
Backward Trace Slicing for
Rewriting Logic Theories?

— Technical Report —

M. Alpuente1, D. Ballis2, J. Espert1, and D. Romero1

1 DSIC-ELP, Universidad Politécnica de Valencia
Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain

{alpuente,jespert,dromero}@dsic.upv.es
2 Dipartimento di Matematica e Informatica

Via delle Scienze 206, 33100 Udine, Italy demis.ballis@uniud.it

Abstract. Trace slicing is a widely used technique for execution trace
analysis that is effectively used in program debugging, analysis and com-
prehension. In this paper, we present a backward trace slicing technique
that can be used for the analysis of Rewriting Logic theories. Our trace
slicing technique allows us to systematically trace back rewrite sequences
modulo equational axioms (such as associativity and commutativity) by
means of an algorithm that dynamically simplifies the traces by detecting
control and data dependencies, and dropping useless data that do not
influence the final result. Our methodology is particularly suitable for
analyzing complex, textually-large system computations such as those
delivered as counter-example traces by Maude model-checkers.

1 Introduction

The analysis of execution traces plays a fundamental role in many program
manipulation techniques. Trace slicing is a technique for reducing the size of
traces by focusing on selected aspects of program execution, which makes it
suitable for trace analysis and monitoring [7].

Rewriting Logic (RWL) is a very general logical and semantic framework,
which is particularly suitable for formalizing highly concurrent, complex sys-
tems (e.g., biological systems [5, 21] and Web systems [2, 3]). RWL is efficiently
implemented in the high-performance system Maude [9]. Roughly speaking, a
rewriting logic theory seamlessly combines a term rewriting system (TRS) to-
gether with an equational theory that may include sorts, functions, and algebraic
laws (such as commutativity and associativity) so that rewrite steps are applied
modulo the equations. Within this framework, the system states are typically

? This work has been partially supported by the EU (FEDER) and the Spanish MEC
TIN2010-21062-C02-02 project, by Generalitat Valenciana PROMETEO2011/052,
and by the Italian MUR under grant RBIN04M8S8, FIRB project, Internationaliza-
tion 2004. Daniel Romero is also supported by FPI–MEC grant BES–2008–004860.

2

represented as elements of an algebraic data type that is specified by the equa-
tional theory, while the system computations are modeled via the rewrite rules,
which describe transitions between states.

Due to the many important applications of RWL, in recent years, the debug-
ging and optimization of RWL theories have received growing attention [1, 15,
18, 19]. However, the existing tools provide hardly support for execution trace
analysis. The original motivation for our work was to reduce the size of the coun-
terexample traces delivered by Web-TLR, which is a RWL-based model-checking
tool for Web applications proposed in [2, 3]. As a matter of fact, the analysis (or
even the simple inspection) of such traces may be unfeasible because of the size
and complexity of the traces under examination. Typical counterexample traces
in Web-TLR are 75 Kb long for a model size of 1.5 Kb, that is, the trace is in a
ratio of 5.000% w.r.t. the model.

To the best of our knowledge, this paper presents the first trace slicing tech-
nique for RWL theories. The basic idea is to take a trace produced by the RWL
engine and traverse and analyze it backwards to filter out events that are ir-
relevant for the rewritten task. The trace slicing technique that we propose is
fully general and can be applied to optimizing any RWL-based tool that ma-
nipulates rewrite logic traces. Our technique relies on a suitable mechanism of
backward tracing that is formalized by means of a procedure that labels the
calls (terms) involved in the rewrite steps. The backward traversal is preferred
to a forward one because a causal relation is computed. This allows us to infer,
from a term t and positions of interest on it, positions of interest of the term
that was rewritten to t. Our labeling procedure extends the technique in [6],
which allows descendants and origins to be traced in orthogonal (i.e., left-linear
and overlap-free) term rewriting systems in order to deal with rewrite theories
that may contain commutativity/associativity axioms, as well as nonleft-linear,
collapsing equations and rules.

Plan of the paper. Section 2 summarizes some preliminary definitions and nota-
tions about term rewriting systems. In Section 3, we recall the essential notions
concerning rewriting modulo equational theories. In Section 4, we formalize our
backward trace slicing technique for rewriting logic theories, which computes the
reverse dependence among the symbols involved in a rewrite step and removes
all data that are irrelevant with respect to a given slicing criterion. Section 5
extends the trace slicing technique of Section 4 by considering extended rewrite
theories, i.e., rewrite theories that may include collapsing, nonleft-linear rules,
associative/commutative equational axioms, and built-in operators. Section 6
describes a software tool that implements the proposed backward slicing tech-
nique and presents an experimental evaluation of the tool that allows us to assess
the practical advantages of the trace slicing technique. In Section 7, we discuss
some related work, and Section 8 concludes. Proofs of the main technical results
can be found in Appendix A. This appendix is only meant to help the referees
evaluate the manuscript and is not part of the paper.

3

2 Preliminaries

A many-sorted signature (Σ,S) consists of a set of sorts S and a S∗×S-indexed
family of sets Σ = {Σs̄×s}(s̄,s)∈S∗×S , which are sets of function symbols (or
operators) with a given string of argument sorts and result sort. Given an S-
sorted set V = {Vs | s ∈ S} of disjoint sets of variables, TΣ(V)s and TΣs are
the sets of terms and ground terms of sorts s, respectively. We write TΣ(V) and
TΣ for the corresponding term algebras. An equation is a pair of terms of the
form s = t, with s, t ∈ TΣ(V)s. In order to simplify the presentation, we often
disregard sorts when no confusion can arise.

Terms are viewed as labelled trees in the usual way. Positions are represented
by sequences of natural numbers denoting an access path in a term. The empty
sequence Λ denotes the root position. By root(t), we denote the symbol that
occurs at the root position of t. We let Pos(t) denote the set of positions of
t. By notation w1.w2, we denote the concatenation of positions (sequences) w1

and w2. Positions are ordered by the prefix ordering, that is, given the positions
w1, w2, w1 ≤ w2 if there exists a position x such that w1.x = w2. t|u is the
subterm at the position u of t. t[r]u is the term t with the subterm rooted at
the position u replaced by r. Given a term t, we say that t is ground if no
variables occur in t. A substitution σ is a mapping from variables to terms
{x1/t1, . . . , xn/tn} such that xiσ = ti for i = 1, . . . , n (with xi 6= xj if i 6= j),
and xσ = x for any other variable x. By ε, we denote the empty substitution.
Given a substitution σ, the domain of σ is the set Dom(σ) = {x|xσ 6= x}.
By Var(t) (resp. FSymbols(t)), we denote the set of variables (resp. function
symbols) occurring in the term t.

A context is a term γ ∈ TΣ∪{�}(V) with zero or more holes �, and � 6∈ Σ.
We write γ[]u to denote that there is a hole at position u of γ. By notation γ[],
we define an arbitrary context (where the number and the positions of the holes
are clarified in situ), while we write γ[t1, . . . tn] to denote the term obtained by
filling the holes appearing in γ[] with terms t1, . . . , tn. By notation t�, we denote
the context obtained by applying the substitution σ = {x1/�, . . . , xn/�} to t,
where Var(t) = {x1 . . . , xn} (i.e., t� = tσ).

A term rewriting system (TRS for short) is a pair (Σ,R), where Σ is a
signature and R is a finite set of reduction (or rewrite) rules of the form λ→ ρ,
λ, ρ ∈ TΣ(V), λ 6∈ V and Var(ρ) ⊆ Var(λ). We often write just R instead of
(Σ,R). A rewrite step is the application of a rewrite rule to an expression. A term

s rewrites to a term t via r ∈ R, s
r→R t (or s

r,σ→R t), if there exists a position
q in s such that λ matches s|q via a substitution σ (in symbols, s|q = λσ), and
t is obtained from s by replacing the subterm s|q = λσ with the term ρσ, in
symbols t = s[ρσ]q. The rule λ→ ρ (or equation λ = ρ) is collapsing if ρ ∈ V; it
is left-linear if no variable occurs in λ more than once. We denote the transitive
and reflexive closure of → by →∗.

4

3 Rewriting Modulo Equational Theories

An equational theory is a pair (Σ,E), where Σ is a signature and E = ∆ ∪ B
consists of a set of (oriented) equations ∆ together with a collection B of equa-
tional axioms (e.g., associativity and commutativity axioms) that are associated
with some operator of Σ. The equational theory E induces a least congruence
relation on the term algebra TΣ(V), which is usually denoted by =E .

