basic computing unit (core) within Kunpeng is the TaiS-
han v110 core, an ad-hoc implementation of the ARM v8.1 (with
selected extensions from the ARM v8.2 specification) and support
for 128-bit NEON vector instructions. Cores are grouped within the
Kunpeng SoC into CPU clusters (CCLs), each comprising 4 TaiShan
v110 cores. At a higher level, the chip is composed by three dies
(chiplets), namely: two Super CPU Clusters (SCCL) compute dies
and one Super IO Cluster (SICL). Each SCCL is composed by a vari-
able number of CCLs (in our case 6 CCLs, for a total amount of 24
cores per SCCL), a memory controller, and an LLC cache block. Core
scalability within the SCCL chiplet is based on replication of CCLs
within it. Communication across cores in an SCCL is implemented
via a ring topology, with the SICL die in charge of managing inter-
die communication. The SICL also includes three Hydra links for
inter-socket communication, with an aggregated peak bandwidth
of 90 Gbytes per second. Table 1 offers a comparison of the mem-
ory access characteristics at the distinct levels on Kunpeng. Espe-
cially interesting for us are the two main bandwidth/latency gaps
for inter-die and inter-socket communications, which will heav-
ily impact the final performance on remote memory accesses that
need to traverse those levels.

Fig. 3 depicts the global structure of the Kunpeng processor
employed in our tests, and a detail of the CCL structure. In this
case, NUMA effects within the server can appear across chips, and
58
Table 1
Theoretical memory bandwidth and latency for a
multi-socket Kunpeng 920 architecture (source: [48]).

Bandwidth (GB/s) Latency (ms)

Core (L1) 6000 <2
L2 6000 <4
L3 3000 <15
Inter-die 400 <30
Main memory 200 <90 – 110
Inter-socket 50-90 <230

Fig. 3. Memory hierarchy and core layout of Kunpeng.

across the two SCCLs (with proprietary LLCs) within each chip, for
a total of 4 NNs. We have not investigated in possible modifica-
tions of the NUMA topology as we did in Rome.

From the software side, our experiments were deployed on a
Linux 5.4.0 machine using the GNU Compiler suite version 10.1
and ARMPL (ARM Performance Libraries) version 21.1.

4.2. Impact of NPS on performance

The goal of the first round of experiments is three-fold: First,
to compare the performance improvements of our multi-domain
DMFI implementations with classic single-domain (LAPACK-style)
DMFI implementations; second, to evaluate the potential improve-
ments in performance of the multi-domain NUMA-aware DMFI
executions compared with their NUMA-oblivious counterparts, in
which the OS is in charge of data distribution and workload assign-
ment; and third, to assess how the number of domains selected
from the library are directly related with the performance im-
provement as the number of NPS (and hence the number of NNs
in the whole system) is increased.

In this case, we select a specific DMFI (the QR factorization),
and Rome as the target architecture. Similar qualitative results
were observed for the rest of DMFI (LU and matrix inversion).
The reason for selecting Rome was its ability to experiment with a
larger variety of NPS configurations, which illustrates the flexibility
of our solution.

S. Catalán, F.D. Igual, J.R. Herrero et al.
Fig. 4 reports the performance results on three different config-
urations of the server: NPS1 (top plot), NPS2 (middle), and NPS4
(bottom) for increasing problem dimensions. Each group of bars
reports the performance for a specific problem dimension, for dif-
ferent library setups:

• 1 domain, no NUMA (dark blue bar): DMFI with a single data
domain, extracting parallelism at only one level (within BLAS
calls), and delegating the control of thread-to-core affinity and
data allocation to the OS.

• X domains, no NUMA (light version of the corresponding color):
DMFI with X data domains, extracting parallelism at two lev-
els, and delegating the control of thread-to-core affinity and
data allocation to the OS (as explained in Section 3.3).

• X domains, NUMA (dark version of the corresponding color):
DMFI with X data domains, extracting parallelism at two lev-
els, and explicitly controlling thread-to-core affinity and data
allocation (as explained in Section 3.4).

For the multi-domain experiments, we execute the DMFI codes
for 2, 4, 8 and 16 domains. In all cases, our executions comprise
the 128 cores, that is, the complete (dual-socket) machine.

A number of conclusions can be extracted from the analysis of
the results:

• In general, the use of our multi-domain NUMA-aware DMFI
implementation outperforms the classic single-domain ap-
proach. This difference in performance becomes more visible
as the dimension of the matrices grows, and as the number
of NPS is increased, as in such scenario(s), it is more challeng-
ing for the OS to find an optimal allocation scheme for data
and/or a proper thread-to-data binding.

• For each selection of the number of domains, comparing
the NUMA-aware implementations with their counterparts in
which the OS manages data affinity for each NUMA setup,
the benefits in terms of performance are evident in all cases.
This fact reveals the importance of exposing multiple domains
within the code as well as to manually control, at execution
time, the affinity of threads to cores and hence to data do-
mains.

• Regarding the relationship between the number of NNs and
the number of domains, the performance boost appears in all
cases exactly when the number of domains matches the num-
ber of NNs (that is, two domains for NPS1, four domains for
NPS2, and eight domains for NPS4). This establishes the mini-
mum number of domains that should be configured according
to the underlying NUMA setup and, more importantly, demon-
strates the necessity of a flexible shared-memory DMFI library
implementation that can accommodate any number of NNs for
performance portability.

• According to AMD’s documentation, NPS4 is the recommended
NUMA setup in order to attain optimal aggregated memory
bandwidth. While this usually holds for multi-application en-
vironments in which applications are confined and mapped
to different NNs, our observations reveal that this is not the
case when there is only one application which spans across
multiple NNs. Here, when respecting a correct distribution of
domains to NNs, the best configuration is that which reduces
the number of NNs (NPS1), with performance dropping pro-
gressively as the number of nodes for the same experiment
conditions increases.

