
Robustness, Stability, Recoverability and Reliability in
Constraint Satisfaction Problems.

Federico Barber and Miguel A. Salido

Instituto de Automática e Informática Industrial
Universitat Politècnica de València

email {fbarber,msalido}@dsic.upv.es

Abstract. Many real-world problems in Artificial Intelligence (AI) as well as in
other areas of computer science and engineering can be efficiently modeled and
solved using constraint programming techniques. In many real-world scenarios
the problem is partially known, imprecise, and dynamic such that some effects of
actions are undesired and/or several un-foreseen incidences or changes can occur.
Whereas expressivity, efficiency, and optimality have been the typical goals in the
area, there are several issues regarding robustness that have a clear relevance in
dynamic Constraint Satisfaction Problems (CSP). However, there is still no clear
and common definition of robustness-related concepts in CSPs. In this paper, we
propose two clearly differentiated definitions for robustness and stability in CSP
solutions. We also introduce the concepts of recoverability and reliability, which
arise in temporal CSPs. All these definitions are based on related well-known
concepts, that are addressed in engineering and other related areas.

1 Introduction

Nowadays, many real problems can be modeled as Constraint Satisfaction Problems
(CSP) that are solved using constraint programming techniques [3]. Much effort has
been spent to increase the efficiency of constraint satisfaction algorithms: filtering,
learning and distributed techniques, improved backtracking, use of efficient representa-
tions, heuristic search, etc. This effort has resulted in the design of constraint reasoning
tools which have been used to solve numerous real problems. However, all these tech-
niques assume that the set of variables and constraints, which compose the CSP, is
completely known and fixed. This is a strong limitation when dealing with real situ-
ations where the CSP under consideration may evolve because of (i) changes in the
environment or in its execution conditions, (ii) evolution of user requirements in the
framework of an interactive design, and (iii) changes in other agents in the framework
of a distributed system [23].

Since the nature of the real world is dynamic, techniques that attempt to model it
should take this dynamicity into consideration [26]. A Dynamic Constraint Satisfaction
Problem (DCSP) [8] is an extension to a static CSP that models addition and retraction
of constraints and, hence, it is more appropriate for handling dynamic real-world prob-
lems. It is indeed easy to see that all possible changes to a CSP (constraint or domain
modifications, addition or removal of variables) can be expressed in terms of addition

Robustness, Stability, Recoverability and Reliability in CSP

or removal of constraints [23]. We remark that we only deal with aspects of pure sat-
isfaction (i.e.: CSP). In the context of constraint optimization, it is well known that
relaxations do not preserve optimality. This is an interesting, but much more complex
issue.

Several proactive or reactive techniques have been developed to manage incidences
in dynamic problems. Thus, computing a new solution from scratch after each problem
change is possible (reactive technique), but it has two important drawbacks: inefficiency
and instability of the successive solutions [23].

In [24], a proactive approach is presented to explore methods for finding solutions
that are more likely to remain valid after changes that temporarily alter the set of valid
assignments. In [5], a proactive approach uses the probability of change and the magni-
tude of change to model a CSP as a weighted CSP. In [6], a proactive approach assigns
weights to each valid tuple based on its distance from the edge of the solution space
to model the CSP as a weighted CSP. Other works are focused on searching for a new
solution that minimizes the number of changes from the original solution. For instance,
in [12], the concept of super-solution is introduced for constraint programming: ’A so-
lution is a super solution if it is possible to repair the solution with only a few changes’.
This is a generalization of both fault tolerance solutions in constraint programming [27]
and supermodels in propositional satisfiability [17]. In [22], a method is proposed for
reusing the previous solution to produce a new solution by means of local changes in
the previous one.

By reading the research carried out in dynamic constraint satisfaction, we found that
the terms robustness and stability are sometimes used interchangeably. Some authors
refer to robust solutions with the same meaning that others use for stable solutions.
For instance, one of the most recent papers regarding dynamic constraint satisfaction
[25] states that the strategies that have been devised to handle CSPs are ”methods for
finding robust solutions that are either more likely to remain solutions after change or
are guaranteed to produce a valid solution to the altered problem with a fixed number
of assignment changes.” In the Handbook of Constraint Programming [19] ”There are
three key concerns in solving dynamic CSPs. The first is to minimise the need for
change, and thus to find robust solutions that are likely to remain solutions even after
the change has occurred, or to need only minor ’repairs’”

In engineering, there is an agreement to distinguish between stable and robust con-
cepts. Thus, the question that arise is: What is the difference between stable and robust
CSP solutions?. Answering this question is not always easy since robustness has mul-
tiple, sometimes conflicting, interpretations [13]. In some areas, robustness has been
assimilated to stability [29] and more appropriately, CSPs with temporal constraints
has been related to noise tolerance [16], etc. Even in related areas such as Operation
Research, the multiple meanings accorded to the term ”robust” are open to debate [20]:
Robustness can be related to, or integrated into, the notions of flexibility, stability, sen-
sitivity and even equity. In constraint satisfaction, only a few works make a tiny distinc-
tion between robustness and stability [11]. However, we consider that robustness and
stability terms should be clearly distinguished, since they represent different behavior
of a CSP’s solution after changes in the environment: Robust solutions refer to solu-
tions that are either more likely to remain valid after change, whereas stable solutions

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 2

Robustness, Stability, Recoverability and Reliability in CSP

are solutions that can adapt to a new valid solution with only few assignment changes
to variables.

