
DEPARTAMENTO DE SISTEMAS INFORMÁTICOS Y COMPUTACIÓN
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

P.O. Box: 22012 E-46071 Valencia (SPAIN)

Technical Report

Ref. No.:
Pages: 35
Title: Case-Based Argumentation Framework: Reasoning Process
Author(s): Stella Heras and Vicente Botti and Vicente Julián
Date: June 24, 2011
Keywords: Argumentation, Case-Based Reasoning, Multi-Agent Systems

Vo Bo

Vicente Botti Stella Heras



1 Introduction

Currently, most business transactions are operated by means of software components in large scale com-
puter systems. These components are often implemented as agents in a Multi-Agent System (MAS).
In this way, their reasoning autonomy, their social features and the fact that they can represent human
interests and preferences are highlighted. In MAS, agents perform complex tasks that require differ-
ent levels of intelligence and give rise to interactions among them. From these interactions, conflicts of
interest and opinion can arise among different agents, specially when MAS become adaptive and open
(with heterogeneous agents dynamically entering in or leaving the system). Therefore, software agents
willing to participate in open systems will require to include extra capabilities to explicitly represent and
generate agreements, on top of the simpler capacity to interoperate [23]. This paves the way for a new
area of research to develop software components that allow agents to argue and reach agreements in these
systems.

Argumentation is a natural way of reaching agreements between several parties with opposing positions
about a particular issue. Agents can reach agreements by engaging in argumentation dialogues with their
opponents. This has made Artificial Intelligence (AI) researchers to pay their attention on argumentation
theory [20]. However, many works in the area assume human users interacting with software tools, such
as the approaches for argument authoring and diagramming [21], OVAa. Other research works where the
computational modelling of arguments has been studied are those on case-based argumentation. From the
first uses of argumentation in AI, arguments and cases are intertwined [24]. Case-based argumentation
particularly reported successful applications in American common law [5], whose judicial standard orders
that similar cases must be resolved with similar verdicts. In [6] a model of legal reasoning with cases
is proposed. But, again, this model assumed human-computer interaction and cases were not thought
to be only acceded by software agents. Case-Based Reasoning (CBR) systems [1] allow agents to learn
from their experiences. In MAS, the research in case-based argumentation is quite recent with just a
few proposals to date [11]. These proposals are highly domain-specific (e.g. persuasion in negotiation
[26], sensor networks [25] and classification [18]) or centralise the argumentation functionality either in
a mediator agent, which manages the dialogue between the agents of the system [27], or in a specific
module of the system itself [14]. Thus, the notions of argument and argumentation resources of these
systems are not conceived for being acceded only by software agents that perform automatic reasoning
processes over them and that can have partial knowledge about the domain.

In addition, agents can form societies that impose social dependencies among them and can have values
that they want to promote or demote. These values can be personal goods (e.g. efficiency, accuracy, etc.)
or also social goods inherited from the agents’ dependency relations. Thus, we endorse the view of value-
based argumentation frameworks [19], [22] and [4], which stress the importance of the audience (the set
of individuals that share a particular preference order over the set of values) in determining whether an
argument is persuasive or not. Value-based argumentation frameworks extend abstract argumentation
frameworks by addressing issues about the rational justification of choices. Then, we also consider values
as an important element of the social context of an agent.

Starting from the idea that the social context of agents determines the way in which they can argue and
reach agreements, it should have a decisive influence in the computational representation of arguments
and in the argument management process. This opens a new research challenge for the development of
a computational mechanism for reaching agreements in MAS in which the participating software agents
are able to manage and exchange arguments between themselves taking into account their social context.
To deal with this challenge the reasoning process by which agents can automatically generate, select and
evaluate arguments must be specified. Also, to allow agents to learn from argumentation experiences
and thus, to improve the efficiency and outcomes of further agreement processes is an interesting add-on
feature for this type of systems.

In this report, we advance research on the area of developing agreement technologies for MAS and
propose to follow a Case-Based Reasoning (CBR) methodology [1] as an appropriate technique to manage
arguments and enhance agreement processes. Reasoning with cases is specially suitable when there is

aOVA at ARG:dundee: www.arg.dundee.ac.uk

1



a weak domain theory, but acquiring examples encountered in practice is easy. Most argumentation
systems produce arguments by applying a set of inference rules. Rule-based systems require to elicit
a explicit model of the domain. In open MAS the domain is highly dynamic and the set of rules that
model it is difficult to specify in advance. However, tracking the arguments that agents put forward
in argumentation processes could be relatively simple. Therefore, these arguments can be stored as
cases codified in a specific case representation language that different agents are able to understand.
This is easier than creating an explicit domain model, as it is possible to develop case-bases avoiding
the knowledge-acquisition bottleneck. With these case-bases, agents are able to perform lazy learning
processes over argumentation information, as will be illustrated in the example of Section 3. Another
important problem with rule-based systems arises when the knowledge-base must be updated (e.g. adding
new knowledge that can invalidate the validity of a rule). Updates imply to check the knowledge-base for
conflicting or redundant rules. Case-based systems are easier to maintain than rule-based systems since,
in the worst case, the addition of new cases can give rise to updates in some previous cases, but does
affect the correct operation of the system, although it can have an impact in its performance. Hence, a
case-based representation of the domain knowledge of the system is more suitable for being applied in
dynamic open MAS.