A rewrite theory is a triple R = (Σ,E,R), where (Σ,E) is an equational
theory, and R is a TRS. Examples of rewrite theories can be found in [9].

Rewriting modulo equational theories [15] can be defined by lifting the stan-
dard rewrite relation →R on terms to the E-congruence classes induced by =E .
More precisely, the rewrite relation →R/E for rewriting modulo E is defined as
=E ◦ →R ◦ =E . A computation in R using →R∪∆,B is a rewriting logic deduc-
tion, in which the equational simplification with ∆ (i.e., applying the oriented
equations in ∆ to a term t until a canonical form t↓E is reached where no further
equations can be applied) is intermixed with the rewriting computation with the
rules of R, using an algorithm of matching modulo3 B in both cases.

Formally, given a rewrite theory R = (Σ,E,R), where E = ∆∪B, a rewrite
step modulo E on a term s0 by means of the rule r : λ → ρ ∈ R (in symbols,

s0
r→R∪∆,B s1) can be implemented as follows: (i) apply (modulo B) the equa-

tions of ∆ on s0 to reach a canonical form (s0 ↓E); (ii) rewrite (modulo B)
(s0 ↓E) to term v by using r ∈ R; and (iii), apply (modulo B) the equations of
∆ on v again to reach a canonical form for v, s1 = v ↓E .

Since the equations of ∆ are implicitly oriented (from left to right), the
equational simplification can be seen as a sequence of (equational) rewrite steps

(→∆/B). Therefore, a rewrite step modulo E s0
r→R∪∆,B s1 can be expanded

into a sequence of rewrite steps as follows:

equational rewrite equational
simplification step/B simplification

s0
︷ ︸︸ ︷
→∆/B ..→∆/B s0↓E

︷ ︸︸ ︷
=B u

r→R v
︷ ︸︸ ︷
→∆/B ..→∆/B v↓E = s1

Given a finite rewrite sequence S = s0 →R∪∆,B s1 →R∪∆,B . . . → sn in the
rewrite theory R, the execution trace of S is the rewrite sequence T obtained
by expanding all the rewrite steps si →R∪∆,B si+1 of S as is described above.

The computability of →R∪∆,B as well as its equivalence w.r.t. →R/E are
assured by enforcing some conditions on the considered rewrite theories [15, 23],
specifically, coherence between the rules and the equations as well as the assump-
tion of Church-Rosser and termination properties of ∆ modulo the equational
axioms B4.

3 A subterm of t matches l (modulo B) via the substitution σ if t =B u and u|q = lσ
for a position q of u.

4 These conditions are quite natural in practical rewriting logic specifications, and can
generally be checked by using the Maude Church-Rosser, Termination, and Coher-
ence tools [9].

5

A rewrite theoryR = (Σ,B∪∆,R) is called elementary ifR does not contain
equational axioms (B = ∅) and both rules and equations are left-linear and not
collapsing.

4 Backward Trace Slicing for Elementary Rewrite
Theories

In this section, we formalize a backward trace slicing technique for elementary
rewrite theories that is based on a term labeling procedure that is inspired by [6].
Since equations in ∆ are treated as rewrite rules that are used to simplify terms,
our formulation for the trace slicing technique is purely based on standard rewrit-
ing. In Section 5, we will drop all these restrictions in order to consider more
expressive rewrite theories.

4.1 Labeling procedure for rewrite theories

Let us define a labeling procedure for rules similar to [6] that allows us to trace
symbols involved in a rewrite step. First, we provide the notion of labeling for
terms, and then we show how it can be naturally lifted to rules and rewrite steps.

Consider a set A of atomic labels, which are denoted by Greek letters α, β,
Composite labels (or simply labels) are defined as finite sets of elements of A.
By abuse, we write the label αβγ as a compact denotation for the set {α, β, γ}.

A labeling for a term t ∈ TΣ∪{�}(V) is a map L that assigns a label to (the
symbol occurring at) each position w of t, provided that root(t|w) 6= �. If t is a
term, then tL denotes the labeled version of t. Note that, in the case when t is
a context, occurrences of symbol � appearing in the labeled version of t are not
labeled. The codomain of a labeling L is denoted by Cod(L) = {l | (w 7→ l) ∈ L}.

An initial labeling for the term t is a labeling for t which assigns distinct fresh
atomic labels to each position of the term. For example, given t = f(g(a, a),�),
then tL = fα(gβ(aγ , aδ),�) is the labeled version of t via the initial labeling
L ={Λ 7→ α, 1 7→ β, 1.1 7→ γ, 1.2 7→ δ}. This notion extends to rules and rewrite
steps in a natural way as shown below.

Labeling of Rules. Let us introduce the notions of redex pattern and contrac-
tum pattern of a rule. Let r : λ→ ρ be a rule. We call the context λ� (resp. ρ�)
redex pattern (resp. contractum pattern) of r.

Example 1. Given the rule r : f(g(x, y), a)) → d(s(y), y), where a is a constant
symbol, the redex pattern of r is the context f(g(�,�), a), while the contractum
pattern of r is the context d(s(�),�).

Definition 1. (rule labeling) [6] Given a rule r : λ → ρ, a labeling Lr for r is
defined by means of the following procedure.

r1. The redex pattern λ� is labeled by means of an initial labeling L.

6

r2. A new label l is formed by joining all the labels that occur in the labeled
redex pattern λ� (say in alphabetical order) of the rule r. Label l is then
associated with each position w of the contractum pattern ρ�, provided that
root(ρ�|w) 6= �.

Example 2. Consider the rule r of Example 1. The labeled version of rule r using
the initial labeling L = {(Λ 7→ α, 1 7→ β, 2 7→ γ} is as follows: fα(gβ(x, y), aγ)→
dαβγ(sαβγ(y), y).

The labeled version of r w.r.t. Lr is denoted by rLr . Note that the labeling
procedure shown in Definition 1 does not assign labels to variables but only to
the function symbols occurring in the rule.

Labeling of Rewrite Steps. Before giving the definition of labeling for a
rewrite step, we need to formalize the auxiliary notion of substitution labeling.

Definition 2. (substitution labeling) Let σ = {x1/t1, . . . , xn/tn} be a substitu-
tion. A labeling Lσ for the substitution σ is defined by a set of initial labelings
Lσ = {Lx1/t1 , . . . , Lxn/tn} such that (i) for each binding (xi/ti) in the substitu-
tion σ, ti is labeled using the corresponding initial labeling Lxi/ti , and (ii) the
sets Cod(Lx1/t1), . . . ,Cod(Lxn/tn) are pairwise disjoint.

By using Definition 2, we can formulate a labeling procedure for rewrite steps
as follows.

Definition 3. (rewrite step labeling) Let r : λ → ρ be a rule, and µ : t
r,σ→ s

be a rewrite step using r such that t = C[λσ]q and s = C[ρσ]q, for a context C
and position q. Let σ = {x1/t1, . . . , xn/tn}. Let Lr be a labeling for the rule r,
LC be an initial labeling for the context C, and Lσ = {Lx1/t1 , . . . , Lxn/tn} be a
labeling for the substitution σ such that the sets Cod(LC),Cod(Lr), and Cod(σ)
are pairwise disjoint, where Cod(σ) =

⋃n
i=1 Cod(Lxi/ti).

The rewrite step labeling Lµ for µ is defined by successively applying the
following steps:

s1. First, positions of t or s that belong to the context C are labeled by using the
initial labeling LC .

s2. Then positions of t|q (resp. s|q) that correspond to the redex pattern (resp.
contractum pattern) of the rule r rooted at the position q are labeled according
to the labeling Lr.

s3. Finally, for each term tj, j = {1, . . . , n}, which has been introduced in t
or s via the binding xj/tj ∈ σ, with xj ∈ V ar(λ), tj is labeled using the
corresponding labeling Lxj/tj ∈ Lσ

The labeled version of a rewrite step µ w.r.t. Lµ is denoted by µLµ . Let us
illustrate it by means of a rather intuitive example.