In this paper, we focus our attention on the ’robustness’ and ’stability’ concepts
in CSPs. We propose general engineering-based and clearly different definitions for
robust and stable CSP solutions. Moreover, we also introduce the concepts of ’recover-
ability’ and ’reliability’ which are relevant in real-world temporal-CSP domains. Clear
and common definitions are needed to be able to evaluate different alternatives. After-
wards, new research lines will arise: How can we assess the robustness or stability of a
solution? What does it guarantee? How can we get a more robust solution? What is the
relationship between robustness and other problem parameters, such as optimality and
constrainedness? Is it possible to obtain a model of robustness?

1.1 Definitions

Following some standard notations and definitions in the literature, we have summa-
rized the basic definitions that will be used throughout this paper.

Definition 1. A Constraint Satisfaction Problem (CSP) is a triple P =< X,D,C >,
where X is a finite set of variables {x1, x2, ..., xn}, D is a set of domains D =
{d1, d2, ..., dn} such that each variable xi ∈ X has a finite set of possible values di,
and C is a finite set of constraints C = {C1, C2, ..., Cm} that restrict the values that
the variables can simultaneously take. C can be extensionally represented by a disjunc-
tive set of feasible tuples or it can be intensionally represented by a conjunctive set of
logical-mathematical formulae.

Definition 2. A dynamic constraint satisfaction problem (DCSP) is a a sequence
of static CSPs, (CSP0, CSP1, CSP2, ..., CSPi, ...), where each CSPi is the result of
changes in the preceding one [9]. In the original definition, changes could be due either
to the addition or the removal of constraints.

Definition 3. The Solution Space is the portion of search space (
∏

i=1,n di) that
satisfies all constraints. A solution S is a feasible instantiation of all variables, that is, it
satisfies all constraints.

2 Incidences (or changes) in CSPs

Since many real problems are dynamic, unexpected incidences in the problem scenario
occur due to its dynamism, spurious actions, lack of complete knowledge, etc. Let Z =
{z1, z2, ..., zi, ...} the set of possible incidences that can occur in the future, which give
rise to the set of possible changes in the CSP that models the problem. Let us also
assume that each zi ∈ Z is independent and has a probability p(zi). This function p(zi)
introduces a probability distribution P over Z (probability of change) such that p(zi)
describes the relative likelihood for zi to occur and

∑
Z p(zi) = 1.

Each incidence zi ∈ Z can be modeled as a set of changes in variable domains or
constraints. Since changes in domains can be represented as unary constraints, it can be
assumed that each incidence zi can be represented by a set of changes (restriction or
relaxation) of constraints. In this paper, we are interested in robustness issues and how
a CSP’s solution maintains its feasibility after the set of possible incidences. Thus, we

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 3

Robustness, Stability, Recoverability and Reliability in CSP

will only consider incidences that restrict the solution space (i.e.: restrict or add new
constraints to the previous existing ones). The removal or relaxation of constraints is
not considered here since it does not restrict the solution space. Therefore, each possible
incidence zi ∈ Z is modeled as a new set of constrains Czi to be added to the previous
set of constraints, making the problem more restricted, or even inconsistent.

In its dynamic evolution, a DCSP represents the successive CSPs that model the
evolution of the problem, where each CSPi represents the initial problem (modelled as
CSP0) after the successive occurrence of incidences {z1, z2, ..., zi, ...}:

CSPi =< X,D,Ci−1 ∪ Czi > (1)

Note that CSPi+1 is equal to CSPi if zi does not occur.
We assume the incidences only restrict (but do not make empty) the initial solu-

tion space; otherwise the problem would become inconsistent. Therefore, some of the
feasible solutions of the initial CSP0 are also solutions of the final CSP.

Obviously, it is not possible to determine the robustness-related features of a system
if no information about the incidences is given. In this case, we can obtain a rough
estimation by means of the inclusion of random incidences (i.e.: random values for
p(zi)). However, it is important to remark that, in the same way that a CSP models
the real-world problem, the set of incidences Z should also model the set of expected
incidences that can occur in the real-world. Thus, Z should not be a set of randomly
generated modifications of the constraints and domains of the CSP, but rather the result
of modeling ({Czi}) the set of possible changes ({zi}) that can occur in the real-world
problem that it is modeled by the CSP.

For simplicity reasons, we will generalize our notation and denote Czi as z.

3 Robustness

Robustness is a common feature in our environment. Systems that belong to biolog-
ical life, chemical compositions, physical structures, isolated objects, etc. [21] per-
sist, remain running, and maintain their main features despite continuous perturbations,
changes, incidences or aggressions. Thus, robustness is a concept related to the persis-
tence of the system, its structure, its functionality, etc., against external interference: ”A
system is robust, if it persists”.

Thus, in a general way, ”robustness” can be defined as the ability of a system to
withstand stresses, pressures, perturbations, unpredictable changes, or variations in its
operating environment without loss of functionality. A system that is designed to per-
form functionality in an expected environment is ”robust” if it is able to maintain its
functionality under a set of incidences. For example, an algorithm is robust if it contin-
ues to operate despite unexpected inputs or erroneous calculations.

Intuitively, the notion of robustness is easy to define, but its formalization depends
on the system, on its expected functionality, and on the specific set of incidences to be
confronted [18]. No general formal definition of robustness has been proposed, except
a few exceptions or particular cases. Specifically, Kitano [14] mathematically defines
the robustness (R) of a functional system (SY S) with regard to function (F) against a
set of perturbations (Z) as (in a simplified way):

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 4

Robustness, Stability, Recoverability and Reliability in CSP

RSY S
F,Z =

∫
Z

p(z) ∗ F (SY S, z)dz (2)

where, p(z) is the probability for incidence z ∈ Z, and F (SY S, z) is an evaluation
function that returns zero when the system SY S fails under z or it returns a relative
viability]0, 1] otherwise. For instance, if production drops 20% under a certain pertur-
bation (z) compared with standard production, then 0.8 is returned.

