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Cellularity and density of balleans

I. V. ProT1Aasov

ABSTRACT. A ballean is a set X endowed with some family F of
balls in such a way that a ballean can be considered as an asymptotic
counterpart of a uniform topological space. Then we define the asymp-
totic counterparts for dense and open subsets, introduce two cardinal
invariants (density and cellularity) of balleans and prove some results
concerning relationship between these invariants. We conclude the pa-
per with applications of obtained partitions of left topological group in
dense subsets.
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1. INTRODUCTION

Every infinite group G can be partitioned in |G|-many subsets dense in every
totally bounded group topology on G. In [5] this statement was extracted from
the following combinatorial claim. For every infinite group G there exists a
disjoint family F of cardinality |G| such that, for every F' € F and every finite
subset K of G, there exists g € F such that Kg C F. Each subset F' € F looks
like a set with non-empty interior in some structure dual to uniform topological
space. To explain this duality we need some definitions and notations.

A ball structure is a triple B = (X, P, B) where X, P are non-empty sets
and, for any € X and o € P, B(z, «) is a subset of X which is called a ball
of radius o around x. It is supposed that z € B(x,«) for all z € X, « € P.
The set X is called the support of B, P is called the set of radii. Given any
re X, ACX, a€ P, weput

B*(z,a)={y€ X :z € B(y,a)}, B(4,a) = U B(a, a).
acA
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A ball structure is called

o lower symmetric if, for any «, 8 € P, there exist o/, 3’ € P such that,
for every z € X,

B*(z,d) C B(z,a), B(z,3') € B*(, B);

o upper symmetric if, for any a, 8 € P, there exist o/, 3’ € P such that,
for every z € X,

o lower multiplicative if, for any «, 0 € P, there exists v € P such that,
for every z € X,

B(B(x,7),7) € B(x,a) N B(z, §);

o upper multiplicative if, for any a, 8 € P, there exists v € P such that,
for every z € X,

B(B(z,«), ) C B(z,7).

Let B = (X, P, B) be a lower symmetric and lower multiplicative ball struc-
ture. Then the family

{ U B(z,a) X B(z,a):a € P}
reX
is a base of entourages for some (uniquely determined) uniformity on X. On
the other hand, if f C X x X is a uniformity on X, then the ball structure
(X,U, B) is lower symmetric and lower multiplicative, where B(z,U) = {y €
X : (z,y) € U}. Thus, the lower symmetric and lower multiplicative ball
structures can be identified with the uniform topological spaces.

A ball structure is said to be a ballean if it is upper symmetric and upper
multiplicative. In entourage form the balleans arouse in coarse geometry [10]
under name coarse structures and independently in combinatorics [6] under
name uniform ball structures.

Now we define the mappings which play the parts of uniformly continuous
and uniformly open mappings on the ballean stage.

Let By = (X1, P1,B1) and By = (X, P>, B2) be balleans. A mapping f :
X1 — Xy is called a < —mapping if, for every a € Pp, there exists 0 € P, such
that, for every z € X3,

f(Bi(z,a)) € By(f(x), ).
A mapping f : X7 — X, is called >=-mapping if, for every § € Py, there
exists @ € P; such that, for every x € X3
By(f(x),B) C f(Bi(z, ).
If f: X1 — X5 is a bijection such that f is a <-mapping and f is a >-
mapping, we say that f is an asymorphism and By, By are asymorphic.

Given an arbitrary ballean B = B(X, P, B), we can replace every ball B(z, «)
by B*(z,a) N B(z,«) and get an asymorphic ballean in which B*(z,«a) =
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B(z,a). In what follows we shall assume that B*(z,«) = B(x,a) for allx € X,
acP.

We need also some classification of subsets of X for a ballean B = (X, P, B).
Given a subset A C X, we say that A is

e large if there exists a € P such that X = B(A, «);
o smallif X \ B(A,«) is large for every « € P;
e thick if, for every a € P there exists a € A such that B(a,a) C A.

