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Abstract

The development of powerful techniques for proving termination of
rewriting modulo a set of equational axioms is essential when dealing with
rewriting logic-based programming languages like CafeOBJ, Maude, ELAN,
OBJ, etc. One of the most important techniques for proving termination
over a wide range of variants of rewriting (strategies) is the dependency
pair approach. Several works have tried to adapt it to rewriting modulo
associative and commutative (AC) equational theories, and even to more
general theories. However, as we discuss in this paper, no appropriate
notion of minimality (and minimal chain of dependency pairs) which is
well-suited to develop a dependency pair framework has been proposed to
date. In this paper we carefully analyze the structure of infinite rewrite
sequences for rewrite theories whose equational part is any combination
of associativity and/or commutativity axioms, which we call A∨C-rewrite
theories. Our analysis leads to a more accurate and optimized notion of
dependency pairs through the new notion of stably minimal term. We then
develop a suitable dependency pair framework for proving termination of
A∨C-rewrite theories.

1 Introduction

Rewriting with rules R modulo axioms E is a widely used technique in both rule-
based programming languages and in automated deduction. Consequently, ter-
mination of rewriting modulo specific equational axioms E (e.g., associativity-
commutativity, AC) has been studied. Methods for proving termination of
rewriting systems modulo AC-axioms are known and even implemented. Several
works have tried to adapt the dependency pair approach (DP-approach [1]) to
rewriting modulo associative and commutative (AC) theories [20, 16, 17, 18, 21].
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fmod LIST&SET is

sorts Bool Nat List Set .

subsorts Nat < List Set .

ops true false : -> Bool .

ops _and_ _or_ : Bool Bool -> Bool [assoc comm] .

op 0 : -> Nat .

op s_ : Nat -> Nat .

op _;_ : List List -> List [assoc] .

op null : -> Set .

op __ : Set Set -> Set [assoc comm] .

op _in_ : Nat Set -> Bool .

op _==_ : List List -> Bool [comm] .

op list2set : List -> Set .

var B : Bool . vars N M : Nat .

vars L L’ : List . var S : Set .

eq N N = N .

eq true and B = B . eq false and B = false .

eq true or B = true . eq false or B = B .

eq 0 == s N = false . eq s N == s M = N == M .

eq N ; L == M = false . eq N ; L == M ; L’ = (N == M) and L == L’ .

eq L == L = true .

eq list2set(N) = N . eq list2set(N ; L) = N list2set(L) .

eq N in null = false . eq N in M S = (N == M) or N in S .

endfm

Figure 1: Example in Maude syntax [7]

The corresponding proof methods, though, cannot be applied to commonly oc-
curring combinations of axioms that fall outside their scope.

Example 1 Consider the (order-sorted) TRS specified in Maude in Figure 1.
It has four sorts: Bool, Nat, List, and Set, with Nat included in both List

and Set as a subsort. That is, a natural number n is simultaneously regarded
as a list of length 1 and as a singleton set. The terms of each sort are, respec-
tively, booleans, natural numbers (in Peano notation), lists of natural numbers,
and finite sets of natural numbers. The rewrite rules in this module then define
various functions such as _and_ and _or_, a function list2set associating
to each list its corresponding set, the set membership predicate _in_, and an
equality predicate _==_ on lists. Furthermore, the idempotency of set union is
specified by the first equation. All these equations rewrite terms modulo the
equational axioms declared in the module. Specifically, _and_ and _or_ have
been declared associative and commutative with the assoc and comm keywords,
the list concatenation operator _;_ has been declared associative using the assoc

keyword; the set union operator __ has been declared associative, commutative
using the assoc and comm, keywords; and the _==_ equality predicate has been
declared commutative using the comm keyword. The succinctness of this specifi-
cation is precisely due to the power of rewriting modulo axioms, which typically
uses considerably fewer rules that standard rewriting.

Methods for proving termination of AC-theories could not be applied to prove
termination of the TRS in Figure 1 (we would not care about sort information
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here), where we have an arbitrary combination of associative and/or commuta-
tive axioms which we call an A∨C-rewrite theory in this paper. Furthermore,
to the best of our knowledge, the Dependency Pair Framework (DP-framework
[13]), which is the basis of state-of-the-art tools for proving termination of (dif-
ferent variants of) term rewriting has not yet been adapted to the AC case.

In this paper, we address these two problems. Giesl and Kapur generalized
the previous works on AC-termination with dependency pairs to deal with more
general kinds of equational theories E satisfying some restrictions [10]. In prin-
ciple, the A∨C-theories that we investigate here fit the main outlines of Giesl
and Kapur’s approach. However, as we discuss below, the paper [10] did not
provide any definition of minimal chain, which is needed for further develop-
ments in the DP-framework. In the DP-framework, the central notion regarding
termination proofs is that of DP problem: the goal is checking the absence (or
presence) of the so-called infinite minimal chains, where the notion of minimal
chain can be thought of as an abstraction of the infinite rewrite sequences start-
ing from minimal non-terminating terms. The most important notion regarding
mechanization of the proofs is that of processor. A (correct) processor basically
transforms DP problems into (hopefully) simpler ones, in such a way that the
existence of an infinite chain in the original DP problem implies the existence
of an infinite chain in the transformed one. Here ‘simpler’ usually means that
fewer pairs are involved. Processors are used in a pipe (more precisely, a tree)
to incrementally simplify the original DP problem as much as possible, possibly
decomposing it into smaller pieces which are then independently treated in the
very same way. This is the crucial new feature of the DP-framework w.r.t. the
DP-approach of [1]. This makes it very powerful as a basis for implementing
termination provers.

Before being able to extend the DP-framework to deal with A∨C-theories,
we start by giving a more refined notion of minimality. In fact, the notion
of minimality which is used in [10] is the straightforward extension of the one
which is used to prove termination of standard rewriting but without dealing
with E-equivalence preservation which, as we show below, is essential to provide
an appropriate notion of minimal E-nonterminating term for A∨C-theories E
which can be used to define a suitable A∨C-DP-framework. We carefully ana-
lyze the structure of infinite rewrite sequences for A∨C-rewrite theories. This
leads to appropriate definitions of A∨C-dependency pair and of minimal chain.

1.1 Plan of the paper

The results, techniques, and tools that derive from our work can be of interest to
a fairly wide audience. The material in this paper will be more familiar, however,
to specialists interested in termination and in proving termination of rewriting
modulo equational theories. Throughout the paper we made a serious effort to
provide sufficient intuition and informal descriptions for our main definitions
and results. After some technical preliminaries, in Sections 2 and 3, the paper
is structured in three main parts:
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1. In Section 4 we investigate the drawbacks of previous notions of minimal
term when modeling infinite A∨C-rewrite sequences. Then, we introduce
the notion of stably minimal E-nonterminating term, which is the basis of
our development. Section 5 investigates the structure of infinite sequences
starting from such stably minimal terms. This analysis is essential in
order to provide an appropriate definition of A∨C-dependency pair and
the related notions of chain, graph, etc.

2. Section 6 uses these results to formalize our notions of A∨C-dependency
pairs and of minimal chains and shows how to use them to characterize
termination of A∨C-rewrite theories.

3. We describe a suitable framework for dealing with proofs ofA∨C-termination
by using these results. Section 7 extends the dependency pair framework
[12, 13] to A∨C-termination by defining appropriate notions of A∨C prob-
lem and A∨C processor that rely on the results obtained in the second part
of the paper. In particular, we introduce the notion of A∨C-dependency
graph and the associated A∨C processor. We also show how to use order-
ings for defining a second processor and other auxiliary processors. Section
8 formalizes the use of usable rules and usable equations with orderings.
Section 9 shows the performance of our techniques in practice, after im-
plementing them in the termination tool mu-term. Section 10 compares
our approach with related work and concludes the paper.

2 Preliminaries

This section collects a number of definitions and notations about term rewriting.
More details and missing notions can be found in [4, 22, 27].

Let A be a set and R ⊆ A × A be a binary relation on A. We denote the
transitive closure of R by R+ and its reflexive and transitive closure by R∗. We
say that R is terminating (strongly normalizing) if there is no infinite sequence
a1 R a2 R a3 · · · . A reflexive and transitive relation R is a quasi-ordering.

Given relations R and R′ over the same set A, we define its composition R◦R′
as follows: for all a, b ∈ A, a (R ◦R′) b if there is c ∈ A such that aR c and cR′ b.

Throughout the paper, X denotes a countable set of variables and Σ (equiv-
alently F and Γ) denotes a signature, i.e., a set of function symbols {f, g, . . .},
each having a fixed arity given by a mapping ar : Σ→ N. The set of terms built
from Σ and X is T (Σ,X ). Var(t) is the set of variables occurring in a term t.

Terms are viewed as labelled trees in the usual way. Positions p, q, . . . are
represented by chains of positive natural numbers used to address subterms of
t. We denote the empty sequence by Λ. Given positions p, q, we denote their
concatenation as p.q. Positions are ordered by the standard prefix ordering:
p ≤ q if ∃q′ such that q = p.q′. If p is a position, and Q is a set of positions,
then p.Q = {p.q | q ∈ Q}. The set of positions of a term t is Pos(t). Positions of
nonvariable symbols in t are denoted as PosΣ(t), and PosX (t) are the positions
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of variables. The subterm at position p of t is denoted as t|p, and t[s]p is the
term t with the subterm at position p replaced by s.

We write s�t, read t is a subterm of s, if t = s|p for some p ∈ Pos(s) and s�t
if s�t and s 6= t. We write s 4 t and s 7 t for the negation of the corresponding
properties. The symbol labeling the root of t is denoted as root(t). A context
is a term C ∈ T (F ∪ {2},X ) with a ‘hole’ 2 (a fresh constant symbol). We
write C[ ]p to denote that there is a (usually single) hole 2 at position p of C.
Generally, we write C[ ] to denote an arbitrary context and make the position
of the hole explicit only if necessary. C[ ] = 2 is called the empty context.

A substitution is a mapping σ : X → T (Σ,X ). Denote as ε the ‘identity’
substitution: ε(x) = x for all x ∈ X . The set Dom(σ) = {x ∈ X | σ(x) 6= x}
is called the domain of σ. A renaming is an injective substitution ρ such that
ρ(x) ∈ X for all x ∈ X . A substitution σ such that σ(s) = σ(t) for two terms
s, t ∈ T (Σ,X ) is called a unifier of s and t; we also say that s and t unify (with
substitution σ). If two terms s and t unify, then there is a unique most general
unifier σ (up to renaming of variables) such that for every other unifier τ , there
is a substitution θ such that θ ◦ σ = τ .

A binary relation R ⊆ T (Σ,X )×T (Σ,X ) on terms is stable if, for all terms
s, t ∈ T (F ,X ) and substitutions σ, we have σ(s) R σ(t) whenever s R t. We say
that the relation is monotonic if, for all f ∈ Σ, and s, t, t1, . . . , tk ∈ T (Σ,X ),
f(t1, . . . , ti−1, s, ti+1, . . . , tk) R f(t1, . . . , ti−1, t, ti+1, . . . , tk) whenever s R t.

A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (Σ,X ),
l 6∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l, and
the right-hand side (rhs) is r. A rewrite rule l → r is said to be collapsing if
r ∈ X . A Term Rewriting System (TRS) is a pair R = (Σ, R), where R is
a set of rewrite rules. An instance σ(l) of a lhs l of a rule is called a redex.
Given R = (Σ, R), we consider Σ as the disjoint union Σ = C ] D of symbols
c ∈ C (called constructors) and symbols f ∈ D (called defined functions), where
D = {root(l) | l→ r ∈ R} and C = F −D.

A term s ∈ T (Σ,X ) rewrites to t (at position p), written s
p→R t (or just

s →R t, or s → t), if s|p = σ(l) and t = s[σ(r)]p, for some rule l → r ∈ R,
p ∈ Pos(s) and substitution σ. We write s

>p→R t if s
q→R t for some q > p. A

TRS R is terminating if its one step rewrite relation →R is terminating.

3 Rewriting Modulo Equational Theories

Given a set of equations E, we write s
p

àE t (a single ‘equational step’) if there
is a position p ∈ Pos(s), an equation u = v ∈ E and a substitution σ such that
s|p = σ(u) and t|p = σ(v), or s|p = σ(v) and t|p = σ(u) (we write s àE t if
position p is not relevant). Note that àE is a symmetric relation. Then, ∼E

is the reflexive and transitive closure of àE ; we have the following equivalence
that will be useful in our development:

∼E = à
∗
E = (

Λ

àE ∪
>Λ

àE)∗.
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We also write s >Λ∼ E t iff s = f(s1, . . . , sk), t = f(t1, . . . , tk) and si ∼E ti for all

i, 1 ≤ i ≤ k. We define s Λ∼E t as the reflexive and transitive closure of
Λ

àE .
Given a rewrite theory R = (Σ, E,R), where R is a set of rewrite rules and

E is a set of equational axioms, we write s→R/E t if there exist u, v such that
s ∼E u, u →R v, and v ∼E t.We say that a rewrite theory R = (Σ, E,R) is
E-terminating, iff →R/E is terminating. In general, given terms s and t, the
problem of checking whether s →R/E t holds is undecidable: in order to check
whether s →R/E t we have to search through the possibly infinite equivalence
classes [s]E and [t]E to see whether a matching is found for a subterm of some
u ∈ [s]E and the result of rewriting u belongs to the equivalence class [t]E . For
this reason, a much simpler relation →R,E is defined, which becomes decidable
if an E-matching algorithm exists. For any terms s, t, s→R,E t holds iff there is
a position p in s, a rule l → r in R, and a substitution σ such that s|p ∼E σ(l)
and t = s[σ(r)]p (see [23]). This relation only allows applying rules from R in
redexes at positions equal or above of positions of terms where equations from
E have been applied. We say that a rewrite theory R = (Σ, E,R) is (R,E)-
terminating, if →R,E is terminating. In the following, we assume that E and R
are finite sets of equations and rules, respectively.

Regarding E-termination analysis using dependency pairs (DPs), Kusakari
and Toyama observed that there is no simple extension of DPs to directly deal
with →R/E-computations [18, 16]. In contrast, several approaches have been
developed for →R,E-computations [10, 18, 20]. Since →R,E⊆→R/E (but the
opposite inclusion does not hold, in general), E-termination cannot be concluded
from (R,E)-termination. Actually, Marché and Urbain showed that there are
(R,E)-terminating rewrite theories R which are not E-terminating.

Example 2 Consider the following rewrite theory R = (Σ, E,R), where ‘+’ is
an AC symbol [20]:

a+ b→ a+ (b+ c).

Note that t = a+ (b+ c) is an →R,E-normal form (hence (R,E)-terminating).
However, t ∼AC (a+ b) + c which is E-nonterminating.

Giesl and Kapur [10] proved the equivalence of both notions of termination with
respect to a notion of extension completion ExtE(R) (see below) of a rewrite
theory R = (Σ, E,R) for E regular (i.e., Var(u) = Var(v) for all u = v in
E), and linear (neither u nor v have repeated variables). For E being a set
containing associative or commutative axioms, this notion of extension goes
back to Peterson and Stickel [23].

Theorem 1 [10, Theorem 11] Let R = (Σ, E,R) be a rewrite theory with E
a regular and linear equational theory and t ∈ T (Σ,X ). Then, t starts an
infinite →R/E-reduction if and only if t starts an infinite →ExtE(R),E-reduction.
Therefore, R is E-terminating if and only if →ExtE(R),E is terminating.

6



3.1 Combination of Associative and Commutative Theo-
ries

Let E be a set of equations that has the modular decomposition E =
⋃
f∈ΣEf ,

where if k = ar(f) 6= 2, then Ef = ∅, and if k = 2, then Ef ⊆ {Af , Cf}, where:

• Af is the associativity axiom f(f(x, y), z) = f(x, f(y, z)),

• Cf is the commutativity axiom f(x, y) = f(y, x).