7

Example 3. Consider again the rule r : f(g(x, y), a)) → d(s(y), y) of Exam-

ple 1, and let µ : C[λσ]
r→ C[ρσ] be a rewrite step using r, where C[λσ] =

d(f(g(a, h(b)), a), a), C[ρσ] = d(d(s(h(b)), h(b)), a), and σ = {x/a, y/h(b)}.
Assume that r is labeled by means of the rule labeling of Example 2, that is

rL : fα(gβ(x, y), aγ)→ dαβγ(sαβγ(y), y)

Let LC = {Λ 7→ δ, 2 7→ ε}, Lx/a = {Λ 7→ ζ}, and Ly/h(b) = {Λ 7→ η, 1 7→ θ}
be the labelings for C and the bindings in σ, respectively. Then, the correspond-
ing labeled rewrite step µL is as follows

µL : dδ(fα(gβ(aζ , hη(bθ)), aγ), aε)→ dδ(dαβγ(sαβγ(hη(bθ)), hη(bθ)), aε)

Now, we are ready to define our labeling-based, backward tracing relation on
rewrite steps.

Definition 4. (origin positions) Let µ : t
r−→ s be a rewrite step and L be a

labeling for µ where Lt (resp. Ls) is the labeling of t (resp. s). Given a position
w of s, the set of origin positions of w in t w.r.t. µ and L (in symbols, CLµw) is
defined as follows:

CLµw = {v ∈ Pos(t) | ∃p ∈ Pos(s), (v 7→ lv) ∈ Lt, (p 7→ lp) ∈ Ls s.t. p ≤ w and lv ⊆ lp}

Roughly speaking, a position v in t is an origin of w, if the label of the symbol
occurring in tL at position v is contained in the label of a symbol occurring in
sL in the path from its root to the position w.

Example 4. Consider again the rewrite step µL : tL→sL of Example 3, and let
w be the position 1.2 of sL. The set of labeled symbols occurring in sL in the
path from its root to position w is the set z = {hη, dαβγ , dδ}. Now, the labeled
symbols occurring in tL whose label is contained in the label of one element of
z is the set {hη, fα, gβ , aγ , dδ}. By Definition 4, the set of origin positions of w
in µL is CL

µw = {1.1.2, 1, 1.1, 1.2, Λ}.

Note that the origin positions of w in the rewrite step µ : t
r−→ s are not

the antecedent positions of w in µ [17]; one main difference is the fact that we
consider all positions of s in the path from its root to w for computing the
origins, and we use the labeling to trace back every relevant piece of information
involved in the step µ.

4.2 The Backward Trace Slicing Algorithm

First, let us formalize the slicing criterion, which basically represents the in-
formation we want to trace back across the execution trace in order to find
out the “origins” of the data we observe. Given a term t, we denote by Ot the
set of observed positions of t, which point to the symbols of t that we want to
trace/observe.

8

Definition 5. (slicing criterion) Given a rewrite theory R = (Σ,∆,R) and
an execution trace T : s→∗ t in R, a slicing criterion for T is any set Ot of
positions of the term t.

In the following, we show how backward trace slicing can be performed by
exploiting the backward tracing relation CLµ that was introduced in Definition 4.
Informally, given a slicing criterion Otn for T : t0 → t2 → . . . → tn, at each
rewrite step ti−1 → ti, i = 1, . . . , n, our technique inductively computes the
backward tracing relation between the relevant positions of ti and those in ti−1.
The algorithm proceeds backwards, from the final term tn to the initial term t0,
and recursively generates at step i the corresponding set of relevant positions,
Ptn−i . Finally, by means of a removal function, a simplified trace is obtained
where each tj is replaced by the corresponding term slice that contains only the
relevant information w.r.t. Ptj .

Definition 6. (sequence of relevant position sets) Let R = (Σ,∆,R) be a

rewrite theory, and T : t0
r1→ t1 . . .

rn→ tn be an execution trace in R. Let Li
be the labeling for the rewrite step ti → ti+1 with 0 ≤ i < n. The sequence of
relevant position sets in T w.r.t. the slicing criterion Otn is defined as follows:

relevant positions(T ,Otn) = [P0, . . . , Pn]

where

{
Pn = Otn
Pj =

⋃
p∈Pj+1

CLj(tj→ tj+1)p, with 0 ≤ j < n

Now, it is straightforward to formalize a procedure that obtains a term slice
from each term t in T and the corresponding set of relevant positions of t. We
introduce the fresh symbol • 6∈ Σ to replace any information in the term that is
not relevant (i.e., those symbols that occur at any position of t that is not above
a relevant position of the term), hence does not affect the observed criterion.

Definition 7. (term slice) Let t ∈ TΣ be a term and P be a set of positions of
t. A term slice of t with respect to P is defined as follows:

slice(t, P) = sl rec(t, P, Λ), where

sl rec(t, P, p) =

f(sl rec(t1, P, p.1), . . . , sl rec(tn, P, p.n))
if t = f(t1, . . . , tn) and there exists w s.t. (p.w) ∈ P

• otherwise

In the following, we use the notation t• to denote a term slice of the term t.
Roughly speaking, the symbol • can be thought of as a variable, so that any term
t′ ∈ τ(Σ) can be considered as a possible concretization of t• if it is an “instance”
of [t•], where [t•] is the term that is obtained by replacing all occurrences of •
in t• with fresh variables.

9

d

f

g

a h

b

a

a

d

f

g

• h

•

a

•
d

f

g

c h

c

a

j

b

term t term slice t• of t a concretization of t•

w.r.t. {1.1.2, 1.2}

Fig. 1. A term slice and a possible concretization.

Definition 8. (term slice concretization) Given t′ ∈ TΣ and a term slice t•, we
define t• ∝ t′ if [t•] is (syntactically) more general than t′ (i.e. [t•]σ = t′, for
some substitution σ). We also say that t′ is a concretization of t•.

Figure 1 illustrates the notions of term slice and term slice concretization for
a given term t w.r.t. the set of positions {1.1.2, 1.2}.

Let us define a sliced rewrite step between two term slices as follows.

Definition 9. (sliced rewrite step) Let R = (Σ,∆,R) be a rewrite theory and
r a rule of R. The term slice s• rewrites to the term slice t• via r (in symbols,

s•
r→ t•) if there exist two terms s and t such that s• is a term slice of s, t• is

a term slice of t, and s
r→ t.

Using Definition 9, backward trace slicing is formalized as follows.

Definition 10. (backward trace slicing) Let R = (Σ,∆,R) be a rewrite theory,

and T : t0
r1→ t1 . . .

rn→ tn be an execution trace in R. Let Otn be a slicing
criterion for T , and let [P0, . . . , Pn] be the sequence of the relevant position sets
of T w.r.t. Otn . A trace slice T • of T w.r.t. Otn is defined as the sliced rewrite
sequence of term slices t•i = slice(ti, Pi) which is obtained by glueing together
the sliced rewrite steps in the set

K• = {t•k−1
rk→ t•k | 0 < k ≤ n ∧ t•k−1 6= t•k}.

Note that in Definition 10, the sliced rewrite steps that do not affect the
relevant positions (i.e., t•k−1

rk→ t•k with t•k−1 = t•k) are discarded, which further
reduces the size of the trace.

A desirable property of a slicing technique is to ensure that, for any con-
cretization of the term slice t•0, the trace slice T • can be reproduced. This prop-
erty ensures that the rules involved in T • can be applied again to every concrete
trace T ′ that we can derive by instantiating all the variables in [t•0] with arbitrary
terms.

10

Theorem 1. (soundness) Let R be an elementary rewrite theory. Let T be an
execution trace in the rewrite theory R, and let O be a slicing criterion for T .
Let T • : t•0

r1→ t•1 . . .
rn→ t•n be the corresponding trace slice w.r.t. O. Then, for

any concretization t′0 of t•0, it holds that T ′ : t′0
r1→ t′1 . . .

rn→ t′n is an execution
trace in R, and t•i ∝ t′i, for i = 1, . . . , n.

The proof of Theorem 1 relies on the fact that redex patterns are preserved
by backward trace slicing. Therefore, for i = 1, . . . , n, the rule ri can be applied
to any concretization t′i−1 of term t•i−1 since the redex pattern of ri does appear
in t•i−1, and hence in t′i−1. A detailed proof of Theorem 1 is included in Appendix
A.

5 Backward Trace Slicing for Extended Rewrite Theories

In this section, we consider an extension of our basic slicing methodology that
allows us to deal with extended rewrite theories. An extended rewrite theory
R = (Σ,E,R) is a rewrite theory where the equational theory (Σ,E) may
contain associativity and commutativity axioms, andRmay contain collapsing as
well as nonleft-linear rules. Moreover, we provide a further extension to deal with
the built-in operators existing in Maude, that is, operators that are not equipped
with an explicit functional definition (e.g., Maude arithmetical operators and if-
then-else conditional operators).