Therefore, in Section 2 we propose a set of case-based knowledge resources that agents can use to
generate, select and evaluate arguments. In addition, we present an argumentation ontology to represent
the elements of these knowledge resources. This ontology enables a common understanding about the
argumentation concepts and allows heterogeneous agents to engage in agreement processes. Based on the
knowledge resources proposed, in Section 3 we present a reasoning process that allows agents to reach
agreements taking into account their argumentation experience and social context. Also, this process
allows agents to enhance their argumentation skills by learning from past argumentation experiences.
All these elements form a case-based argumentation framework (AF) for reaching agreements in agent
societies. This framework has been implemented and tested in a Technology Management Center that
provides customer support. The results achieved are discussed in Section 4. Section 5 provides a discussion
about some issues and assumptions made in this work and compares it with related approaches. Finally,
Section 6 summarises the contributions of this report.

2 Case-Based Knowledge Resources

In open multi-agent argumentation systems the arguments that an agent generates to support its position
can conflict with arguments of other agents and these conflicts are solved by means of argumentation
dialogues between them. In our framework we propose three types of knowledge resources that the agents
can use to generate, select and evaluate arguments in view of other arguments:

A case-base with domain-cases that represent previous problems and their solutions. Agents can use
this knowledge resource to generate their positions in a dialogue and arguments to support them.
Also, the acquisition of new domain-cases increases the knowledge of agents about the domain under
discussion.

A case-base with argument-cases that store previous argumentation experiences and their final out-
come. Argument-cases have three main objectives: they can be used by agents 1) to generate new
arguments; 2) to select the best position to put forward in view of past argumentation experiences;
and 3) to store the new argumentation knowledge gained in each agreement process, improving the
agents’ argumentation skills.

A database of Argumentation schemes with a set of argumentation schemes [28], which represent
stereotyped patterns of common reasoning in the application domain where the framework is imple-
mented. An argumentation scheme consists of a set of premises and a conclusion that is presumed
to follow from them. Also, each argumentation scheme has associated a set of critical questions that
represent potential attacks to the conclusion supported by the scheme. The concrete argumentation
schemes to be used depend on the application domain.

2



The structure of domain-cases and the concrete set of argumentation schemes that an argumentation
system that implements our framework has depends on the application domain. An example will be
shown in Section 4. Argument-cases are the main structure that we use to computationally represent
arguments in agent societies. Also, their structure is generic and domain-independent. Thus, this section
presents the description of argument-cases in detail.

PROBLEM

Domain Context [Premises]*

Social Context

Proponent
ID
Role
ValPref

Opponent
ID
Role
ValPref

Group
ID
Role
ValPref

Dependency Relation

SOLUTION

Conclusion
Value
Acceptability Status

Received Attacks
[Critical Questions]*
[Distinguishing Premises]*
[Counter Examples]*

JUSTIFICATION
[Cases]*
[Argumentation Schemes]*
Associated Dialogue Graphs

Table 1: Structure of an Argument-Case.

2.1 Argument-Case Structure

Table 1 shows the generic structure of an argument-case. This knowledge resource stores the information
about a previous argument (or a set of similar arguments) that an agent posed in certain step of a
dialogue with other agents. Argument-cases have the three possible types of components that usual cases
of CBR systems have: the description of the state of the world when the case was stored (Problem); the
solution of the case (Conclusion); and the explanation of the process that gave rise to this conclusion
(Justification).

2.1.1 Problem.

The problem description has a domain context that consists of the premises that characterise the ar-
gument. In addition, if we want to store an argument and use it to generate a persuasive argument in
the future, the features that characterise its social context must also be kept. The social context of the
argument-case includes information about the proponent and the opponent of the argument and about
their group. Moreover, we also store the preferences (ValPref ) of each agent or group over the set of
values pre-defined in the system. Finally, the dependency relation between the proponent’s and the oppo-
nent’s roles is also stored. In this work, we consider three types of dependency relations as defined in [8]:
Power, when an agent has to accept a request from other agent because of some pre-defined domination
relationship between them; and Charity, when an agent is willing to answer a request from other agent
without being obliged to do so.

3



2.1.2 Solution.

In the solution part, the conclusion of the case, the value promoted, and the acceptability status of the
argument at the end of the dialogue are stored. The last feature shows if the argument was deemed
acceptable, unacceptable or undecided in view of the other arguments that were put forward in the
agreement process. In addition, the conclusion part includes information about the possible attacks
(defined in Section 3) that the argument received during the process. These attacks could represent the
justification for an argument to be deemed unacceptable or else reinforce the persuasive power of an
argument that, despite being attacked, was finally accepted.

2.1.3 Justification.

The justification part of an argument-case stores the information about the knowledge resources that
were used to generate the argument represented by the argument-case (the set of domain-cases and
argument-cases). In addition, the justification of each argument-case has a dialogue-graph (or several)
associated, which represents the dialogue where the argument was put forward. In this way, the sequence
of arguments that were put forward in a dialogue is represented, storing the complete conversation as a
directed graph that links argument-cases. This graph can be used later to improve the efficiency in an
argumentation dialogue (as explained in Section 3).

3 Reasoning Process

This section presents the reasoning process that allows agents to use the knowledge resources presented
before to generate, select and evaluate their positions and arguments. Also, with this process, agents are
able to automatically learn from the argumentation experiences. Along the section, we assume that a set
of agents with different positions (points of view) are arguing to reach an agreement to solve a complex
problem. At this level of abstraction, we assume that this is a generic problem of any type (e.g. resource
allocation, classification, prediction, etc.) that could be described with a set of features.

First, we define some concepts that will be used in the following sections.