We also define Σ = ΣA ] ΣC ] ΣAC ] Σ∅ where f ∈ ΣA ⇔ Ef = {Af},
f ∈ ΣC ⇔ Ef = {Cf}, f ∈ ΣAC ⇔ Ef = {Af , Cf}, f ∈ Σ∅ ⇔ Ef = ∅. In the
following, we often say that a symbol f ∈ Σ is associative iff f ∈ ΣA ∪ ΣAC .

Definition 1 (A∨C-rewrite theory) An equational theory E =
⋃
f∈ΣEf ,

where if k = ar(f) 6= 2, then Ef = ∅, and if k = 2, then Ef ⊆ {Af , Cf}
is called an A∨C-theory. A rewrite theory R = (Σ, E,R) such that E is an
A∨C-theory, is called an A∨C-rewrite theory.

To deal with rewriting modulo A∨C-theories by using (R,E)-rewriting we have
to extend R by following [23, Definition 10.4]:

ExtAC(R) = R ∪ {f(l, w)→ f(r, w) | l→ r ∈ R, f = root(l) ∈ ΣAC}
ExtA(R) = R ∪ {f(l, w)→ f(r, w), f(w, l)→ f(w, r), f(z, f(l, w))→ f(z, f(r, w))

| l→ r ∈ R, f = root(l) ∈ ΣA}
ExtC(R) = R

where w and z are fresh variables which do not occur in the original rule of R.
Therefore, given an A∨C theory E, we let:

ExtE(R) = ExtAC(R) ∪ ExtA(R) ∪ ExtC(R).

Note that R ⊆ ExtE(R).

Example 3 Consider the following TRS R:

f(x, x) → f(0, 0)

where f ∈ ΣAC .
Hence, ExtAC(R) only adds the following rule to R:

f(f(x, x), y) → f(f(0, 0), y)

3.2 Minimal Terms and Infinite Rewrite Sequences

Given a TRS R = (C ] D, R), with C a subsignature of constructors and
D a subsignature of defined symbols, so that each rule in R is of the form
f(t1, . . . , tn)→ r with f ∈ D, the minimal nonterminating terms associated to
R are those nonterminating terms t whose proper subterms u (i.e., t � u) are
terminating. Let T∞ denote the set of minimal nonterminating terms associated
to R [14]. Minimal nonterminating terms have two important properties:
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1. Every nonterminating term s contains a minimal nonterminating subterm
t ∈ T∞ (i.e., s� t), and

2. minimal nonterminating terms t are always rooted by a defined symbol
f ∈ D: ∀t ∈ T∞, root(t) ∈ D.

Considering the structure of the infinite rewrite sequences starting from a min-
imal nonterminating term t = f(t1, . . . , tk) ∈ T∞ is helpful to arrive at the
notion of dependency pair. Such sequences proceed as follows (see, e.g., [14]):

1. a finite number of reductions can be performed below the root of t, thus
rewriting t into t′; then

2. a rule f(l1, . . . , lk) → r applies at the root of t′ (i.e., t′ = σ(f(l1, . . . , lk))
for some substitution σ); and

3. there is a minimal nonterminating term u ∈ T∞ (hence root(u) ∈ D)
at some position p of σ(r) which is a nonvariable position of r which
‘continues’ the infinite sequence initiated by t in a similar way.

This means that considering the occurrences of defined symbols in the right-
hand sides of the rewrite rules suffices to ‘catch’ every possible infinite rewrite
sequence starting from σ(r). In particular, no infinite sequence can be issued
from t′ below the variables of r (more precisely: all bindings σ(x) are terminating
terms). The standard definition of dependency pair [1] and (minimal) chain of
dependency pairs [13] rely on (1)–(3) above [14]. These facts are formalized as
follows:

Proposition 1 [14, Lemma 1] Let R = (C ] D, R) be a TRS. For all t ∈ T∞,
there exist l→ r ∈ R, a substitution σ and a term u ∈ T∞ such that root(u) ∈ D,
t

>Λ−→∗ σ(l) Λ→ σ(r) � u and there is a nonvariable subterm v of r, r � v, such
that u = σ(v).

The following auxiliary results will be used later.

Proposition 2 Let R = (Σ, E,R) be a rewrite theory and t, s ∈ T (Σ,X ). If t
is (R,E)-terminating, then

1. If t� s, then s is (R,E)-terminating.

2. If t→∗R,E s then s is (R,E)-terminating.

Proof. Trivial. 2

Proposition 3 (E-Termination Preserved under E-Equivalence) Let R =
(Σ, E,R) be a rewrite theory and t, s ∈ T (Σ,X ). If t ∼E s, then t is E-
terminating if and only if s is E-terminating.
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Proof. Trivial. 2

Proposition 3 does not hold if we change E-termination by (R,E)-termination
(see Example 2). However, as a consequence of Theorem 1 and Proposition 3,
we have:

Corollary 1 Let R = (Σ, E,R) be a rewrite theory such that E is a set of reg-
ular and linear equations and t, s ∈ T (Σ,X ). If t ∼E s, then t is (ExtE(R), E)-
terminating if and only if s is (ExtE(R), E)-terminating.

As a corollary of Theorem 1, we have the following.

Corollary 2 Let R = (Σ, E,R) be an A∨C-rewrite theory and t ∈ T (Σ,X ).
Then, t is E-terminating if and only if it is (ExtE(R), E)-terminating.

In the following section we begin the analysis of infinite E-rewrite sequences
according to the schema in [14]. We aim at providing an appropriate notion of
minimal E-nonterminating term (for A∨C-theories E) which allows us to reach
a result similar to Proposition 1.

4 Stably Minimal E-nonterminating Terms

In the dependency pair approach [1, 14, 13], the analysis of infinite rewrite
sequences is restricted to those starting from minimal nonterminating terms
t ∈ T∞. The following notion of minimal E-nonterminating term is implicit in
[10, proof of Theorem 16]. Similar definitions can be found in [17, 18, 16, 21].

Definition 2 (Minimal E-nonterminating Term [10]) Let R =
(Σ, E,R) be a rewrite theory. An E-nonterminating term t ∈ T (Σ,X ) is said
to be minimal (written t ∈ T∞,R,E) if every strict subterm s of t (i.e., t� s) is
(ExtE(R), E)-terminating.

Remark 1 In Definition 2, if we assume that E is linear and regular (like
A∨C-theories), then, by Theorem 1, we could equivalently start by saying that
t is (ExtE(R), E)-nonterminating. This leads to a more symmetric definition,
which we often use in the following without further comment.

Every E-nonterminating term s contains a minimal E-nonterminating subterm
t ∈ T∞,R,E (this is stated without proof in [10, proof of Theorem 16]).

Proposition 4 Let R = (Σ, E,R) be a rewrite theory and s ∈ T (Σ,X ). If s is
E-nonterminating, then there is a subterm t of s (s� t) such that t ∈ T∞,R,E.

Proof. By structural induction. If s is a constant symbol, it is obvious: take
t = s. If s = f(s1, . . . , sk), then we proceed by contradiction. If there is no
(not necessarily strict) subterm t of s such that t is minimal, then in particular
s is not minimal. Therefore, there is a strict subterm t of s (s � t) which is
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E-nonterminating. By the Induction Hypothesis, there is t′ which is minimal
and such that t� t′. Then, we have s� t′, thus leading to a contradiction. 2

Note that Giesl and Kapur’s minimality of terms is preserved under→ExtE(R),E-
reductions below the root.

Proposition 5 Let R = (Σ, E,R) be a rewrite theory and s ∈ T∞,R,E. If

s
>Λ−→∗ExtE(R),E t and t is E-nonterminating, then t ∈ T∞,R,E.

Proof. Since s is rewritten below the root, we can write s = f(s1, . . . , sk),
where, by minimality of s, we know that s1, . . . , sk are all (ExtE(R), E)-terminating.
Furthermore, since >Λ−→ExtE(R),E performs no rewriting or ∼E-steps at the root,
we have that t = f(t1, . . . , tk) with si →∗ExtE(R),E ti for all i, 1 ≤ i ≤ k. By
Proposition 2, ti is (ExtE(R), E)-terminating for all i, 1 ≤ i ≤ k. And since t is
assumed to be E-nonterminating, t ∈ T∞,R,E . 2

Remark 2 (Root Symbols of Minimal Terms) Note that if E is an A∨C-
equational theory, then root(t) ∈ D whenever t ∈ T∞,R,E. As remarked by Giesl
and Kapur (see also Example 8 below) this is not true for arbitrary equational
theories.

The problem with Giesl and Kapur’s Definition 2 is that minimality is not
preserved under E-equivalence.

Example 4 Consider again the TRS R in Example 3.
Following [10], the term f(f(1, 0), 0) ∈ T∞,R,E since is AC-nonterminating

f(f(1, 0), 0) ∼AC f(1, f(0, 0)) ∼AC f(f(0, 0), 1) Λ→R f(f(0, 0), 1) · · ·

but its strict subterms f(1, 0), 1 and 0 are AC-terminating. However, the root
step with σ(l) = σ(f(f(x, x), y) = f(f(0, 0), 1) shows that σ(l) /∈ T∞,R,E since
f(0, 0) is AC-nonterminating.

Example 5 Consider the following TRS R:

f(x, x) → f(0, f(1, 2)) (1)

where f ∈ ΣAC . Hence, ExtAC(R) only adds the following rule to R:

f(f(x, x), y) → f(f(0, f(1, 2)), y) (2)

Note that t = f(f(0, 1), f(0, f(1, 2))) is (ExtAC(R), AC)-nonterminating:

f(f(0, 1), f(0, f(1, 2))) ∼A f(0, f(1, f(0, f(1, 2))))
∼A f(0, f(f(1, 0), f(1, 2)))
∼C f(0, f(f(0, 1), f(1, 2)))
∼A f(0, f(0, f(1, f(1, 2))))
∼A f(f(0, 0), f(1, f(1, 2)))

Λ→ExtAC(R) f(f(0, f(1, 2)), f(1, f(1, 2)))
→ExtAC(R),AC · · ·
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Since f(0, 1) and f(0, f(1, 2)) are in (ExtAC(R), AC)-normal form, we have
that t ∈ T∞,R,AC . However, t′ = f(f(0, 0), f(1, f(1, 2))), which is AC-equivalent
to t (i.e., t ∼AC t′), is AC-nonterminating, but it is not minimal because its
strict subterm f(1, f(1, 2))) is (ExtAC(R), AC)-nonterminating:

f(1, f(1, 2)) ∼A f(f(1, 1), 2)
Λ→ExtAC(R) f(f(0, f(1, 2)), 2)

∼A f(0, f(f(1, 2), 2))
∼A f(0, f(1, f(2, 2)))
∼A f(f(0, 1), f(2, 2))
∼C f(f(2, 2), f(0, 1))

Λ→ExtAC(R) f(f(0, f(1, 2)), f(0, 1))
∼A f(f(f(0, 1), 2)), f(0, 1))
∼C f(f(0, 1), f(f(0, 1), 2)))
∼A f(f(0, 1), f(0, f(1, 2)))

→ExtAC(R),AC · · ·

Example 5 shows that an essential property of minimal terms when considered
as part of infinite (ExtE(R), E)-rewriting sequences for A∨C-theories E gets
lost: the application of (ExtE(R), E)-rewrite steps at the root of a minimal term
s by means of a rule l → r (i.e., s ∼AC σ(l) Λ→ExtE(R)σ(r)) does not guarantee
that there is a nonvariable subterm v of the right-hand side r which is a prefix
of the ‘next’ minimal term in the infinite sequence. In the following proposition,
we prove that the problem illustrated in Example 5 is due to the application of
associative steps at the root of a minimal term.

Proposition 6 Let R = (Σ, E,R) be a rewrite theory and t ∈ T∞,R,E.

1. If E is regular and linear and t′ >Λ∼ E t, then t′ ∈ T∞,R,E.

2. If Croot(t) ∈ Eroot(t) and t′ Λ∼C t, then t′ ∈ T∞,R,E.

Proof. Let t = f(t1, . . . , tk). By minimality of t, ti is (ExtE(R), E)-
terminating for all 1 ≤ i ≤ k.

1. If t′ >Λ∼ E t, then t′ = f(t′1, . . . , t
′
k) and t′i ∼E ti for all 1 ≤ i ≤ k. By

Proposition 3, t′ is (ExtE(R), E)-nonterminating and by Corollary 1, t′i is
(ExtE(R), E)-terminating for all 1 ≤ i ≤ k. Hence t′ ∈ T∞,R,E .

2. If Croot(t) ∈ Eroot(t), then k = 2 and t = f(t1, t2), where both t1 and t2

are (ExtE(R), E)-terminating. Since t′ = f(t2, t1) Λ∼C t, by Proposition 3
t′ is (ExtE(R), E)-nonterminating and we have t′ ∈ T∞,R,E .

2
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Example 6 Term t in Example 5 can be rewritten at the root only by rule (2)
of ExtAC(R). We can apply this rule to t′ in Example 5 (for instance) to obtain
s′ = σ(r) = f(f(0, f(1, 2)), f(1, f(1, 2))) (where r = f(f(0, f(1, 2)), y)), which
is (ExtAC(R), AC)-nonterminating. Note that s′ contains a minimal term u ∈
T∞,R,E. Since s′|2 = f(1, f(1, 2)) is (ExtAC(R), AC)-nonterminating, it follows
that s′ is not minimal. Since s′|1 = f(0, f(1, 2)) is (ExtAC(R), AC)-terminating,
the only possibility is that u occurs in s′|2. Actually, s′|2 is minimal already;
hence, u = s′|2. But note the absence of any nonvariable position p ∈ Pos(r) in
the right-hand side of the considered rule such that σ(r|p) = u = f(1, f(1, 2)).

This is in sharp contrast with the situation of the DP-approach for ordinary
rewriting. Furthermore, it is not difficult to see that for all t′′ ∼AC t such
t′′ = σ′(l) for some substitution σ′, we have a similar situation. Thus, the
problem illustrated here cannot be solved by using a different ∼AC sequence
before performing the ExtAC(R)-root-step.

In the following we introduce a new notion of minimality which solves these
problems.

4.1 A New Notion of Minimal E-nonterminating Terms

The following definition solves the problems discussed above by explicitly requir-
ing that the condition defining minimality is preserved under E-equivalence.

Definition 3 (Stably Minimal E-nonterminating Term) Let R =
(Σ, E,R) be a rewrite theory. Let M∞,R,E be a set of stably minimal E-
nonterminating terms in the following sense: t ∈ T (Σ,X ) belongs to M∞,R,E
iff t is E-nonterminating, and for all t′ ∼E t and every proper subterm s′ of t′

(i.e., t′ � s′), s′ is (ExtE(R), E)-terminating.

We have the following useful characterization of minimality.

Proposition 7 (Characterization of Stably Minimal Terms) Let R =
(Σ, R,E) be a rewrite theory and t ∈ T (Σ,X ). Then, t ∈ M∞,R,E if and
only if [t]E ⊆ T∞,R,E. Therefore,

M∞,R,E = {t ∈ T (Σ,X ) | [t]E ⊆ T∞,R,E}

The problem in Example 5 disappears now: t is not (stably) minimal according
to Definition 3. The same situation happens with the problem in Example
4: f(f(1, 0), 0) ∈ T∞,R,E but f(f(1, 0), 0) /∈ M∞,R,E since f(f(1, 0), 0) ∼E

f(f(0, 0), 1) and f(0, 0) is E-nonterminating. In fact, f(0, 0) ∈M∞,R,E .
The following result shows how to find stably minimal E-nonterminating

terms associated to a given E-nonterminating term. This is essential in our
development. A set of equations E is size-preserving if and only if for each
equation u = v the length of u and v are the same, i.e. |u| = |v| and the
multiset of the variables in u coincides with the multiset of the variables in v
[22].
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Proposition 8 Let R = (Σ, E,R) be a rewrite theory such that E is regular
and size-preserving. Let s ∈ T (Σ,X ). If s is E-nonterminating, then there is a
subterm t of some s′ ∼E s (i.e., s′ � t) such that t ∈M∞,R,E.