It is worth noting that all the proposed extensions are restricted to the la-
beling procedure of Section 4.1, leaving the backbone of our slicing technique
unchanged.

5.1 Dealing with collapsing and nonleft-linear rules

Collapsing Rules. The main difficulty with collapsing rules is that they have
a trivial contractum pattern, which consists in the empty context �; hence, it is
not possible to propagate labels from the left-hand side of the rule to its right-
hand side. This makes the rule labeling procedure of Definition 1 completely
unproductive for trace slicing.

In order to overcome this problem, we keep track of the labels in the left-hand
side of the collapsing rule r, whenever a rewrite step involving r takes place. This
amounts to extending the labeling procedure of Definition 3 as follows.

Definition 11. (rewrite step labeling for collapsing rules) Let µ : t
r,σ→ s be a

rewrite step s.t. σ = {x1/t1, . . . , xn/tn}. Let Lr be a labeling for the rule r. For
the case of a rewrite step given by using a collapsing rule r : λ→ xi, the labeling
procedure formalized in Definition 3 is extended as follows:

s4. Let ti be the term introduced in s via the binding xi/ti ∈ σ, for some i ∈
{1, . . . , n}. Then, the label li of the root symbol of ti in s is replaced by a new
composite label lcli, where lc is formed by joining all the labels appearing in
the redex pattern of rLr .

11

Example 5. Consider again the labeled collapsing rule fα(aβ , x) → x, together
with the rewrite step µ : f(a, h(b)) → h(b) and matching substitution σ =
{x/h(b)}. Let Lσ = {{Λ 7→ γ, 1 7→ δ}} be the labeling for σ. Then, by applying
Definition 11, the labeling of µ is

fα(aβ , hγ(bδ))→ hαβγ(bδ)

and the trace slice for f(a, h(b)) → h(b) w.r.t. the slicing criterion {Λ} is
f(a, h(•))→ h(•).

Note that if we had merely applied Definition 3 instead of Definition 11, we
would have got the following labeling for µ: fα(aβ , hγ(bδ)) → hγ(bδ), which is
undesirable since it does not correctly record the redex pattern information that
we need for backward trace slicing: e.g. if we slice the rewriting step µ w.r.t. {Λ}
using this wrong labeling, we would get f(•, h(•))→ h(•).

Nonleft-linear Rules. The trace slicing technique we described in Section 4
does not work for nonleft-linear TRS. Consider the rule: r : f(x, y, x)→ g(x, y)
and the one-step trace T : f(a, b, a)→ g(a, b). If we are interested in tracing back
the symbol g that occurs in the final state g(a, b), we would get the following
trace slice T • : f(•, •, •) → g(•, •). However, f(a, b, b) is a concretization of
f(•, •, •) that cannot be rewritten by using r. In the following, we augment
Definition 11 in order to also deal with nonleft-linear rules.

Definition 12. (rewrite step labeling procedure for nonleft-linear rules) Let µ :

t
r,σ→ s be a rewrite step s.t. σ = {x1/t1, . . . , xn/tn}. Let Lσ = {x1/t1, . . . , xn/tn}

be a labeling for the substitution σ. For the case of a rewrite step given by us-
ing a nonleft-linear rule r, the labeling procedure formalized in Definition 11 is
extended as follows:

s5. For each variable xj that occurs more than once in the left-hand side of the
rule r, the following steps should be performed:
• we form a new label lxj by joining all the labels in Cod(Lxj/t) where
Lxj/t ∈ Lσ;

• let ls be the label of the root symbol of s. Then, ls is replaced by a new
composite label lxj ls.

Example 6. Consider the nonleft-linear (labeled) rule fα(x, y, x)→ gα(x, y) to-
gether with the rewrite step µ : f(g(a), b, g(a))→ g(g(a), b), and matching sub-
stitution σ = {x/g(a), y/b}. Then, for the labeling Lσ = {Lx/g(a), Ly/b}, with
Lx/g(a) = {Λ 7→ β, 1 7→ γ} and Ly/b = {Λ 7→ δ}, the labeled version of µ is

fα(gβ(aγ), bδ, gβ(aγ))→ gαβγ(gβ(aγ), bδ).

Finally, by considering the criterion {1}, we can safely trace back the symbol g
at the position 1 of the term g(g(a), b) and obtain the following trace slice

f(g(a), •, g(a))→ g(g(•), •).

12

5.2 Built-in Operators

In practical implementations of RWL (e.g., Maude [9]), several commonly used
operators are pre-defined (e.g., arithmetic and boolean operators, if-then-else
constructs). Obviously, backward trace slicing of function calls involving built-in
operators is not supported by our basic technique. This would require an explicit
(rule-based or equational) specification of every single operator involved in the
execution trace. To overcome this limitation, we further extend the labeling
procedure of Definition 12 in order to deal with built-in operators.

Definition 13. (rewrite step labeling procedure for built-in operators) For the
case of a rewrite step µ : C[op(t1, . . . , tn)]→ C[t′] involving a call to a built-in, n-
ary operator op, we extend Definition 12 by introducing the following additional
case:

s6. Given an initial labeling Lop for the term op(t1, . . . , tn),
• each symbol occurrence in t′ is labeled with a new label that is formed by

joining the labels of all the (labeled) arguments t1, . . . , tn of op;
• the remaining symbol occurrences of C[t′] that are not considered in the

previous step inherit all the labels appearing in C[op(t1, . . . , tn)].

For example, by applying Definition 13, the addition of two natural
numbers implemented through the built-in operator + might be labeled as
+α(7β , 8γ)→ 15βγ .

5.3 Associative-Commutative Axioms

Let us finally consider an extended rewrite theory R = (Σ,∆ ∪B,R), where B
is a set of associativity (A) and commutativity (C) axioms that hold for some
function symbols in Σ. As described in Section 3, an execution trace in R may
contain rewrite steps modulo B that have the form t =B t′ → t′′, where =B is the
congruence relation induced by the set of axioms B. Now, since B only contains
associativity/commutativity (AC) axioms, terms can be represented by means
of a single representative of their AC congruence class, called AC canonical
form [11]. This representative is obtained by replacing nested occurrences of
the same AC operator by a flattened argument list under a variadic symbol,
whose elements are sorted by means of some linear ordering. In other words, if
a function symbol f is declared to be associative, then the subterms rooted by
f of any term t are flattened; and if f is also commutative, the subterms are
sorted with respect to a fixed (internal) ordering 5.

The inverse process to flat transformation is unflat transformation, which is
nondeterministic in the sense that it generates all the unflattended terms that
are equivalent (modulo AC) to the flattened term.

For example, consider a binary AC operator f together with the standard lex-
icographic ordering over symbols. Given the B-equivalence f(b, f(f(b, a), c)) =B

5 Specifically, Maude uses the lexicographic order of symbols.

13

f(f(b, c), f(a, b)), we can represent it by using the “internal sequence”
f(b, f(f(b, a), c)) →∗flatB

f(a, b, b, c) →∗unflatB
f(f(b, c), f(a, b)), where the first

one corresponds to the flattening transformation sequence that obtains the AC
canonical form, while the second one corresponds to the inverse, unflattening
one.

These two processes are typically hidden inside the B-matching algorithms6

that are used to implement rewriting modulo B.

The key idea for extending our labeling procedure in order to cope with B-
equivalence =B is to exploit the flat transformation (→∗flatB

) and unflat transfor-

mation (→∗unflatB
) mentioned above. Without loss of generality, we assume that

flat/unflat transformations are stable w.r.t. the lexicographic ordering over posi-
tions v7 (i.e., the relative ordering among the positions of multiple occurrences
of a term is preserved).

This assumption allows us to trace back arguments of commutative operators,
since multiple occurrences of the same symbol can be precisely identified.

Definition 14. (AC Labeling.) Let f be an associative-commutative operator
and B be the AC axioms for f . Consider the B-equivalence t1 =B t2 and the
corresponding (internal) flat/unflat transformation T : t1 →∗flatB

s →∗unflatB
t2.

Let L be an initial labeling for t1. The labeling procedure for t1 =B t2 is as
follows.

1. (flattening) For each flattening transformation step t|v →flatB t′|v in T for
the symbol f , a new label lf is formed by joining all the labels attached to
the symbol f in any position w of tL such that w = v or w ≥ v, and every
symbol on the path from v to w is f ; then, label lf is attached to the root
symbol of t′|v.

2. (unflattening) For each unflattening transformation step t|v →unflatB t′|v in

T for the symbol f , the label of the symbol f in the position v of tL is attached
to the symbol f in any position w of t′ such that w = v or w ≥ v, and every
symbol on the path from v to w is f .