Additionally, Fig. 5 (left) reports the performance for the LL-
CasNUMA configuration, in which 16 NNs are set per socket. In
this case, the results correspond to an execution on a single socket
(64 cores). Our goal here is to demonstrate that a NUMA-aware
59
Journal of Parallel and Distributed Computing 175 (2023) 51–65

Fig. 4. Comparative performance results for the QR factorization under different NPS
configurations on Rome.

S. Catalán, F.D. Igual, J.R. Herrero et al. Journal of Parallel and Distributed Computing 175 (2023) 51–65

Fig. 5. Comparative performance results for the QR factorization the LLCasNUMA configuration on Rome. Left: using 1 socket and up to 16 domains; Right: using 2 sockets
and up to 32 domains.
execution with a number of domains which matches the number
of NNs is also profitable when employing a single socket. In this
case, the NUMA-aware execution with 16 domains (dark-red bar)
again delivers the highest performance. However, the NUMA ef-
fects on performance are less evident in these cases, and actually,
for this type of regular codes (from the perspective of memory ac-
cesses), the basic single-domain codes (dark-blue bar) are rather
competitive. Our guess is that the management of homogeneous
distances across all NNs within a single socket helps the OS to map
the threads close to the corresponding NN, and also that potential
performance (latency or bandwidth) penalties associated with re-
mote data accesses are not as dramatic as in multi-socket setups.
To close this first round of experiments, Fig. 5 (right) reports equiv-
alent results using the LLCasNUMA setup on both sockets of Rome.
Again, the fine-grain NUMA node distribution in this setup blurs
the benefits of increasing the number of domains in the NUMA-
aware codes. Here, the largest leap in performance arises when
moving to two domains, as the logical distance between NUMA
nodes across both sockets is, proportionally, the main source of in-
efficiency in the NUMA-oblivious implementation. In other words,
LLCasNUMA and NPS1 are the most similar NUMA setups available
in the machine for this type of compute-intensive implementa-
tion. Note that, differently from the single-socket setup, the use of
a LAPACK-like 1-domain implementation introduces a significant
performance penalty.

4.3. Performance counters

Hardware performance counters can help to explain the differ-
ence in performance between NUMA-aware and NUMA-oblivious
executions observed in the previous section. PMUs (Performance
Monitoring Units) in modern NUMA architectures provide detailed
information about the number of accesses to local and remote
DRAM. In order to support the results reported in the previous sec-
tion, we leverage the PMU in Rome in order to gather events that
correspond to remote DRAM accesses; these events are provided
by the Core Performance Monitor Counters (PMC) of the PMU; see
[4] (section 2.3.2, LS Events).

Fig. 6 reports an execution trace comparing the distribution
of the remote DRAM accesses for two different executions of
the same multi-domain QR factorization, using NUMA-aware (blue
line) and NUMA-oblivious (brown line) execution setups. The spe-
cific event from the PMC is 0x043 (Data Cache Refills from System),
60
Fig. 6. Comparative timeline of the remote RAM accesses for a QR factorization (m =
n = 1, 024, b = 256) in Rome for a NUMA-aware and a NUMA-oblivious execution.

specifically activating the event LS_MABRESP_RMT_DRAM (DRAM
accesses from another die). NPS1 and two domains were used for the
experiment, even though similar qualitative results were observed
for other configurations. The codes were instrumented using PAPI
6.0.0. The timeline in the Figure delivers a much higher rate of
remote memory accesses in the NUMA-oblivious execution com-
pared with that of its NUMA-aware counterpart, which explains
the difference in performance, and hence the necessity of a com-
bined multi-domain code for DMFI and a NUMA-aware execution.

4.4. Performance portability

The goal of this section is to provide evidence on the per-
formance portability of our NUMA-aware codes for DMFI across
the different NPS configurations in Rome, and expose how the
performance degrades as the number of NNs is increased. To ac-
complish the study, we conduct a comparative study of the qual-
itative and quantitative performance of our solution, taking the
General Matrix-Matrix Multiplication (GEMM hereafter) as a base-

S. Catalán, F.D. Igual, J.R. Herrero et al. Journal of Parallel and Distributed Computing 175 (2023) 51–65

Table 2
Performance portability study of GEMM and QR across different NPS configurations on Rome, using 128 threads.

NUMA-aware NUMA-oblivious

GEMM QR (multi-domain) GEMM QR (1 domain) QR (multi-domain)

Max. Relative Max. Relative Max. Relative Max. Relative Max. Relative
GFLOPS to NPS1 GFLOPS to NPS1 GFLOPS to NPS1 GFLOPS to NPS1 GFLOPS to NPS1

NPS1 3,237 – 1,958 – 2,734 – 1,346 – 1,550 –
NPS2 2,924 90.3% 1,732 88.4% 1,788 65.3% 732 54.3% 1,440 92.9%
NPS4 1,723 53.2% 1,470 75.1% 1,652 60.4% 527 39.2% 1,371 88.5%
LLCasNUMA 3,045 94.1% 1,762 89.9% 2,506 91.6% 998 74.1% 1,517 97.8%
line. GEMM usually serves as a realistic benchmark to evaluate the
maximum attainable performance of an architecture for compute-
intensive applications. Hence, this study also aims at illustrating
the gap (in terms of raw performance) between the DMFI and
GEMM for each configuration.

Table 2 reports the results of the study using the complete
Rome machine (128 cores). The values there include the maximum
performance (in terms of GFLOPS) attained for the QR factoriza-
tion and GEMM, and the relative performance compared with the
best NUMA configuration (in our observations, NPS1) for each rou-
tine. For clarity, we divide the following discussion into two parts,
targeting NUMA-aware and NUMA-oblivious executions.

4.4.1. NUMA-aware implementations
The left part of Table 2 reports the performance portability

results for the best NUMA-aware execution of our multi-domain
codes as reported in Figs. 4 and 5 (right). For GEMM, we have
conducted an evaluation of AOCL considering a NUMA-aware dis-
tribution of threads, following the directives presented in [40], in
which the number of thread groups in the outer AOCL loop (re-
ferred as JC in that work) is manually set to match the number of
NNs in the NPS setup (e.g., 2 for NPS1, 4 for NPS2, and so on). This,
in turn, yields a NUMA-aware AOCL implementation for GEMM and
hence a fair baseline for the comparison.