Proof. By structural induction. If s is a constant symbol or a variable,
then since s has no strict subterms, then s ∈ M∞,R,E , so in this case, we
can choose t = s. If s = f(s1, . . . , sk), then we proceed by contradiction.
If there is no subterm t of some s′ ∼E s (s′ � t) such that t ∈ M∞,R,E ,
then in particular s 6∈ M∞,R,E , (and thus s′ /∈ M∞,R,E for all s′ ∼E s) i.e.,
(since s is E-nonterminating) there is an E-equivalent term s′ ∼ s containing
a strict (ExtE(R), E)-nonterminating subterm t′ (s′ � t′). Therefore, t′ is E-
nonterminating as well. By the Induction Hypothesis, there is t ∈ M∞,R,E
such that t′ � t. Then, s′ � t, thus leading to a contradiction. 2

Clearly, Proposition 8 holds whenever R is an A∨C-rewrite theory.

Example 7 Consider the term t in Example 5. Although t ∈ T∞,R,E, t /∈
M∞,R,E: the term t′ = f(f(0, 0), f(1, f(1, 2))), which is AC-equivalent to t,
contains a subterm u = f(1, f(1, 2)) which is E-nonterminating. It is not diffi-
cult to see that actually u ∈M∞,R,E.

In general, Proposition 8 does not hold for arbitrary sets of equations E.

Example 8 Consider the following example [10, Example 13]:
R : f(x) → x E : f(a) = a

Note that a ∈ T∞,R,E. However, a is not stably minimal because a ∼E f(a) but
f(a) 6∈ T∞,R,E. Thus, Proposition 8 does not hold.

Since M∞,R,E ⊆ T∞,R,E , for A∨C-rewrite theories E we have the following
corollary of Proposition 5.

Corollary 3 Let R = (Σ, E,R) be an A∨C-rewrite theory and s ∈ M∞,R,E.

If s >Λ−→∗ExtE(R),E t and t is E-nonterminating, then t ∈ T∞,R,E.

In general, Corollary 3 does not hold if we require that t ∈M∞,R,E .

Example 9 Term u = f(f(1, 1), 2) in Example 6 is stably minimal: u ∈
M∞,R,E. We have that f(f(1, 1), 2) >Λ−→R f(f(0, f(1, 2)), 2). Note that
f(f(0, f(1, 2)), 2) /∈M∞,R,E. We have

f(f(0, f(1, 2)), 2) ∼A f(0, f(f(1, 2), 2)) ∼A f(0, f(1, f(2, 2)))

where f(0, f(1, f(2, 2))) contains a subterm f(1, f(2, 2)) which is (ExtE(R), E)-
nonterminating.

The following results show that the problem arises when s ∈ M∞,R,E is such
that root(s) includes associativity among its axioms, that is, Af ∈ Ef . In the
following, we focus on A∨C-rewrite theories. Hence, we will often implicitly use
Corollary 2 to speak about E-termination rather than (ExtE(R), E)-termination
(see Remark 1).
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Proposition 9 Let R = (Σ, E,R) be an A∨C-rewrite theory. If t ∈ T∞,R,E is
such that (1) Aroot(t) /∈ Eroot(t) or (2) t = f(t1, t2), Af ∈ Ef , root(t1) 6= f , and
root(t2) 6= f , then t ∈M∞,R,E.

Proof. Let t = f(t1, . . . , tk), where, since t ∈ T∞,R,E , ti is E-terminating for
all i, 1 ≤ i ≤ k. We consider two main cases according to f :

1. If f does not have the associativity axiom, i.e., Af /∈ Ef , then we consider
two cases:

(a) f is commutative, i.e., Ef = {Cf}. Then, k = 2 and we can write
t = f(t1, t2), where t1 and t2 are E-terminating. For all u ∼E t
given by u = f(u1, u2) we have two possibilities: either u1 ∼E t1
and u2 ∼E t2, or u1 ∼E t2 and u2 ∼E t1. In both cases, since
E-equivalence preserves E-termination (Proposition 3), we conclude
that u1 and u2 are E-terminating and hence t ∈ M∞,R,E .

(b) f is not commutative, i.e., Ef = ∅. Then, for all u ∼E t we have

u
>Λ∼ E t and the result follows from Proposition 6-(1).

2. If t = f(t1, t2), Af ∈ Ef , root(t1) 6= f , and root(t2) 6= f , then no associa-
tivity axiom can be applied at the root of t. Then, we can treat t as in
one of the cases 1a or 1b above.

2

Proposition 10 Let R = (Σ, E,R) = (C ] D, E,R) be an A∨C-rewrite theory
and s ∈ M∞,R,E be such that (1) Aroot(s) /∈ Eroot(s) or (2) s = f(s1, s2), Af ∈
Ef , and root(s1), root(s2) ∈ C. If s >Λ−→∗ExtE(R),E t and t is E-nonterminating,
then t ∈M∞,R,E.

Proof. Since s ∈M∞,R,E , we have that, for all s′ ∼E s, all proper subterms u
of s′ are E-terminating. We can write s = f(s1, . . . , sk), where, by stable mini-
mality of s, all the s1, . . . , sk are E-terminating. Furthermore, since >Λ−→ExtE(R),E

performs no rewriting or E-steps at the root, we have that t = f(t1, . . . , tk) with
si →∗ExtE(R),E ti for all i, 1 ≤ i ≤ k. By Proposition 2, ti is E-terminating for
all i, 1 ≤ i ≤ k. Therefore, t ∈ T∞,R,E . If root(s) = root(t) is such that
Af /∈ Ef , by Proposition 9, t ∈ M∞,R,E . On the other hand, if s = f(s1, s2),
Af ∈ Ef , and root(s1), root(s2) ∈ C, then reductions on s1 and s2 do not
change root(s1) nor root(s2). Thus, t = f(t1, t2) and root(t1) = root(s1) and
root(t2) = root(s2). Since f ∈ D (due to minimality of s), by Proposition 9,
t ∈M∞,R,E . 2

Now we provide a more precise result about where we can find stably mini-
mal subterms within an E-nonterminating term for A∨C-rewrite theories R =
(Σ, E,R). In the following theorem, given a term s and a symbol f , by an
f -subterm t of s (written s�f t) we mean a subterm t of s such that t = s|p and
for all q < p, root(s|q) = f . We also write s�f t if s�f t and s 6= t. This notion

14



is similar to the one used in [18] called head subterm but taking into account s
instead of [s]E to get the subterm.

Theorem 2 Let R = (Σ, E,R) be an A∨C-rewrite theory. If s is E-nonterminating,
then there is a subterm t ∈ T∞,R,E of s (s� t) and

1. If (1) Aroot(t) /∈ Eroot(t) or (2) t = f(t1, t2), Af ∈ Ef , root(t1) 6= f , and
root(t2) 6= f , then t ∈M∞,R,E.

2. If t = f(t1, t2), Af ∈ Ef , and root(t1) = f or root(t2) = f , and t 6∈
M∞,R,E, then there is s′ ∼E t and a strict f -subterm u of s′ (i.e., s′�f u)
such that root(u) = f and u ∈M∞,R,E.

Proof. By Proposition 4, s contains a subterm t ∈ T∞,R,E . If (1) Aroot(t) /∈
Eroot(t) or (2) t = f(t1, t2), Af ∈ Ef , root(t1) 6= f , and root(t2) 6= f , then, by
Proposition 9, t ∈ M∞,R,E . Otherwise, we know that t = f(t1, t2), Af ∈ Ef ,
and root(t1) = f or root(t2) = f . If t ∈ M∞,R,E , then we are done. If
t /∈ M∞,R,E , then there must be a term t′ ∼E t, t′ 6= t, which contains a strict
subterm t′′ (i.e., t′ � t′′) which is E-nonterminating. By Proposition 8, there
are terms t′′′ ∼E t′′ and u ∈ M∞,R,E such that t′′′ � u. If root(u) 6= f , then,
since t ∼E t′ � t′′ ∼E t′′′ � u, there must be a strict subterm v of t (i.e., t� v)
satisfying u ∼E v. By Proposition 3, v is E-nonterminating. This contradicts
that t ∈ T∞,R,E . Thus, root(u) = f as desired. Furthermore, we note that
t′ = C[t′′] for some nonempty context C and hence t ∼E t′ ∼E C[t′′′]. Thus,
if we let s′ = C[t′′′], then s′ � u. We can further conclude that s′ �f u: first
note that root(s′) = f because s′ ∼E t, root(t) = f , and ∼E-steps do not
change the root of t (because E is an A∨C-theory). Assume that s′′ is such
that s′ � s′′ � u and root(s′′) 6= f . Then by reasoning as above, we would
conclude that t contains a subterm v′′ ∼E s′′, which contradicts t ∈ T∞,R,E .
Thus, s′ �f u. This completes the proof. 2

The following result is just a convenient reformulation of the previous one.

Corollary 4 Let R = (Σ, E,R) be an A∨C-rewrite theory. If s is E-nonterminating,
then either there is a subterm t ∈ M∞,R,E of s (s � t), or there is a subterm
t ∈ T∞,R,E of s satisfying that t = f(t1, t2), Af ∈ Ef , and root(t1) = f or
root(t2) = f , and such that there is s′ ∼E t and a strict f -subterm u of s′

(s′ �f u) such that root(u) = f and u ∈M∞,R,E.

5 Structure of (Stably) Minimal Infinite A∨C-
Rewrite Sequences

Now we analyze A∨C-rewrite sequences starting from stably minimal A∨C-
nonterminating terms. First we consider a restricted case.

Proposition 11 Let R = (Σ, E,R) = (C ]D, E,R) be an A∨C-rewrite theory.
Let s ∈ M∞,R,E be such that f = root(s) and either (1) Af /∈ Ef , or (2) s =
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f(s1, s2), Af ∈ Ef , and root(s1), root(s2) ∈ C. Assume that for all l → r ∈ R
such that root(l) = f and all subterms v of r (r � v) such that v = g(v1, v2)
for some associative symbol g, we have that root(v1), root(v2) /∈ X ∪{g}. Then,
there exist l→ r ∈ R, a substitution σ and terms t ∈ T (Σ,X ) and u ∈M∞,R,E
such that

s
>Λ−→∗ExtE(R),E t ∼E σ(l) Λ→R σ(r) � u

and there is a nonvariable subterm v of r, r � v, such that u = σ(v).

Proof. Let S be an infinite (ExtE(R), E)-rewrite sequence starting from s.
Since s ∈ M∞,R,E , s is (ExtE(R), E)-nonterminating and all its proper sub-
terms are (ExtE(R), E)-terminating, S must contain a possibly empty sequence
of inner (ExtE(R), E)-rewrite steps followed by a root step. Therefore, there ex-
ists a rule l→ r ∈ ExtE(R) such that s >Λ−→∗ExtE(R),E t ∼E σ(l) Λ→ExtE(R)σ(r). By
Proposition 10, we know that t ∈ M∞,R,E . Furthermore, due to our assump-
tions (1) or (2) on s, and taking into account the shape of rules in ExtE(R)−R
for A∨C-theories E, we can conclude that the rule l→ r actually belongs to R.
Since stable minimality is preserved under ∼E , we also have σ(l) ∈ M∞,R,E .
Since ∼E-steps do not change the root symbol of terms for A∨C-theories E,
root(s) = root(t) = root(l) ∈ D. Let l = f(l1, . . . , lk) for some k-ary defined
symbol f ∈ D. Since σ(l) ∈ M∞,R,E , σ(li) is (ExtE(R), E)-terminating for all
i, 1 ≤ i ≤ k. In particular, σ(x) is (ExtE(R), E)-terminating for all x ∈ Var(l).
Since σ(r) is (ExtE(R), E)-nonterminating, by Theorem 2 there is a subterm
u ∈ T∞,R,E of σ(r). Therefore, there must be a nonvariable subterm v of r (i.e.,
r � v and root(v) ∈ D), such that u = σ(v). Let g = root(v). We consider two
cases according to Theorem 2:

1. If Ag /∈ Eg, then u ∈M∞,R,E .

2. If Ag ∈ Eg, then there must be v = g(v1, v2) for terms v1 and v2 such that
root(v1), root(v2) /∈ X ∪ {g}. Therefore, u = g(u1, u2) with ui = σ(vi)
satisfying root(ui) 6= g for i = 1, 2. Then, u ∈M∞,R,E .

2

Unfortunately, stable minimality of (arbitrary) E-nonterminating terms s for
A∨C-theories E is not preserved under inner (ExtE(R), E)-rewritings (see Ex-
ample 9). As Proposition 10 shows, the problem arises when s is rewritten into
a term like, e.g., t = f(f(t1, t2), t3) on which associative steps can be issued to
rearrange t and possibly introducing an E-nonterminating term below the root,
thus losing stable minimality.

However, as a consequence of previous results, the following theorem estab-
lishes the desired property for stable minimal A∨C-nonterminating terms.

Theorem 3 Let R = (Σ, E,R) be an A∨C-rewrite theory. For all s ∈M∞,R,E,
there exist l→ r ∈ ExtE(R) and a substitution σ such that

s
>Λ−→∗ExtE(R),E t ∼E t′ �f t′′ ∼E σ(l) Λ→ExtE(R) σ(r)

t′′ ∈M∞,R,E and there is a nonvariable subterm v of r (r�v), such that either
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1. v = f(v1, v2) for some associative symbol f , root(v1) ∈ X ∪ {f} or
root(v2) ∈ X ∪ {f}, root(σ(v1)) = f or root(σ(v2)) = f , σ(v) ∈ T∞,R,E
and there is a term t′ ∼E σ(v) containing a strict f -subterm u = f(u1, u2)
(t′ �f u) such that u ∈M∞,R,E, or

2. σ(v) ∈M∞,R,E otherwise.

Proof. Let S be an infinite (ExtE(R), E)-rewrite sequence starting from s.
Since s ∈M∞,R,E , s is (ExtE(R), E)-nonterminating and all its proper subterms
are (ExtE(R), E)-terminating, S must contain a root step after possibly many
(ExtE(R), E)-rewrite steps below the root.

Therefore, s >Λ−→∗ExtE(R),E t and by Corollary 3 , t ∈ T∞,R,E . By Theorem
2, we have that,

1. If Aroot(t) /∈ Eroot(t) or t = f(t1, t2), Af ∈ Ef , root(t1) 6= f , and root(t2) 6=
f , then t ∈M∞,R,E .

2. If t = f(t1, t2), Af ∈ Ef , and root(t1) = f or root(t2) = f , and t 6∈
M∞,R,E , then there is t′ ∼E t and a strict f -subterm t′′ of t′ (i.e., t′�f t

′′)
such that root(t′′) = f and t′′ ∈M∞,R,E .

Therefore, the sequence can proceed as follows:

t ∼E t′ �f t′′ ∼E σ(l) Λ→ExtE(R) σ(r)

Where, if (1) holds, t ∈ M∞,R,E and therefore t = t′ = t′′. Otherwise, in
case (2), if t ∈ M∞,R,E we are done as before. If not, there is t′ ∼E t and a
strict f -subterm t′′ of t′ (i.e., t′�f t

′′) such that root(t′′) = f and t′′ ∈M∞,R,E .
Since stably minimality is preserved by ∼E , therefore, σ(l) ∈ M∞,R,E .