3. The remaining symbol occurrences in t′ that are not considered in cases 1 or
2 above inherit the label of the corresponding symbol occurrence in t.

Example 7. Consider the transformation sequence

f(b, f(b, f(a, c)))→∗flatB
f(a, b, b, c)→∗unflatB

f(f(b, c), f(a, b))

6 See [8] (Section 4.8) for an in-depth discussion on matching and simplification modulo
AC in Maude.

7 The lexicographic ordering v is defined as follows: Λ v w for every position w, and
given the positions w1 = i.w′1 and w2 = j.w′2, w1 v w2 iff i < j or (i = j and
w′1 v w′2). Obviously, in a practical implementation of our technique, the considered
ordering among the terms should be chosen to agree with the ordering considered
by flat/unflat transformations in the RWL infrastructure.

14

by using Definition 14, the associated transformation sequence can be labeled as
follows:

fα(bβ , fγ(bδ, f ε(aζ , cη)))→∗flatB
fαγε(aζ , bβ , bδ, cη)→∗unflatB

fαγε(fαγε(bβ , cη), fαγε(aζ , bδ))

Note that the original order between the two occurrences of the constant b is
not changed by the flat/unflat transformations. For example, in the first term,
bβ is in position 1 and bδ is in position 2.1 with 1 v 2.1, whereas, in the last
term, bβ is in position 1.1 and bδ is in position 2.2 with 1.1 v 2.2.

Finally, observe that the methodology described in this section can be easily
extended to deal with other equational attributes such as identity (U) by ex-
plicitly encoding the internal transformations performed by Maude via suitable
rewrite rules.

5.4 Extended Soundness

Soundness of the backward trace slicing algorithm for the extended rewrite the-
ories is established by the following theorem which properly extends Theorem
1. The proof of such an extension can be found in Appendix A.

Theorem 2. (extended soundness) Let R = (Σ,E,R) be an extended rewrite
theory. Let T be an execution trace in the rewrite theory R, and let O be a slicing
criterion for T . Let T • : t•0

r1→ t•1 . . .
rn→ t•n be the corresponding trace slice w.r.t.

O. Then, for any concretization t′0 of t•0, it holds that T ′ : t′0
r1→ t′1 . . .

rn→ t′n is
an execution trace in R, and t•i ∝ t′i, for i = 1, . . . , n.

6 Experimental Evaluation

We have developed a prototype implementation of our slicing methodology which
is publicly available at http://www.dsic.upv.es/~dromero/slicing.html.
The implementation is written in Maude and consists of approximately 800
lines of code. Maude is a high-performance, reflective language that supports
both equational and rewriting logic programming, which is particularly suitable
for developing domain-specific applications [12, 13]. The reflection capabilities of
Maude allow metalevel computations in RWL to be handled at the object-level.
This facility allows us to easily manipulate computation traces of Maude itself
and eliminate the irrelevant contents by implementing the backward slicing pro-
cedures that we have defined in this paper. Using reflection to implement the
slicing tool has one important additional advantage, namely, the ease to rapidly
integrate the tool within the Maude formal tool environment [10], which is also
developed using reflection.

The prototype takes a Maude execution trace and a slicing criterion as input,
and delivers a trace slice together with some quantitative information regarding
the reduction achieved. The outcome is formatted in HTML, so it can be easily
inspected by means of a Web browser.

15

In order to evaluate the usefulness of our approach, we benchmarked our
prototype with several examples of Maude applications:

War of Souls (WoS). WoS is a nontrivial producer/consumer example that
is modeled as a game in which an angel and a daemon fight to conquer the
souls of human beings. Basically, when a human being passes away, his/her
soul is sent to heaven or to hell depending on his/her faith as well as the
strength of the angel and the daemon in play.

Fault-Tolerant Communication Protocol (FTCP). FTCP is a Maude
specification borrowed from [16] that models a fault-tolerant, client-server
communication protocol. There can be many clients and many servers, where
a server can serve many clients; however, each client communicates with a
single server. Also, the communication environment might be faulty —that
is, messages can arrive out of order, can be duplicated, or can be lost.

Web-TLR: the Web application verifier. Web-TLR [3, 2] is a software
tool designed for model-checking real-size Web applications (Web-mailers,
Electronic forums, etc.) which is based on rewriting logic. Web applications
are expressed as rewrite theories which can be formally verified by using the
Maude built-in LTL(R) model checker [4].

A detailed description of these Maude applications and the Maude code are
available at the URL mentioned above.

We have tested our tool on some execution traces which were generated by
the Maude applications described above by imposing different slicing criteria.
For each application, we considered two execution traces that were sliced using
two different criteria. Table 1 summarizes the results we achieved.

As for the WoS example, we have chosen criteria that allow us to backtrace
both the values produced and the entities in play — e.g., the criterion WoS.T1.O2

isolates the angel and daemon behaviours along the trace T1.
Execution traces in the FTCP example represent client-server interactions.

In this case, the chosen criteria aim at (i) isolating a server and/or a client
in a scenario which involves multiple servers and clients (FTCP.T2.O1), and (ii)
tracking the response generated by a server according to a given client request
(FTCP.T1.O1).

In the last example, we have used Web-TLR to verify two LTL(R) properties
of a Webmail application. The considered execution traces are much bigger for
this program, and correspond to the counterexamples produced as outcome by
the built-in model-checker of Web-TLR. In this case, the chosen criteria allow
us to monitor the messages exchanged by the Web browsers and the Webmail
server, as well as to focus our attention on the data structures of the interacting
entities (e.g., browser/server sessions, server database).

For each criterion, Table 1 shows the size of the original trace and that of the
computed trace slice, both measured as the length of the corresponding string.
The %reduction column shows the percentage of reduction achieved. These re-
sults are very encouraging, and show an impressive reduction rate (up to ∼ 95%).
Actually, sometimes the trace slices are small enough to be easily inspected by

16

Example
Example Original Slicing Sliced %
trace trace size criterion trace size reduction

WoS

WoS.T1 776
WoS.T1.O1 201 74.10%
WoS.T1.O2 138 82.22%

WoS.T2 997
WoS.T2.O1 404 58.48%
WoS.T2.O2 174 82.55%

FTCP

FTCP.T1 2445
FTCP.T1.O1 895 63.39%
FTCP.T1.O2 698 71.45%

FTCP.T2 2369
FTCP.T2.O1 364 84.63%
FTCP.T2.O2 707 70.16%

Web-TLR
Web-TLR.T1 31829

Web-TLR.T1.O1 1949 93.88%
Web-TLR.T1.O2 1598 94.97%

Web-TLR.T2 72098
Web-TLR.T2.O1 9090 87.39%
Web-TLR.T2.O2 7119 90.13%

Table 1. Summary of the reductions achieved.

the user, who can restrict her attention to the part of the computation she wants
to observe getting rid of those data which are useless or even noisy w.r.t. the
considered slicing criterion.

7 Related Work

Our backward tracing relation (Definition 4) extends a previous tracing relation
that was formalized in [6] for orthogonal TRSs. In [6], a label is formed from
atomic labels by using the operations of sequence concatenation and underlin-
ing, which are used to record every rule application (e.g., a, b, ab, abcd, are
labels). Collapsing rules are simply avoided by coding them away. This is done
by replacing each collapsing rule λ → x with the rule λ → ε(x), where ε is a
unary dummy symbol. Then, in order to lift the rewrite relation to terms con-
taining ε occurrences, infinitely many new extra-rules are added that are built
by saturating all left-hand sides with ε(x). In contrast to [6], we use a more
sophisticated notion of labeling, where composite labels are interpreted as sets
of atomic labels, which allows us to deal with collapsing as well as nonleft-linear
rules in an effective way.

The work that is most closely related to ours is [14]. [14] formalizes a notion
of dynamic dependence among symbols by means of contexts and studies its
application to program slicing of TRSs that may include collapsing as well as
nonleft-linear rules. Both the creating and the created contexts associated with a
reduction (i.e., the minimal subcontext that is needed to match the left-hand side
of a rule and the minimal context that is “constructed” by the right-hand side of
the rule, respectively) are tracked. Intuitively, these concepts are similar to our
notions of redex and contractum patterns. The main differences with respect to
our work are as follows. First, in [14] the slicing is given as a context, while we

17

consider term slices. Second, the slice is obtained only on the first term of the
sequence by the transitive and reflexive closure of the dependence relation, while
we slice the whole execution trace, step by step. Obviously, their notion of slice
is smaller, but we think that our approach can be more useful for trace analysis
and program debugging.