The results show that the relative performance compared with
NPS1 follows a similar trend for our DMFI and GEMM: The perfor-
mance degrades in a similar ratio as the number of NNs increases,
and offers a decent degradation for LLCasNUMA. As mentioned in
Section 4.2, the NUMA setup for LLCasNUMA yields logical dis-
tances similar to those in NPS1, hence the higher comparative
performance in this case (94.1% for GEMM and 89.9% for the QR
factorization compared with NPS1).

Regarding the maximum observed performance, the QR factor-
ization attains rates between a 60% (for NPS1) and 85% (for NPS4)
compared with those in GEMM. This reduction in performance is
common in DMFI, and is explained by the bottleneck introduced
by the panel factorization; all in all, our maximum performance
is comparable with that in alternative implementations such as
ScaLAPACK or SLATE. (To be shown in Section 4.5.)

4.4.2. NUMA-oblivious implementations
The right part of Table 2 reports the results for the best NUMA-

oblivious execution of our multi-domain codes as reported in
Figs. 4 and 5 (right). In this case, for GEMM we just set the total
number of threads for the AOCL execution (128), and delegate the
actual thread distribution to the library. Hence, we can consider
this GEMM instance as NUMA-oblivious. The table also includes
the execution of a 1-domain QR factorization linked with AOCL
(configured using 128 threads), that mimics the implementation
of the LAPACK’s dgeqrf routine and serves here as a baseline for
the performance comparison with a NUMA-oblivious DMFI.

The conclusions in this case are qualitatively similar to those
observed for the NUMA-aware case: the performance experiments
a similar degradation with the NPS variation. In terms of abso-
lute performance comparison with GEMM, the difference with our
61
DMFI solution is similar to that in the NUMA-aware experiments.
In both cases, the NUMA-oblivious executions suffer a similar per-
formance reduction w.r.t. their NUMA-aware counterparts. How-
ever, the degradation is dramatically milder for our multi-domain
DMFI codes (even on a NUMA-oblivious execution) than those
for GEMM and for LAPACK’s dgeqrf; this observation reinforces
the relevance of exposing multiple domains from the code, which
eases the task of NUMA-aware thread binding for the operating
system, enhancing performance portability.

4.5. Comparison with message-passing libraries

In order to put in context the raw performance of our shared-
memory NUMA-aware implementations of DMFI, next we com-
pare them with a message-passing realization of the same matrix
operation. Specifically, Fig. 7 reports a comparative study of the
performance of the QR factorization in ScaLAPACK [7] (using ver-
sion 2.2.0 of the library) and SLATE [17] (version 2022.07.00) on
Rome, deploying different combinations of processes and threads
per process, and launching the grid of processes using the -map-
by-socket option of mpirun (OpenMPI 4.1.3 was employed as
the message-passing library). Proceeding in this manner, processes
are spread across NUMA nodes, and threads within processes
(deployed by BLAS calls) inherit the affinity of the parent pro-
cess. Following the owner-computes rule, this yields a NUMA-aware
message-passing implementation, enabling a fair comparison with
our approach. The results comprise all combinations of number of
MPI processes (from 2 to 8) and process grid dimensions (p × q)
for ScaLAPACK. Here, instead of reporting the best performing vari-
ant in terms of number of domains for our shared-memory codes,
we only report the results for the variant that matches the number
of NNs for each NPS configuration.

The first observation is that, in contrast with our shared-
memory codes, ScaLAPACK does not adhere to the rule of deploy-
ing as many processes as NNs are available. Contrarily, the perfor-
mance for the message-passing codes keeps ramping up with the
number of processes till the optimal performance point, that in all
cases occurs for the highest number of processes. Especially for
large matrices, our codes outperform those in ScaLAPACK for NPS1
and NPS2; however, ScaLAPACK is the best option for the optimal
combination of processes and thread per process in the NPS4 case.
In the case of SLATE, for brevity and given the similar qualitative
behavior for the aforementioned process setups, we only report the
performance of the optimal configuration. In this case, our obser-
vations yield a general inferior performance than that observed for
ScaLAPACK and for our shared-memory proposal. Actually, the be-
havior of both ScaLAPACK and SLATE is significantly different from
that of the shared-memory solution, as no performance penalty is
observed in the former as the number of NNs is increased. The
comparison needs to be completed by remarking that programma-
bility is one of the key advantages of our codes compared with
ScaLAPACK’s (or other message-passing infrastructures), so that the
lower development effort for DMFI in our case can make up for the
small loss in performance.

S. Catalán, F.D. Igual, J.R. Herrero et al. Journal of Parallel and Distributed Computing 175 (2023) 51–65

Fig. 7. Performance comparison between message-passing codes (ScaLAPACK) and
our NUMA-aware shared-memory codes on Rome.

4.6. Overall NUMA-aware DMFI performance

Finally, we investigate on the performance of the different DMFI
NUMA-aware implementations (LU, QR and Inversion) using our
shared-memory approach. In this case, and for the sake of brevity,
the evaluation is reported only for Kunpeng, even though similar
qualitative results have been observed in Rome (actually, the per-
formance plots reported in Figs. 4 and 5 already illustrated such a
study for the case of the QR factorization in Rome).

Fig. 8 reports the performance attained by the three DMFI rou-
tines deployed in Kunpeng, featuring 4 NNs. In all cases, the ex-
periments comprise executions for a single domain (delegating the
NUMA control to the OS), and 2, 4 domains, with and without con-
trol of NUMA aspects. The qualitative results observed are similar
to those observed in Rome: the peak performance is attained ex-
clusively for the case of 4 domains with NUMA control, and this
configuration, matching with the number of NNs in the system,
obtains the most relevant performance boost. The performance re-
sults also reveal that the observations are consistent for the three
routines, which generalizes the detailed conclusions extracted for
the case of the QR factorization in Rome, and also demonstrates
that our strategy is portable across different NUMA architectures
(and operations).