Expression (2) formalizes how a system (SY S) is able to maintain a certain level
of its expected functionality (F) against a given set of perturbations (Z). According to
(2), a system SY S1 is more robust than SY S2 with regard to an expected functionality
F against a set of perturbations Z when:

RSY S1

F,Z > RSY S2

F,Z (3)

The application of expression (2) is highly dependent on the system being assessed.
Let us apply (2) to CSPs:

– S is a solution of the CSP, whose robustness we want to assess. Robustness is a
concept related to CSP solutions, not to CSP itself. Thus, the system SY S in (2)
can be related to the solution S in a CSP.

– Z is the discrete set of unexpected incidences (i.e.: changes in constraints).
– F is the expected functionality of the system. In CSP, the expected functionality of

a solution is its feasibility.

Therefore, by applying (2), the robustness of a CSP solution (S) can be defined as
follows:

Definition 3. A solution (S) of a CSP is r−robust with respect to a set of incidences
Z, each z ∈ Z with a probability of occurrence p(z), when:

r(S,Z, P) = RS
F,Z,P =

∑
Z

p(z) ∗ F (S, z) (4)

where, in the case of a CSP, function F (S, z) is the consistency of S after z:

– F (S, z) = 1 iff S also satisfies C ∪ z.
– F (S, z) = 0, iff S does not satisfy C ∪ z. More concretely, iff S does not satisfy z.

R-robustness of a solution represents the probability of remaining solution after
Z and varies from 0 to 1 since

∑
Z p(z) = 1 and F(S,z) ∈ {0, 1}. The greater its r-

robustness, the more robust a solution is and more likely will remain feasible after Z.
From expression (4), we can see that the algorithm for calculating the robustness

r − robust of a solution S against a set of incidences Z is trivial. It only requires to
check whether S maintains its feasibility F (S, z) for each incidence z ∈ Z. For each
z ∈ Z, it costs O(n).

On the other hand, note that robustness does not require insensitiveness of the prob-
lem modeled by the CSP. For instance, the constraints of the problem could dramatically
vary due to z, such that z could greatly reduce the solution space. However, a robust
solution S with respect z would remain feasible after the incidence.

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 5

Robustness, Stability, Recoverability and Reliability in CSP

Also note that the robustness of a solution S does not depend on the behavior of S
against an incidence z, but on how the feasibility of S is maintained over a set of unex-
pected incidences Z. Thus, the robustness of S depends on the probability p(z) of each
possible incidence z ∈ Z and on how z affects to the feasibility of the solution F (z). In
other words, the only way to characterize the robustness level of a given CSP solution
is to determine how its feasibility is maintained over several levels or probability of
incidences.

Note that we do not take into account other aspects, that have usually been taken into
account when the robustness of a CSP solution is assessed by other authors (e.g.: the
number of variables that must change their values to make the initial solution feasible
after the incidence, the number of unsatisfied constraints by the initial solution, etc.). In
our approach, a solution is not more/less robust under a given incidence if the solution
needs to be more/less repaired to deal with the incidence. We claim that robustness
cannot be assessed on the basis that only small changes are necessary to obtain a new
feasible solution. In problems related with satisfiability, robustness should be related to
feasibility maintenance.

3.1 Example

Let us apply the above definition (4) to the following example. Let P be a CSP with
two variables x1 and x2 with domains D1 : {3..7} and D2 : {2..6}, respectively. The
dynamic constraints are:

– C1 : x1 + x2 ≤ 12
– C2 : x2 + x1 ≥ 6
– C3 : x2 − x1 ≤ 2
– C4 : x1 − x2 ≤ 4

1 2 3 4 5 6 7 8 9

1

2

3

 4

5

6

7

C3: -X1 + X2 <= 2

C4: -X2 + X1 <= 4

C1: X1 + X2 <= 12

C2: X2 + X1 >= 6

X1

X2

Fig. 1. CSP P and its solution space.

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 6

Robustness, Stability, Recoverability and Reliability in CSP

Figure 1 represents the solution space of the CSP, which is composed of 21 solu-
tions. Let us suppose the following set Z of expected incidences (where

∑
Z p(zi) = 1):

Incidence zi Likelihood p(zi) zi → Czi

z1 0.15 {x1 + x2 <= 9, x2 <= 5}
z2 0.1 {x1 + x2 >= 10, x1 >= 4}
z3 0.25 {−x1 + x2 <= 0}
z4 0.3 {x1 − x2 <= 2}
z5 0.2 {x1 > 4}

The robustness of each solution can be assessed according to expression 4. For
instance, the solution S = {x1 = 3, x2 = 4} is no longer valid when z2, z3, or z5
occurs. Its robustness can be assessed as RS

Z = p(z1) + p(z4) = 0.15 + 0.3 = 0.45.

Table 1. Robustness of each solution

Solution (x1 x2) satisfies z1? satisfies z2? satisfies z3? satisfies z4? satisfies z5? Robustness
4,2 y n y y n 0,7
5,2 y n y n y 0,6
6,2 y n y n y 0,6
3,3 y n y y n 0,7
4,3 y n y y n 0,7
5,3 y n y y y 0,9
6,3 y n y n y 0,6
7,3 n y y n y 0,55
3,4 y n n y n 0,45
4,4 y n y y n 0,7
5,4 y n y y y 0,9
6,4 n y y y y 0,85
7,4 n y y n y 0,55
3,5 y n n y n 0,45
4,5 y n n y n 0,45
5,5 n y y y y 0,85
6,5 n y y y y 0,85
7,5 n y y y y 0,85
4,6 n y n y n 0,4
5,6 n y n y y 0,6
6,6 n y y y y 0,85

From Table 1, we can deduce that {x1 = 5, x2 = 3} and {x1 = 5, x2 = 4} are
the most robust solutions, according to the above set of expected incidences. Likewise,
{x1 = 4, x2 = 6} is the least robust solution.