An extension of the method is described in [22], which provides a generic
definition of labeling that works not only for orthogonal TRSs as is the case
of [14] but for the wider class of all left-linear TRSs. Specifically, [22] describes a
methodology of static and dynamic tracing which is mainly based on the notion
of sample of a traced proof term —i.e., a pair (µ, P) that records a rewrite step
µ = s → t, and a set P of reachable positions in t from a set of observed
positions in s. The tracing proceeds forward, while ours employs a backward
strategy which is particularly convenient for trace analysis.

Finally, [14] and [22] apply to TRSs whereas we deal with the richer frame-
work of RWL that considers equations and equational axioms, namely rewriting
modulo equational theories.

8 Conclusions

Trace slicing has been widely studied in imperative languages, where the depen-
dence among program statements is generally determined by a program depen-
dency graph (e.g., see [20] and the references therein). However, the notion of
“dependence” in term rewriting languages, and particularly in RWL, is much
more involved due to the combination of equations and rules. To the best of our
knowledge, no trace slicing methodology for rewriting logic theories has yet been
proposed.

The key idea behind our backward trace slicing technique consists in trac-
ing back —through the rewrite sequence— all the relevant symbols of the final
state that we are interested in. Given a slicing criterion O for a trace T , our
algorithm computes a trace slice T • that contains only the relevant information
of T with respect to O. The trace slicing technique can be applied to execution
trace analysis of sophisticated rewrite theories, which can include equations and
equational axioms as well as nonleft-linear and collapsing rules.

The proposed slicing technique has been implemented in a prototype system.
Preliminary experiments demonstrate that the system works very satisfactorily
on our benchmarks; e.g., we obtained trace slices that achieved a reduction of
up to almost 95% in reasonable time (max. 0.5s on a Linux box equipped with
an Intel Core 2 Duo 2.26GHz and 4Gb of RAM memory). Naturally, there is
still much room for improvement, and we are currently working on increasing
the efficiency of the tool. Also, as future work, we plan to deal with the exe-
cution traces of more sophisticated theories that may include membership and
conditional equations.

18

References

1. Alpuente, M., Ballis, D., Baggi, M., Falaschi, M.: A Fold/Unfold Transformation
Framework for Rewrite Theories extended to CCT. In: Proc. 2010 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, PEPM 2010. pp. 43–
52. ACM (2010)

2. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Model-checking Web Applications
with Web-TLR. In: 8th Int’l Symp. on Automated Technology for Verification and
Analysis (ATVA 2010). Lecture Notes in Computer Science, vol. 6252, pp. 341–346.
Springer (2010)

3. Alpuente, M., Ballis, D., Romero, D.: Specification and Verification of Web Appli-
cations in Rewriting Logic. In: Formal Methods, Second World Congress FM 2009.
Lecture Notes in Computer Science, vol. 5850, pp. 790–805. Springer (2009)

4. Bae, K., Meseguer, J.: A Rewriting-Based Model Checker for the Linear Temporal
Logic of Rewriting. In: Proc. of the 9th International Workshop on Rule-Based
Programming (RULE’08). ENTCS, Elsevier (2008)

5. Baggi, M., Ballis, D., Falaschi, M.: Quantitative Pathway Logic for Computational
Biology. In: Proc. of 7th International Conference on Computational Methods in
Systems Biology (CMSB ’09). Lecture Notes in Computer Science, vol. 5688, pp.
68–82. Springer (2009)

6. Bethke, I., Klop, J.W., de Vrijer, R.: Descendants and origins in term rewriting.
Inf. Comput. 159(1-2), 59–124 (2000)

7. Chen, F., Rosu, G.: Parametric trace slicing and monitoring. In: TACAS. Lecture
Notes in Computer Science, vol. 5505, pp. 246–261. Springer (2009)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talco,
C.: Maude Manual (Version 2.4). Tech. rep., SRI International, Computer Science
Laboratory (2009), available at http://maude.cs.uiuc.edu/maude2-manual/

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude: A High-Performance Logical Framework, LNCS, vol. 4350.
Springer-Verlag (2007)

10. Clavel, M., Durán, F., Hendrix, J., Lucas, S., Meseguer, J., Ölveczky, P.C.: The
Maude Formal Tool Environment. In: CALCO. Lecture Notes in Computer Science,
vol. 4624, pp. 173–178. Springer (2007)

11. Eker, S.: Associative-Commutative Rewriting on Large Terms. In: Proc. of 14th In-
ternational Conference,Rewriting Techniques and Applications (RTA ’03). Lecture
Notes in Computer Science, vol. 2706, pp. 14–29. Springer (2003)

12. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker and
its implementation. In: Model Checking Software: Proc. 10 th Intl. SPIN Workshop.
LNCS, vol. 2648, pp. 230–234. Springer (2003)

13. Escobar, S., Meadows, C., Meseguer, J.: A Rewriting-Based Inference System for
the NRL Protocol Analyzer and its Meta-Logical Properties. Theoretical Computer
Science 367(1-2), 162–202 (2006)

14. Field, J., Tip, F.: Dynamic dependence in term rewriting systems and its ap-
plication to program slicing. In: Proc. of the 6th Int’l Symposium on Program-
ming Language Implementation and Logic Programming, PLILP ’94. pp. 415–431.
Springer-Verlag, London, UK (1994)

15. Mart́ı-Oliet, N., Meseguer, J.: Rewriting Logic: Roadmap and Bibliography. The-
oretical Computer Science 285(2), 121–154 (2002)

16. Meseguer, J.: The Temporal Logic of Rewriting: A Gentle Introduction. In: Con-
currency, Graphs and Models: Essays Dedicated to Ugo Montanari on the Occasion

19

of his 65th Birthday. vol. 5065, pp. 354–382. Springer-Verlag, Berlin, Heidelberg
(2008)

17. Réty, P.: Improving basic narrowing techniques. In: Proc. the Conf. on Rewriting
Techniques and Applications. pp. 228–241. Springer LNCS 256 (1987)

18. Riesco, A., Verdejo, A., Caballero, R., Mart́ı-Oliet, N.: Declarative Debugging of
Rewriting Logic Specifications. In: Recent Trends in Algebraic Development Tech-
niques, 19th International Workshop, WADT 2008. Lecture Notes in Computer
Science, vol. 5486, pp. 308–325. Springer (2009)

19. Riesco, A., Verdejo, A., Mart́ı-Oliet, N.: Declarative Debugging of Missing Answers
for Maude Specifications. In: Proc. RTA 2010. LIPIcs, vol. 6, pp. 277–294. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

20. Rosu, G., Havelund, K.: Rewriting-Based Techniques for Runtime Verification.
Autom. Softw. Eng. 12(2), 151–197 (2005)

21. Talcott, C.: Pathway logic. Formal Methods for Computational Systems Biology
5016, 21–53 (2008)

22. TeReSe (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge,
UK (2003)

23. Viry, P.: Rewriting: An effective model of concurrency. In: Proceedings of the 6th
Int’l PARLE Conference on Parallel Architectures and Languages Europe. pp.
648–660. Springer-Verlag, London, UK (1994)

20

A Proofs of Theorems 1 and 2

Proof of Theorem 1

We first demonstrate some auxiliary results which facilitate the proof of Theo-
rem 1. The following auxiliary result is straightforward.

Lemma 1. Let t• be a term slice, and let t′ be a term such that t• ∝ t′. For
every position w ∈ Pos(t′), it holds that, either root(t′|w) = root(t•|w), or there

exists a position u of t• such that u ≤ w and root(t•|u) = •.

Proof. Immediate by Definition 8. ut

The following definitions are auxiliary. Let C be a context. We define the set
of positions of C as the set Pos(C) = {v | root(C|v) 6= �}. Given a term t, by
pathw(t), we denote the set of symbols in t that occur in the path from its root
to the position w of t, e.g., path(2.1)(f(a, g(b), c)) = {f, g, b}.

Definition 15. Let r : λ→ ρ be a rule of R. Let µ : s
r,σ→ t be a rewrite step such

that s = C[λσ] and t = C[ρσ]. Given a position w, we say that w is involved in
µ, if there exist w′ and w′′ such that w = w′.w′′, C|w′ = � and w′′ ∈ Pos(ρσ).

The following lemma establishes that, if a relevant position is involved in a
rewrite step, then the origin position relation preserves the redex pattern of the
rule.