5. Concluding remarks

In this paper, we have designed and described in detail a
methodology to systematically develop parallel codes for DFMI tar-
geting state-of-the-art NUMA architectures. Specifically, we address
the complexity associated with programming novel NUMA topolo-
gies, with multiple NUMA nodes per socket and configurable mem-
ory setups on modern multi-core machines. We have extended
the classic shared-memory hybrid parallelization scheme, in which
parallelism is extracted simultaneously at the loop and task levels,
to accommodate an execution of the algorithms that is aware of
the NUMA features of the target platform. The result is a generic
NUMA-aware routine for DFMI that comprises only 32 lines of code
(and comments).

Our strategy is based on the formulation of multi-domain codes
for DMFI, and on a proper runtime setup that fixes the compu-
tation of a specific domain to those threads that remain close
(in terms of core-to-memory distance) to the data throughout the
computation. Our methodology addresses the following three key
aspects: (i) data must be logically and physically partitioned into
domains that reside in different NNs; (ii) threads are deployed hi-
erarchically and mapped to the corresponding NUMA node; and,
(iii) once deployed, threads cannot migrate from one core to an-
other. In addition, we have introduced a methodology to derive im-
plementations which are independent of the number of domains,
further easing the development process and virtually offering sup-
port any NUMA topology.

A complete performance evaluation in two modern NUMA ar-
chitectures demonstrates that our NUMA-aware implementations
for DMFI are valid for systems with a variable number of NNs,
showing results that outperform the conventional NUMA-oblivious
counterparts. In addition, we have reported performance on a par
with well-known message passing libraries for dense linear alge-
bra, with the advantage of a much simpler programming. Finally,
we have demonstrated the portability of the approach showing the
performance results of different DMFI.

It is known that the parallel performance of the hybrid par-
allelization scheme can be limited when any of the tasks is by
nature difficult to parallelize at loop level and lies in the criti-
cal path of the overall operation. In the case of DMFI, this feature

is usually encountered for the PF operation. Look-ahead (LA) [42]
62

S. Catalán, F.D. Igual, J.R. Herrero et al. Journal of Parallel and Distributed Computing 175 (2023) 51–65

Fig. 8. Performance results for different DMFI implementations on Kunpeng.

is a technique that, integrated within DMFI, reduces the bottle-
neck imposed by PF by implementing a sort of software pipelining
that breaks the strict dependencies between that operation and the
panel updates (TU and LU) being computed in the same iteration.
However, its implementation is not straightforward and presents
challenges when multi-domain algorithms need to be derived. This
effort is left as part of future work.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing in-
terests: Enrique S. Quintana-Orti reports financial support was pro-
vided by European Commission. All authors reports financial sup-
port was provided by Agencia Estatal de Investigación.

Acknowledgment

This research was sponsored by project PID2019-107255GB
of Ministerio de Ciencia, Innovación y Universidades; project
S2018/TCS-4423 of Comunidad de Madrid; project 2017-SGR-
1414 of the Generalitat de Catalunya and the Madrid Government
under the Multiannual Agreement with UCM in the line Pro-
gram to Stimulate Research for Young Doctors in the context of
the V PRICIT, project PR65/19-22445. This project has also re-
ceived funding from the European High-Performance Computing
Joint Undertaking (JU) under grant agreement No 955558. The
JU receives support from the European Union’s Horizon 2020 re-
search and innovation programme, and Spain, Germany, France,
Italy, Poland, Switzerland, Norway. The work is also supported
by grants PID2020-113656RB-C22 and PID2021-126576NB-I00 of
MCIN/AEI/10.13039/501100011033 and by ERDF A way of making
Europe.

References

[1] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault, S. Tomov,
Faster, cheaper, better – a hybridization methodology to develop linear algebra
software for GPUs, in: W. Mei, W. Hwu (Eds.), GPU Computing Gems, vol. 2,
Morgan Kaufmann, 2010, https://hal .inria .fr /inria -00547847.

[2] M.M. Ahmed, M.S. Shamim, N. Mansoor, S.A. Mamun, A. Ganguly, Increasing in-
terposer utilization: a scalable, energy efficient and high bandwidth multicore-
multichip integration solution, in: 2017 Eighth International Green and Sus-
tainable Computing Conference (IGSC), 2017, pp. 1–6.

[3] R. Alomairy, G. Miranda, H. Ltaief, R.M. Badia, X. Martorell, J. Labarta, D.E.
Keyes, Dense matrix computations on NUMA architectures with distance-
aware work stealing, Supercomput. Front. Innov. 2 (1) (2015) 49–72, https://
doi .org /10 .14529 /jsfi150103.

[4] Amd, Open-source register reference for amd family 17h processors, 2018.
[5] E. Anderson, Z. Bai, C. Bischof, L.S. Blackford, J. Demmel, J.J. Dongarra, J.D.

Croz, S. Hammarling, A. Greenbaum, A. McKenney, D. Sorensen, LAPACK Users’
Guide, third ed., Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 1999.

[6] R.M. Badia, J.R. Herrero, J. Labarta, J.M. Pérez, E.S. Quintana-Ortí, G. Quintana-
Ortí, Parallelizing dense and banded linear algebra libraries using smpss, Con-
curr. Comput., Pract. Exp. 21 (18) (2009) 2438–2456, https://doi .org /10 .1002 /
cpe .1463.

[7] L. Blackford, J. Choi, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S. Hammar-
ling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. Whaley, Scalapack: a portable
linear algebra library for distributed memory computers - design issues and
performance, in: Supercomputing ’96: Proceedings of the 1996 ACM/IEEE Con-
ference on Supercomputing, 1996, pp. 5–5.

[8] P. Caheny, M. Casas, M. Moretó, H. Gloaguen, M. Saintes, E. Ayguadé, J. Labarta,
M. Valero, Reducing cache coherence traffic with hierarchical directory cache
and numa-aware runtime scheduling, in: Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation, PACT ’16, Association for
Computing Machinery, New York, NY, USA, 2016, pp. 275–286.