Even though the solution space of the above example is convex, note that it is not
required for assessing the robustness of CSP solutions, nor is an implicit representa-
tion of the CSP necessary. Moreover, the robustness of each solution can be assessed
independently of the assessment of other solutions.

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 7

Robustness, Stability, Recoverability and Reliability in CSP

3.2 What does r-Robustness guarantee?

The more robust solution is, the more likely it will remain valid after changes in the
constraints. The following conclusions can be obtained from (4):

– A 1-robust solution is a solution that maintains its feasibility over the whole set of
expected incidences.

– A 0-robust solution is a solution that becomes inconsistent with any expected inci-
dence that may occur.

– An r-robust solution is a solution that maintains its feasibility over (100*r)% of
probabilistically-pondered incidences. For instance, the solution x1 = 4, x2 = 2
of the above example (Table 1) is able to maintain robustness over 70% of the
expected likelihood incidences. Specifically, this solution is robust against z1, z3
and z4, which have an accumulated probability of 0.7.

4 Stability

Stability is an old concept that derives from astronomy and physics [28]. Loosely speak-
ing, a solution (meaning an equilibrium state) of a dynamical system is said to be stable
if small perturbations to the solution result in a new solution that stays ”close” to the
original solution. Perturbations can be viewed as small differences that occur in the ac-
tual state of the system [13]. Therefore, by applying this informal definition to CSPs, a
solution is stable if small modifications of the constraint set allow a new solution (new
consistent variable assignment) that remains close to the original solution:

Sol(X,D,C) is stable (with respect z, C ∪ z ∼= C) iff
∃Sol(X,D,C ∪ z) : Sol(X,D,C) ∼= Sol(X,D,C ∪ z)

Definition 5. A solution S of a CSP is s-stable, with respect to an incidence z, if
there exist a new feasible solution S in the s-neighborhood of S.

The neighborhood of solutions can be formally defined in terms of norms in the
n-dimensional space [10]. Thus above definition can be detailed as follows.

Definition 6. A solution S = (x1 = v1, x2 = v2, ..., xn = vn) is s-stable if, given
an incidence z, there is a solution S′ = (x1 = v′1, x2 = v′2, ..., xn = v′n), such that:
∥S′ − S∥ < s, where ∥.∥ is some n-dimensional norm defined in the solution space to
evaluate the difference between S and S′.

In relation to the implementation of n-dimensional norms, we have:

1. On metric domains, we can apply the Euclidean distance between S and S′, with a
optional weighted factor ρi for each variable xi:√√√√ n∑

i=1

ρi(x′
i − xi)2 (5)

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 8

Robustness, Stability, Recoverability and Reliability in CSP

but normalizing with the maximum distance between any two tuples in the space
of solutions. Note that the domains {di} are finite in a CSP. Thus, the normalized
relative distance in a metric domain between S and S′ becomes:

∥S′ − S∥z =

√∑n
i=1 ρi(x

′
i − xi)2√∑n

i=1 ρi | di |2
(6)

Note that the similarity given in (6) between S and S′ may be very low if the two
solutions S and S′ are very close in the n-dimensional space even though all the
variables of S change their values. This n-dimensional norm measures the relative
distance between S and S′, such that ∥S′ − S∥z ∈ [0, 1] due to a change in the
value of one or all variables.

2. On non-metric domains (like non-ordered sets of values), the Hamming distance
(H) can be applied. This n-dimensional norm measures the number of variables
that have different values in S and S′. Therefore, the distance between S and S′ on
non-metric domains can be defined as:

∥S′ − S∥z =

∑n
i=1 ρiH(x′

i, xi)

N
(7)

where H(x′
i, xi) is equal to 0 iff x′

i = xi, and 1 otherwise. The expression is
normalized with respect to N , such that this criterion evaluates the relative number
of variables that change their values and ∥S′ − S∥z ∈ [0, 1]. Note that this concept
is related to the super-solution concept given in [12].

These measures evaluate the closeness of solutions in the space of solutions. There-
fore, given an incidence z, the s-stability for a solution S quantifies the s-proximity to
S of the closest feasible solution S′ in the n-dimensional space of the CSP. In other
words, we should determine how much the new solution S′ differs from the initial one
S in order to address the incidence. A robust solution is a 0-stable solution.

The proposed measures of s-stability require finding a solution in the closest neigh-
borhood of S, among the complete set of new feasible solutions, such that deviation
with respect to the previous solutions S is minimized. Let us denote N(S, z) as the
value of ∥S′ − S∥ for the closest solution S′ to S, after the occurrence of z:

N(S, z) = minS′∥S′ − S∥ (8)

Note that N(S, z) = 0 iff F (S, z) = 1 (i.e.: S satisfies z).
According to definition 6, we can define the s-stability (STA) of a solution (S)

against a given set of perturbations (Z) as:

s(S,Z, P) = STAS
Z,P =

∑
Z

p(z) ·N(S, z) (9)

where p(z) is the probability of change. Thus STAS
Z varies from 0 to n in the case

of a non-metric CSP with n variables, and from 0 to 1 in the case of a CSP with metric
domains. The lower is its s-stability, the more stable the solution is.