Definition 3.1 (Function Value). The function value is defined as valuek(x) : C × F → V and returns
for a case k (from a set of cases C) the value of the feature x (from a set of features Fk of the case k and
a set of values V ).

Definition 3.2 (Match). A match between two cases i, j ∈ C is defined as: match(i, j) : C × C → true
iff Fi ∩ Fj 6= ∅ and ∀f ∈ Fi ∩ Fj , vali(f) = valj(f).

Hence, two cases match if their common features match. Note that this does not mean that both
cases have the same features, since any of them can have extra features that do not appear in the other
case.

Definition 3.3 (Subsumption). A case cl subsumes other case cm (from a set of cases C): subsumes(cl, cm) :
C × C → true iff match(cl, cm) and ∀fm ∈ cm,∃fl ∈ cl/valcl

(fl) = valcm
(fm).

Therefore, we also describe problems as cases without solution and assume that a match between the
problem to solve and a stored case means that the latter has some features of the problem and with the
same valuesb. A total match between a problem and a case or between two cases means that both cases
have the same features and with the same values.

Now, arguments in our framework can be attacked by putting forward counter-examples and distin-
guishing premises, as proposed in [6], and also critical questions:

bDifferent types of matches could define other types of similarity between cases. For instance, a different match function
could establish the threshold under which two features can be considered as similar or when a feature subsumes other
feature in a hierarchy (and hence the more specific feature could be considered as a matching feature).

4



Definition 3.4 (Counter-Example). A counter-example for a case is a previous domain-case or an
argument-case that was deemed acceptable, where the problem description of the counter-example matches
the current problem to solve and also subsumes the problem description of the case, but proposing a
different solution.

Definition 3.5 (Distinguishing Premise). A distinguishing premise x with respect to a problem P between
two cases c1, c2 ∈ C is defined as: ∃x ∈ c1∧ 6 ∃x ∈ P/∃x ∈ c2 ∧ valuec1(x) 6= valuec2(x) or else,
∃x ∈ c1 ∧ ∃x ∈ P/valuec1(x) = valueP (x)∧ 6 ∃x ∈ c2, where P ⊆ F , x ∈ F and c1, c2 ∈ C.

That is a premise that does not appear in the problem description and has different values for two
cases or a premise that appears in the problem description that does not appear in one of the cases. Note
that distinguishing premises are sometimes implicit in counter-examples, when the counter-example has
features that do not appear in the original description of the problem to solve or in the description of the
case that the counter-example rebuts.

Definition 3.6. A critical question is a question associated to an argumentation scheme that represents
a potential way in which the conclusion drawn from the scheme can be attacked.

Therefore, if the opponent asks a critical question, the argument that supports this argumentation
scheme remains temporally rebutted until the question is conveniently answered. This characteristic of
argumentation schemes makes them very suitable to devise ways of attack the conclusions drawn from
other agents.

3.1 Position Management

In the first step to reach an agreement about the best solution for a problem to solve, an agent can
generate its individual position, which represents the best solution for the problem from the agent’s
point of view. At this level of abstraction, we assume that this is a generic problem of any type (e.g. a
classification, a prediction, etc.) that could be described with a set of features. This is not a compulsory
step for agents to engage in the argumentation process to reach the agreement, since some agents could
argue about positions of others’ without having necessarily generated their own. Then, with the set of
generated positions agents generate associated argument-cases to support them. After that, they can use
their case-bases of argument-cases to select the best position to propose. Finally, agents evaluate their
positions in view of the others’ positions and their previous experience.

3.1.1 Position Generation.

In our AF, agents have several ways to generate positions, depending on their design or even on strategical
considerations. Thus, an agent could follow different mechanisms to generate positions:

1. From the Problem Description and Domain-Cases: This option would be followed by agents
that rely more on their experiences. The agent retrieves from the domain case-base those cases
that match with the specification of the current problem. With the solutions that were ap-
plied in these cases, the agent generates a potential solution for the problem at hand, which
represents its position with respect to the problem. Note that the set of retrieved cases could
provide different solutions for the same problem. For instance, assuming that the agent has
to provide a solution for the problem p = (f1, f2, f3) that partially matches with two cases
c = (f1, f2, sc) and d = (f2, f3, sd) of its case-base with solutions sc and sd respectively. Then,
positions pos1 = (f1, f2, sc) and pos2 = (f2, f3, sd) can be created. Thus, in this situation we have
that valuep(f1) = valuec(f1), valuep(f2) = valuec(f2) = valued(f2) and valuep(f3) = valued(f3).

2. From the Problem Description and Argumentation Schemes: This option would be fol-
lowed by agents that rely more on its pre-defined argumentation schemes. Then, an agent can
generate its position as the conclusion drawn by using the problem description to match (totally
or partially) the premises of a scheme. For instance, assuming that there is an scheme AS1 =
(premise1, premise2, conclusion) that partially matches the problem p (with premise1 matching

5



f1 and premise2 matching f2), the position pos3 = (f1, f2, sAS1), where sAS1 = conclusion could
be created. Also, several positions could be generated if the description matches the premises of
several schemes.