[9] P. Caheny, L. Alvarez, S. Derradji, M. Valero, M. Moretó, M. Casas, Reducing
cache coherence traffic with a NUMA-aware runtime approach, IEEE Trans. Par-
allel Distrib. Syst. 29 (5) (2018) 1174–1187, https://doi .org /10 .1109 /TPDS .2017.

2787123.
63

https://hal.inria.fr/inria-00547847
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib5904359ECAEA4AB7BBE3E65B89F2EB0Bs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib5904359ECAEA4AB7BBE3E65B89F2EB0Bs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib5904359ECAEA4AB7BBE3E65B89F2EB0Bs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib5904359ECAEA4AB7BBE3E65B89F2EB0Bs1
https://doi.org/10.14529/jsfi150103
https://doi.org/10.14529/jsfi150103
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib88086756C1E7F25CA17A387B766E20D0s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib3F994FA94007300D8FC3C7CA6EE8479Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib3F994FA94007300D8FC3C7CA6EE8479Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib3F994FA94007300D8FC3C7CA6EE8479Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib3F994FA94007300D8FC3C7CA6EE8479Ds1
https://doi.org/10.1002/cpe.1463
https://doi.org/10.1002/cpe.1463
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibA6C911B39A82E38185300F353FBC55EBs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibA6C911B39A82E38185300F353FBC55EBs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibA6C911B39A82E38185300F353FBC55EBs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibA6C911B39A82E38185300F353FBC55EBs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibA6C911B39A82E38185300F353FBC55EBs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibE35AEDB8D4D76DC1C8CBAB479011B898s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibE35AEDB8D4D76DC1C8CBAB479011B898s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibE35AEDB8D4D76DC1C8CBAB479011B898s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibE35AEDB8D4D76DC1C8CBAB479011B898s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibE35AEDB8D4D76DC1C8CBAB479011B898s1
https://doi.org/10.1109/TPDS.2017.2787123
https://doi.org/10.1109/TPDS.2017.2787123

S. Catalán, F.D. Igual, J.R. Herrero et al. Journal of Parallel and Distributed Computing 175 (2023) 51–65
[10] S. Catalán, F.D. Igual, R. Rodríguez-Sánchez, E.S. Quintana-Ortí, Scalable hybrid
loop- and task-parallel matrix inversion for multicore processors, in: 22nd IEEE
International Workshop on Parallel and Distributed Scientific and Engineering
– PDSEC’21, 2021.

[11] A. Coskun, F. Eris, A. Joshi, A.B. Kahng, Y. Ma, A. Narayan, V. Srinivas, Cross-layer
co-optimization of network design and chiplet placement in 2.5-d systems,
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 39 (12) (2020) 5183–5196,
https://doi .org /10 .1109 /TCAD .2020 .2970019.

[12] M.F. Dolz, F.D. Igual, T. Ludwig, L. Piñuel, E.S. Quintana-Ortí, Balancing task-
and data-level parallelism to improve performance and energy consumption
of matrix computations on the intel xeon phi, Comput. Electr. Eng. 46 (2015)
95–111, https://doi .org /10 .1016 /j .compeleceng .2015 .06 .009.

[13] S. Dominico, E.C. de Almeida, M.A.Z. Alves, J.A. Meira, Performance analysis of
array database systems in non-uniform memory architecture, in: 2021 29th
Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP), 2021, pp. 169–176.

[14] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, P. Wu, I. Yamazaki, A.
Yarkhan, M. Abalenkovs, N. Bagherpour, S. Hammarling, J. Šístek, D. Stevens,
M. Zounon, S.D. Relton, PLASMA: parallel linear algebra software for multicore
using OpenMP, ACM Trans. Math. Softw. 45 (2) (May 2019), https://doi .org /10 .
1145 /3264491.

[15] J.J. Dongarra, J. Du Croz, S. Hammarling, I. Duff, A set of level 3 basic linear
algebra subprograms, ACM Trans. Math. Softw. 16 (1) (1990) 1–17.

[16] J. Funston, M. Lorrillere, A. Fedorova, B. Lepers, D. Vengerov, J.-P. Lozi, V.
Quéma, Placement of virtual containers on NUMA systems: a practical and
comprehensive model, in: Proceedings of the 2018 USENIX Conference on
Usenix Annual Technical Conference, USENIX ATC ’18, USENIX Association, USA,
2018, pp. 281–293.

[17] M. Gates, A. Charara, J. Kurzak, A. YarKhan, M. Al Farhan, D. Sukkari, J. Don-
garra, SLATE users’ guide, SWAN no. 10, Tech. Rep. ICL-UT-19-01, Innovative
Computing Laboratory, University of Tennessee, July 2020, revision 07-2020
https://www.icl .utk.edu /publications /swan -010.

[18] G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edition, The Johns Hopkins
University Press, Baltimore, 1996.

[19] K. Goto, R.A. van de Geijn, Anatomy of high-performance matrix multiplication,
ACM Trans. Math. Softw. 34 (3) (2008) 12.

[20] A. Grama, A. Gupta, G. Karypis, V. Kumar, Introduction to Parallel Computing,
2nd edition, Addison-Wesley, 2003.

[21] C. Imes, S. Hofmeyr, D.I.D. Kang, J.P. Walters, A case study and characteri-
zation of a many-socket, multi-tier NUMA HPC platform, in: 2020 IEEE/ACM
6th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC) and
Workshop on Hierarchical Parallelism for Exascale Computing (HiPar), 2020,
pp. 74–84.

[22] A. Kannan, N.E. Jerger, G.H. Loh, Enabling interposer-based disintegration of
multi-core processors, in: 2015 48th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), 2015, pp. 546–558.

[23] C. Lameter, NUMA (non-uniform memory access): an overview: NUMA be-
comes more common because memory controllers get close to execution
units on microprocessors, Queue 11 (7) (2013) 40–51, https://doi .org /10 .1145 /
2508834 .2513149.