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 9

Robustness, Stability, Recoverability and Reliability in CSP

Computational cost for obtaining stability of a solution is NP-hard since the process
for obtaining N(S, z) for each z ∈ Z derives in a Constraint Satisfaction and Opti-
mization Problem (CSOP) whose constraints are C ∪ z and whose optimality criteria is
to minimize ∥S′ − S∥ (Equation 8). However, this computational cost can be reduced
by searching for a solution S’ in the closest neighborhood of S. Note that the notion of
distance between S’ and S should take into account whether or not the domain is metric.
Therefore, an incremental process can be defined (Algorithm 1 for metric-domains and
Algorithm 2 for non-metric domains). In Algorithm 1, each iteration k in the process
has a cost (2 ∗ k ∗ δ)n, such that the computational cost for obtaining stability of a solu-
tion can be decreased if a solution exits in the close neighborhood of S. In Algorithm 2,
each iteration δ in the process has a cost

(
n
δ

)
(di)

δ . Thus, computational cost for obtain-
ing stability of a solution can be decreased if a solution exists in the close neighborhood
of S.

Algorithm 1 Incremental Stability Process for obtaining N(S, z) in metric domains. Return
False if no solution.

Let CSP=<X, C, D>, let S = (v1, v2, ..., vn) be a solution S of the CSP, and let δ be the
granularity of the searching process.
k=1;
NSz=False;
repeat

if ∃ S’, a solution to CSP’=[X, C’, D’], where
C′ = C ∪ z ∧ D′ ⊆ D: d′i = {[vi − k ∗ δ], [vi + k ∗ δ]} ∩ di, ∀i ∈ 1..n then

NSz = ∥S′ − S∥;
else

k=k+1;
end if

until D′ * D
return NSz;

Algorithm 2 Incremental Stability Process for obtaining N(S, z) in non-metric domains. Re-
turn False if no solution.

Let CSP=<X, C, D>, and let S = (v1, v2, ..., vn) be a solution S of the CSP.
δ=1;
NSz=False;
repeat

if ∃ S’, a solution to CSP’=[X, C’, D’], where C′ = C ∪ z ∧ D′ ⊆ D: v′i ∈ di,∑n
i=1 H(v′i, vi) = δ then
NSz = δ;

else
δ + 1;

end if
until δ ̸= n
return NSz;

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 10

Robustness, Stability, Recoverability and Reliability in CSP

4.1 Example

Let’s apply the above definition of stability (9) to the previous example (Figure 1) for
the most and least robust solutions given in Table 1.

Table 2. Stability of some robust solutions {(5,3), (5,4)} and a non-robust solution (4,6).

Solution Closest sol. Closest sol. Closest sol. Closest sol. Closest sol. Robustness Stability
(x1, x2) with z1 with z2 with z3 with z4 with z5

(5,3) satisfies (6,4) satisfies satisfies satisfies 0,9 0.14/
√
50

(5,4) satisfies (6,4) satisfies satisfies satisfies 0,9 0.1/
√
50

(4,6) (4,5) satisfies (5,5) satisfies (5,6) 0,4 0.7/
√
50

For instance, the stability of solution (4, 6), according to expression (9), is:

STA
(4,6)
Z =

0.15 ∗ 1 + 0.25 ∗
√
2 + 0.2 ∗ 1√

52 + 52
=

0.7√
50

(10)

Thus, following Table 2, {x1 = 5, x2 = 4} is the most robust (0.9) and the most
stable solution (0.1/

√
50) according to the given set of expected incidences.

4.2 What does s-stability guarantee?

Stability of a solution S represents the expected minimum normalized distance between
the current solution (S) and a new feasible solution after Z. The more stable a solution
is, the less needs to change in order to get a new solution after changes in the constraints.
The following conclusions can be obtained from (Expression 9):

– A solution S, with STAS
Z = 0, is a 1-robust solution. It is fully stable over the

whole set of expected incidences.
– A solution S of a non-metric CSP, with STAS

Z = n, requires changing the as-
signments of the whole set of variables to become consistent against any expected
incidence that may occur. A solution S of a metric CSP, with STAS

Z = 1, requires
moving to the far extreme point of the solution space to become consistent against
any expected incidence that may occur.

– A solution S of a non-metric CSP, with STAS
Z = k, requires changing k variables,

as average, to become consistent over the whole set of probabilistically-pondered
incidences. A solution S of a metric CSP, with STAS

Z = k, requires moving to a
distance (k ∗

√∑n
i=1 d

2
i), as average, to become consistent over the whole set of

probabilistically-pondered incidences.

5 Temporal Constraint Satisfaction Problems

A Temporal Constraint Satisfaction Problem (TCSP) is a subtype of CSPs, where vari-
ables represent temporal primitives (time points, temporal intervals, or temporal dura-
tions), such that solutions have a temporal interpretation [7], [2]. This is the typical case

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 11

Robustness, Stability, Recoverability and Reliability in CSP

of scheduling problems, where variables can be instantiated on the time line (see Figure
2) so that they can be associated to starting or ending times of tasks (see Figure 3).

Besides robustness and stability concepts, in TCSP, not only is it important to
know how different the new feasible solution S′ is from the original one S, given an
incidence z (i.e.: stability), but it is also important to know (i) how long the new solu-
tion S′ differs from the initial solution S (recoverability), and (ii) how long the actual
solution S can be maintained after the incidence (reliability). Therefore, two new prop-
erties appear in relation to the temporal stability or temporal robustness: recoverability
and reliability.

An example of TCSP: A Scheduling Problem

Figure 3a shows a TCSP that represents a flow-shop scheduling problem with two
jobs J1, J2, each of which has three activities (x1i, x2j , i, j = 1..3) and one resource
that should be shared by all activities. Each row corresponds to a job, and an activ-
ity (xij) is represented as a rectangle whose length corresponds to its duration. This
problem can be modeled as a TCSP, where variables represent time points (starting or
ending times) of different activities (xij.on, xij.off). There exist constraints that refer
to non-overlap and precedence constraints among activities. Moreover, it is known that
x23 should be performed at least k-units after x22 (Constraint C23−22). The first solu-
tion (Figure 3a) minimizes the makespan and is considered to be the optimal solution.
The projection of variables xij on time represents the optimal assignment of variables
of the TCSP.