3. From the Problem Description, Cases and Argumentation Schemes: This option would
be selected by agents that prefer to exploit all their resources and follow an hybrid generation
policy. The agent retrieves from its domain case-base the cases that match the current problem.
Then, it can extend the problem description by adding the set of attributes of the retrieved cases
that are consistent with this description (do not appear in the problem description) and with the
set of retrieved cases (have the same value in all retrieved cases that they appear). For instance,
assume that the agent has to provide a solution for the problem p that matches again with case
c and d, but this time, the cases have two extra features f5 and f6 (c = (f1, f2, f5, f6, sc) and
d = (f2, f3, f5, f6, sd)). Also, both cases have the same value for f5, but different values for f6
(valuec(f5) = valued(f5) but valuec(f6) 6= valued(f6)). Thus, features f6 in cases c and d are
considered inconsistent and only feature f5 would be added to the extended problem description
(p′ = (f1, f2, f3, f5)). Finally, from this new problem description and the argumentation schemes
the agent can generate its position (or positions), as explained above. This method for generating
positions follows the idea of broadening the space of possible solutions by considering features that,
despite not being specified in the current problem, have been observed in similar problems in the
past. Note that only the cases that match the problem description are retrieved and hence, the
space of potential positions could not be extended if we only consider positions generated from cases.
However, the extended problem description could add a new feature that makes the description to
match an argumentation scheme that was not considered before.

Algorithm 1 shows the pseudocode of the process to generate positions from domain-cases, argu-
mentation schemes or both of them. In the algorithm, DomainCasesCB represents the case-base of
domain-cases and ArgumentationSchemesOnt represents the ontology of argumentation schemes. If the
generation method to follow is “D”, the algorithm generates positions from the case-base of domain-cases.
In case that the method is “S”, the algorithm generates positions from the ontology of argumentation
schemes. Similarly, if the method to follow is “M”, the algorithm generates positions from both the
case-base of domain-cases and the ontology of argumentation schemes.

Also, computeSimilarity is a domain-dependent function that computes the similarity between a cur-
rent problem and the description of the domain-cases or argumentation schemes stored in the knowledge
resources of the system. This similarity degree is stored for each potential position to solve the problem
(when the similarity degree exceeds a pre-defined threshold). generateSolutions is a domain-dependent
function that generates potential solutions for the problem to solve from the solutions of the domain-cases
that are deemed similar to the current problem or the conclusions of the similar argumentation schemes.
addPosition is a function that adds a new position to the list of potential solutions for the problem
to solve. aggregateDescriptions is a function that adds to the problem description the extra consistent
features that are found in the problem description of the similar domain-cases. Finally, addGeneration-
Method is a function that forces the algorithm to execute a specific generation method.

3.1.2 Position Selection.

With the set of potential positions, the agent has to decide the one it will propose first. The first step
for this selection is to order the positions in subsets, taking into account the value that promotes each
position. Thus, the agent will assign to each subset a Suitability Level (SL). Positions that promote the
agent’s most preferred value will be labelled with suitability level 1, positions that promote the second
most preferred value will be labelled with level 2 and so on. After that, positions will be ordered within
each level by its Similarity Degree (SimD) with the problem to solve, computed by using a domain-
dependent similarity measure.

After that, the agent will use the argumentation knowledge stored in its argument-cases case-base.
For each position generated, the agent creates an argument-case that represents this position. Thus, it
fills the argument-case structure with the available information for each element (the domain and social

6



contexts, the initial acceptability status set to undecided and the cases that form part of the justification).
Note that, depending on the actual problem to solve and the domain application, the proponent agent
could not know some data about its opponent (e.g. in negotiation dialogues agents are usually unwilling
to share information about its values or preferences with other agents).

Then, the agent compares the argument-case created for each position with its case-base of argument-
cases and retrieves the sets arg of argument-cases that match the argument-case associated to each
position. In this way, the agent can assign to each position a Suitability Factor (SF) from the argumenta-
tion perspective and decide which argument-case (and thus, which position) is most suitable to propose
in view of its past argumentation experience and its current social context. We consider the parameters
shown in the list below as criteria for making such decision.

In the equations, argC is the number of argument-cases in arg with the same conclusion than the
current argument-case, argAccC are those cases in argC that were deemed acceptable, minAtt and
maxAtt are the minimum and maximum number of attacks received by any position generated and
minS and maxS are the minimum and maximum number of steps from any retrieved argument-case to
the last node of the dialogue graphs where it appears.

• Persuasiveness Degree (PD): is a value that represents the expected persuasive power of a
position by checking how persuasive an argument-case with the same problem description and
conclusion that the position associated argument-case was in the past. To compute this degree,
the number argAccC of argument-cases that were deemed acceptable out of the total number of
argument-cases argC with the same problem description and conclusion retrieved is calculated:

PD =

 0, if argC = ∅
argAccC

argC
, otherwise

(1)

with argAccC, argC ∈ N and PD ∈ [0, 1], from less to more persuasive power. Note that we do
not decrease de persuasiveness degree of a position if positions with the same problem description
and different conclusions are found in the argument-base, since this difference does not necessarily
implies that the current position is wrong or less persuasive. In fact, there are many possible
reasons for having different conclusions for the same problem description (e.g. different background
knowledge, different reasoning algorithms to generate positions or even a domain admitting several
solutions for the same problem).

• Support Degree (SD): is a value that provides an estimation of the probability that the con-
clusion of the current argument-case was acceptable at the end of the dialogue. It is based on the
number of argument cases argAccC with the same problem description and conclusion that where
deemed acceptable out of the total number of argument-cases arg retrieved.

SD =

 0, if arg = ∅
argAccC

arg
, otherwise

(2)

with argAccC, arg ∈ N and SD ∈ [0, 1] from less to more support degree.

• Risk Degree (RD): is a value that estimates the risk for a position to be attacked in view of the
attacks received for a position(s) with the same problem description and conclusion in the past. It
is based on the number of argument cases argAccCAtt that were attacked out of the total number
of argAccC argument cases with the same problem description and conclusion retrieved that were
deemed acceptable.