Since A∨C axioms cannot change root(s) or root(t), we have f = root(s) =
root(t) = root(l) ∈ D. Write l = f(l1, . . . , lk). Since σ(l) ∈ M∞,R,E , σ(li) is
(ExtE(R), E)-terminating. In particular, σ(x) is (ExtE(R), E)-terminating for
all x ∈ Var(l). Since σ(r) is (ExtE(R), E)-nonterminating, by Proposition 4
there is a subterm u ∈ T∞,R,E of σ(r) (σ(r) � u). Since σ(x) is (ExtE(R), E)-
terminating for all x ∈ Var(r), there must be a nonvariable subterm v of r
(r � v), such that u = σ(v). By Theorem 2, we only need to carefully consider
the case when u = f(u1, u2) /∈M∞,R,E for some associative symbol f such that
Af ∈ Ef , root(u1) = f or root(u2) = f . Therefore, we must have v = f(v1, v2)
for some terms v1 and v2. Since u1 = σ(v1) and u2 = σ(v2), we must have
v1 ∈ X ∪ {f} or v2 ∈ X ∪ {f}. Theorem 2 also ensures that there is s′ ∼E σ(v)
such that s′ �f u

′ and u′ ∈M∞,R,E . 2

Example 5 shows that Theorem 3 does not hold for Giesl and Kapur’s minimal
terms s ∈ T∞,R,E .
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6 A∨C-Dependency Pairs and Chains

Propositions 8 and 11 together with Theorem 3 are the basis for our definition
of A∨C-Dependency Pairs and the corresponding chains. Together, they show
that given an A∨C-rewrite theory R = (Σ, E,R), every E-nonterminating term
s has an associated infinite (ExtE(R), E)-rewrite sequence starting from a sta-
bly minimal subterm t ∈ M∞,R,E . Such a sequence proceeds as described in
Proposition 11 and Theorem 3, depending on the shape of t.

This process is abstracted in the following definition of A∨C-dependency
pairs (Definition 4) and in the definition of chain below (Definition 5).

Given a signature Σ and f ∈ Σ, we let f ] denote a fresh new symbol
(often called tuple symbol or DP-symbol) associated to a symbol f [1]. Let
Σ] be the set of tuple symbols associated to symbols in Σ. As usual, for
t = f(t1, . . . , tk) ∈ T (Σ,X ), we write t] to denote the marked term f ](t1, . . . , tk)
(written sometimes F (t1, . . . , tk)). Given a set of rules R and a symbol f ∈ Σ,
we let Rf = {l→ r ∈ R | root(l) = f}.

Definition 4 (A∨C-Dependency Pairs) Let R = (Σ, E,R) =
(C ] D, E,R) be an A∨C-rewrite theory. Then, DPE(R) = {l] → s] | l →
r ∈ ExtE(R), r� s, root(s) ∈ D, l 7 v ∼E s} is the set of A∨C-dependency pairs
(A∨C-DPs) of R.

Requiring l 7 v ∼E s for DPAC(R) in Definition 4 follows Dershowitz’s cri-
teria [6] extended to A∨C rewrite theories . In general, the set of A∨C-DPs
which is obtained from Definition 4 is a subset of those which are obtained by
particularizing Giesl and Kapur’s definitions to the A∨C case [10].

Example 10 Consider the AC-rewrite theory R = (Σ, E,R) in Example 5.
The set DPE(R) consists of the following pairs:

F (x, x) → F (0, f(1, 2)) (3)
F (x, x) → F (1, 2) (4)

F (f(x, x), y) → F (f(0, f(1, 2)), y) (5)
F (f(x, x), y) → F (0, f(1, 2)) (6)
F (f(x, x), y) → F (1, 2) (7)

6.1 Chains of A∨C-DPs

An essential property of the dependency pair method is that it provides a charac-
terization of termination of TRSs R as the absence of infinite (minimal) chains
of dependency pairs [1, 13]. If we want to prove the same for A∨C-rewrite the-
ories, we have to introduce a suitable notion of chain which can be used with
A∨C-DPs. As in the DP-framework, where the origin of pairs does not matter,
we should rather think of another rewrite theory P = (Γ, F, P ) which is used
together with R to build the chains. According to the usual terminology [13],
we often call pairs to the rules u→ v ∈ P .
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In the following definition, given sets of equations E and F , we let lF,E =

(
Λ

àF ∪
>Λ

àE)∗. Moreover, we define Λ−→∗Sfi as the application of rules l→ r ∈ S
such that root(l) = f .

Definition 5 (Chain of Pairs - Minimal Chain) Let P = (Γ, F, P ) be a
rewrite theory, R = (Σ, E,R) be an A∨C- rewrite theory, and S = (F , S)
be a TRS. An (F, P,E,R, S)-chain is a finite or infinite sequence of pairs
ui → vi ∈ P , together with substitutions σ and θi satisfying that, for all i ≥ 1:

1. If σ(vi) = fi(vi1, vi2) satisfies σ(vi) = θi(u′i) for some u′i = v′i ∈ F or
v′i = u′i ∈ F such that u′i = fi(u′i1, u

′
i2) satisfies u′i1 /∈ X or u′i2 /∈ X , then

σ(vi) lF,E ◦
Λ−→∗Sfi ti →

∗
ExtE(R),E ◦ lF,E ◦

Λ−→∗Sfi◦ lF,E σ(ui+1)

2. and σ(vi) = ti →∗ExtE(R),E ◦ lF,E σ(ui+1), otherwise.

An (F, P,E,R, S)-chain is called minimal if for all i ≥ 1, and t′i lF,E ti, t′i is
(ExtE(R), E)-terminating.

As usual, in Definition 5 we assume that different occurrences of dependency
pairs do not share any variable (renaming substitutions are used if necessary).

Note that the definition derives directly from Theorem 3: First we have
to look for the minimal term of σ(vi), i.e. ti, (see Theorem 2) which can be
rewritten by using >Λ−→∗ExtE(R),E and again, since minimality can be lost we have
to apply again Theorem 2 to connect with the next pair in the chain. This more
abstract notion of chain can be particularized to be used with A∨C-DPs, by
just taking

1. P = DPE(R),

2. F = E], where E] = {s] = t] | s = t ∈ E}, and

3. S = {f ](f(x, y), z)→ f ](x, y), f ](x, f(y, z))→ f ](y, z) | f ∈ ΣA ∪ ΣAC}.

We have the following:

Proposition 12 Let Σ be a signature and E be a set of noncollapsing equations
over Σ. Let s, t ∈ T (Σ,X ). Then, s ∼E t if and only if s] lE],E t].

Proof. We have s ∼E t if and only if s (
Λ

àE ∪
>Λ

àE)∗ t. We proceed by

induction on the length of the (
Λ

àE ∪
>Λ

àE)-sequence from s to t. If n = 0, then
s = t and s] = t]. By reflexivity of lE],E , we have s] lE],E t]. If n > 0, then

s (
Λ

àE ∪
>Λ

àE) s0 (
Λ

àE ∪
>Λ

àE)∗ t and, by the induction hypothesis, we know

that s]0 lE],E t]. Now, we consider two cases for the step s (
Λ

àE ∪
>Λ

àE) s0:
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1. If s
Λ

àE s0, then there is a substitution σ and an equation u = v ∈ E such
that s = σ(u) and s0 = σ(v) or s = σ(v) and s0 = σ(u). Therefore, since E
is not collapsing, we have that u, v /∈ X . Then s] = σ(u]) and s]0 = σ(v])
(resp. s] = σ(v]) and s]0 = σ(u])). Therefore, since u] = v] ∈ E], we have

s]
Λ

àE] s
]
0. Hence, s] lE],E s0.

2. If s
>Λ

àE s0, then, since marking only affects the root symbol of s and s0,

we also have s]
>Λ

àE s]0. Hence, s] lE],E s0.

Thus, by transitivity of lE],E , we conclude that s] lE],E t] as desired. We
similarly prove that s] lE],E t] implies s ∼E t. 2

Proposition 13 Let Σ be a signature f ∈ Σ and s, t ∈ T (Σ,X ). Then, s�f t

if and only if s] Λ−→∗Sf t
].

Theorem 4 (Soundness) Let R = (Σ, E,R) be an A∨C-rewrite theory with
Σ = C ] D. Let S = (Σ ∪ D], S) be a TRS such that

S = {f ](f(x, y), z)→ f ](x, y), f ](x, f(y, z))→ f ](y, z) | f ∈ ΣA ∪ ΣAC}.

If there is no infinite minimal (E],DPE(R), E,R,S)-chain, then R is
(ExtE(R), E)-terminating

Proof. In the remainder of the proof, we let F = E]. We proceed by
contradiction. If R is not (ExtE(R), E)-terminating, then, by Proposition 8, for
each (ExtE(R), E)-nonterminating term there is an associated stably minimal
term s ∈M∞,R,E . Let f = root(s). We consider two cases for s.

1. If (1) Af /∈ Ef or (2) s = f(s1, s2), Af ∈ Ef , and root(s1), root(s2) ∈ C,
and for all l→ r ∈ Rf and all subterms v of r (r�v) such that v = g(v1, v2)
for some associative symbol g, we have that root(v1), root(v2) /∈ X ∪ {g}.
Then by Proposition 11, there exist l→ r ∈ R, a substitution σ and terms
t ∈ T (Σ,X ) and u ∈M∞,R,E such that

s
>Λ−→∗ExtE(R),E t ∼E σ(l) Λ→R σ(r) � u

and there is a nonvariable subterm v of r, r�v, such that u = σ(v). Hence,
u] = σ(v)] = σ(v]). By using Proposition 12 and, since l] → v] ∈ DP(R)
and DP(R) ⊆ DPE(R), we have

s]
>Λ−→∗ExtE(R),E t

] lF,E σ(l)] = σ(l])→DPE(R) σ(v]) = u]

2. Otherwise, by Theorem 3, there is a rule l → r ∈ ExtE(R), a matching
substitution σ and terms t′′ and u ∈M∞,R,E such that:

s
>Λ−→∗ExtE(R),E t ∼E t′ �f t′′ ∼E σ(l) Λ→ExtE(R) σ(r)

Furthermore, by Theorem 3, there is a nonvariable subterm v of r for
which we have two possibilities:
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(a) We have v = g(v1, v2) for some associative symbol g, where root(v1)
∈ X ∪{g} or root(v2) ∈ X ∪{g}, root(σ(v1)) = g or root(σ(v2)) = g,
σ(v) ∈ T∞,R,E and there is a term w ∼E σ(v) containing a strict
g-subterm u = g(u1, u2) (w �g u) such that u ∈ M∞,R,E . If we
assume that there is an v′ ∼E v which is a replacing subterm of l,
i.e., l � v′ ∼E v, then σ(l) � σ(v′) ∼E σ(v). Since σ(v) ∼E w �g u
such that u ∈ M∞,R,E , this contradicts that σ(l) ∈ M∞,R,E . Thus,
l 7 v′ ∼E v. Since l] → v] ∈ DP(ExtE(R)) we have DP(ExtE(R)) ⊆
DPE(R). By using Propositions 12 and 13, we can write:

s
] >Λ−→∗ExtE(R),E◦ lF,E ◦

Λ−→∗Sf
t
′′] lF,E σ(l)] = σ(l]) Λ→DPE(R)σ(v]) = σ(v)] lF,E w

] Λ−→+
Sf

u
]

(b) Otherwise, σ(v) ∈ M∞,R,E . If we assume that there is an v′ ∼E v
which is a replacing subterm of l, i.e., l�v′ ∼E v, then σ(l)�σ(v′) ∼E

σ(v). Since σ(v) = u such that u ∈ M∞,R,E , this contradicts
that σ(l) ∈ M∞,R,E . Thus, l 7 v′ ∼E v. Hence, l] → v] ∈
DP(ExtE(R)) ⊆ DPE(R), and, by using Propositions 12 and 13, we
can write:

s] >Λ−→∗ExtE(R),E◦ lF,E ◦
Λ−→∗Sf t

′′] lF,E σ(l)] = σ(l])
Λ→DPE(R) σ(v]) = u]

Note that, since u ∈ M∞,R,E , we have that u] is (ExtE(R), E)-terminating.
Thus, s] starts a minimal (E],DPE(R), E,R,S)-chain which could be infinitely
extended from u] in a similar way (as usual, in order to fit the requirement of
variable-disjointness among two arbitrary pairs in a chain of pairs, we assume
that appropriately renamed A∨C-DPs are available when necessary). This con-
tradicts our initial assumption. 2

Now we prove that the previous A∨C-dependency pairs approach is not only
correct but also complete for proving A∨C-termination.

Theorem 5 (Completeness) Let R = (Σ, E,R) be an A∨C-rewrite theory.
Let S = (Σ ∪ D], S) be a TRS such that

S = {f ](f(x, y), z)→ f ](x, y), f ](x, f(y, z))→ f ](y, z) | f ∈ ΣA ∪ ΣAC}.

If R is (ExtE(R), E)-terminating, then there is no infinite minimal
(E],DPE(R), E,R,S)-chain.

Proof. By contradiction. If there is an infinite minimal (E],DPE(R), E,R,S)-
chain, then there are substitutions σi and A∨C-dependency pairs ui → vi ∈
DPE(R) such that :

1. If σ(vi) = fi(vi1, vi2) satisfies σ(vi) = θi(u′i) for some u′i = v′i ∈ F or
v′i = u′i ∈ F such that u′i = fi(u′i1, u

′
i2) satisfies u′i1 /∈ X or u′i2 /∈ X , then

σ(vi) lF,E ◦
Λ−→∗Sfi ti →

∗
ExtE(R),E ◦ lF,E ◦

Λ−→∗Sfi◦ lF,E σ(ui+1)

2. and σ(vi) = ti →∗ExtE(R),E ◦ lF,E σ(ui+1), otherwise.

21



Now, consider the first dependency pair u1 → v1 in the sequence:

• If (1) holds, u\1 is the left-hand side of a rule l1 → r1 ∈ ExtE(R) and v\1
is a subterm of r1. Therefore, r1 = C1[v\1]p1 for some p1 ∈ PosΣ(r1) and
we can perform the A∨C-rewriting step s1 = σ1(u\1) = σ1(l1) →ExtE(R)

σ1(r1) = (C1)[σ1(v\1)]p1 , where, σ1(v\1)] = σ1(v1) lF,E ◦
Λ−→∗Sf1 t1 →

∗
ExtE(R),E

◦ lF,E ◦
Λ−→∗Sfi◦ lF,E σ2(u2) and σ2(u2) initiates an infinite minimal

(E],DPE(R), E,R,S)-chain.

By Theorem 3 we have that t1
>Λ−→∗ExtE(R),E◦ ∼E ◦�f ◦ ∼E s2[σ2(u\2)]p1 =

s2. Therefore, we can build in that way an infinite A∨C-rewrite sequence

s1 →ExtE(R) ◦ ∼E ◦�f t1
>Λ−→∗ExtE(R),E◦ ∼E ◦�f ◦ ∼E s2 →ExtE(R) · · ·

which contradicts the (ExtE(R), E)-termination of R.

• If (2) holds, u\1 is the left-hand side of a rule l1 → r1 ∈ R and v\1 is a
subterm of r1. Therefore, r1 = C1[v\1]p1 for some p1 ∈ PosΣ(r1) and we
can perform the A∨C-rewriting step s1 = σ1(u\1) = σ1(l1) →R σ1(r1) =
(C1)[σ1(v\1)]p1 , where, t]1 = σ1(v\1)] = σ1(v1) →∗ExtE(R),E ◦ lF,E σ2(u2)
and σ2(u2) initiates an infinite minimal (E],DPE(R), E,R,S)-chain.

By Proposition 11 we have that t1
>Λ−→∗ExtE(R),E◦ ∼E s2[σ2(u\2)]p1 = s2.

Therefore, we can build in that way an infinite A∨C-rewrite sequence

s1 →R t1
>Λ−→∗ExtE(R),E◦ ∼E s2 →ExtE(R) · · ·

which contradicts the (ExtE(R), E)-termination of R.

2

As a corollary of Theorems 4 and 5, we have:

Corollary 5 (Characterization of A∨C-Termination) Let R = (Σ, E,R)
be an A∨C-rewrite theory. Let S = (Σ ∪ D], S) be a TRS such that S =
{f ](f(x, y), z)→ f ](x, y), f ](x, f(y, z))→ f ](y, z) | f ∈ ΣA∪ΣAC}. Then, R is
(ExtE(R), E)-terminating if and only if there is no infinite minimal
(E],DPE(R), E,R,S)-chain.

7 An A∨C-Dependency Pair Framework

In the following, we extend Giesl et al.’s DP-framework to provide a suitable
framework for mechanizing proofs of A∨C-termination using A∨C-DPs.