5.1 Recoverability

Recoverability refers to the ability to restore a system to the point at which a failure
occurred. Despite proactive approaches, it is clear that robustness is not always com-
pletely guaranteed. Therefore, recovery strategies should be used once disturbing events
occur in order to keep the feasibility of the pre-computed solution. Robustness and re-
coverability are closely related and, in some optimization frameworks, they have been
unified into an integrated notion of recoverable robustness [15]. For TCSP, where solu-
tions project over time, the recoverability of a solution can be measured by the required
amount of time (δt) (after an incidence occurs) to restore part of the initial solution
(Figure 2). Therefore, taking into account that temporal variables, in a solution of a
TCSP, are distributed over time, we can define that a δt-recovered solution maintains
the same initial values in the (temporal) variables that are related to times starting from
δt after the incidence:

Solδt(X,D,C ∪ z) ≡ Solδt(X,D,C)

where Solδt covers the set of variables from δt after incidence (Figure 2). The ob-
jective of a recovery process is to minimize δt. Likewise, since the variables of TCSP
are temporally ordered (i.e., they are instantiated over time), the objective of a recovery
process is to minimize the set of variables (from the time t when the incidence occurs
until t+δt) that require changing their values in order to obtain a new feasible solution.

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 12

Robustness, Stability, Recoverability and Reliability in CSP

TIME

δ

(the initial solution is restored after t+δt

time when incidence occurs)

...

variables are instantiated on time

h-recoverable

Fig. 2. Recoverability of a solution in a TCSP.

Definition 7. A solution S is h-recoverable iff, at most, h variables (consecutive
variables after the incidence occurs) require changing their values in order to obtain a
new feasible solution S′.

Thus, a solution S = (x1 = v1, x2 = v2, ..., xn = vn), whose variables are tem-
porally ordered, is h-recoverable iff, given an incidence z that occurs in t, the inci-
dence affects S in the temporal interval [t, t + δt], such that the variables v1, ..., vt
and vt+h+1, ..., vn can maintain their initial values, while the variables in the interval
[t, t + δt] (v′t+1, ..., v

′
t+h) must change their values (see Figure 2). The initial solution

is recovered after xt+h.
Note that the definition of h-recoverability is similar to the definition of (h, 0)−super

solutions where if h variables lose their values, we can find another solution by reas-
signing these variables a new value. The only difference is that, in h−recoverability,
the variables to be repaired are consecutive in time, while, in (h,0)-super solutions, the
variables to be repaired are not consecutive.

From (Definition 7), it is immediate to conclude that 0 ≤ h-recoverability ≤ n. The
lower is h-recoverability, the more recoverable a solution is. A 0-recoverable solution
S does not require changing any variables after incidence in order to maintain the fea-
sibility of S (equivalent to 1-robust solution) An n-recoverable solution S does require
changing all the variables after incidence. Thus, h-recoverability can be considered to
be a temporal s-stability.

5.2 Reliability

In engineering, reliability is associated to the confidence that a system will perform its
intended function during a specified period of time under stated conditions, as well as
under unexpected circumstances. Mathematically it can be expressed as:

R(t) =

∫ ∞

t

f(x)dx (11)

where f(x) is the failure probability density function and t is the length of the period
of time (which is assumed to start from time zero). There is always some chance for
failure, but R(t) means that the system has a specified probability that it will operate
without failure before time t.

In TCSP, variables of solution are distributed on time. Thus, a solution found ini-
tially may be invalid for variables that are related to a time greater than δt after in-
cidence. Thus, by applying the above concepts, we can assess that a TCSP solution is

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 13

Robustness, Stability, Recoverability and Reliability in CSP

TIME

X12.on

X21.on

X11.off X12.off

X13.on

X13.off

X21.off X22.off

X23.on

X23.off

TIME

X12.on

X21.on

X11.off X12.off

X13.on

X13.off

X21.off X22.off

X23.on

X23.off

a

b Incidence

X11.on

X11.on

X22.on

X22.on

TIME

X12.on

X21.on

X11.off X12.off

X13.on

X13.off

X’21.off

c

X11.on

Incidence: X21.off delayed

X’22.off

X’22.on

TIME

X12.on

X21.on

X11.off X12.off

X13.on

X13.off

X21.off X’22.off

X’23.on

X’23.off

d

X11.on

X22.on

Incidence: X22.off delayed

t t+ t

t+ tt

C22-23

C22-23

C22-23

C22-23

X23.on

X23.off

Fig. 3. A scheduling problem: four solutions.

δt-reliable, if given an incidence at time t, the solution remains valid until t+δt (Figure
2. Thus, the set of variables that represent the solution of the problem from time t until
t+ δt are not required to change their values:

Solt→δt(X,D,C ∪ z) ≡ Solt→δt(X,D,C)

where Solδt covers the set of CSP variables from time t until t + δt. The way to
obtain a a reliable solution is maximize t, or alternatively, maximize the set of variables
(from time t, when incidence occurs, until t+ δt) that can maintain their values (Figure
2.

Similarly to recoverability, the reliability of a solution S can be defined in terms of
the number of assignments in S that remain valid after the incidence occurs (i.e., they
can take part of a solution of TCSPZ).

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 14

Robustness, Stability, Recoverability and Reliability in CSP

TIME

δ

time when incidence occurs)

...

(the initial solution is maintained until t+δt

u-reliable

Fig. 4. Reliability of a solution in a TCSP.

