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ABSTRACT

In [1], A. A. Borubaev introduced the concept of T-metric space, where
T is an arbitrary cardinal number. The class of T-metric spaces as T
runs through the cardinal numbers contains all ordinary metric spaces
(for 7 = 1) and thus these spaces are a generalization of metric spaces.
In this paper the notion of T-metrizable space is considered.
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1. PRELIMINARIES AND NOTATIONS

Our notation and terminology is standard and generally follows [2]. The
cardinality of a set X is denoted by |X|. Throughout, we denote by 7 an
arbitrary nonzero cardinal number. The cardinalities of the natural numbers
and of the real numbers are denoted by Ny and ¢, respectively. The character,
the weight and the density of a topological space X are denoted by x (X)), w(X)
and d(X), respectively. As usual I denotes the closed unit interval [0, 1] with
the Euclidean metric topology.

By R7, we denote the topological product of 7 copies of the space R} =
[0, +00) (with the natural topology). On the space R7, the operations of
addition, multiplication, and multiplication by a scalar, as well as a partial
ordering, are defined in a natural way (coordinatewise).

Now, we present the notion of T-metric space [1]. Let X be a nonempty set.
A mapping p, : X x X — R7_is called a 7-metric on X if the following axioms
hold:
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(1) pr(x,y) = 0 if and only if x = y, where § is the point of the space R7.
whose all coordinates are zeros.

(2) pr(z,y) = pr(y,2) for all 2,y € X.

(3) pr(z,2) < pr(z,y) + pr(y, 2) for all z,y, 2 € X.
The pair (X, p;) is called a 7-metric space and the elements of X are called
points.

Every 7-metric space (X, p,) generates a Tychonoff (that is, completely
regular and Hausdorff) topological space (X,T,.). The topology T, on X
defined by the local basis consisting of the sets of the form

G(z) ={y e X : p;(z,y) € O(0)},

where O(f) runs through all open neighbourhoods of the point 6 in the space
R7, of each point z € X is called the topology induced by the T-metric p.

In this paper the notion of 7-metrizable space is introduced. The paper
is organized as follows. Section 2 contains the basic concepts of 7-metrizable
spaces. Generally, 7-metrizable spaces may be not metrizable. We prove that
if 7 < Ny, then every T-metrizable space is metrizable. In section 3 we obtain a
generalization of the classical metrization theorem of Urysohn. More precisely,
we prove that every Tychonoff space of weight 7 > X is 7-metrizable. Finally,
in section 4 we prove that every compact 7-metrizable space has density less
than or equal to 7.

2. BASIC CONCEPTS

The notion of a 7-metric space leads to the notion of a T-metrizable space
which is inserted in the following definition.

Definition 2.1. A topological space (X, T') is called T-metrizable if there exists
a T-metric p, on the set X such that the topology T},  induced by the 7-metric
p- coincides with the original topology 7' of X. 7-metrics on the set X which
induce the original topology of X will be called T-metrics on the space X.

Note that 7-metrizable spaces are useful because only such spaces can be
presented as limits of 7-long projective systems of metric spaces [1, Theorem
3].

Proposition 2.2. A metric space is T-metrizable.

Proof. Let (X, p) be a metric space, t, be the topology induced by the metric
p, and let 7 be a cardinal number. Consider a set A such that |A| = 7 and
set px = p for each A € A. The mapping p, : X x X — R7 defined by

pr(x,y) = {pxr(x,y)rea for every x,y € X is a 7-metric on X. It is easy to
see that t, =T, . O

Proposition 2.3. A 7-metrizable space is T'-metrizable for every cardinal
number 7' > .
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Proof. Let X be a 7-metrizable space, p, be a 7-metric on the space X and
7/ be a cardinal number such that 7/ > 7. Consider two sets K and A such
that K C A, |[K| =7 and |A| = 7/, and set p-(z,9) = {p*(z,y) }rex for every
z,y € X. Let ky be one fixed element of K. The mapping p, : X x X — Ri
defined by p./(z,y) = {p} (@, y)}ren for every z,y € X, where

A pi\(xay)a ifxe K
pT’(l‘)y): A .
o (a,y), ifAeA\K,

is a 7'-metric on X such that T, , =T} . O

The following examples show that 7-metrizable spaces may be not metri-
zable.