Definition 6 (A∨C Problem) An A∨C problem τ is a tuple τ =
(F, P,E,R, S), where R = (Σ, E,R) is an A∨C-rewrite theory, P = (Γ, F, P )
is a rewrite theory, and S = (F , S) is a TRS. An A∨C problem is finite if there
is no infinite minimal (F, P,E,R, S)-chain. An A∨C problem τ is infinite if R
is E-nonterminating or there is an infinite minimal (F, P,E,R, S)-chain.
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The following definition extends the notion of DP-processor [13] to prove ter-
mination of A∨C-rewrite theories.

Definition 7 (A∨C Processor) An A∨C processor Proc is a mapping from
A∨C problems into sets of A∨C problems. Alternatively, it can also return
“no”. An A∨C processor Proc is

• sound if for all A∨C problems τ , τ is finite whenever Proc(τ) 6= no and
∀τ ′ ∈ Proc(τ), τ ′ is finite.

• complete if for all A∨C problems τ , τ is infinite whenever Proc(τ) = no
or ∃τ ′ ∈ Proc(τ) such that τ ′ is infinite.

Similar to [13] for the DP-framework, we construct a tree whose nodes are
labeled with A∨C problems or “yes” or “no”, and whose root is labeled with
(E],DPE(R), E,R, S). Now we have the following result which extends [13,
Corollary 5] to A∨C-rewrite theories.

Theorem 6 (A∨C-DP Framework) Let R = (Σ, E,R) be an A∨C-theory.
We construct a tree whose nodes are labeled with A∨C problems or “yes” or
“no”, and whose root is labeled with (E],DPE(R), E,R, S), where

S = {f ](f(x, y), z)→ f ](x, y), f ](x, f(y, z))→ f ](y, z) | f ∈ ΣA ∪ ΣAC}.

For every inner node labeled with τ , there is a sound processor Proc satisfying
one of the following conditions:

1. Proc(τ) = no and the node has just one child, labeled with “no”.

2. Proc(τ) = ∅ and the node has just one child, labeled with “yes”.

3. Proc(τ) 6= no, Proc(τ) 6= ∅, and the children of the node are labeled with
the A∨C problems in Proc(τ).

If all leaves of the tree are labeled with “yes”, then R is E-terminating. Other-
wise, if there is a leaf labeled with “no” and if all processors used on the path
from the root to this leaf are complete, then R is not E-terminating.

7.1 Preprocessing

A simply technique that can be useful when dealing with proofs of termination
in the DP-framework is to try to remove rules from the original system before
building the DP problem. In this way, we will start the proof with less rules
and therefore less pairs, which can simplify the proof of termination. We extend
here its use for proving E-termination. A reduction pair (&,=) consists of a
stable and monotonic quasi-ordering &, and a stable and well-founded ordering
= satisfying either & ◦ =⊆= or = ◦ &⊆=. We say that (&,=) is monotonic if
= is monotonic. ∼ is the stable, reflexive, transitive, and symmetric equivalence
induced by &, i.e., ∼ = & ∩ ..
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Proposition 14 (Removing strict rewrite rules) Let R = (Σ, E,R) be a
rewrite theory. Let (&,=) be a monotonic reduction pair such that l (& ∪ =) r
for all l → r ∈ R and u ∼ v for all u = v ∈ E. Let R= = {l → r ∈ R | l = r}
and R′ = R − R=. Then, R is E-terminating if and only if R′ = (Σ, E,R′) is
E-terminating.

Proof. Since R′ ⊆ R, the only if part is obvious. For the if part, we proceed
by contradiction. If R is not E-terminating, then there is an infinite E-rewrite
sequence A:

t1 →R/E t2 →R/E · · · tn →R/E · · ·

that can be written in the following way:

t1 ∼E ◦ →R ◦ ∼E t2 ∼E ◦ →R ◦ ∼E · · · tn ∼E ◦ →R ◦ ∼E · · ·

where an infinite number of rules in R= have been used; otherwise, there would
be an infinite tail tm →R′/E tm+1 →R′/E · · · for some m ≥ 1 where only rules
in R′ are applied, contradicting the E-termination of R′. Let J = {j1, j2, . . .}
be the infinite set of indices indicating E-rewrite steps tj →R/E tj+1 in A, for
all j ∈ J , where rules in R= have been used to perform the E-rewriting step.
Since l = r for all l → r ∈ R= and u ∼ v for all u = v ∈ E, by stability and
monotonicity of = and ∼ (since ∼=& ∩ .), we have that tji = tji+1. Since
l & r for all l → r ∈ R′, by stability and monotonicity of &, we have that
tji+1 & tji+1 . By compatibility between & and = (and since ∼=& ∩ .), we
have tji = tji+1 for all i ≥ 1. We obtain an infinite sequence tj1 = tj2 = · · ·
which contradicts well-foundedness of =. 2

7.2 A∨C-Dependency Graph

A∨C problems focus our attention on the analysis of infinite minimal chains.
Our aim here is obtaining a notion of graph which is able to represent all infinite
minimal chains of pairs as given in Definition 5.

Definition 8 (A∨C-Graph of Pairs) Let P = (Γ, F, P ) be a rewrite theory,
R = (Σ, E,R) be an A∨C- rewrite theory and S = (F , S) be a TRS. The A∨C-
graph associated to them (denoted G(F, P,E,R, S)) has P as the set of nodes.
There is an arc from u → v ∈ P to u′ → v′ ∈ P if u → v, u′ → v′ is an
(F, P,E,R, S)-chain.

In termination proofs, we are concerned with the so-called strongly connected
components (SCCs) of the dependency graph, rather than with the cycles them-
selves (which are exponentially many) [15]. A strongly connected component
in a graph is a maximal cycle, i.e., a cycle which is not contained in any other
cycle. In the following result, given two sets of rules S and Q, we let SQ be the
least subset of S satisfying that whenever there is a rule u→ v ∈ Q, such that
v unifies with s for some s = t ∈ F or t = s ∈ F such that s = f(s1, s2) and
s1 /∈ X or s2 /∈ X , then Sf ⊆ SQ.
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Theorem 7 (SCC Processor) Let P = (Γ, F, P ) be a rewrite theory, R =
(Σ, E,R) be an A∨C- rewrite theory and S = (F , S) be a TRS. Then, the
processor ProcSCC given by
ProcSCC (F, P, E, R, S) = {(F, Q, E, R, SQ) | Q are the pairs of an SCC in G(F, P, E, R, S)}

is sound and complete.

As a consequence, we can separately work with the SCCs of G(F, P,E,R, S),
disregarding other parts of the graph. Now we can use these notions to introduce
the A∨C-dependency graph, i.e., the A∨C-graph whose nodes are the A∨C-DPs
instead of an arbitrary set of pairs.

Definition 9 (A∨C-Dependency Graph) Let R = (Σ, E,R) be an A∨C-
rewrite theory with Σ = C ] D. Let S = (Σ ∪ D], S) be a TRS such that
S = {f ](f(x, y), z) → f ](x, y), f ](x, f(y, z)) → f ](y, z) | f ∈ ΣA ∪ ΣAC}. The
A∨C-Dependency Graph associated to R is:

DG(R) = G(E],DPE(R), E,R, S)

7.3 Estimating the A∨C-Dependency Graph

As in standard rewriting, the A∨C-dependency graph of an A∨C-rewrite theory
is in general not computable. So, we need to use some approximation of it.
For any term t ∈ T (Σ,X ) let Cap(t) result from replacing all proper subterms
rooted by a defined symbol by fresh variables and let Ren(t) which independently
renames all occurrences of variables in t by using new fresh variables [1].

As usual, we should not talk about a mgu when dealing with rewriting
modulo equations. Instead, the appropriate notion is that of complete set of E-
unifiers. However, although in theory, all these E-unifiers have to be considered,
for our results of reachability it is enough to check the existence of one.

Proposition 15 Let R = (Σ, E,R) be an A∨C-rewrite theory with Σ = C ]D.
Let u, t ∈ T (Σ,X ) be such that Var(u) ∩ Var(t) = ∅ and θ, θ′ be substitutions.
If θ(t)→∗ExtE(R),E ◦ ∼E θ′(u), then Ren(Cap(t)) and u E-unify.

Proof. In the following, we let s = Ren(Cap(t)). Clearly, t = σ(s) for some
substitution σ. We proceed by induction on the length n of the sequence from
θ(t)→∗ExtE(R),E t′ in θ(t)→∗ExtE(R),E t′ ∼E θ′(u).

1. If n = 0, then θ(t) = t′ ∼E θ′(u). Since t = σ(s), we have θ(σ(s)) ∼E

θ′(u). Since Var(s) ∩ Var(u) = ∅, we conclude that s and u E-unify.

2. If n > 0, then we have t→ExtE(R),E t′′ →∗ExtE(R),E t′ ∼E θ′(u).

Let p ∈ Pos(t) be the position where the E-rewrite step t→ExtE(R),E t′′ is
performed. By definition of Cap and Ren we have that s = s[z]q for some
(fresh) variable z and position q such that q ≤ p. Let s′ = Ren(Cap(t′′)).
Since t′′ = σ′(s′) for some substitution σ′, by the induction hypothesis,
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s′′ = Ren(Cap(s′)) (which is just a renaming of the fresh variables in s′,
i.e., s′′ = ρ(s′) for some renaming substitution ρ for such fresh variables)
and u E-unify, i.e., there is a substitution ν such that ν(s′′) ∼E ν(u). Note
that we can write s′ = τ(s) for some substitution τ such that τ(x) = x
for all x 6= z and τ(z) = s′|q. Therefore, ν(ρ(τ(s))) ∼E ν(u), i.e., s and u
E-unify.

2

Now, we are ready to provide a correct estimation of our graph of pairs. Cor-
rectness of our definition relies on Proposition 15.

Definition 10 (Estimated A∨C-Graph of Pairs) Let P = (Γ, F, P ) be a
rewrite theory, R = (Σ, E,R) be an A∨C- rewrite theory and S = (F , S) be a
TRS. The estimated A∨C-graph associated to them (denoted EG(F, P,E,R, S))
has P as the set of nodes and arcs which connect them as follows:

1. If v unifies with s for some s = t ∈ F or t = s ∈ F such that s = f(s1, s2)
and s1 /∈ X or s2 /∈ X , then, there is an arc from u→ v ∈ P to u′ → v′ ∈
P if root(u′) = f .

2. Otherwise, there is an arc from u→ v ∈ P to u′ → v′ ∈ P if Ren(Cap(v))
and u′ (F ∪ E)-unify (where equations in F can only be applied at root
position).

According to Definition 8, we would have the corresponding one for the
estimated A∨C-DG: EDG(R) = EG(E],DPE(R), E,R, S), where

S = {f ](f(x, y), z)→ f ](x, y), f ](x, f(y, z))→ f ](y, z) | f ∈ ΣA ∪ ΣAC}.
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Example 11 For the A∨C-rewrite theory in Figure 1, the set DPE(R) is1:

LIST2SET(cons(N,L)) → UNION(N, list2set(L)) (8)
LIST2SET(cons(N,L)) → LIST2SET(L) (9)

IN(N, union(M,S)) → EQ(N,M) (10)
IN(N, union(M,S)) → OR(eq(N,M), in(N,S)) (11)
IN(N, union(M,S)) → IN(N,S) (12)

UNION(union(N,N), Z) → UNION(N,Z) (13)
AND(and(true, B), Z) → AND(B,Z) (14)
AND(and(false, B), Z) → AND(false, Z) (15)

OR(or(true, B), Z) → OR(true, Z) (16)
OR(or(false, B), Z) → OR(B,Z) (17)

EQ(s(N), s(M)) → EQ(N,M) (18)
EQ(cons(N,L), cons(M,L′)) → EQ(N,M) (19)
EQ(cons(N,L), cons(M,L′)) → EQ(L,L′) (20)
EQ(cons(N,L), cons(M,L′)) → AND(eq(N,M), eq(L,L′)) (21)

The (estimated) A∨C-DG is:
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By using Theorem 7 we transform the A∨C problem (E],DP(R), E,R, S)
into a set of A∨C problems ProcSCC (E],DP(R), E,R, S) given by

{(E], {(9)}, E, R, ∅), (E], {(12)}, E, R, ∅), (E], {(13)}, E, R, Sunion),

(E], {(14), (15)}, E, R, Sand), (E], {(16), (17)}, E, R, Sor), (E], {(18), (19), (20)}, E, R, ∅)}

which contains six new (but simpler) A∨C problems.

1We have introduced new ‘prefix’ symbols eq, cons and union instead of the original ‘infix’
ones == , ; , .
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7.4 Use of Reduction Pairs

In the dependency pair framework reduction pairs are used to obtain smaller
sets of pairs P ′ ⊆ P by removing the strict pairs, i.e., those pairs u→ v ∈ P such
that u = v. Stability is required both for & and = because, although we only
check the left- and right-hand sides of the rewrite rules l→ r (with &) and pairs
u→ v (with & or =), the chains of pairs involve instances σ(l), σ(r), σ(u), and
σ(v) of rules and pairs and we aim at concluding σ(l) & σ(r), and σ(u) & σ(v)
or σ(u) = σ(v), respectively. Monotonicity is required for & to deal with the
application of rules l → r to an arbitrary depth in terms. Since the pairs are
‘applied’ only at the root level, no monotonicity is required for = (but, for this
reason, we cannot compare the rules in R using =). Dealing with associative
and/or commutative axioms, we will compare them with the equivalence relation
defined by the stable, reflexive, transitive, and symmetric equivalence ∼ induced
by &, i.e., ∼=& ∩ ., since we need to impose compatibility with the equational
theories E and F . The following theorem formalizes a generic processor to
remove pairs from P by using reduction pairs.

Theorem 8 (Reduction Pair Processor) Let P = (Γ, F, P ) be a rewrite
theory, R = (Σ, E,R) be an A∨C-rewrite theory, and S = (F , S) be a TRS. Let
(&,=) be a reduction pair such that

1. R ⊆&,

2. P ∪ S ⊆& ∪ =, and

3. E ∪ F ⊆∼.

Let P= = {u → v ∈ P | u = v} and S= = {s → t ∈ S | s = t}. Then, the
processor ProcRP given by

ProcRP (F, P,E,R, S) =


{(F, P − P=, E,R, S − S=)} if (1), (2), and (3) hold
{(F, P,E,R, S)} otherwise

is sound and complete.

Proof. Since P − P= ⊆ P and S − S= ⊆ S, completeness is assured.
Regarding soundness, we proceed by contradiction. Assume that there is an
infinite minimal (F, P,E,R, S)-chain A, but that there is no infinite minimal
(F, P − P=, E,R, S − S=)-chain. Due to the finiteness of P and S, we can
assume that there is Q ⊆ P and T ⊆ S such that A has a tail B where all
pairs in Q and rules in T are infinitely often used. We distinguish two kinds of
elementary steps in B, according to Definition 5.

1. If σ(vi) = fi(vi1, vi2) satisfies σ(vi) = θi(u′i) for some u′i = v′i ∈ F or
v′i = u′i ∈ F such that u′i = fi(u′i1, u

′
i2) satisfies u′i1 /∈ X or u′i2 /∈ X , then

σ(vi) lF,E ◦
Λ−→∗Sfi ti →

∗
ExtE(R),E ◦ lF,E ◦

Λ−→∗Sfi◦ lF,E σ(ui+1)
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Note that, due to the requirements imposed for the rules in R and S and
equations in E and F , and by stability and transitivity of & (hence of ∼),
monotonicity and transitivity of &, we have

σ(vi) ∼ ◦ (& ∪ =) ti & ◦ ∼ ◦ (& ∪ =) ◦ ∼ σ(ui+1)

Here, it is important to specifically consider the case when the rules l→ r
involved in →∗ExtE(R),E-steps are taken from ExtE(R)−R, i.e, l → r /∈ R.
In this case, we do not have an explicit compatibility requirement of l→ r
with &, i.e., l & r is not explicitly required. However, since R is an A∨C
theory, such rules are connected with rules rule l′ → r′ ∈ R in a simple
way. For instance if l = f(l′, w) → f(r′, w) = r for some l′ → r′ ∈ R
such that root(l′) = f , then, since l′ & r′ holds, by monotonicity of &,
we also have l = f(l′, w) & f(r′, w) = r. With other rules included in
ExtE(R) − R (see Section 3.1) we would proceed in a similar way. Now,
taking into account that ∼ ◦ (& ∪ =) = & ∪ = and ∼ ◦ & = &, we have

σ(vi) (& ∪ =) ti (& ∪ =)σ(ui+1)

Note that, by the compatibility condition required for & and =, this means
that σ(vi) & σ(ui+1) or σ(vi) = σ(ui+1).