Definition 8. A solution S is u-reliable if, at least, u assignments of variables in
S (consecutive variables after the incidence occurs) can take part of a solution of the
TCSPZ . Thus, a solution S = (x1 = v1, x2 = v2, ..., xn = vn) is u-reliable, iff
given an incidence z that affects the problem from xt, the assignments of variables
(x1 = v1, x2 = v2, ..., xt = vt, xt+1 = vt+1, ..., xt+u = vt+u), 1 ≤ t + u ≤ n, can
take part of a solution of TCSPZ . The initial solution is maintained until xt+u.

As in the above case, from (Definition 8) we can conclude that 0 ≤ u-reliability
≤ n. The greater is u-reliability, the more reliable a solution is. A 0-reliable solution S
cannot maintain values in any variable after incidence for maintaining feasibility of S.
A n-reliable solution S can maintain values in all variables. Therefore, we can consider
that u-reliability is a concept that is related to the temporary maintenance of robustness
from time of occurrence. Moreover, a n-reliable solution is a 0-recoverable solution,
which can also be considered to be a temporally 0-stable or 1-robust solution.

Note that h-recoverability and u-reliability of a solution S are not contradictory nor
complementary concepts. If an incidence occurs at time t, (i) the initial solution S can
be maintained feasible from t until t+ δu(u variables), and (ii) the initial solution S can
be restored from t+δh (h variables), where δu ≤ δh). Of course, (h−recoverability+
u− reliability) ≤ n.

Recoverability and Reliability in the example

With respect to the scheduling problem of Figure 3, Figure 3b shows a robust so-
lution. To this end, some buffer times have been included between some activities in
order to absorb incidences. For instance, if a resource is broken for a short time, (In-
cidence in Figure 3b), the solution is not affected by the incidence. Thus, all assign-
ments to variables remain valid. Furthermore this solution is also stable. If variables
x21.off , x22.off , x12.off or x13.off are minimally delayed, the rest of the variables
maintain the same values. Moreover, the typical trade-off between robustness and opti-
mality can be observed in Figure 3a/b.

Figure 3c shows a 3-recoverable solution for an incidence z: ”x21.off is delayed
to x′

21.off in time t”. In this case, only 3 variables must change their values (x21.off ,
x22.on, x22.off), while assigned variables with assigned values greater than t + δt,
(x12.on, x12.off , x13.on, x13.off , x23.on, x23.off), do not require change their values.
On the other hand, Figure 3d shows a 4-reliability solution for an incidence z: x22.off

is delayed to x′
22.off in time t. In this case, the next 4 variables (x12.on, x12.off , x13.on,

x13.off) do not change their values. The solution is maintained until t + δt. However,

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 15

Robustness, Stability, Recoverability and Reliability in CSP

activity x23 must satisfy C23−22, such that x23.on and further variables must change
their values.

6 Generalizing concepts

In the previous sections, the concepts of robustness, stability, recoverability, and reli-
ability have been defined by analyzing how a solution S absorbs or can be adapted to
cope with an incidence z. These concepts can be generalized, such that we can assess
the achievable levels of robustness, stability, recoverability, and reliability of solutions
of a CSP for a given typology of incidences z, p(z), a desired level of optimality of so-
lution, and a given constrainedness of the CSP which is inherent to the problem. Here:

– Robustness guarantees that perturbations can be absorbed by the solution. Thus,
robustness decreases as the level of incidences increases.

– Stability guarantee that the consequences of perturbations can be minimized by a
new solution. Thus, stability decreases as the level of the incidences increases.

– A low-restricted CSP with a large solution space will usually allow more robust
and stable solutions.

– A more optimized solution will usually be more sensitive to changes in the envi-
ronment. Optimal solutions usually are in edges of solution’s space where stability
is lowest. There exists a clear trade-off between robustness and optimality/quality
[4].

These ideas introduce the main concepts to which robustness, stability, recoverabil-
ity, and reliability of solutions in CSP are related. These mutual relations are represented
in Figure 5 and appear in many CSP’s applications [1]. These relate the robustness, sta-
bility, recoverability, and reliability of solutions of CSPs with: (i) the constrainedness
of CSPs (which is a problem-dependent feature); (ii) the incidences level (which is a
feature of the problem and/or application scenario and is represented by the set Z; and
(iii) optimality of S (which is a feature of each solution).

The evaluation of the robustness, stability, recoverability, and reliability of a solu-
tion S of a CSP can be viewed as a guarantee of the behavior of S with respect to Z.
In this paper, we have proposed a definition and formalization of these concepts, on the
basis of their meaning in other areas of science, as well as on how these concepts can be
evaluated, and what it guarantees. A more detailed model of robustness would allow us
to parameterize the implicit relations that exist in Figure 5, by relating the concepts of
robustness with the characteristics of the problems or their application scenarios. From
these definitions, efficient methods for obtaining more robust, stable, recoverable, and
reliable solutions should be achieved.

7 Conclusions

While expressivity, efficiency, and optimality have been the typical goals in the devel-
opment of CSP techniques, there are robustness-related issues that have received less

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 16

Robustness, Stability, Recoverability and Reliability in CSP

Fig. 5. Robustness and problem-related concepts.

attention. However, robustness requirements have a clear relevance in dynamic environ-
ments (usually with incomplete or imprecise knowledge). This work aims to review the
concepts of robustness, stability, recoverability, and reliability in dynamic Constraint
Satisfaction Problems. This suppose an advance in the state of the art in constraint pro-
gramming, and new models and techniques can be developed to achieve this properties
in CSP solutions.

The general notion of robustness includes several different concepts. Despite the
existence of several works on dynamic CSP, there is still no clear and common definition
of robustness-related concepts. In this paper, these concepts have been characterized and
formalized, such that they can be used, in a general way, to assess robustness-related
features of solutions in CSPs. These concepts have been applied to sample problems,
which allows us to contrast the differences between them, as well as, the different ways
that a solution can react to incidences: it can be maintained, it can be adapted, it can
be maintained during (or restored after) a given time. This different behavior becomes
relevant when a CSP is applied to solve real-world problems in a dynamic and partially
unknown world.