RD =

 0, if argC = ∅
argAccCAtt

argAccC
, otherwise

(3)

with argAccCAtt, argC ∈ N and RD ∈ [0, 1], from less to more risk of attack.

7



• Attack degree (AD): is a value that provides an estimation of the number of attacks att received
by a similar position(s) in the past. To compute this degree, the set of arguments with the same
problem description that were deemed acceptable is retrieved. Then, this set is separated in several
subsets, one for each different conclusion. The sets whose conclusion match with the conclusions
of the positions to assess are considered, while the other sets are discarded. Thus, we have a set of
argument-cases for each different position we want to evaluate. For each argument-case in each set,
the number of attacks received is computed (the number of critical questions, distinguishing premises
and counter-examples received). Then, for each set of argument-cases, the average number of attacks
received is computed. The attack degree of each position is calculated by a linear transformation:

AD =

{
0, if maxAtt = minAtt
att−minAtt

maxAtt−minAtt
, otherwise

(4)

with minAtt, maxAtt, att ∈ N and AD ∈ [0, 1] from less to more degree of attack.

• Efficiency degree (ED): is a value that provides an estimation of the number of steps that took
to reach an agreement posing a similar position(s) in the past. It is based on the depth n from the
node representing the argument-case of the similar position to the node representing the conclusion
in the dialogue graphs associated to the similar argument-cases retrieved. To compute this degree,
the same process to create the subsets of argument-cases than in the above degree is performed.
Then, for each argument-case in each subset, the number of dialogue steps from the node that
represents this argument-case to the end of dialogue is computed. Also, the average number of
steps per subset is calculated. Finally, the efficiency degree of each position is calculated by a linear
transformation:

ED =

{
0, if maxS = minS

1− n−minS
maxS −minS

, otherwise
(5)

with minS, maxS, n ∈ N and ED ∈ [0, 1] from less to more efficiency.

• Explanatory Power (EP ): is a value that represents the number of pieces of information each
position covers. It is based on the number kr of knowledge resources were used to generate each
position. To compute this number, the same process to create the subsets of argument-cases than in
the above degrees is performed. Then, for each argument-case in each set, the number of knowledge
resources in the justification part is computed (the number of domain-cases, argument-cases and
argumentation schemes). Then, for each set of argument-cases, the average number of knowledge
resources used is computed. The explanatory power of each position is calculated by a linear
transformation:

EP =

 0, if maxKr = minKr
kr −minKr

maxKr −minKr
, otherwise

(6)

with minKr, maxKr, kr ∈ N and EP ∈ [0, 1] from less to more explanatory power.

Finally, the suitability factor of a new argument-case and its associated position is computed by the
formula:

SF =((wPD ∗ PD + wSD ∗ SD + wRD ∗ (1−RD)
+ wAD ∗ (1−AD) + wED ∗ ED + wEP ∗ EP ))

(7)

where wi ∈ [0, 1],
∑
wi = 1 are weight values that allow the agent to give more or less importance to each

decision criteria. Finally, positions are ordered from more to less suitability by following the equation:

Suitability = wSimD ∗ SimD + wSF ∗ SF (8)

where wi ∈ [0, 1],
∑
wi = 1 are weight values that allow the agent to give more or less importance to

the similarity degree or the support factor. Finally, the most suitable position of suitability level 1 is

8



selected as the one that the proponent agent is going to propose and defend first. Then, we assume that
agents follow their value preference criteria when they select the positions to propose. However, each
agent keeps the rest of positions to make alternative proposals if its original position is attacked and it
is forced to withdraw it.

Algorithm 2 shows the pseudocode of the algorithm that implements the generation of positions, the
generation of the associated argument-cases and the selection of positions. In the algorithm, the function
generatePositions generates the n first positions by using the Algorithm 1; generateArgumentCase is a
function that generates for each position its associated argument-case; retrieveSimilarityDegree is a func-
tion that retrieves the similarity degree of each position with regard to the problem to solve; selectPosition
is a domain-dependent function that orders the set of positions from more to less suitable with respect
to some domain-dependent criteria; and mostSuitable is a domain-dependent function that returns the
most suitable position to solve the problem.

Also, computeSF, as shown in Algorithm 3, is a function that computes the support factor for each
position by means of its associated argument-case. In this algorithm, the function retrieveSameProblem
retrieves from the case-base of argument-cases those that have the same problem description than the
current argument-case; retrieveSameConclusion retrieves from the case-base of argument-cases those that
have the same problem description and conclusion than the current argument-case; retrieveAccepted re-
trieves from the case-base of argument-cases those that have the same problem description and conclusion
than the current argument-case and were deemed acceptable; retrieveAcceptedAttacked retrieves from the
case-base of argument-cases those that have the same problem description and conclusion than the current
argument-case, were deemed acceptable and were attacked; computeNumberOfAttacks computes the num-
ber of attacks received by an argument-case; computeNumberOfSteps computes the number of steps from
an argument-case to the node that represents the final conclusion in its associated dialogue-graph; and
computeNumberOfKR computes the number of knowledge resources used to generate an argument-case.

3.1.3 Position Evaluation.

Each agent engaged in the agreement process can receive attacks to its position or, on the contrary, decide
to attack the position of other agents. Thus, agents are able to evaluate its position with regard to other
positions. The first step to evaluate an agent’s position is to check if it is consistent with the positions of
other agents. For the sake of simplicity, here we assume that a position is consistent with other position
if they are the same (they totally match)c.