2. If σ(vi) = ti →∗ExtE(R),E ◦ lF,E σ(ui+1), then we analogously have σ(vi) &
σ(ui+1).

Since ui (& ∪ =) vi for all ui → vi ∈ Q ⊆ P , by stability of & and =, we have
σ(ui) (& ∪ =) σ(vi) for all i ≥ 1. No pair u → v ∈ Q satisfies that u = v and
no rule s→ t ∈ T satisfies s = t. Since u→ v and s→ t occurs infinitely often
in B, and taking into account that σ(vi) & σ(ui+1) or σ(vi) = σ(ui+1) for all
i ≥ 1, there would be an infinite set I ⊆ N such that σ(ui) = σ(ui+1) for all
i ∈ I or there would be an infinite set J ⊆ N such that σ(sj) = σ(tj+1) for
all j ∈ J . And we have σ(ui) (& ∪ =) σ(ui+1) for all other ui → vi ∈ Q or
σ(sj)(& ∪ =)σ(tj+1) for all other sj → tj ∈ T . Thus, by using the compatibility
conditions of the reduction pair, we obtain an infinite decreasing =-sequence
which contradicts well-foundedness of =.

Therefore, Q ⊆ (P−P=) and T ⊆ (S−S=), which means that B is an infinite
minimal (F, P − P=, E,R, S − S=)-chain, thus leading to a contradiction. 2

7.5 Other Processors

Many times, the set of F axioms can be reduced to those equations that are
really involved in minimal A∨C-chains. The following processor shows a trivial
method to eliminate them.

Theorem 9 (F Usable Equations Processor) Let P = (Γ, F, P ) be a rewrite
theory, R = (Σ, E,R) be an A∨C-rewrite theory, and S = (F , S) be a TRS such
that
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1. root(u), root(v) ∈ Γ− Σ for all u→ v ∈ P ,

2. root(s) = root(t) ∈ Γ− Σ for all s = t ∈ F , and

3. root(l) = root(r) ∈ Γ− Σ for all l→ r ∈ S, and

Let F̂ = {s = t ∈ F | root(s) = root(u) or root(s) = root(v) for some u→ v ∈ P}

Then, the processor ProcFUEq given by

ProcFUEq(F, P,E,R, S) = {(F̂ , P, E,R, S)}

is sound and complete.

Proof. Regarding soundness, we proceed by contradiction. Assume that
there is an infinite minimal (F, P,E,R, S)-chain A, but that there is no infinite
minimal (F̂ , P, E,R, S)-chain. Due to the finiteness of P , we can assume that
there is Q ⊆ P and F ′ ⊆ F such that A has a tail B where all pairs in Q and
equations in F ′ are infinitely often used. We distinguish two kinds of elementary
steps in B, according to Definition 5.

1. If σ(vi) = fi(vi1, vi2) satisfies σ(vi) = θi(u′i) for some u′i = v′i ∈ F ′ or
v′i = u′i ∈ F ′ such that u′i = fi(u′i1, u

′
i2) satisfies u′i1 /∈ X or u′i2 /∈ X , then

σ(vi) lF ′,E ti
Λ−→∗Sfi t

′
i →∗ExtE(R),E ◦ lF ′,E ◦

Λ−→∗Sfi◦ lF ′,E σ(ui+1)

For this sequence we have:

• root(vi) = fi ∈ Γ− Σ (by (1)),

• that means that in the step σ(vi) lF ′,E t′i we can apply equations
below the root by using E and if we apply an equation s = t ∈ F ′,
then root(s) = root(t) = root(vi) = fi (by (2)) since we only use
them at root position. Then, s = t ∈ F̂ .

• In the step ti
Λ−→∗Sfi t

′
i, again we proceed in a similar way. Since for

all l → r ∈ S we know that root(l) = root(r) (by (3)), then we have
that root(ti) = root(t′i) = root(vi).

• The application of →∗ExtE(R),E-steps are below the root (since root(t′i) ∈
Γ− Σ) and therefore the root symbol remains untouched.

• In the next steps, since the root symbol remains unchanged proceed-
ing like in previous steps, again, if a equation s = t ∈ F ′ is applied at
the root position has to be such that root(s) = root(t) = root(vi) =
root(ti) = root(t′i) = . . . = root(ui+1), therefore s = t ∈ F̂ .

2. If σ(vi) = ti →∗ExtE(R),E ◦ lF ′,E σ(ui+1), then we analogously have that
the equations that can be used to connect with the next pair ui+1 are the
equations in E and those from F ′ such that root(s) = root(t) = root(vi) =
root(ui+1). Then, s = t ∈ F̂ .
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Therefore, root(vi) = root(ti) = root(t′i) = . . . = root(ui+1) = fi and F ′ ⊆ F̂ ,
which means that B is an infinite (F̂ , P, E,R, S)-chain. Since {si | si lF̂ ,E

ti} ⊆ {si | si lF,E ti} and by minimality, for all w lF,E ti, w is (ExtE(R), E)-
terminating therefore for all w lF̂ ,E ti, w is (ExtE(R), E)-terminating. There-
fore B is an infinite minimal (F̂ , P, E,R, S)-chain thus leading to a contradic-
tion.

Regarding completeness, we proceed by contradiction. Assume that there is
an infinite minimal (F̂ , P, E,R, S)-chain A, but that there is no infinite minimal
(F, P,E,R, S)-chain. Due to the finiteness of P , we can assume that there is
Q ⊆ P and F ′ ⊆ F̂ such that A has a tail B where all pairs in Q and equations
in F ′ are infinitely often used. Since F̂ ⊆ F , every infinite (F̂ , P, E,R, S)-chain
is also an infinite (F, P,E,R, S)-chain. Reasoning as in the correctness part
over the infinite sequence, we know that root(vi) = root(ti) = root(t′i) = . . . =
root(ui+1) = fi and therefore, we conclude that the only equations from F
that can be used in the infinite (F, P,E,R, S)-chain belong to F̂ . By min-

imality, for all w(
Λ

àF̂ ∪
>Λ

àE)∗ti, w is (ExtE(R), E)-terminating, since the
only equations that can be applied to ti are those {s = t ∈ F | root(s) =
root(ti) or root(t) = root(ti)} which correspond with F̂ , we can conclude that

for all w(
Λ

àF ∪
>Λ

àE)∗ti, w is (ExtE(R), E)-terminating. Therefore B is an
infinite minimal (F, P,E,R, S)-chain thus leading to a contradiction.

2

Example 12 By Example 11 we have τ0 = (E],DP(R), E,R, S) by applying
the SCC processor into ProcSCC (τ0) = {τ1, τ2, τ3, τ4, τ5, τ6} where

• τ1 = (E], {(9)}, E,R,∅),

• τ2 = (E], {(12)}, E,R,∅),

• τ3 = (E], {(13)}, E,R, Sunion),

• τ4 = (E], {(14), (15)}, E,R, Sand),

• τ5 = (E], {(16), (17)}, E,R, Sor) and

• τ6 = (E], {(18), (19), (20)}, E,R,∅).

For the each of these A∨C problem,we can apply ProcFUEq .

• For τ1, we have ProcFUEq(τ1) = (∅, {(9)}, E,R,∅),

• For τ2, we have ProcFUEq(τ2) = (∅, {(12)}, E,R,∅),

• For τ3, we have ProcFUEq(τ3) = (E]union, {(13)}, E,R, Sunion),

• For τ4, we have ProcFUEq(τ4) = (E]and, {(14), (15)}, E,R, Sand),

• For τ5, we have ProcFUEq(τ5) = (E]or, {(16), (17)}, E,R, Sor) and

• For τ6, we have ProcFUEq(τ6) = (E]eq, {(18), (19), (20)}, E,R,∅).
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8 Usable Rules and Equations for A∨C Prob-
lems

Usable rules are widely used in the DP framework to improve the power of DP
processors. In this section we show how to obtain the set of usable rules and
usable equations for a given A∨C problem and how to use them to define a new
reduction pair processor. We follow the approach and techniques developed
in [14, 26]. We assume that all all our rewrite theories are finite (they have no
infinite rules or equations). Our first intuition was to define a proper notion
of A∨C-dependency that not only take into account the symbols occurring in
the rules, but also the symbols occurring in the equations. But, since A∨C
equations do not introduce new symbols in their left- and right-hand sides, we
can use the standard notion of dependency that only considers symbols occurring
in the rules. We use some auxiliar definitions. Let RlsR(f) = {l → r ∈ R |
root(l) = f}, EqsE(f) = {u = v ∈ E | root(u) = f ∨ root(v) = f}. Let
Fun(t) = {f | ∃p ∈ PosF (t), f = root(t|p)}.

Definition 11 (Dependency [28]) Let R = (Σ, R) be a TRS. We say that
f ∈ Σ has a dependency on h ∈ Σ (written f .R h) if f = h or there is a
function symbol g with g .R h and a rule l→ r ∈ RlsR(f) with g ∈ Fun(r).

To obtain the correct notions of usable rule and equation, we have to look
at the structure of the chains. We have two possible ways to proceed in an
(F, P,E,R, S)-chain. Given ui → vi ∈ P either

σ(vi) lF,E ◦
Λ−→∗Sfi ti →

∗
ExtE(R),E ◦ lF,E ◦

Λ−→∗Sfi◦ lF,E σ(ui+1)

or
σ(vi) = ti →∗ExtE(R),E ◦ lF,E σ(ui+1)

Then, to obtain the set of usable rules and also usable equations we have to
look for usable symbols not only in P , but also in F and S.

Definition 12 (A∨C-Usable Rules and Equations) Let τ be an A∨C prob-
lem such that τ = (F, P,E,R, S) where R = (Σ, E,R) is an A∨C-rewrite theory,
P = (Γ, F, P ) is a rewrite theory, and S = (F , S) is a TRS. The set UR(τ) of
A∨C-usable rules of τ is

UR(τ) =
⋃

s→t ∈ P,f ∈ Fun(t),f.Rg

RlsR(g) ∪⋃
u=v ∈ F,f ∈ Fun(u) ∪ Fun(v),f.Rg

RlsR(g) ∪⋃
l→r ∈ S,f ∈ Fun(r),f.Rg

RlsR(g)
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The set UE(τ) of A∨C-usable equations of τ is

UE(τ) =
⋃

s→t ∈ P,f ∈ Fun(t),f.Rg

EqsE(g) ∪⋃
u=v ∈ F,f ∈ Fun(u) ∪ Fun(v),f.Rg

EqsE(g) ∪⋃
l→r ∈ S,f ∈ ∪Fun(r),f.Rg

EqsE(g)

Note that, if the rules from S are of the form f ](f(x, y), z) → f ](x, y) or
f ](x, f(y, z))→ f ](y, z) do not introduce new rules as usable.

Now, we define an interpretation that, given anA∨C problem τ = (F, P,E,R, S),
allows us to transform any infinite minimal (F, P,E,R, S)-chain into an infinite
sequence of pairs from P where, for all i ≥ 1,

σ′(vi) lF,E′ ◦ →∗Sfi∪Cε ti →
∗
ExtE′ (R

′),E′ ◦ lF,E′ ◦ →∗Sfi∪Cε ◦ lF,E′ ◦ →∗Cε σ
′(ui+1)

or
σ′(vi) = ti →∗ExtE′ (R′),E′ ◦ lF,E′ ◦ →∗Cε σ

′(ui+1)

with Cε = {c(x, y) → x, c(x, y) → y} being c a new fresh binary symbol,
E′ = UE(τ) and R′ = UR(τ) ∪ Cε. We modify the original interpretation used
in [14, 26] in such a way that, if a term is rooted by a non-usable A∨C symbol,
then all its equivalent terms have exactly the same interpretation.

Definition 13 (A∨C-Interpretation) Let R = (Σ, E,R) be an A∨C-rewrite
theory and ∆ ⊆ Σ. Let > be an arbitrary total ordering over
T (Σ ∪ {⊥, c},X ) where ⊥ is a fresh constant symbol and c is a fresh binary
symbol. The A∨C-Interpretation I∆,E is a mapping from E-terminating terms
in T (Σ,X ) to terms in T (Σ ∪ {⊥, c},X ) defined as follows:

I∆,E(t) =

8>>>>>><>>>>>>:

t if t ∈ X
f(I∆,E(t1), . . . , I∆,E(tk)) if t = f(t1, . . . , tk)

and f ∈ ∆
order({c(f(I∆,E(s1), . . . , I∆,E(sk)), s′)

| s = f(s1, . . . , sn) ∈ [t]E}) if t = f(t1, . . . , tk)
and f /∈ ∆

where s′ = order
`
{I∆,E(u) | s→ExtE(R),E u}

´
order(T ) =

(
⊥, if T = ∅
c(t, order(T \ {t})) if t is minimal in T w.r.t. >

We have to ensure now that the adapted interpretation does not generate infinite
terms. This is achieved thanks to the fact that for any A∨C-equational theory
E, E-equivalence classes are always finite, and reductions with →ExtE(R),E are
finitely branching due to finiteness of R (assumed in Section 3).

Lemma 1 Let R = (Σ, E,R) be an A∨C-rewrite theory and ∆ ⊆ Σ and t ∈
T (Σ,X ). If t is E-terminating then I∆,E is well-defined.
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Proof. According to Definition 13, to obtain an infinite term as result
of I∆,E(t), either: (1) we get a term t′ such that [t′]E is infinite, or (2) we
would have to perform an infinite number of applications of the function order
({I∆,E(u) | s→R u}):

(1) We know that R is an A∨C-rewrite theory. Therefore all the equations
are of the form f(f(x, y), z) = f(x, f(y, z)) or f(x, y) = f(y, x). Since
equations are linear and no new symbols are added, [t′]E is finite.

(2) We have an infinite sequence of the following way:

t = t0 ∼E t1 →ExtE(R),E t2 ∼E t3 →ExtE(R),E · · ·

that contradicts the E-termination of t.

2

Now, to prove the main theorem, we need some auxiliar results that allow
us to construct the new infinite sequence. The idea is that, for each relation in
the chain R, if s R t then I∆,E(s) R I∆,E(t).

Definition 14 Let R = (Σ, E,R) be a rewrite theory, ∆ ⊆ Σ and σ be a
substitution. We define σI∆,E as σI∆,E (x) = I∆,E(σ(x)).

Lemma 2 Let R = (Σ, E,R) be an A∨C-rewrite theory and ∆ ⊆ Σ. Let t be
a term and σ be a substitution. If σ(t) is E-terminating, then I∆,E(σ(t)) →∗Cε
σI∆,E (t). If t only contains ∆ symbols, then I∆,E(σ(t)) = σI∆,E (t).

Proof. By structural induction on t:

• If t = x is a variable then I∆,E(σ(x)) = σI∆,E (x).

• If t = f(t1, . . . , tk) then

– If f ∈ ∆ then I∆,E(σ(t)) = f(I∆,E(σ(t1)), . . . , I∆,E(σ(tk))). By hy-
pothesis, terms σ(ti) are E-terminating for 1 ≤ i ≤ ar(f). By induc-
tion hypothesis, for all terms ti we have I∆,E(σ(ti)) →∗Cε σI∆,E (ti).
This implies f(I∆,E(σ(t1)), . . . , I∆,E(σ(tk)))→∗Cε σI∆,E (t).