Lemma 2. Let r : λ → ρ be a rule of an elementary rewrite theory R. Let

µ : s
r,σ→ t be a rewrite step such that s = C[λσ] and t = C[ρσ], where σ is a

substitution and C is a context. Let L be a labeling for the rewrite step µ, and
w ∈ Pos(t).

1. if w ∈ Pos(C), then CLµw = {v ∈ Pos(C) | w = v.v′}
2. if w = w′.w′′, C|w′ = �, and w′′ ∈ Pos(ρσ), then CLµw ⊇ {w′.v′ ∈ Pos(s) |

v′ ∈ Pos(λ)}

Proof. Given the rule r : λ→ ρ and the labeling L for the rewrite step µ : s
r,σ→ t,

let us consider the labeled rewrite step µL : sL
rL,σL→ tL. By Definition 3, we can

decompose the labeling L into three labelings LC , Lr, and Lσ that respectively
label the context C, the redex and the contractum patterns appearing in µ,
and the terms in µ introduced by the substitution σ. In other words, we have
sL = CLC [λLrσLσ] and tL = CLC [ρLrσLσ].

Let us prove the two claims independently.
Claim 1. We assume that w ∈ Pos(t) and w ∈ Pos(C). Since the context C has
the same initial labeling CLC in both s and t, and the sets Cod(LC), Cod(Lr),
and Cod(Lσ) are pairwise disjoint, the set of origin positions CLs→tw in s is
the set of positions lying on the path from the root position of s to w. Hence,
CLµw = {v ∈ Pos(C) | w = v.v′}.

21

Claim 2. We assume that w = w′.w′′, C|w′ = �, and w′′ ∈ Pos(ρσ). Then,
since r belongs to an elementary rewrite theory R, r is non-collapsing. This
implies that there exists a labeled symbol f l

′ ∈ pathw(tL) belonging to the
contractum pattern of the rule r. By Definition 1, for each labeled symbol gl

in the redex pattern of r, we have that l ⊆ l′. Now, since the redex pattern of
r is embedded into s and the contractum pattern of r is embedded into t, the
inclusion CLµw ⊇ {v.v′ ∈ Pos(s) | v′ ∈ Pos(λ)} trivially holds by Definition 4.

ut

The following lemma establishes that, given the rewrite step µ : t0
r→ t1 and

a term slice t•0 of t0, any concretization of t•0 is reduced by the rule r to the
corresponding term slice concretization of t1.

Lemma 3. Let r : λ → ρ be a rule of an elementary rewrite theory R. Let

µ : t0
r,σ→ t1 be a rewrite step such that t0 = C[λσ] and t1 = C[ρσ], where σ is a

substitution and C is a context. Let L be a labeling for the rewrite step µ, and

[P0, P1] be the sequence of the relevant position sets for µ : t0
r,σ→ t1 w.r.t. the

slicing criterion O. Let t•0 = slice(t0, P0), and t•1 = slice(t1, P1).

1. if P1 ⊆ Pos(C) then t•0 = t•1.
2. if P1 ∩ {w|w = v.v′, C|v = �, and v′ ∈ Pos(ρσ)} 6= ∅, then for any con-

cretization t′0 of t•0, we have that t′0
r,σ′→ t′1 where t•1 ∝ t′1.

Proof. We proof the two claims separately.
Claim 1. Let P1 ⊆ Pos(C). Then, by Lemma 2 (Claim 1), for any w ∈ P1,
CLµw = {v ∈ Pos(C) | w = v.v′}. Additionally, by Definition 6, P0 =⋃
w∈P1

(CLµw), and hence P0 =
⋃
w∈P1

{v ∈ Pos(C) | w = v.v′}. Therefore, it
holds that (i) P1 ⊆ P0 ⊆ Pos(C), and for any v ∈ P0 \ P1, there exists a po-
sition v′ such that w = v.v′ for some w ∈ P1; (ii) by Definition 7, the function
slice(t, P) delivers a term slice t• where all the symbols of t that do not occur
in the path connecting the root position of t with some position w ∈ P are ab-
stracted by the • symbol. Now, since t•0 = slice(t0, P0) and t•1 = slice(t1, P1), by
(i) and (ii), we can conclude that λσ and ρσ are abstracted by •, and the context
C is abstracted by the term slice C• in both t0 and t1. Hence, t•0 = C•[•] = t•1.
Claim 2. We assume P1 ∩ {w|w = v.v′, C|v = �, and v′ ∈ Pos(ρσ)} 6= ∅.
Then, there exists a position w ∈ P1 such that w ∈ {w|w = v.v′, C|v = �,
and v′ ∈ Pos(ρ)}. By Lemma 2 (Claim 2), it follows that CLµw ⊇ {v.v′ ∈
Pos(t0) | v′ ∈ Pos(λ)}. By Definition 6, P0 =

⋃
w∈P1

(CLµw), and hence P0 ⊇
{v.v′ ∈ Pos(t0) | v′ ∈ Pos(λ)}. Now, by Definition 7 and the fact that P0 ⊇
{v.v′ ∈ Pos(t0) | v′ ∈ Pos(λ)}, the redex pattern of the rule r is embedded into
t•0 = slice(t0, P0). In other words, t•0 = C•[λσ•], where C• is a term slice for
the context C, and σ• represents the term slices for the terms introduced by
the substitution σ. Thus, by Lemma 1, any concretization t′0 of t•0 has the form
t′0 = C ′[λσ′], where C• ∝ C ′ and for each x/t ∈ σ′, there exists x/t• ∈ σ• such
that t• ∝ t. Note also that t•0 embeds the redex pattern λ� of r. Furthermore,
since r belongs to the elementary rewrite theory R, r is left-linear. Thus, the

22

following rewrite step t′0
r,σ′→ t′1 can be executed for any substitution σ′. The

rewrite step t′0
r,σ′→ t′1 can be decomposed as follows: t′0 = C ′[λσ′]

r,σ′→ C ′[ρσ′],
for some context C ′ and substitution σ′. Moreover, by definition of rewrite step,
t′1 embeds the contractum pattern of r. Finally, t•1 = C•[ρ•σ•], and thus t′1 is a
concretization of t•1. ut

The following proposition allows the soundness of our methodology to be
proved for one-step traces on an elementary rewrite theory.

Proposition 1. Let R be an elementary rewrite theory. Let T be an execution
trace in R, and let O be a slicing criterion for T . Let T • : t•0

r1→ t•1 be the
trace slice w.r.t. O of T . Then, for any concretization t′0 of t•0, it holds that

T ′ : t′0
r1→ t′1 is an execution trace in R such that t•1 ∝ t′1.

Proof. Given the trace slice T • : t•0
r1→ t•1 w.r.t. O of T , let [P0, P1] be the

sequence of the relevant position sets of T w.r.t. O. We have (i) t•0 = slice(s0, P0)

and t•1 = slice(s1, P1), where s0
r1→ s1 is a rewrite step occurring in T ; (ii) t•0 6= t•1.

Let r1 be the rule λ→ ρ. The rewrite step s0
r1→ s1 can be decomposed as follows:

s0 = C[λσ]
r1→ C[ρσ] = s1, for some context C and substitution σ.

Since R is elementary and t•0 6= t•1, by Claim 1 of Lemma 3, P1 6⊆ Pos(C).
Hence, there exists a position w ∈ P1 such that w = v.v′ and v′ ∈ Pos(ρσ).
Also, because R is elementary, we can apply Claim 2 of Lemma 3, and for any
concretization t′0 of t•0, we get t′0

r1→ t′1 such that t′1 is a concretization of t•1. ut

Theorem 1. (soundness) Let R be an elementary rewrite theory. Let T be an

execution trace in R and let O be a slicing criterion for T . Let T • : t•0
r1→ t•1 . . .

rn→
t•n be the corresponding trace slice w.r.t. O. Then, for any concretization t′0 of

t•0, it holds that T ′ : t′0
r1→ t′1 . . .

rn→ t′n is an execution trace in R, and t•i ∝ t′i, for
i = 1, . . . , n.

Proof. The proof proceeds by induction on the length of the trace slice T • and
exploits Proposition 1 to prove the inductive case. Routine. ut

Proof of Theorem 2

In oder to prove Theorem 2, we use the same proof scheme as for elementary
rewrite theories, since the extended technique described in Section 5 is only con-
cerned with suitable extensions of the labeling procedure given in Definition 3,
which do not affect the overall backward trace slicing methodology.