For some special balleans these types of subsets were introduced in [1] and
[2]. We note also that large, small and thick subsets of a ballean may be
considered as asymptotic duplicates of dense, nowhere dense and subsets with
non-empty interior of uniform spaces.

Following this (non-formal) duality between uniform spaces and balleans,
we define the density d(B) and cellularity ¢(B) as

d(B) =min{|L|: L C X, L is large},

¢(B) = sup{|F| : F is a disjoint family of thick subsets of X}.

As in the case of uniform spaces, density of a ballean is much more easy
to calculate or evaluate than its cellularity, so our main goal is to find some
relationships between d(B) and ¢(B).

2. OBSERVATIONS

(1) Let B = (X, P, B) be a ballean, T be a thick subset of X and L be a
large subset of X. Then there exists a € P such that X = B(L, «) and
B(z,a) C T for some z € T, so LNT # &. Since every large subset
meets every thick subset, we have ¢(B) < d(B).

(2) Given @« € P and Y C X, we say that Y is a-discrete if the family
{B(y,a) : y € Y} is pairwise disjoint. By Zorn Lemma, every a-
discrete subset Y of X is contained in some maximal (by inclusion)
a-discrete subset Z of X. If y € X then B(y,a) N B(Z,«a) # @. We
choose 8 € P such that B(B(x,a), ) C B(x, 3) for every x € X. Then
y € B(Z,[) and Z is large.

On the other hand, let L be a large subset of X, X = B(L,a) and
let Z be a maximal a-disjoint subset of Y. Then |Z| < |L| and Z is
large.

Hence, d(B) can be defined as the minimal cardinality of maximal
a-disjoint subsets of X where a runs over P.

(3) Let (X,d) be a metric space. Given any x € X, n € w, we put
Bi(xz,n) ={y € X : d(z,y) < n} and say that B(X,d) = (X,w, Bg) is
a metric ballean. A ballean B is called metrizable if B is asymorphic to
some metric ballean. To characterize metrizable balleans we need two
definitions.

A ballean B = (X, P, B) is called connected if, for any =,y € X,
there exists o € P such that y € B(x, o).
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We define the preordering < on P by the rule: o < 3 if and only if
B(z,a) C B(xz, ) for every € X. A subset P’ C P is called cofinal
if, for every a € P there exists § € P’ such that o < 8. The cofinality
cf(B) is the minimal cardinality of the cofinal subsets of P.

By [6, Theorem 9.1], a ballean B is metrizable if and only if B is
connected and c¢f(B) < Rg. For approximation of arbitrary balleans
via metrizable balleans see [7].

(4) A connected ballean B = (X, P, B) is called ordinal if there exists a
well-ordered by < cofinal subset of P. Replacing P to its minimal
cofinal subset, we get the asymorphic ballean. Hence, we can write
B as (X, 3, B), where 8 is a regular cardinal (considered as a set of
ordinals).

We note that every metrizable ballean is ordinal, and metric balleans
are the main subject of asymptotic topology [3].

(5) A subset Y C X is called bounded if there exist y € ¥ and a € P
such that Y C B(y,«). A ballean is called bounded if its support is
bounded. Clearly, d(B) = ¢(B) = 1 for every bounded ballean B.

3. RESULTS

Theorem 3.1. For every ordinal ballean B, c¢(B) = d(B) and there exists a
disjoint family F of cardinality d(B) consisting of thick subsets of X.

Proof. Let B = (X, p,B), k = d(B) and cf(x) be the cofinality of k. If B is
bounded, we use observation 5, so we assume that B is unbounded. We fix
some element zg € X and consider four cases.

Case p < cfr. We prove the following auxiliary statement. For every a < p,
there exist 3, @ < B < p and an a-discrete subset Y, of X such that zg € Y,
B(Ya,a) C B(xo, 8) and |Y,| = k.

Let Z be a maximal a-discrete subset of X such that xg € Z. By observation
2, |Z| =2 k. For every A < p, we put Zx = Z N B(xg, A). Since Z = U/\<p Zy,
|Z| > k and p < c¢f(k), there exists u < p such that |Z,| > x. We choose 5 < p
such that o < 8 and B(B(xo, ), «) C B(xo,3). Then B(Z,,a) C B(zo, )
and we can choose a subset Y, C Z,, such that 2o € Y and |Y,| = k.