On the basis of (Figure 5), we see that typology of expected incidences and their
stochastic features, optimality of solutions, and constrainedness of problems are the
main factors that limit the desired level of robustness, stability, recoverability, and relia-
bility of solutions in CSPs. From this point, other relevant issues remain open: How can
robustness-related concepts be efficiently measured?, How can robust, stable, recover-
able or reliable solutions be obtained?, Which factors these concepts depend on?. The
design of efficient algorithms for the evaluation of these concepts, and their extension
to constrained optimization are the subject of relevant research lines.

Acknowledgments

This work has been partially supported by the research project TIN2010-20976-C02-01
(MEC, Spain-FEDER).

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 17

Robustness, Stability, Recoverability and Reliability in CSP

References

1. M. Abril, F. Barber, L. Ingolotti, M. A. Salido, P. Tormos, and A. Lova. An assessment of
railway capacity. Transportation Research Part E, 44(5):774–806, 2008.

2. F. Barber. Reasoning on intervals and point-based disjunctive metric constraints in temporal
contexts. Journal of Artificial Intelligence Research, 12:35–86, 2000.

3. R. Bartak and M. A. Salido. Constraint satisfaction for planning and scheduling problems.
Constraints, 16(3):223–227, 2011.

4. D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53, 2004.
5. L. Climent, M. A. Salido, and F. Barber. Robustness in dynamic constraint satisfaction

problems. Int. Journal of Innovative Computing Information and Control, 8(4):2513–2532,
2012.

6. L. Climent, R. Wallace, M. Salido, and F. Barber. Modeling robustness in csps as weighted
csps. In Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems CPAIOR 2013, pages 44–60, 2013.

7. R. Dechter. Temporal constraint network. Artificial Intelligence, 49:61–295, 1991.
8. R. Dechter and A. Dechter. Dynamic constraint networks. In Proceedings of the 7th National

Conference on Artificial Intelligence (AAAI-88), pages 37–42, 1988.
9. S. Gonzalez and P. Meseguer. Open, interactive and dynamic csp. In G. V. Ken Brown, editor,

Changes’05: International Workshop on Constraint Solving under Change and Uncertainty,
pages 13–17, 2005.

10. M. Hazewinkel. Encyclopaedia of mathematics. Springer, 2002.
11. E. Hebrard. Robust solutions for constraint satisfaction and optimisation under uncertainty.

phd thesis. University of New South Wales, 2007.
12. E. Hebrard, B. Hnich, and T. Walsh. Super solutions in constraint programming. In Integra-

tion of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR-04), pages 157–172, 2004.

13. E. Jen. Stable or robust? what’s the difference? Complexity, 8(3):12–18, 2003.
14. H. Kitano. Towards a theory of biological robustness. Molecular Systems Biology, 3(137),

2007.
15. C. Liebchen, M. Lbbecke, R. Mhring, and S. Stiller. The concept of recoverable robustness,

linear programming recovery, and railway applications. LNCS 5868, 2009.
16. P. Papapetrou, G. Kollios, S. Sclaroff, and D. Gunopulos. Mining frequent arrangements of

temporal intervals. Knowledge and Information Systems, 21:133–171, 2009.
17. A. Parkes, M. Ginsberg, and A. Roy. Supermodels and robustness. Proceedings The Fifteenth

National Conference on Artificial Intelligence (AAAI-98), (334-339), 1998.
18. A. Rizk, G. Batt, F. Fages, and S. Solima. A general computational method for robustness

analysis withapplications to synthetic gene networks. Bioinformatics, 25(12):168–179, 2009.
19. F. Rossi, P. van Beek, and T. Walsh. Handbook of constraint programming. Elsevier, 2006.
20. B. Roy. Robustness in operational research and decision aiding: A multi-faceted issue. Eu-

ropean Journal of Operational Research, 200:629–638, 2010.
21. E. Szathmary. A robust approach. Nature, 439:19–20, 2006.
22. G. Verfaillie and N. Jussien. Constraint solving in uncertain and dynamic environments: a

survey. Constraints, 10(3):253–281, 2005.
23. G. Verfaillie and T. Schiex. Solution reuse in dynamic constraint satisfaction problems. In

Proc. of the 12th National Conference on Artificial Intelligence (AAAI-94), pages 307– 312,
1994.

24. R. Wallace and E. Freuder. Stable solutions for dynamic constraint satisfaction problems. In
Proc. 4th Int. Conf. on Principles and Practice of Constraint Programming (CP-98), pages
447–461, 1998.

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 18

Robustness, Stability, Recoverability and Reliability in CSP

25. R. Wallace, D. Grimes, and E. Freuder. Solving dynamic constraint satisfaction problems by
identifying stable features. In Proceedings of International Joint Conferences on Artificial
Intelligence (IJCAI-09), pages 621–627, 2009.

26. D. Wang, Q. Tse, and Y. Zhou. A decentralized search engine for dynamic web communities.
Knowledge and Information Systems, 26(1):105–125, 2011.

27. R. Weigel and C. Bliek. On re-formulation of constraint satisfaction problems. In Proceed-
ings European Conference on Artificial Intelligence (ECAI-98), pages 254–258, 1998.

28. S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos. Springer, 1990.
29. Y. Zhou and W. Croft. Measuring ranked list robustness for query performance prediction.

Knowledge and Information Systems, 16:155–171, 2008.

F. Barber, M. A. Salido. Technical Report. http://riunet.upv.es/. AI2-UPV. 2013. 19