Example 2.4. The product R® = [], ., Xx, where X, = R for every A € A and
|A| = ¢, of uncountably many copies of the real line R is not metrizable, since
it is not first-countable. However, the space R® is ¢-metrizable. Assuming each
copy X of R has its usual metric dy, the mapping p. : R* xR¢ — R, defined by
pe(@,y) = {dx(zx,yn) }ren for every x = {za}rea € R and y = {ya}rer € RS
is a c-metric on R® and the topology induced by p. coincides with the product
topology.

Example 2.5. Let R be the set of real numbers with the discrete topology
D and (Rs, Ds) be the Alexandroff’s one-point compactification of the space
(R, D), that is Roe = RU{o0} and Do = DU{R\K : K is a finite subset of R}.
The space (Roo, Doo) is not metrizable (because it is not separable). We prove
that the space (Reo,Doo) is c-metrizable. Let F'in(R) be the collection of all
the nonempty finite subsets of R with |Fin(R)| = c. For every F € Fin(R) we
define:

(1) pp(z,z) =0 for each = € Ry.
0, ifz¢F
1

. for each z € R.
, otherwise

(2) pr(w,00) = pp(o0,x) = {

0, fz¢ Fandy ¢ F

. for each z,y € R with x # y.
1, otherwise

(3) pr(z,y) = {
The mapping p. : Roo X Ro — RS defined by pc(z,y) = {pr (2, %)} rerinr) for
every r,y € Ry is a ¢-metric on Ro,. We prove that the topology T}, induced
by the ¢-metric p. coincides with the topology Do .

Let z € R. If G(z) = {y € R : pe(z,y) € O(0)}, where O(0) is an open
neighbourhood of the point  in the space RS, then {z} € D and {z} C G(x).
Moreover, for the open neighbourhood [ Fin(R) W of the point 6, where

W%:{m@,ﬁF@}

R4, otherwise

we have G(2) = {y € Reo : pc(2,9) € [[repinmw Wr} € {2}
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Now, we consider the point co of Ry If {oo} U (R\ K), where K € Fin(R)
is an open neighbourhood of the point oo in the space R, then for the open
neighbourhood HFeFin(]R) Wr of the point 8, where

W — [0,3), ifF:K

R4, otherwise
we have G(00) = {y € R 1 pe(00,9) € [Irepinm Wrt € {00} U (R K).
Finally, let HFGFin(]R) Ur be an open neighbourhood of the point 6 in the
space RS and suppose that {F' € Fin(R) : Ur # R} = {Ky,..., Kp}. Then,

{00} UR\ (K 1U...UK})) CG(0) ={y € Ro : pe(c0,y) € [ Ur}-
FeFin(R)
However, a 7-metrizable space may be metrizable considering addition con-
ditions as the following assertions show.

Proposition 2.6. A n-metric space is metrizable for every finite cardinal num-
ber n.

Proof. Let (X, p,) be a n-metric space and T, be the topology induced by p,,.
Consider a vector expression of the form p,(z,y) = (pk(z,v),...,p"(z,y)) for
every x,y € X. The mapping p: X x X — R defined by

pz.y) = max{p,(z,y), ..., pn(z,y)}
for every z,y € X is a metric on X. It is easy to see that the metric topology

is the same as T}, . O

Definition 2.7. Two T-metrics p;, and pa, on a set X are called equivalent
if they induce the same topology on X, that is T),, =T,, .

Example 2.8. Let p, be a 7-metric on X. Consider a set A such that |A| =7
and let us set p,(z,y) = {p2(z,y)}rea for every z,y € X. The mapping
pr X x X — R7 defined by pi(z,y) = {min{l,pi(ac,y)}})\GA for every
xz,y € X is a T-metric on X equivalent to p,.

Proposition 2.9. An Ng-metric space is metrizable.

Proof. Let (X, pNO) be an Ng-metric space. Consider the equivalent Ng-metric

Py, to py, of Example 2.8. Let pi (x,y) = (p§ (z,v), pi2 (2, y),...) for every
z,y € X. The mapping p: X x X — R, defined by

oo

1 *1
pla.y) =D 5o (2.9)

i=1
for every z,y € X is a metric on X. The process of proving that the topology
induced by the metric p coincides with the topology TpNO is similar to the proof

of the Theorem 4.2.2 of [2]. O

Corollary 2.10. If 7 < Ng, then every T-metrizable space is metrizable.
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Proof. Follows directly from Propositions 2.6 and 2.9. O

Proposition 2.11. For each 7 > Yy there is a T-metrizable space X, with
w(X;) = 7, which is not metrizable.