Using the auxiliary statement and regularity of p, we can define inductively
a mapping f : p — p and a family {Y},) : @ < p} of subsets of X such that,
for every ae < p, f(a) > a, Yo is f(a)-discrete, |Yy(o)| = & and

B(Yy(a), f(@)) € B(zo, f(a+ 1))\ B(xo, f(a)).

For every a < p, we enumerate Yyo) = {y(f(a),A) : A < x} and, for every
A < K, put

7, = | By(f(a), M), f(@)).

a<p

Clearly, every subset T) is thick and the family {T) : A < k} is disjoint.
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Case cf(k) < p < k. We prove the following auxiliary statement. For any
a < p and k' < k, there exist 3, a < 3 < p and an a-discrete subset Y, of X
such that zg € Y, B(Ya, @) C B(xo,8) and |Y,| > &'

Let Z be a maximal a-discrete subset of X such that zg € Z. By observation
2, |Z| 2 k. Let I be a cofinal subset of k such that |I| = p. For every A\ € I,
we put Zx = Z N B(xo, ). Clearly, Z = ,c; Zx. If |Z)] < &' for every A € I,
then |Z| < K'|I] = k'p < k. Hence, there exists p € I such that |Z,| > &'
We choose 5 < p such that @ < 8 and B(B(zo,u),a) C B(zg,5). Then
B(Z,,a) C B(zo, 3) and we put Y, = Z,.

Let ¢ : p — Kk be an injective mapping such that ¢(p) is cofinal in x and
a < [ < p implies p(a) < ¢(8) < k. Using the auxiliary statement and
regularity of k, we can define inductively a mapping f : p — p and a family
{Yf(a) : @ < p} of subsets of X such that
(i) f(p) is cofinal in p and a < B < p implies f(a) < f(B) < p;
(ii) Y(a) is f(a)-discrete;
(1) B(Yy(a)» f(0)) € Blao, fla+ 1)\ Blao. f():
(iv) Yol = o).

For every a < p, we enumerate Yyo) = {y(f(a), ) : A < ¢(a)}. Then for
any « and v such that ¢(a) < v < ¢(a+ 1), we put

T, = J{BU®).7) a+1<8<p}.
By (i), T is thick. By (ii) and (iii), the family
F={Ty: p(a) <v<pla+1),a<p}
is disjoint. Since ¢(p) is cofinal in &, by (iv), we have |F| = k.
Case p = k. Using the assumption, we can construct inductively the subset

{Ya : @ < Kk} of X such that the family {B(ya, @) : @ < k} is disjoint. Then
we partition k = (J, ., I into s cofinal subsets and, for every A\ < s, put

T\ = U{B(ya,a) rae I}

Clearly, every subset T) is thick and the family {T) : A < &} is disjoint.

Case p > k. We show that this variant is impossible. Suppose the contrary.
Let Z be a large subset of X such that |Z| = x and X = B(Z, «). For every
z € Z, we pick a(z) < p such that B(z,a) C B(xg,a(z)). Since p is regular
and k < p, there exists § < p such that § > «(z) for every z € Z. Then
B(z,a) C B(xo,f) for every z € Z, so X = B(xg, ) and B is bounded. O

Corollary 3.2. For every metrizable ballean B, c¢(B) = d(B) and there exists
a disjoint family F of cardinality d(B) consisting of thick subsets of X.

Theorem 3.3. Let B = (X, P, B) be a ballean, |X| = k and let |P| < k. Then
¢(B) = d(B) = k and there exists a disjoint family F of cardinality k consisting
of thick subsets of X provided that one of the following conditions is satisfied:

o (i) there exists k' < k such that B(x,o) < k' for allz € X and a € P;
o (it) |B(x,a)| <k forallz € X, a € P and k is regular.
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Proof. Let L be a large subset of X, « € P and X = B(L,«). Then each of
the assumptions (i) and (ii) gives |L| = & so d(B) = k.