On one hand, if the opponent’s position matches the proponent’s position no attack arguments are
necessary, but the proponent generates a support argument to defend its position when it is attacked.
On the other hand, if the opponent’s position is in the set of positions generated by the proponent, but
not ranked first, the proponent would accept the opponent’s position if the latter has a power relation
over the proponent and would try to attack the opponent’s position otherwise. Finally, if the opponent’s
position is not in the set of positions generated by the proponent and the opponent does not have a power
relation over the proponent, the proponent can try to generate an argument to attack the opponent’s
position. Otherwise, the proponent must accept the opponent’s position. Next section explains the type
of arguments that agents can generate and how these arguments are selected and evaluated.

Algorithm 4 shows the pseudocode of the position evaluation process. In the algorithm, the function
checkDependencyRelation checks the dependency relation between the proponent and the opponent. As
explained above, if the opponent’s position is in the list of potential positions of the proponent but not
ranked first, the proponent can use the function decideAttack to decide if it would attack the incoming
position or just change its preferences. Also, askForSupport is a function that an agent can use to ask
other agent to support its position.

cBroaden notions of consistency, such as one position being part or a more general position (e.g. an action that is part
of a course of action proposed to solve a problem), can be considered in specific domains.

9



3.2 Argument Management

Depending on their purposes, agents can generate different types of arguments, select the best argument to
put forward and evaluate their arguments in view of other agents’ arguments. In our proposal, arguments
that agents interchange are tuples of the form:

Definition 3.7 (Argument). Arg = {φ, v,< S >}, where φ is the conclusion of the argument, v is the
value that the agent wants to promote and < S > is a set of elements that support the argument (the
support set).

The support set S can consist of different elements, depending on the argument purpose. On one
hand, if the argument provides a potential solution for a problem, the support set is the set of features
(premises) that represent the context of the domain where the argument has been put forward (those
premises that match the problem to solve and other extra premises that do not appear in the description
of this problem but that have been also considered to draw the conclusion of the argument) and optionally,
any knowledge resource used by the proponent to generate the argument (domain-cases, argument-cases
or argumentation schemes). On the other hand, if the argument attacks the argument of an opponent, the
support set can also include any of the allowed attacks in our framework (critical questions (presumptions
and exceptions), distinguishing premises or counter-examples). Then, the support set consists of the
following tuple of sets of support elements d:

Definition 3.8 (Support Set). S = < {premises}, {domainCases}, {argumentCases}, {argumentationSchemes},
{criticalQuestions},
{distinguishingPremises}, {counterExamples} >

The argument management process depends on the type of information that an agent receives from
other agent. Here, we assume that this type can be identified from the type and content of the locutions
that agents receive from other agents.

3.2.1 Argument Generation.

Agents generate arguments when they are asked to provide evidence to support a position (support
arguments) or when they want to attack others’ positions or arguments (attack arguments). To offer
support evidences, a proponent agent can generate a support argument which support set consists of
the set premises that describe the problem and match the knowledge resources that the proponent has
used to generate and select its position and of any of these resources (domain-cases, argument-cases and
argumentation schemes). Note that the set of premises could be a subset of the features that describe
the problem to solve (e.g. when a position has been generated from a domain-case that has a subset of
features of the problem in addition to other different features). In this first case of argument generation,
the proponent only generates and argument to show partial information of the argument-case associated
to its position. This argument does not rebut or undercut any other argument and only provides support
for the position. Thus, generating a new argument-case to store the information of this step of the
argumentation process is not necessary. The same argument-case generated for the position already
stores the information of this support argument.

Attack arguments are generated when the proponent of a position provides an argument to justify it
and an opponent wants to attack the position or more generally, when an opponent wants to attack the
argument of a proponent. Algorithm 5 shows the pseudocode of the argument generation process. In the
algorithm, the function evaluateIncomingRequest evaluates the type of the incoming request received. If
the agent’s position has been asked for support, the agent can decide to generate it by using the domain-
dependent function decideSupport. If the agent receives an attack, it must evaluate its current argument
in view of the attacking argument by using the function evaluateArgument, explained in Section 3.2.3.

The attack arguments that the opponent can generate depend on the elements of the support set of the
argument of the proponent. On one hand, if the support set includes a set of premises, the opponent can

dThis representation is only used for illustrative purposes and efficiency considerations about the implementation are
obviated.

10



generate an attack argument including in its support set distinguishing premises that it knows (e.g. if it
is in a privileged situation and knows extra information about the problem). Alternatively, the opponent
can generate a distinguishing premise attack if it finds any premises implicit in a case that it used to
generate its own position and matches the problem description, but these premises do not appear in the
proponent’s support argument. In this situation, the opponent could also generate an attack argument
with this case as counter-example.

On the other hand, if the justification is a domain-case or an argument-case, the opponent can check
its case-bases and try to find counter-examples to generate an attack argument that includes them in its
support set. Alternatively, it can also try to generate an attack argument with distinguishing premises
extracted from these cases.

Algorithm 6 presents the pseudocode of the attack generation process. In the algorithm, the function
checkSupportSet checks the elements of the support set of the incoming argument. With the function
selectElementToAttack, the agent selects which element(s) of the support set it wants to attack. By means
of genetateDPAttack the agent tries to attack the incoming argument with a distinguishing premise or
a counter-example with a distinguishing premise. The function generateASAttack tries to attack the
incoming argument with a critical question of the argumentation scheme that supports the incoming
argument. Also, storeAS is a function that agents can use to store an unknown scheme and decide later
if it will be added to the ontology of argumentation schemes. With the function generateCounterExample
the agent tries to generate a counter-example from its case-bases of domain-cases or argument-cases and
with generateCEAttack the agent tries to attack the incoming argument with the counter-example.