– If f /∈ ∆, we have that for all s = f(s1, . . . , sn) ∈ [t]E we obtain
I∆,E(σ(t)) →+

Cε c(f(I∆,E(σ(s1)), . . . , I∆,E(σ(sk))), s′)) using proper
Cε-steps. Since t ∈ [t]E , we can obtain
I∆,E(σ(t)) →+

Cε c(f(I∆,E(σ(t1)), . . . , I∆,E(σ(tk))), t′)). Therefore,
we get f(I∆,E(σ(t1)), . . . , I∆,E(σ(tk))) applying again a Cε rule. Then,
we conclude that f(I∆,E(σ(t1)), . . . , I∆,E(σ(tk))) →∗Cε σI∆,E (t) rea-
soning as in the previous item.

Therefore, we have that I∆,E(σ(t))→∗Cε σI∆,E (t).
The second part of the lemma is proved similarly. By structural induction

on t:
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• If t = x is a variable then I∆,E(σ(x)) = σI∆,E (x).

• If t = f(t1, . . . , tk) and f ∈ ∆ (because t only contains ∆ symbols), then
I∆,E(σ(t)) = f(I∆,E(σ(t1)), . . . , I∆,E(σ(tk))). By hypothesis, terms σ(ti)
are E-terminating for 1 ≤ i ≤ ar(f) and terms ti only contain ∆ symbols.
Therefore, by induction hypothesis, I∆,E(σ(ti)) = σI∆,E (ti). This implies
f(I∆,E(σ(t1)), . . . , I∆,E(σ(tk))) = σI∆,E (t).

2

Lemma 3 Let τ = (F, P,E,R, S) be an A∨C problem where R = (Σ, E,R) is
an A∨C-rewrite theory, P = (Γ, F, P ) is a rewrite theory, and S = (F , S) is a
TRS. Let ∆ = (Γ ∪ Σ ∪ F)− ({root(l) | l → r ∈ (R − UR(τ))} ∪ {root(u) | u =
v ∈ (E − UE(τ)) or v = u ∈ (E − UE(τ))}). If s and t are E-terminating and

s
Λ

àF t then I∆,E(s)
Λ

àF I∆,E(t).

Proof. Let s
Λ

à{u=v} t and s = σ(u)
Λ

à{u=v} σ(v) = t or s = σ(v)
Λ

à{v=u}
σ(u) = t for some substitution σ. Since u, v ∈ T (∆,X ) by the construction of

∆, by Lemma 2 we get I∆,E(σ(u)) = σI∆,E (u)
Λ

à{u=v} σI∆,E (v) = I∆,E(σ(v))

or I∆,E(σ(v)) = σI∆,E (v)
Λ

à{v=u} σI∆,E (u) = I∆,E(σ(u)). 2

Lemma 4 Let τ = (F, P,E,R, S) be an A∨C problem where R = (Σ, E,R) is
an A∨C-rewrite theory, P = (Γ, F, P ) is a rewrite theory, and S = (F , S) is a
TRS. Let ∆ = (Γ ∪ Σ ∪ F)− ({root(l) | l → r ∈ (R − UR(τ))} ∪ {root(u) | u =
v ∈ (E − UE(τ)) or v = u ∈ (E − UE(τ))}). If s and t are E-terminating and

s
p

àE t then I∆,E(s)
p

à
∗

UE(τ) I∆,E(t).

Proof. We proceed by induction on the position p ∈ Pos(s) of the redex in

the reduction s
p

à{u=v} t.

• First, we consider that root(s) ∈ ∆.

– If p = Λ (therefore u = v ∈ UE(τ)). So we have s = σ(u)
Λ

à{u=v}

σ(v) = t or s = σ(v)
Λ

à{u=v} σ(u) = t for some substitution σ.
Moreover, u, v ∈ T (∆,X ) by the construction of ∆. By Lemma 2,

we get I∆,E(σ(u)) = σI∆,E (u)
Λ

à{u=v} σI∆,E (v) = I∆,E(σ(v)) or

I∆,E(σ(v)) = σI∆,E (v)
Λ

à{u=v} σI∆,E (u) = I∆,E(σ(u)).

– If p 6= Λ then s = f(s1, . . . , si, . . . , sn), t = f(s1, . . . , ti, . . . , sn),

si
q

à{u=v} ti and p = i.q. By the induction hypothesis,

I∆,E(si)
q

à
∗

UE(τ) I∆,E(ti), I∆,E(s)
i.q

à
∗

UE(τ) I∆,E(t) and, hence

I∆,E(s)
p

à
∗

UE(τ) I∆,E(t).
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• Finally, we consider the case root(s) /∈ ∆. Since we can infer that t ∈ [s]E

and [s]E = [t]E because s
p

à{u=v} t then, I∆,E(s) = I∆,E(t) and, hence,

I∆,E(s)
p

à
∗

UE(τ) I∆,E(t).

2

Lemma 5 Let τ = (F, P,E,R, S) be an A∨C problem where R = (Σ, E,R) is
an A∨C-rewrite theory, P = (Γ, F, P ) is a rewrite theory, and S = (F , S) is a
TRS. Let ∆ = (Γ ∪ Σ ∪ F)− ({root(l) | l → r ∈ (R − UR(τ))} ∪ {root(u) | u =
v ∈ (E − UE(τ)) or v = u ∈ (E − UE(τ))}). If s and t are E-terminating and
s lF,E t then I∆,E(s) lF,UE(τ) I∆,E(t).

Proof. We can write s lF,E t as s(
Λ

àF ∪
>Λ

àE)∗t and we know:

1. If s′ = t′ trivially I∆,E(s′) = I∆,E(t′).

2. If s′
Λ

àF t′ for any two terms s′, t′ then I∆,E(s′)
Λ

àF I∆,E(t′) by Lemma 3.

3. If s′
>Λ

àE t′ for any two terms s′, t′ then I∆,E(s′)
>Λ

à
∗

UE(τ) I∆,E(t′) by
Lemma 4.

4. If s′
Λ

àF ∪
>Λ

àE t′ for any two terms s′, t′ then I∆,E(s′)
Λ

àF ∪
>Λ

à
∗

UE(τ)

I∆,E(t′) by (2) and (3), which is equivalent to I∆,E(s′)(
Λ

àF ∪
>Λ

àUE(τ)

)∗I∆,E(t′).

Now, we proceed on the length n of the sequence s(
Λ

àF ∪
>Λ

àE)∗t.

• If n = 0 then s = t and I∆,E(s) = I∆,E(t).

• If n > 0 then s(
Λ

àF ∪
>Λ

àE)u(
Λ

àF ∪
>Λ

àE)∗t. By the induction hypoth-

esis, I∆,E(u)(
Λ

àF ∪
>Λ

àUE(τ))∗I∆,E(t), and by (4) we have I∆,E(s)(
Λ

àF

∪
>Λ

àUE(τ))∗I∆,E(u).

Hence, if s lF,E t then I∆,E(s) lF,UE(τ) I∆,E(t). 2

Lemma 6 Let τ = (F, P,E,R, S) be an A∨C problem where R = (Σ, E,R) is
an A∨C-rewrite theory, P = (Γ, F, P ) is a rewrite theory, and S = (F , S) is a
TRS. Let ∆ = (Γ ∪ Σ ∪ F)− ({root(l) | l → r ∈ (R − UR(τ))} ∪ {root(u) | u =
v ∈ (E − UE(τ)) or v = u ∈ (E − UE(τ))}). If s and t are E-terminating and
s→ExtE(R),E t then I∆,E(s)→+

ExtUE(τ)(UR(τ)∪Cε),UE(τ) I∆,E(t).

Proof. We proceed by induction on the position p ∈ Pos(s) of the redex
in the reduction s

p∼E s′
p−→l→r t where l → r ∈ ExtE(R). By recursively

applying Lemma 4 to s = s1 àE s2 àE · · · àE sn = s′, we have that
I∆,E(s) = I∆,E(s1) àUE(τ) I∆,E(s2) àUE(τ) · · · àUE(τ) I∆,E(sn) = I∆,E(s′).
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• First, let root(s) = root(s′) ∈ ∆.

– If p = Λ (l → r ∈ ExtUE(τ)(UR(τ))), we have s′ = σ(l) Λ→{l→r}
σ(r) = t for some substitution σ. Moreover, r ∈ T (∆,X ) by the
construction of ∆. By Lemma 2, we get

I∆,E(σ(l))→∗Cε σI∆,E (l)→{l→r} σI∆,E (r) = I∆,E(σ(r))

– If p 6= Λ then s = f(s1, . . . , si, . . . , sn), t = f(s1, . . . , ti, . . . , sn) and
si →{l→r},E ti. By the induction hypothesis,

I∆,E(si)→+
ExtUE(τ)(UR(τ)∪Cε),UE(τ) I∆,E(ti)

and, hence also I∆,E(s)→+
ExtUE(τ)(UR(τ)∪Cε),UE(τ) I∆,E(t).

• Finally, let root(s) = root(s′) /∈ ∆. Then,

I∆,E(t) ∈ order
(
{I∆,E(u) | s→ExtE(R),E u}

)
because s→ExtE(R),E t. By applying Cε rules, we get I∆,E(s)→+

Cε I∆,E(t).

Therefore, I∆,E(s)→∗ExtUE(τ)(UR(τ)∪Cε),UE(τ) I∆,E(t). 2

Lemma 7 Let τ = (F, P,E,R, S) be an A∨C problem where R = (Σ, E,R) is
an A∨C-rewrite theory, P = (Γ, F, P ) is a rewrite theory, and S = (F , S) is a
TRS. Let ∆ = (Γ ∪ Σ ∪ F)− ({root(l) | l → r ∈ (R − UR(τ))} ∪ {root(u) | u =
v ∈ (E − UE(τ)) or v = u ∈ (E − UE(τ))}). If s and t are E-terminating and
s

Λ→Sfi
t then I∆,E(s)→+

Sfi∪Cε
I∆,E(t).

Proof. We know that p = Λ and l → r ∈ Sfi . So we have s = σ(l) Λ→{l→r}
σ(r) = t for some substitution σ. Moreover, r ∈ T (∆,X ) by the construc-
tion of ∆. By Lemma 2 we get I∆,E(σ(l)) →∗Cε σI∆,E (l) →{l→r} σI∆,E (r) =
I∆,E(σ(r)). Therefore, I∆,E(s)→+

Sfi∪Cε
I∆,E(t). 2

A relation & is Cε-compatible iff c(x, y) & x and c(x, y) & y for a new binary
fresh symbol c.

Theorem 10 (RP Processor with A∨C-Usable Rules and Equations) Let
τ = (F, P,E,R, S) be an A∨C problem where R = (Σ, E,R) is an A∨C-rewrite
theory, P = (Γ, F, P ) is a rewrite theory, and S = (F , S) is a TRS. Let (&,=)
be a reduction pair such that & is Cε-compatible and

1. UR(τ) ⊆&,

2. (P ∪ S) ⊆& ∪ =, and

3. F ∪ UE(E) ⊆∼.
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Let P= = {u → v ∈ P | u = v} and S= = {s → t ∈ S | s = t}. Then, the
processor ProcRP given by

ProcRP (F, P,E,R, S) =


{(F, P − P=, E,R, S − S=)} if (1), (2), and (3) hold
{(F, P,E,R, S)} otherwise

is sound and complete.

Proof. Since P − P= ⊆ P and S − S= ⊆ S, completeness is assured.
Regarding soundness, we proceed by contradiction. Assume that there is an
infinite minimal (F, P,E,R, S)-chain A, but that there is no infinite minimal
(F, P − P=, E,R, S − S=)-chain. Due to the finiteness of P and S, we can
assume that there is Q ⊆ P and T ⊆ S such that A has a tail B where all
pairs in Q and rules in T are infinitely often used. We distinguish two kinds of
elementary steps in B, according to Definition 5.

1. If σ(vi) = fi(vi1, vi2) satisfies σ(vi) = θi(u′i) for some u′i = v′i ∈ F or
v′i = u′i ∈ F such that u′i = fi(u′i1, u

′
i2) satisfies u′i1 /∈ X or u′i2 /∈ X , then

σ(vi) lF,E si
Λ−→∗Sfi ti →

∗
ExtE(R),E t′i lF,E wi

Λ−→∗Sfiw
′
i lF,E σ(ui+1)

We apply I∆,E in Definition 13 to the initial term in the sequence. We let
∆ = (Γ ∪ Σ ∪ F)− ({root(l) | l → r ∈ (R − UR(τ))} ∪ {root(u) | u = v ∈
(E −UE(τ)) or v = u ∈ (E −UE(τ))}), E′ = UE(τ) and R′ = UR(τ)∪ Cε.
Sequentially, we obtain the following results:

• Since vi only contains ∆ symbols, by Lemma 2 we have that σI∆,E (vi) =
I∆,E(σ(vi))

• By Lemma 5, I∆,E(σ(vi)) lF,E′ I∆,E(si).

• By induction on the length of the sequence si
Λ−→∗Sfi ti and using

Lemma 7, I∆,E(si)→∗Sfi∪Cε I∆,E(ti).

• By induction on the length of the sequence ti →∗ExtE(R),E t′i and using
Lemma 6, I∆,E(ti)→∗ExtE′ (R′),E′ I∆,E(t′i).

• By Lemma 5, I∆,E(t′i) lF,E′ I∆,E(wi).

• By induction on the length of the sequence wi
Λ−→∗Sfiw

′
i and using

Lemma 7, I∆,E(wi)→∗Sfi∪Cε I∆,E(w′i).

• By Lemma 5, I∆,E(w′i) lF,E′ I∆,E(σ(ui+1)).

• By Lemma 2, I∆,E(σ(ui+1))→∗Cε σI∆,E (ui+1).

Therefore, we obtain the following chain:

σI∆,E (vi) lF,E′ ◦ →∗Sfi∪Cε ◦ →
∗
ExtE′ (R′),E′

t′′i
t′′i lF,E′ ◦ →∗Sfi∪Cε ◦ lF,E′ ◦ →∗Cε σI∆,E (ui+1)
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Note that, due to the requirements imposed for the rules in UR(τ) and
S and equations in UE(τ) and F , and by stability, transitivity and Cε-
compatibility of & (hence of ∼), monotonicity and transitivity of &, we
have

σI∆,E (vi) ∼ ◦(& ∪ =)◦ & ◦ ∼ ◦(& ∪ =)◦ ∼ ◦ & σI∆,E (ui+1)

Here, it is important to specifically consider the case when the rules l→ r
involved in →ExtE′ (R′),E′ -steps are taken from ExtE′(R′) − (R′), i.e, l →
r /∈ R′. In this case, we do not have an explicit compatibility requirement
of l→ r with &, i.e., l & r is not explicitly required. However, since R′ =
(Σ, E′, R′) is an A∨C rewrite theory, such rules are connected with rules
rule l′ → r′ ∈ R′ in a simple way. For instance if l = f(l′, w)→ f(r′, w) =
r for some l′ → r′ ∈ R′ such that root(l′) = f , then, since l′ & r′ holds, by
monotonicity of &, we also have l = f(l′, w) & f(r′, w) = r. With other
rules included in ExtE′(R′) − (R′) (see Section 3.1) we would proceed in
a similar way. Now, taking into account that ∼ ◦ (& ∪ =) = & ∪ = and
∼ ◦ & = &, we have

σI∆,E (vi) (& ∪ =) σI∆,E (ui+1)

Note that, by the compatibility condition required for & and =, this means
that σI∆,E (vi) & σI∆,E (ui+1) or σI∆,E (vi) = σI∆,E (ui+1).

2. If σ(vi) = ti →∗ExtE(R),E ◦ lF,E σ(ui+1), then we analogously, applying
Lemma 6 and Lemma 5, have

σI∆,E (vi)→∗ExtE′ (R′),E′ ◦ lF,E′ σI∆,E (ui+1)

and, hence, σI∆,E (vi) & σI∆,E (ui+1).