(i) Let Z be a subset of X such that |Z] < k, & € P. Let Y be a maximal (by
inclusion) a-discrete subset of X such that B(Z,a) N B(Y,a) = @. If x € X
then B(z,a) N B(ZUY,a) # &. Hence, ZUY is large and |Y| = .

We fix a bijection f : P x Kk — k and note that, for every a € P, the
set f(a, k) is cofinal in & (as a set of ordinals). We define also two mappings
p:k— Pand ¥ : k — k be the rule: if f(a, A) = then p(v) = a, ¥(y) = A

We take an arbitrary ¢(0)-discrete subset Yy of X such that |Yp| = (0).
Assume that, for some v < k, we have defined the family {Y) : A < ~} of
subsets of X such that each subset Yy is ¢(\)-discrete, |Yy| = ¢(A\) and the
family {B(Yx,p(A)) : A <~} is disjoint. Put Z = Uy, B(Yx,%(A)). In view
of above paragraph there exists a ¢(7)-discrete subset Y, such that |Y,| = ¥(v)
and Z N B(Y,,(v)) = @. After x steps we get the family {Y, : v < x}.

For every v < k, we enumerate Y, = {y(\,7) : A < |Y;|} and put Ty =
U, < BW(0,7),¢(7)). Since ¢ is surjective, Ty is thick. Assume that, for
some 0 < k, we have defined disjoint family {T}, : i < d} of thick subsets of X.
PutT = U#<5 T,. To define Ts we denote I = {y: v < k, Y, \T # @} and put

Ts = | B(y(6,7), ¢(7))-

vel

After k steps we put F = {Ts : § < v}. Since f(«, k) is cofinal in & for every
a € P, every subset Ty is thick.

(ii) Let v < s and {Y3 : A < v} be a family of subsets of X such that [Y)| < &
for every A < . Let {px : A < v} be a subset of P. We put Z = U/\<7 B(Y), ).
By (ii), |Z| < k. Hence, for any o € P and &' < k, we can take an a-disjoint
subset Y{y,a) of X such that B(Y (y,a),a)NZ = & and |[Y (v,a)| = +’. Using
this remark, we can construct the family F as in (i). O

4. EXAMPLES

We show that, for every infinite cardinal k, there exists a metric space X
such that d(B(X)) = &.

Example 4.1. Let I be a (non-directed) graph with the set of vertices w and
the set of edges {(¢,i+1) : ¢ € w}. We consider the set {I, : v < &} of copies of
I, identify the terminal vertices of these copies and denote by I' the resulting
graph. Let X = V(T') be the set of vertices of I We endow X with path
metric: the distance between two vertices u,v € X is the length of the shortest
path between u and v. If L is a large subset of X, then L NV (L,) is infinite for
every v < K, so |L| = k and d(B(X)) = &.

The next two examples show that cellularity of a ballean could be much
more smaller than its density.
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Example 4.2. Let X be a set and ¢ be a filter on X. For any z € X and
F € ¢, we put

x}, if x € F}
Bo(w, F) = { E({F if o ¢ F

and consider the ballean B(X,¢) = (X, ¢, B,). A ballean B = (X, P, B)
is called pseudodiscrete if, for every a € P, there exists a bounded subset
V of X such that B(z,a) = {z} for every z € X \ V. By [8], a ballean B
is pseudodiscrete if and only if there exists a filter ¢ on X such that B is
asymorphic to B(X, ¢).

Now let X be infinite and Ny = @. Then B(X, ¢) is an unbounded connected
ballean. A subset L C X is large if and only if L € ¢, so d(B) = min{|F|: F €
©}. On the other hand, let T be a thick subset of X, F' € . We take x € X
such that B,(z, F) € X. Then either z € F or X \ F C T. It follows that T
is cofinal with respect to ¢, i.e.. FNT # @& for every F' € ¢. Hence, if ¢ is
an ultrafilter then any two thick subsets of X have non-empty intersection and
e(B(X, ) = 1.