[24] R. Laso, O.G. Lorenzo, J.C. Cabaleiro, T.F. Pena, J. Ángel Lorenzo, F.F. Rivera
CIMAR NIMAR, LMMA, Novel algorithms for thread and memory migrations in
user space on NUMA systems using hardware counters, Future Gener. Comput.
Syst. 129 (2022) 18–32, https://doi .org /10 .1016 /j .future .2021.11.008.

[25] X. Liu, L. Mashayekhy, Joint load-balancing and energy-aware virtual machine
placement for network-on-chip systems, in: 2018 IEEE/ACM 11th International
Conference on Utility and Cloud Computing (UCC), 2018, pp. 124–132.

[26] G.H. Loh, N.D.E. Jerger, A. Kannan, Y. Eckert, Interconnect-memory challenges
for multi-chip, silicon interposer systems, in: B.L. Jacob (Ed.), Proceedings of
the 2015 International Symposium on Memory Systems, MEMSYS 2015, ACM,
Washington DC, DC, USA, October 5-8, 2015, 2015, pp. 3–10, https://doi .org /10 .
1145 /2818950 .2818951.

[27] T.M. Low, F.D. Igual, T.M. Smith, E.S. Quintana-Ortí, Analytical modeling is
enough for high-performance BLIS, ACM Trans. Math. Softw. 43 (2) (2016) 12.

[28] S.A. McKee, R.W. Wisniewski, Memory Wall, Springer US, Boston, MA, 2011,
pp. 1110–1116.

[29] S.K. Moore, Intel’s View of the Chiplet Revolution, IEEE Spectrum, April 2019.
[30] S. Naffziger, N. Beck, T. Burd, K. Lepak, G.H. Loh, M. Subramony, S. White,

Pioneering chiplet technology and design for the AMD EPYC™ and Ryzen™
processor families: industrial product, in: 2021 ACM/IEEE 48th Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2021, pp. 57–70.

[31] C. Pinto, D. Syrivelis, M. Gazzetti, P. Koutsovasilis, A. Reale, K. Katrinis, H. Hofs-
tee, ThymesisFlow: a software-defined, HW/SW co-designed interconnect stack
for rack-scale memory disaggregation, in: 2020 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), IEEE Computer Society, Los
Alamitos, CA, USA, 2020, pp. 868–880.

[32] M. Plauth, F. Eberhardt, A. Grapentin, A. Polze, Improving the accessibility of
NUMA-aware C++ application development based on the PGASUS framework,
Concurr. Comput., Pract. Exp. e6887 (2022), https://doi .org /10 .1002 /cpe .6887.
64
[33] M. Popov, A. Jimborean, D. Black-Schaffer, Efficient thread/page/parallelism au-
totuning for NUMA systems, in: Proceedings of the ACM International Confer-
ence on Supercomputing, ICS ’19, Association for Computing Machinery, New
York, NY, USA, 2019, pp. 342–353.

[34] G. Quintana-Ortí, E.S. Quintana-Ortí, R.A. van de Geijn, F.G. Van Zee, E. Chan,
Programming matrix algorithms-by-blocks for thread-level parallelism, ACM
Trans. Math. Softw. 36 (3) (2009) 14, https://doi .org /10 .1145 /1527286 .1527288,
http://doi .acm .org /10 .1145 /1527286 .1527288.

[35] B.M. Rogers, A. Krishna, G.B. Bell, K. Vu, X. Jiang, Y. Solihin, Scaling the band-
width wall: challenges in and avenues for CMP scaling, in: Proceedings of the
36th Annual International Symposium on Computer Architecture, ISCA ’09, As-
sociation for Computing Machinery, New York, NY, USA, 2009, pp. 371–382.

[36] P. Roy, S.L. Song, S. Krishnamoorthy, A. Vishnu, D. Sengupta, X. Liu, NUMA-
caffe: NUMA-aware deep learning neural networks, ACM Trans. Archit. Code
Optim. 15 (2) (jun 2018), https://doi .org /10 .1145 /3199605.

[37] I. Sánchez Barrera, M. Casas, M. Moretó, E. Ayguadé, J. Labarta, M. Valero, Graph
partitioning applied to dag scheduling to reduce numa effects, in: Proceedings
of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’18, Association for Computing Machinery, New York, NY,
USA, 2018, pp. 419–420.

[38] J. Schwarzrock, H.M.G. de, A. Rocha, A.C.S. Beck, A.F. Lorenzon, Effective ex-
ploration of thread throttling and thread/page mapping on NUMA systems, in:
2020 IEEE 22nd International Conference on High Performance Computing and
Communications, IEEE 18th International Conference on Smart City, IEEE 6th
International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
2020, pp. 239–246.

[39] Y.S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang, B. Keller,
A. Klinefelter, N. Pinckney, P. Raina, S.G. Tell, Y. Zhang, W.J. Dally, J. Emer,
C.T. Gray, B. Khailany, S.W. Keckler, Simba: scaling deep-learning inference
with multi-chip-module-based architecture, in: Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO ’52, As-
sociation for Computing Machinery, New York, NY, USA, 2019, pp. 14–27.

[40] T.M. Smith, et al., Anatomy of high-performance many-threaded matrix mul-
tiplication, in: Proc. IEEE 28th Int. Parallel and Distributed Processing Symp.,
IPDPS’14, 2014, pp. 1049–1059.

[41] Socket SP3 Platform NUMA Topology for AMD Family 17h Models 30h–3Fh,
https://developer.amd .com /wp -content /resources /56338 _1.00 _pub .pdf, 2019.

[42] P. Strazdins, A comparison of lookahead and algorithmic blocking techniques
for parallel matrix factorization, Tech. Rep. TR-CS-98-07, Department of Com-
puter Science, The Australian National University, Canberra 0200 ACT, Australia,
1998.