3.2.2 Argument Selection.

Depending on the content of their knowledge resources, agents can generate several support or attack
arguments. Thus, the agent has to select the best argument to put forward from the potential candidates.
To select the best argument, the agent follows a similar process as it does for selecting positions and creates
an argument-case that represents each potential argument.

In the case of argument-cases associated to support arguments, all possible support arguments gener-
ated can be represented with the same argument-case (share the same problem description) and have the
same conclusion (the position of the agent). Thus, the Suitability Factor does not provide useful informa-
tion, and we assume that arguments that include more justifications for a position are more persuasive
and should be proposed first.

In the case of attack arguments, as for positions selection, the agent uses the information gained
from previous argumentation processes to decide which argument would have more Suitability Factor.
In the case of draw, the agent has to decide which argument is going to put forward. Many times, this
decision depends on the implementation of the agent and the dialogue strategy that it follows. However,
in our AF at least there is a reflexive and transitive pre-order relation <p among the persuasive power
of the knowledge resources used to generate an argument: premises <p distinguishing − premises <p

domain − cases <p argument − cases. Accepted argument-cases are the most persuasive knowledge
resource to show as a justification for an argument, since they store the the maximum quantity of
information about past arguments and argumentation processes (domain context, social context, if it
was attacked and still remained accepted, etc.). Domain-cases are also very persuasive, since they store
the final solution applied for a problem, but they do not provide information about the argumentation
process and the social context. Finally, the premises that describe the problem to solve are known by
any agent in the argumentation process and have the lowest persuasive power. In the case of attack
arguments, distinguishing premises are more persuasive than description premises, since they provide
extra information about which description premises have been taken into account to generate positions.
Therefore, argument-cases with at least one argument-case in the justification part would be preferred to
others and so on. If the draw still persists, a random choice could be made.

11



3.2.3 Argument Evaluation.

When agents receive arguments from other agents, they have to evaluate them. Then, a proponent agent
can decide if an opponent’s argument conflicts with its argument and hence, its argument is deemed
acceptable, non-acceptable or remains undecided (it cannot make a decision over it). In our proposal, we
define the two typical types of attacks between arguments of argumentation theory, rebut and undercut.
Let Arg1 = {φ1, value1, < S1 >} and Arg2 = {φ2, value2, < S2 >} be two different arguments, where
Si =< {Premises}i, ..., {CounterExamples}i >, ∼ stands for the logical negation, ⇒ stands for the
logical implication and conc(x) is a function that returns the conclusion of the domain-case, argument-
case or argumentation scheme x. Then:

Definition 3.9 (Rebut). Arg1 rebuts Arg2 iff φ1 =∼φ2 and {Premises}1 ⊇ {Premises}2

That is, if Arg1 supports a different conclusion for a problem description that includes the problem
description of Arg2 then Arg1 rebuts Arg2.

Definition 3.10 (Undercut). Arg1 undercuts Arg2 if
1)φ1 =∼conc(ask)/
∃cq ∈ {CriticalQuestions}1 ∧ ∃ask ∈ {ArgumentationSchemes}2∧
cq ⇒∼conc(ask), or

2)φ1 = dp/
(∃dp ∈ {DistinguishingPremises}1 ∧ ∃prek ∈ {Premises}2 ∧ dp =∼prek)∨
(dp 6∈ {Premises}2), or

3)φ1 = ce/
(∃ce ∈ {CounterExamples}1 ∧ ∃dck ∈ {DomainCases}2
∧ conc(ce) =∼conc(dck))∨
(∃ce ∈ {CounterExamples}1∧
∃ack ∈ {ArgumentCases}2 ∧ conc(ce) =∼conc(ack))

That is, if the conclusion drawn from Arg1 makes one of the elements of the support set of Arg2
or its conclusion non-applicable in the current context of the argumentation dialogue. In case 1 Arg1
undercuts Arg2 by posing a critical question that attacks the conclusion of Arg2, inferred by using an
argumentation scheme. In fact, the set of critical questions of an argumentation scheme constitute the
set of possible undercuts to the conclusion drawn from the scheme. In case 2, Arg1 undercuts Arg2 by
showing a new premise which value conflicts with one of the premises of Arg2 or else, appears in the
description of the problem to solve but not in the problem description of Arg2. Finally, in case 3 Arg1
undercuts Arg2 by putting forward a counter-example for a domain-case or an argument-case that was
used to generate the conclusion of Arg2.

If the proponent considers that its argument defeats the opponent’s argument, it can try to generate
a new argument to attack the opponent’s, which would change the preliminary acceptability status of the
opponent’s argument to non-acceptable. Then, the opponent would evaluate the proponent’s argument
and try to rebut or undercut the attack. On the contrary, if the proponent’s argument cannot defeat the
opponent’s, it can still try to withdraw its last argument and send to the opponent a different argument
to support its position or even a new position. In this case, the proponent’s argument acceptability status
would preliminary change to undecided. The final acceptability status of arguments is decided at the end
of the agreement process. To define the rules of this process, we follow a dialogue-game protocol which
complete definition is proposed in [10, Chapter 4].