Proof. Let X, be the Alexandroff’s one-point compactification of a discrete
space X of cardinality 7, where 7 > Ny. The space X, is not metrizable
(because it is not separable). It is known that |Fin(X)| = | X| = 7. Therefore,
in the same manner as in Example 2.5, we can prove that the space X, is
T-metrizable. Let us note that w(X,) = 7. O

Proposition 2.12. For every 7 > N and every T-metrizable space X, we have
x(X) < 7.

Proof. Let X be a T-metrizable space and p, be a 7-metric on the space X
with 7 > Rg. Consider a set A such that |A| = 7. The family By of all products
11 aea Wi, where finitely many Wy are intervals of the form [0, b) with rational
b and the remaining W) = R, form a local basis of the point # in the space
R” . Hence, for every x € X, the family

B(z) ={G(z) ={y € X : p-(z,y) € B} : B€ By}

is a local basis of the point = in the space X. Since |By| = 7, we have |B(z)| <
T. (]

3. A T-METRIZATION THEOREM

Metrization theorems are theorems that give sufficient conditions for a topo-
logical space to be metrizable (see [2,5]). In this section we obtain a general-
ization of the classical metrization theorem of Urysohn.

Lemma 3.1. If (X, p;) is a T-metric space and A is a subspace of X, then the
topology induced by the restriction of the T-metric p, to A X A is the same as
the subspace topology of A in X.

Theorem 3.2. Fvery Tychonoff space of weight T > R is T-metrizable.

Proof. Let X be a Tychonoff space such that w(X) = 7 > ®y. The space
I™ = [Ixca X, where X\ = I for every A € A and |A| = 7 is T-metrizable
(see Example 2.4). Assuming each copy X of I has its usual metric dy, the
mapping d- : I” x I" — R defined by d-(z,y) = {dx(@x,yr)}rea for every
x = {xr}lrenr € I" and y = {ya}rea € I" is a 7-metric on I7. We shall
prove that X is 7-metrizable by imbedding X into the 7-metrizable space I7,
i.e. by showing that X is homeomorphic with a subspace of I”. But this
follows immediately from the fact that the Tychonoff cube I7 is universal for
all Tychonoff spaces of weight 7 (see [2, Theorem 2.3.23]). By Lemma 3.1, the
space X is 7-metrizable. O

As every T-metrizable space is Tychonoff (see [1]), we get the following result.

Corollary 3.3. A space of weight T > N is T-metrizable if and only if it is
Tychonoff.
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Remark 3.4. We can use Theorem 3.2 to find 7-metrizable spaces, where 7 >
Np, that are not metrizable. Below we consider some examples. Example
3.5 is a c-metrizable space which is not second-countable, Example 3.6 is a ¢-
metrizable space which is not normal and Example 3.7 is a 27-metrizable space,
where 7 > ¢, which is not metrizable.

Example 3.5. Let S be the Sorgenfrey line, that is the real line with the
topology in which local basis of = are the sets [z,y) for y > x. Since X is
separable but not second-countable, it cannot be metrizable. Furthermore, S
is Tychonoff and w(S) = ¢. From Theorem 3.2 it follows that the Sorgenfrey
line is a ¢-metrizable space.

Example 3.6. Let P = {(a,3) € R? : 8 > 0} be the open upper half-plane
with the Euclidean topology and L = {(«, 8) € R?: 8 = 0}. Weset X = PUL.
For every x € P let B(z) be the family of all open discs in P centered at z. For
every ¢ € L let B(z) be the family of all sets of the form {z}UD, where D is an
open disc in P which is tangent to L at the point x. The family T of all subsets
of X that are unions of subfamilies of U{B(x) : € X'} is a topology on X and
the family {B(z) : x € X} is a neighbourhood system for the topological space
(X,T). The space X is called the Niemytzki plane (see, for example, [2,4]).
X is a Tychonoff space with w(X) = ¢, which is not normal. Therefore, by
Theorem 3.2, X is a c-metrizable space, but not metrizable.