[43] X. Su, F. Lei, Hybrid-grained dynamic load balanced GEMM on NUMA architec-
tures, Electronics 7 (12) (2018), https://doi .org /10 .3390 /electronics7120359.

[44] Universal Chiplet Interconnect Express (UCIe), https://www.uciexpress .org. (Ac-
cessed March 2022).

[45] F.G. Van Zee, R.A. van de Geijn, BLIS: a framework for rapidly instantiating BLAS
functionality, ACM Trans. Math. Softw. 41 (3) (2015) 14.

[46] G. Voron, Efficient Virtualization of NUMA Architectures. (Virtualisation Efficace
d’Architectures NUMA), Ph.D. thesis, Sorbonne University, Paris, France, 2018.

[47] W.A. Wulf, S.A. McKee, Hitting the memory wall: implications of the obvious,
SIGARCH Comput. Archit. News 23 (1) (1995) 20–24, https://doi .org /10 .1145 /
216585 .216588.

[48] J. Xia, C. Cheng, X. Zhou, Y. Hu, P. Chun, Kunpeng 920: the first 7-nm chiplet-
based 64-core ARM SoC for cloud services, IEEE MICRO 41 (5) (2021) 67–75,
https://doi .org /10 .1109 /MM .2021.3085578.

[49] W. Zhang, Z. Jiang, Z. Chen, N. Xiao, Y. Ou, NUMA-aware DGEMM based on
64-bit ARMv8 multicore processors architecture, Electronics 10 (16) (2021),
https://doi .org /10 .3390 /electronics10161984.

[50] J. Zhao, N.E. Jerger, M. Ga, What can chiplets bring to multi-tenant clouds?, in:
Cloud@MICRO Workshop in Conjunction with MICRO, 2021.

Sandra Catalán received the B.Sc. degree, M.Sc.
degree in Intelligent Systems and Ph.D. in Computer
Science in 2012, 2013 and 2018, respectively, from
the Universitat Jaume I of Castell, Spain. In 2018, she
moved as a postdoctoral researcher to Barcelona Su-
percomputing Center, and in 2019 she joined the Uni-
versidad Complutense de Madrid where she is cur-
rently Assistant Professor. Her current research is fo-
cused on energy saving on moderate-scale clusters

and low-power processors, parallel algorithms for numerical linear alge-
bra and asymmetric architectures.

http://refhub.elsevier.com/S0743-7315(23)00004-7/bib28DE5E41ED5607FC16F14AE7248004B0s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib28DE5E41ED5607FC16F14AE7248004B0s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib28DE5E41ED5607FC16F14AE7248004B0s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib28DE5E41ED5607FC16F14AE7248004B0s1
https://doi.org/10.1109/TCAD.2020.2970019
https://doi.org/10.1016/j.compeleceng.2015.06.009
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib65CFC2189E4DBB22F5893F3FB80EE320s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib65CFC2189E4DBB22F5893F3FB80EE320s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib65CFC2189E4DBB22F5893F3FB80EE320s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib65CFC2189E4DBB22F5893F3FB80EE320s1
https://doi.org/10.1145/3264491
https://doi.org/10.1145/3264491
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib82F7FABC376B2DB547D4C30BC6B5E982s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib82F7FABC376B2DB547D4C30BC6B5E982s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibE77C744342A611DD173D2DFEAB1254EAs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibE77C744342A611DD173D2DFEAB1254EAs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibE77C744342A611DD173D2DFEAB1254EAs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibE77C744342A611DD173D2DFEAB1254EAs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibE77C744342A611DD173D2DFEAB1254EAs1
https://www.icl.utk.edu/publications/swan-010
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibF08444F0C38EE85BAB68BFC831FA71B4s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibF08444F0C38EE85BAB68BFC831FA71B4s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibBE26C6D7388296239AE6CF94A8A16135s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibBE26C6D7388296239AE6CF94A8A16135s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibCD8269BE5E0E2DDD9E3CAD2183D34821s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibCD8269BE5E0E2DDD9E3CAD2183D34821s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibB9C55E3072A8FEC67FED50EB95709A1Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibB9C55E3072A8FEC67FED50EB95709A1Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibB9C55E3072A8FEC67FED50EB95709A1Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibB9C55E3072A8FEC67FED50EB95709A1Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibB9C55E3072A8FEC67FED50EB95709A1Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibEDFE2AA22AB066A600AB7F4E259F12CCs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibEDFE2AA22AB066A600AB7F4E259F12CCs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibEDFE2AA22AB066A600AB7F4E259F12CCs1
https://doi.org/10.1145/2508834.2513149
https://doi.org/10.1145/2508834.2513149
https://doi.org/10.1016/j.future.2021.11.008
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib0FFA14FDBA64CAADC29C3E98DA6A754Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib0FFA14FDBA64CAADC29C3E98DA6A754Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib0FFA14FDBA64CAADC29C3E98DA6A754Ds1
https://doi.org/10.1145/2818950.2818951
https://doi.org/10.1145/2818950.2818951
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibDC0FD9B2908656D5F019A25017CC3E45s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibDC0FD9B2908656D5F019A25017CC3E45s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib2630A9AEA1E16179EC2276093BE1641Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib2630A9AEA1E16179EC2276093BE1641Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibF1C31A0FD87113A1FD61C0ED7C62CFE9s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibCD0EB0C25C0759E5330E392CE12D8215s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibCD0EB0C25C0759E5330E392CE12D8215s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibCD0EB0C25C0759E5330E392CE12D8215s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibCD0EB0C25C0759E5330E392CE12D8215s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib056A76D4B37C7DBF17BB2D97B0EFD22Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib056A76D4B37C7DBF17BB2D97B0EFD22Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib056A76D4B37C7DBF17BB2D97B0EFD22Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib056A76D4B37C7DBF17BB2D97B0EFD22Ds1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib056A76D4B37C7DBF17BB2D97B0EFD22Ds1
https://doi.org/10.1002/cpe.6887
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib67BFD7EBB4464125F21482ABBC6253D0s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib67BFD7EBB4464125F21482ABBC6253D0s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib67BFD7EBB4464125F21482ABBC6253D0s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib67BFD7EBB4464125F21482ABBC6253D0s1
https://doi.org/10.1145/1527286.1527288
http://doi.acm.org/10.1145/1527286.1527288
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibD391547A751072E46C5AA5D3DF5FE723s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibD391547A751072E46C5AA5D3DF5FE723s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibD391547A751072E46C5AA5D3DF5FE723s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibD391547A751072E46C5AA5D3DF5FE723s1
https://doi.org/10.1145/3199605
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib1473F890C42387A87FBFCE1EC9657C77s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib1473F890C42387A87FBFCE1EC9657C77s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib1473F890C42387A87FBFCE1EC9657C77s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib1473F890C42387A87FBFCE1EC9657C77s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib1473F890C42387A87FBFCE1EC9657C77s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib9E9B5F6F82BD67595AA5E77C8B362E14s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib9E9B5F6F82BD67595AA5E77C8B362E14s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib9E9B5F6F82BD67595AA5E77C8B362E14s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib9E9B5F6F82BD67595AA5E77C8B362E14s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib9E9B5F6F82BD67595AA5E77C8B362E14s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib9E9B5F6F82BD67595AA5E77C8B362E14s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib8B11835556AC0FDFA5E19793A30E75FAs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib8B11835556AC0FDFA5E19793A30E75FAs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib8B11835556AC0FDFA5E19793A30E75FAs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib8B11835556AC0FDFA5E19793A30E75FAs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib8B11835556AC0FDFA5E19793A30E75FAs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib8B11835556AC0FDFA5E19793A30E75FAs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib21922BF150281037B6DF48BF8F2ACE4Fs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib21922BF150281037B6DF48BF8F2ACE4Fs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib21922BF150281037B6DF48BF8F2ACE4Fs1
https://developer.amd.com/wp-content/resources/56338_1.00_pub.pdf
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibC6158D1C77F50C1882EAD77B118F35F7s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibC6158D1C77F50C1882EAD77B118F35F7s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibC6158D1C77F50C1882EAD77B118F35F7s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibC6158D1C77F50C1882EAD77B118F35F7s1
https://doi.org/10.3390/electronics7120359
https://www.uciexpress.org
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib11716F54DB1D6B47B4E8304FC32869EEs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib11716F54DB1D6B47B4E8304FC32869EEs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib508F40790AF741773D5BDDF5EAAEF37Fs1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bib508F40790AF741773D5BDDF5EAAEF37Fs1
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1109/MM.2021.3085578
https://doi.org/10.3390/electronics10161984
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibFE45B3FEBB8F2B9EBCF89B34014F9F73s1
http://refhub.elsevier.com/S0743-7315(23)00004-7/bibFE45B3FEBB8F2B9EBCF89B34014F9F73s1