Since ui (& ∪ =) vi for all ui → vi ∈ Q ⊆ P , by stability of & and =, we have
σI∆,E (ui) (& ∪ =) σI∆,E (vi) for all i ≥ 1. No pair u → v ∈ Q satisfies that
u = v, and no rule s → t ∈ T satisfies s = t. Since u → v and s → t occurs
infinitely often in B, and taking into account that σI∆,E (vi) & σI∆,E (ui+1) or
σI∆,E (vi) = σI∆,E (ui+1) for all i ≥ 1, there would be an infinite set J ⊆ N
such that σI∆,E (ui) = σI∆,E (ui+1) for all i ∈ J or there would be an infinite
set K ⊆ N such that σI∆,E (sj) = σI∆,E (tj+1) for all j ∈ K. And we have
σI∆,E (ui) (& ∪ =) σI∆,E (ui+1) for all other ui → vi ∈ Q, and σI∆,E (sj) (&
∪ =) σI∆,E (tj+1) for all other uj → vj ∈ T . Thus, by using the compatibility
conditions of the reduction pair, we obtain an infinite decreasing =-sequence
which contradicts well-foundedness of =.

Therefore, Q ⊆ (P − P=) and T ⊆ (S − S=), which means that B is an
infinite chain, thus leading to a contradiction. 2
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Example 13 For the A∨C-rewrite theory in Figure 1, we have the following
rules in R (with prefix symbols again):

list2set(N) → N (22)
list2set(cons(N,L)) → union(N, list2set(L)) (23)

in(N, null) → false (24)
in(N, union(M,S)) → or(eq(N,M), in(N,S)) (25)

union(N,N) → N (26)
and(true, B) → B (27)
and(false, B) → false (28)
or(true, B) → true (29)
or(false, B) → B (30)
eq(0, s(N)) → false (31)

eq(s(N), s(M)) → eq(N,M) (32)
eq(cons(N,L),M) → false (33)

eq(cons(N,L), cons(M,L′)) → and(eq(N,M), eq(L,L′)) (34)
eq(L,L) → true (35)

By example 12, we have the following A∨C problems:

• τ ′1 = (∅, {(9)}, E,R,∅),

• τ ′2 = (∅, {(12)}, E,R,∅),

• τ ′3 = (E]union, {(13)}, E,R, Sunion),

• τ ′4 = (E]and, {(14), (15)}, E,R, Sand),

• τ ′5 = (E]or, {(16), (17)}, E,R, Sor) and

• τ ′6 = (E]eq, {(18), (19), (20)}, E,R,∅).

For the each of these A∨C problem,we can apply ProcUR.

• In the case of τ ′1 we have:
UR(τ ′1) = ∅, UE(τ ′1) = ∅ and the following polynomial interpretation2:

[LIST2SET](x) = x ∗ x+ x [cons](x, y) = y + 1

to conclude finiteness of τ ′1.

2The quasi-orderings & induced by a polynomial interpretation can always be made com-
patible with the rules of the TRS Cε, i.e., Cε ⊆&.
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• For τ ′2 we have:
UR(τ ′2) = ∅, UE(τ ′2) = ∅ and the following polynomial interpretation:

[IN](x, y) = x ∗ y + y [union](x, y) = y + 1

to conclude finiteness of τ ′2.

• For τ ′3 we have:
UR(τ ′3) = {(26)}, UE(τ ′3) = {(Eunion)} and the following polynomial in-
terpretation:

[UNION](x, y) = x+ y + 1 [union](x, y) = x+ y

to conclude finiteness of τ ′3.

• For τ ′4 we have:
UR(τ ′4) = {(27), (28)}, UE(τ ′4) = {(Eand)} and the following polynomial
interpretation:

[AND](x, y) = x+ y [and](x, y) = x+ y + 1
[false] = 1 [true] = 1

This processor eliminate one strict pair and generate a new A∨C problem
τ4.1 = (E]and, {(14)}, E,R, Sand) where again we have:

UR(τ4.1) = {(27), (28)}, UE(τ4.1) = {(Eand)} and the following polynomial
interpretation:

[AND](x, y) = x+ y [and](x, y) = x+ y
[false] = 1 [true] = 1

to conclude finiteness of τ4.1 and therefore of τ ′4.

• For τ ′5 we have:
UR(τ ′5) = {(29), (30)}, UE(τ ′5) = {(Eor)} and the following polynomial
interpretation:

[OR](x, y) = x ∗ y + x+ y [or](x, y) = x ∗ y + x+ y
[false] = 1 [true] = 1

This processor eliminate one strict pair and generate a new A∨C problem
τ5.1 = (E]or, {(16)}, E,R, Sor) where again we have:
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UR(τ5.1) = {(29), (30)}, UE(τ5.1) = {(Eand)} and the following polynomial
interpretation:

[OR](x, y) = x+ y [or](x, y) = x+ y + 1
[false] = 1 [true] = 1

to conclude finiteness of τ5.1 and therefore of τ ′5.

• Finally, for τ ′6 we have:
UR(τ ′6) = ∅, UE(τ ′6) = ∅ and the following polynomial interpretation:

[EQ](x, y) = x ∗ y + x+ y [cons](x, y) = x+ y + 1
[s](x) = x+ 1

This processor eliminate one strict pair and generate a new A∨C problem
τ6.1 = (E]eq, {(18), (19)}, E,R,∅) where we have:

UR(τ6.1) = ∅, UE(τ6.1) = ∅ and the following polynomial interpretation:

[EQ](x, y) = x ∗ y + x+ y [cons](x, y) = x+ 1
[s](x) = x+ 1

This application eliminate another strict pair and generate a new A∨C
problem τ6.2 = (E]eq, {(18)}, E,R,∅). We have:

UR(τ6.2) = ∅, UE(τ6.2) = ∅ and the following polynomial interpretation:

[EQ](x, y) = x ∗ y + x+ y [s](x) = x+ 1

to conclude finiteness of τ6.2 and therefore of τ ′6.

Therefore, after showing the finiteness of all the A∨C problems generated from
Example 1, we can conclude its E-termination.

9 Benchmarks

We have implemented all techniques described in this paper in the termina-
tion tool mu-term. mu-term is a tool which can be used to verify a num-
ber of termination properties of (variants of) Term Rewriting Systems (TRSs):
termination of rewriting, termination of innermost rewriting, termination of
order-sorted rewriting, termination of context-sensitive rewriting, termination
of innermost context-sensitive rewriting and, thanks to this new approach, ter-
mination of rewriting modulo specific axioms. With these new features imple-
mented, mu-term has been able to participate in the International Competition
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of Termination Tools3 in the category of TRS Equational. This is not the first
implementation for proving termination of rewriting modulo axioms: CiME [5]
is able to prove AC-termination of TRSs, and AProVE [11] is able to deal with
termination of rewriting modulo equations satisfying some restrictions. How-
ever, in the last editions of the competition CiME has not participated and
AProVE is the only termination tool that participates in this category from its
first edition in 2004. There exists a Termination Problem Data Base4 (TPDB)
which contains 71 examples in the equational category5. In the 2010 edition
there were only two participants: AProVE and mu-term. The organization
selected randomly a subset of 34 examples from the entire set. mu-term was
able to solve 16 out of them whereas AProVE solved 24. We considered this
result as a good one since only a few techniques had been implemented to deal
with termination modulo axioms and AProVE implements specific techniques
since 2004. These include an AC-recursive path order (RPO) with status (3
examples out of them are solved with it) and processors based on usable rules
(the remaining 5 examples are solved using them). There is no formal publica-
tion of any of these techniques. In the case of the AC-RPO, we suppose that
they implement the master thesis of Stephan Falke [9] although [24] was pub-
lished before. Recently, we have found out that this work was adapted to the
dependency pair framework in the master thesis of Christian Stein ([25], in ger-
man and not available publicly). However, both papers are based on the notion
of minimality presented in [10] which we have shown that is not appropriate.
In the case of processors for managing usable rules is essential to deal with a
correct notion of minimality [14, 26].

Now, with only the techniques described in this paper, mu-term is able
to solve 59 examples out of 71. Two examples more than AProVE6. For full
details see:

http://zenon.dsic.upv.es/muterm/benchmarks/benchmarks-avc/benchmarks.html

In comparison with the implementation of the techniques developed in [3],
where mu-term were able to solve 39 examples7, now, thanks to the new tech-
niques, mu-term has become a powerful and competitive tool for proving termi-
nation of A∨C-rewrite theories. The practical results are summarized in Table
1.

10 Related Work and Conclusions

This paper is an extended and revised version of [3]. We provide complete proofs
for all results, and also present more examples about the use of the theory. The
main conceptual differences between [3] and this paper can be summarized as
follows:

3See http://www.lri.fr/~marche/termination-competition/
4See http://termination-portal.org/wiki/TPDB
5We have used version 7.0.2 of the TPDB.
6See the 2008 edition of the termination competition where the entire set of examples from

the category where considered.
7see http://www.dsic.upv.es/~balarcon/WRLA10/benchmarks.html
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mu-term A∨C-DPs AProVE mu-term [3]

YES score 59 57 39

YES average time 6.83 sec. 5.12 sec. 40.13 sec.

Table 1: Comparative in proofs of termination of A∨C-rewrite theories

• We have refined the notion of A∨C- dependency pairs integrating an equa-
tional extension of Dershowitz’s refinement of standard dependency pairs
(see [6]).

• We have refined the notion of A∨C-chain by allowing the application of
F axioms only at the root position.

• We have developed a preprocessing technique which is often able to remove
rules from the original system before starting the proof in the A∨C DP-
framework, thus simplifying the whole proof of A∨C-termination.

• We have refined the A∨C processor of reduction pairs which is now able
to eliminate rules, not only from R, but also from the set S.

• We have developed a new A∨C processor that restricts the set of F axioms
to those that are really used in the A∨C problem.

• We have extended the well-known technique of usable rules to A∨C-
termination and we have developed the corresponding A∨C processor to
eliminate pairs and rules by means of reduction orders.

• We have implemented the techniques presented in [3] and the ones devel-
oped here. We have made some benchmarks showing the performance of
them.

As remarked in the introduction, this is not the first work which tries to use
dependency pairs for proving termination of rewriting modulo an equational
theory, see [9, 10, 16, 17, 18, 20, 21, 25]. Our work, however, is, as far as
we know, the first one which provides a satisfactory notion of minimal non-
terminating term for an A∨C-rewrite theory R = (Σ, E,R) which can be used
to provide a suitable definition of minimal chain of dependency pairs, which
can in turn be used to characterize A∨C-termination (Corollary 5). In order
to substantiate this claim, consider the AC-rewrite theory R = (Σ, E,R) in
Example 5 again. The A∨C-DPs for R are enumerated in Example 10. Such
dependency pairs coincide with the ones which would be computed by, e.g.,
[9, 10, 17, 18, 25]. Remember that t in Example 5 is minimal in Giesl and
Kapur’s sense (Definition 2); and also according to [9, 25] which inherit this
notion. We should, then, be able to find an infinite minimal chain of DPs
starting from t]. According to [9, 10, 17, 18, 25], ‘minimal’ means that σ(vi)
is (ExtE(R), E)-terminating for all pairs ui → vi ∈ DPE(R) in the chain of
dependency pairs induced by the substitution σ. However, this is not possible:
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the marked version t] of t is F (f(0, 1), f(0, f(1, 2))), which is an (ExtE(R), E)-
terminating term. After some E] ∪ E-equivalence steps (where E] is applied
only at root position) we would be able to apply one of the rules in DPE(R).
Note, however, that no rule u→ v ∈ DPE(R) except (5) has a right-hand side v
which can be rewritten (after instantiation into σ(v)) into an instance σ(u′) of
the left-hand side u′ of any other pair in DPE(R) by means of (ExtE(R), E]∪E)-
rewriting steps. This means that only the dependency pair (5) could be used
in any infinite minimal chain of dependency pairs starting from t]. But such a
chain would start as follows:

F (f(0, 1), f(0, f(1, 2))) lE],E F (f(0, 0), f(1, f(1, 2)))→(5) F (f(0, f(1, 2)), f(1, f(1, 2)))

where F (f(0, f(1, 2)), f(1, f(1, 2))) contains a subterm f(1, f(1, 2)) which, as
showed in Example 5, is (ExtE(R), E)-nonterminating. Therefore, this chain of
dependency pairs is not minimal. We conclude that, according to the notion of
minimal chain in the aforementioned papers, there is no minimal chain of pairs
starting from t]. This means that no sound approach to proving AC-termination
on the basis of such notion of minimal chain is possible. In this paper we have
introduced the notion of stably minimal term (Definition 3) which overcomes
these problems (Proposition 11 and Theorem 3) and leads to an appropriate
characterization of A∨C-termination as the absence of infinite minimal chains
of A∨C-DPs (Definitions 4 and 5, and Corollary 5).

Furthermore, we note that [17, 18] deal with AC-rewrite theories only, and
that [10], which considers more general rewrite theories E including A∨C-
theories do not cover our work in a second respect: when purely associative
theories are considered (i.e., rewrite theoriesR = (Σ, E,R) such that Ef ⊆ {Af}
for all f ∈ Σ), then Giesl and Kapur’s technique requires the computation of
instances of the rules in ExtE(R) for which the computation of all the E-unifiers
uniE(v, l) of v and l for the rules l → r in ExtE(R) and equations u = v ∈ E
or v = u ∈ E is required. It is well-known, however, that the E-unification
problem for associative theories E is infinitary, which means that uniE(v, l) is
not guaranteed to be finite, in general. In sharp contrast, we do not have to do
that for dealing with purely associative rewrite theories R.

Our second main (and novel) contribution is the formalization of an A∨C-
dependency pair framework (Definitions 6 and 7) which, on the basis of the
previously developed theory, can be used to develop automatic tools for proving
termination of A∨C-rewrite theories (Theorem 6). Several important processors
have been developed as well: the SCC processor (Theorem 7), the reduction
pair processor (Theorem 8), the processor that restricts the set of F axioms
(Theorem 9), and the reduction pair processor with usable rules and equations
(Theorem 10). We have implemented the techniques described in this paper
in the termination tool mu-term and we have developed some benchmarks,
showing that our A∨C-DP Framework is currently the most powerful approach
for proving termination of A∨C-rewrite theories. As we have commented, the
implementation of the techniques in [3] allowed us to participate in the ter-
mination competition in the equational category in the TPDB and therefore
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providing mu-term the ability of proving termination modulo axioms. Thanks
to these new improvements, mu-term is a powerful tool for proving termination
of A∨C- rewrite theories and as far as we know, no tool is able to solve more
examples from the equational category. Much work remains ahead in terms
of further developing the new A∨C-dependency pair framework. Appropriate
reduction orderings which are well-suited for being used in the reduction pair
processor should be investigated. It would also be very useful to explore how the
requirements on E can be relaxed to handle even more general sets of axioms.
Regarding tool support for the method we have presented, we have integrated
it within the tool mu-term [2]. In this way, our termination technique modulo
arbitrary combinations of associative and/or commutative axioms is applica-
ble to an even wider range of rewrite theories, which can be transformed into
A∨C-theories by non-termination-preserving transformations [7, 8, 19].
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[5] E. Contejean, C. Marché, B. Monate, X. Urbain, Proving Termination of
Rewriting with CiME, in: A. Rubio (Ed.), Proc. of the 6th International
Workshop on Termination, WST’03, 2003, pp. 71–73.

[6] N. Dershowitz, Termination by Abstraction, in: B. Demoen and V. Lifs-
chitz (Eds.), Proc. of 20th International Conference on Logic Programming,
ICLP’04, LNCS, vol. 3132, Springer, 2004, pp. 1–18.

[7] F. Durán, S. Lucas, J. Meseguer, Termination Modulo Combinations of
Equational Theories, in: S. Ghilardi, R. Sebastiani (Eds.), Proc of 7th
International Symposium on Frontiers of Combining Systems, FroCoS’09,
LNAI, vol. 5749, Springer, 2009, pp. 246–262.

46
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