Example 3.7. Let 8D(7) be the Cech-Stone compactification of the discrete
space D(7) of cardinality 7 > ¢. Then, w(8D(7)) = 27 (see [2, Theorem
3.6.11]). Since SD(7) is zero-dimensional (see [2, Theorem 3.6.13]), it is Ty-
chonoff. The space D(7) is not compact. Therefore, SD(7) is not metrizable
(see [3, Exercise 9, §38, Ch.5]). From Theorem 3.2 it follows that 8D(7) is 27-
metrizable. Particularly, if one assumes the continuum hypothesis, the Cech-
Stone compactification fw of the discrete space of the non-negative integers
w=1{0,1,2,...} is c-metrizable.

Remark 3.8. A space X may be T-metrizable for some infinite cardinal number
7 < w(X), as shown in the following example.

Example 3.9. Let A be a set of cardinality 7 > R, D(x) the discrete space of
cardinality x > 7, and F' = [[,c, X, where X\ = D(k) for every A € A, with
the Tychonoff product topology. We note that the points of F' are functions
from A to D(k). The space F is not metrizable for x(F) = 7 (see [2, Exercise
2.3.F(b)]). Moreover, w(F') = & (see [2, Exercise 2.3.F(a)]). We prove that the
space F' is T-metrizable. For every A € A we define:

(1) pa(f,f)=0for each f € F.

0, if f(A) =9(N)

. for each f,g € F with f # g.
1, otherwise

The mapping p, : F' x F' — R7 defined by p,(f,9) = {pr(f, 9)}ren for every
f,g9 € Fis a T-metric on F'. We prove that the topology T, induced by the
T-metric p. coincides with the Tychonoff product topology.
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Let f € F, [],ca Ux be an open neighbourhood of the point 6 in the space
R7, and suppose that {A € A : Uy # Ry} = {\1,..., A}, For the open
neighbourhood ]y, Wi of the point f, where

. {{f(A)}, A€ A A}

D(k),  otherwise

we have [[,c, Wa € G(f) ={9 € F: p.(f.9) € [Iea Ur}-
Now, let f € F' and [[,c, Wa be an open neighbourhood of the point f in

the space F, and suppose that {A € A : Wy # D(k)} = {\1,..., A\ }. For the
open neighbourhood ], Ux of the point 6, where

Uy = {[0,%), if A€ {A,. .., A}

Ry, otherwise
we have G(f) ={g € F:p.(f,9) € [Tnea Un} € Ilrea Wa.

4. COMPACT 7-METRIZABLE SPACES

It is well known that every compact metrizable space is separable. An ana-
logous result for 7-metrizable spaces is stated in this section.

Let us consider a set A such that |A] = 7 > Ry and let B, be the family
of all open subsets [[,c, W of the product R7, where finitely many W) are
intervals of the form [0,¢) and the remaining Wy = Ry.

Definition 4.1. Let (X, p,) be a 7-metric space. A subset A of X is called
Oc-dense in (X, p;), where O, € B, if for every x € X there exists a € A such
that p,(z,a) € Oc.

Definition 4.2. A 7-metric space (X, p,) is called e-totally bounded if for
every O, € B. there exists a finite subset A of X which is O.-dense in (X, p;).
The 7-metric space (X, p;) is called totally bounded if it is e-totally bounded
for every € > 0.

Recall that the density d(X) of a topological space X, is defined to be
d(X) = min{|D| : D is a dense subset of X}.

Proposition 4.3. For every totally bounded T-metric space X, the inequality
d(X) < 7 holds.

Proof. Let n € {1,2,...}. For each Oy, € By, let A(O1/y,) be a finite O /y,-
dense subset of X and consider the subset A, = U{A(O1y,) : O1n, € Bi/p} of
X with |A,| < 7. The subset A =52, A, of X is dense and |A| < 7. O

Proposition 4.4. Every compact T-metric space X is totally bounded.
Proof. Let € > 0. For every O, € B the family
{Glx) ={ye X :p;(z,y) €0.} : 2 € X}

forms an open cover of X. By compactness of X, there exists a finite subset
A of X such that (J,c 4, G(a) = X. For every x € X there exists a € A with
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x € G(a). Therefore, p.(z,a) € O. and the subset A of X is O.-dense in
(X, pr). U

Theorem 4.5. For every compact T-metrizable space X we have d(X) < 7.

Proof. Let X be a compact 7-metrizable space. According to Proposition 4.4,
the space X is totally bounded. Therefore, by virtue of Proposition 4.3, d(X) <
T. .
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