S. Catalán, F.D. Igual, J.R. Herrero et al. Journal of Parallel and Distributed Computing 175 (2023) 51–65
Francisco D. Igual obtained a bachelor degree in
Computer Engineering from University Jaume I de
Castelln (Spain) in 2006, and a Ph.D. degree in Com-
puter Science from the same University in 2011. In
2011, he moved as a postdoctoral researcher to The
University of Texas at Austin, and in 2012 he joined
the Universidad Complutense de Madrid where he is
currently Associate Professor. His research interests
include high-performance and energy-aware comput-

ing, dense linear algebra library development and optimization, and run-
time task scheduling on massively heterogeneous architectures.

José R. Herrero received bachelor and Ph.D. de-
grees in Computer Science from Universitat Politèc-
nica de Catalunya (UPV), Spain, in 1993 and 2006, re-
spectively. He currently holds a position as Associate
Professor in the Computer Architecture Department at
UPC. His current research interests include high per-
formance scientific computing, advanced architectures
and accelerators, parallel programming and mixed
precision computing.

Rafael Rodríguez-Sánchez obtained his M.S. and
Ph.D. degrees in Computer Science from the Univer-
sity of Castilla-La Mancha, Spain, in 2010 and 2013,
respectively. He is currently Assistant Professor at
Universidad Complutense de Madrid. His research in-
terests include video coding, parallel programming,
heterogeneous computing, and task parallelism.

Enrique S. Quintana-Ortí received bachelor and
Ph.D. degrees in Computer Science from Universitat
Politècnica de València (UPV), Spain, in 1992 and
1996, respectively. After more than 20 years at Uni-
versitat Jaume I, he is currently Professor in Com-
puter Architecture at UPV. His current research inter-
ests include parallel programming, linear algebra, en-
ergy consumption, transprecision computing and deep
learning as well as advanced architectures and hard-
ware accelerators.
65

	Programming parallel dense matrix factorizations and inversion for new-generation NUMA architectures
	1 Introduction
	1.1 Configurable NUMA memories
	1.2 Contributions

	2 Parallel dense matrix factorizations and inversion
	2.1 Common algorithmic skeleton
	2.2 Multi-threaded parallelizations

	3 NUMA-aware parallel dense matrix factorizations and inversion
	3.1 Strategies for NUMA-aware DMFI
	3.2 Data partitioning into multiple domains
	3.3 Multi-domain hybrid parallel algorithm for DMFI
	3.4 NUMA-aware multi-domain DMFI executions
	3.5 Generalization to any number of NUMA nodes

	4 Experimental results
	4.1 Experimental setup
	4.1.1 Rome
	4.1.2 Kunpeng

	4.2 Impact of NPS on performance
	4.3 Performance counters
	4.4 Performance portability
	4.4.1 NUMA-aware implementations
	4.4.2 NUMA-oblivious implementations

	4.5 Comparison with message-passing libraries
	4.6 Overall NUMA-aware DMFI performance

	5 Concluding remarks
	Declaration of competing interest
	Acknowledgment
	References