Let us start by proving an extension of Lemma 2 (Claim 2), which holds for
nonleft-linear as well as collapsing rules.

Lemma 4. Let r : λ → ρ be a rule that is either nonleft-linear or collapsing.

Let µ : s
r,σ→ t be a rewrite step such that s = C[λσ] and t = C[ρσ], where σ is a

substitution and C is a context. Let L be a labeling for the rewrite step µ, and
w ∈ Pos(t). Then,

23

1. if w ∈ Pos(C), then CLµw = {v ∈ Pos(C) | w = v.v′}
2. if w = w′.w′′, C|w′ = �, and w′′ ∈ Pos(ρσ), then CLµw ⊇ {w′.v′ ∈ Pos(s) |

v′ ∈ Pos(λ)}

Proof. We prove the two claims separately.
Claim 1. The proof is identical to the proof of Claim 1 of Lemma 2.
Claim 2. To prove the lemma, we distinguish three cases.

Case 1: Rule r is collapsing. Given the collapsing rule r = λ → ρ where
ρ = x with x ∈ Var(λ), let us consider the term ti introduced by the substi-

tution σ via the binding x/ti, and we have µ = C[λσ]
r→ C[ti]. Let us also

consider the labeled rewrite step µL : sL
rLr ,σLσ→ tL via the labeling L. By

Definition 3, we have sL = CLC [λLrσLσ] and tL = CLC [tLσi].

Let f l
′

be the labeled root symbol of tLσi . By Definition 11 (Step s4), we have
that l′ = lλli, where lλ is formed by joining all the labels appearing in the
redex pattern λLr and li is the label of the root of the labeled term tLσi . This
implies that, for each labeled symbol gl in the redex pattern of r, we have that
l ⊆ l′. Furthermore, by hypothesis, we have that w ∈ C[ti] and w′′ ∈ Pos(ti).
Hence, by Definition 4, the inclusion CLµw ⊇ {v.v′ ∈ Pos(s) | v′ ∈ Pos(λ)}
trivially holds.

Case 2: rule r is nonleft-linear. Given the nonleft-linear rule r, the proof is
perfectly analogous to the proof of Lemma 2 since, by Definition 12 (Step
s5), the label of each symbol in the contractum pattern of the rule r includes
all the labels appearing in the redex pattern of r.

Case 3: rule r is collapsing and nonleft-linear. Since r is both collapsing
and nonleft-linear, µ is labelled according to Definition 11 (Step s4) and Def-
inition 12 (Step s5). Therefore, we can prove the claim by simply combining
the arguments used to prove Case 1 ad Case 2.

ut

The following Lemma extends Lemma 3 to deal with collapsing and nonleft-
linear rules.

Lemma 5. Let r : λ → ρ be a rule which is either left-linear or collapsing. Let

µ : t0
r,σ→ t1 be a rewrite step such that t0 = C[λσ] and t1 = C[ρσ], where σ is a

substitution and C is a context. Let L be a labeling for the rewrite step µ, and

[P0, P1] be the sequence of the relevant position sets for µ : t0
r,σ→ t1 w.r.t. the

slicing criterion O. Let t•0 = slice(t0, P0), and t•1 = slice(t1, P1). Then,

1. if P1 ⊆ Pos(C) then t•0 = t•1.
2. if P1 ∩ {w|w = v.v′, C|v = �, and v′ ∈ Pos(ρσ)} 6= ∅, then for any con-

cretization t′0 of t•0, we have that t′0
r,σ′→ t′1 where t•1 ∝ t′1.

Proof. We proof the two claims separately.

Claim 1. The proof is identical to the proof of Claim 1 of Lemma 3.
Claim 2. To prove the lemma, we distinguish three cases.

24

Case 1: rule r is collapsing. Given the collapsing rule r, the proof is perfectly
analogous to the one of Lemma 3 Claim 2. By using Lemma 4 instead of
Lemma 2, we are still able to prove that the redex pattern of r embedded
in t0 is also embedded in t•0, and hence for any concretization t′0 of t•0, the

rewrite step t′0
r,σ′→ t′1 can be proved. Finally, by using the same argument of

Lemma 3 Claim 2, we conclude that t•1 ∝ t′1.
Case 2: rule r is nonleft-linear. Given the nonleft-linear rule r, the proof is

similar to the one of Lemma 3. By exploiting Lemma 4 and Definition 12
(Step s5), we can show that (i) the redex pattern of r embedded in t0 is
also embedded in t•0, and (ii) for each term t introduced in t0 by a binding
x/t ∈ σ such that x occurs multiple times in λ, t is preserved in t•0 (i.e., t is
not abstracted by • in t•0). By (i) and (ii), it is immediate to prove that, for

any concretization t′0 of t•0, the rewrite step t′0
r,σ′→ t′1 can be proved. Finally,

by using the same argument of Lemma 3 Claim 2, we can show that t•1 ∝ t′1.
Case 3: rule r is collapsing and nonleft-linear. Firstly we observe that, as

the rule r is collapsing, by Lemma 4 the redex pattern of r embedded in t0
is also embedded in t•0, and hence for any concretization t′0 of t•0, the redex
pattern of r is embedded in t′0 as well. Secondly, since r is nonleft-linear, by
Lemma 4 and Definition 12 (Step s5), for each term t introduced in t0 by a
binding x/t ∈ σ such that x occurs multiple times in λ, t is preserved in t•0.
Hence, t is also embedded in t′0, for any concretization t′0 of t•0. From the two
facts above, it directly follows that for any t′0 such that t•0 ∝ t′0, the rewrite

step t′0
r,σ′→ t′1 can be proved. Finally, by using the same argument of Lemma

3 Claim 2, we can show that t•1 ∝ t′1.
ut

The following proposition allows us to prove the soundness of our methodol-
ogy for one-step traces on an extended rewrite theory.

Proposition 2. Let R be an extended rewrite theory. Let T : t0
r1→ t1 be an

execution trace in R, and let O be a slicing criterion for T . Let T • : t•0
r1→ t•1 be

the trace slice w.r.t. O of T . Then, for any concretization t′0 of t•0, it holds that

T ′ : t′0
r1→ t′1 is an execution trace in R such that t•1 ∝ t′1.

Proof. Consider the rewrite step µ : t0
r1→ t1. In the case when r1 is left-linear

and non-collapsing (i.e., a rule belonging to an elementary rewrite theory), the
proof is identical to the proof of Proposition 2. Hence w.l.o.g. we assume that
r corresponds to a collapsing or nonleft-linear rule, built-in operator evaluation,
or AC axiom.

Nonleft-linear/collapsing rules. In this case, the proof of Proposition 2 is
analogous to the proof of Proposition 1, by using Lemma 5 in the place of
Lemma 3.

Built-in Operators. Let t0 = C[op(t1, . . . , tm)] and t1 = C[t′]. Hence, µ :
C[op(t1, . . . , tm)] → C[t′] is a rewrite step mimicking the evaluation of the
built-in operator call op(t1, . . . , tm). By Definition 13 and Definition 4, it is

25

immediate to show that op(t1, . . . , tm) is embedded in t•0, and thus for any

concretization t•0 ∝ t′0, t′0
r1→ t′1 and t•1 ∝ t′1.

Associative-Commutative Axioms. Flat/unflat transformations are inter-
preted as rewrite steps that reduce AC symbols. Let us first consider the flat
transformation t→flatB t

′ that reduces the AC symbol f . By Definition 14,
the label of the occurrence of f in t′ contains all the labels of the different
occurrences of f appearing in t that have been reduced by the transforma-
tion. In other words, the label of f in t′ keeps track of all the occurrences of
f that have been reduced in t, and therefore the claim holds directly. The
claim for unflat transformations can be proved in a similar way.

ut

Finally, we exploit Proposition 2 in order to prove the extended soundness
of our methodology on extended rewrite theories.

Theorem 2. (extended soundness) Let R = (Σ,E,R) be an extended rewrite
theory. Let T be an execution trace in the rewrite theory R, and let O be a slicing
criterion for T . Let T • : t•0

r1→ t•1 . . .
rn→ t•n be the corresponding trace slice w.r.t.

O. Then, for any concretization t′0 of t•0, it holds that T ′ : t′0
r1→ t′1 . . .

rn→ t′n is
an execution trace in R and t•i ∝ t′i, for i = 1, . . . , n.

Proof. The proof proceeds by induction on the length of the trace slice T • and
exploits Proposition 2 in order to prove the inductive case. Routine. ut