Example 4.3. Let X be an infinite set of regular cardinality x. Denote by F
the family of all subsets of X of cardinality < k. Let P be a set of all mappings
f: X — F such that, for every € X, we have x € f(z) and

|{y€X:x€f(y)}‘ < K.

Given any z € X and f € P, we put B(x, f) = f(x) and consider the ball
structure B = (X, P,B). Since B*(z,f) = {y € X : z € f(y)}, B is upper
symmetric. Since & is regular, B is upper multiplicative. Hence, B is a ballean.
Clearly, B is connected and unbounded.

If L is a large subset of X, by regularity of x, we have |L| = k. If A is a
subset of X and |A| = k, we fix an arbitrary bijection h : A — X and put

_fx)ifa g A
flw) = { {2, h(z)), ifz € A
Then f € P and B(A, f) = X. Hence, a subset L of X is large if and only if
|L| = &, so d(B) = k.
If AC X and |X \ A| = &, by observation 1 and above paragraph, A is not
thick. It means that any two thick subsets of X are not disjoint and ¢(B) = 1.

Now we compare cellularity and density with another cardinal invariant of
balleans, namely resolvability, defined in [9]. Given a ballean B = (X, P, B)
and a cardinal k, we say that B is k- resolvable if X can be partitioned in
k-many large subsets. The resolvability of B is the cardinal

r(B) = sup{k : B is k-resolvable}.
If B is a ballean from Example 4.1, by [9, Theorem 2.3], 7(B) = Xy. By
Corollary 3.2, d(B) = ¢(B) = k.
If B is a ballean from Example 4.2, defined by free ultrafilter, then ¢(B) =
r(B) =1, but d(B) = min{|F|: F € ¢}.
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If B is a ballean from Example 4.3, then 7(B) = d(B) = &, ¢(B) = 1.
The above remarks show that there are no direct correlations between re-
solvability on one hand and density or cellularity on the other hand.

5. APPLICATIONS

Let G be a group with the identity e endowed with some topology. Then G
is called left topological if all the left shifts x — gz, g € G are continuous.

Let G be an infinite left topological group, |G| = &, v be an infinite cardinal
such that v < k. We say that G is

e totally bounded if, for every nieghbourhood U of e, there exists a finite
subset F' of G such that G = FU;

o y-bounded if, for every neighbourhood U of e, there exists a subset F'
of G such that |F| < v and G = FU;

o weakly bounded if, for every neighbourhood U of e, there exists a subset
F of G such that |F| < k and G = FU.

In this terminology, totally bounded groups are Np-bounded and weakly
bounded groups are k-bounded.

We denote by F, the family of all subsets F' of X such thate € F, F = F~!
and |F| <. Given any g € G and F' € F,, we put

B(g,F)=Fg

and denote by B(G, ) the ballean (G, F,, B).

If v = Ny then a subset L is large (with respect to B(G, X)) if and only if
G = FL for some finite subset F of G. By Theorem 3.2 (case (ii) for kK = Rg and
case (i) for k > Rg), there exists a disjoint family F of cardinality x consisting
of thick subsets. By observation 1, every subset ' € F meets every large subset
L. Tt follows that F' N gU # @ for every g € G and every neighbourhood U of
e in every totally bounded topology 7 on G, so F' is dense in 7. Hence, G can
be partitioned to x subsets dense in each totally bounded topology.

If v < k, the same arguments applying to B(G,v) and Theorem 3.2 (i) prove
that G can be partitioned to k subsets dense in every y-bounded topology on
G.

if v = k and kK is regular, we apply either Theorem 3.1 or Theorem 3.2
(ii) and conclude that G can be partitioned in k-many subsets dense in every
weakly bounded topology on G.

What about v = k and & is singular? This is old (and unsolved) problem
posed by the author [4, Problem 13.45] in the following weak form.

Problem 5.1. Every infinite group G of reqular cardinality k can be partitioned
G = A1UA; so that FA; # G and F Ay # G for every subset F' of G such that
|F| < k. Is the same true for groups of singular cardinalities?
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