Algorithm 7 shows the pseudocode of the argument evaluation process. As pointed out above, if
the proponent argument defeats the opponent argument, it can try to attack it by using the function
generateAttack, shown in Algorithm 6. With the function generateNewSupport the agent can try to
generate a new support for its position (since it cannot defeat the opponent argument). However, if no
new support can be generated, the agent has to withdraw its position from the dialogue by using the
function withdraw.

12



4 Evaluation Example

In this section, we evaluate the performance of the case-based argumentation framework presented in this
report by running a set of empirical tests. With this objective, the framework has been implemented in
the domain of a customer support application. Concretely, we consider a society of agents that act in
behalf of a group of technicians that must solve problems in a Technology Management Centre (TMC).
TMCs are entities which control every process implicated in the provision of technological and customer
support services to private or public organisations. Usually, TMCs are managed by a private company
that communicates with its customers via a call centre. This kind of centres allow customers to obtain
general information, purchase products or lodge a complaint. They can also efficiently communicate
public administrations with citizens. In a call centre, there are a number of technicians attending to a
big amount of calls with different objectives –sales, marketing, customer service, technical support and
any business or administration activity–. The call centre technicians have computers provided with a
helpdesk software and phone terminals connected to a telephone switchboard that manages and balances
the calls among technicians. The current implementation is based in previous work that deployed a case-
based multi-agent system in a real TCM [13]. This system was implemented and is currently used by the
TCM company. In the original implementation, agents were allowed to use their case-bases to provide
experience-based customer support. In this work, the system has been enhanced by allowing agents to
argue about the best way of solving the incidences that the call centre receives.

Therefore, we consider a society composed by call-centre technicians with two possible roles, operator
and expert. Operators form groups that must solve the problems that the call centre receives. Experts
are specialised operators that have case-bases with knowledge about the suitable solutions to provide for
specific problems. Therefore, the dependency relations in this society establish that experts have a power
relation over operators and that technicians with the same role have a charity relation among them.

In this application domain we assume that each technician has a helpdesk application to manage the
big amount of information that processes the call centre. The basic functions of this helpdesk are the
following:

• To register the ticket information: customer data, entry channel and related project, which identifies
the customer and the specific service that is being provided.

• To track each ticket and to scale it from one technician to a more specialised one or to a different
technician in the same level.

• To warn when the maximum time to solve an incidence is about to expire.

• To provide a solution for the ticket. This means to generate an own position or to ask for help to
the members of a group.

In addition, this helpdesk would implement an argumentation module to solve each ticket as proposed
in our framework. Hence, we assume the complex case where a ticket must be solved by a group of agents
representing technicians that argue to reach an agreement over the best solution to apply. Each agent
has its own knowledge resources (acceded via his helpdesk) to generate a solution for the ticket. The
data-flow for the problem-solving process (or argumentation process) to solve each ticket is the following:

1. The system presents a group of technicians with a new ticket to solve.

2. If possible, each technician generates his own position by using the argumentation module. This
module supports the argumentation framework proposed in this report.

3. All technicians that are willing to participate in the argumentation process are aware of the positions
proposed in each moment.

4. The technicians argue to reach an agreement over the most suitable solution by following a delib-
eration dialogue controlled by the proposed dialogue game protocol.

13



5. The best solution is proposed to the user and feedback is provided and registered by each technician
helpdesk.

The helpdesk of each technician is provided with a case-based reasoning engine that helps them to
solve the ticket. The new argumentation module will allow different technicians to reach agreements over
the best solution to apply in each specific situation. In this example application, we assume that the
most efficient technicians are acknowledged and rewarded by the company. Therefore, each technician
follows a persuasion dialogue with their partners, trying to convince them to accept its solution as the
best way to solve the ticket received, while observing the common objective of providing the best solution
for a ticket from its point of view.

For the tests, a real database of 200 tickets solved in the past is used as domain knowledge. Translating
these tickets to domain-cases, we have obtained a tickets case-base with 48 cases. Despite the small size
of this case-base, we have rather preferred to use actual data instead of a larger case-base with simulated
data. The argument-cases case-bases of each agent are initially empty and populated with cases as the
agents acquire argumentation experience in execution of the system.

To diminish the influence of random noise, for each round in each test, all results report the average
and confidence interval of 48 simulation runs at a confidence level of 95%, thus using a different ticket of
the tickets case-base as the problem to solve in each run. The results report the mean of the sampling
distribution (the population mean) by using the formula:

µ = x̄± t ∗ s√
n

(9)

where, x̄ is the sample mean (the mean of the 48 experiments), t is a parameter that increases or decreases
the standard error of the sample mean (

s√
n

), s is the sample standard deviation and n is the number

of experiments. For small samples, say below 100, t follows the Student’s t-distribution, which specifies
certain value for the t parameter to achieve a confidence level of 95% for different sizes of population. In
our case, with a population of 48 experiments the Student’s t-distribution establishes a value of 2.0106
for t.

In each simulation experiment, an agent is selected randomly as initiator of the discussion. This agent
has the additional function of collecting data for analysis. However, from the argumentation perspective,
its behaviour is exactly the same as the rest of agents and its positions and arguments do not have any
preference over others (unless there is a dependency relation that states it). The initiator agent receives
one problem to solve per run. Then, it contacts its partners (the agents of its group) to report them the
problem to solve. If the agents do not reach an agreement after a maximum time, the initiator chooses
the most supported (the most voted) solution as the final decision (or the most frequent in case of draw).
If the draw persists, the initiator makes a random choice among the most frequent solutions.

The case-based argumentation framework proposed in this work has been evaluated from different
perspectives. On one hand, the performance of the system that implements the framework in the customer
support application domain is tested and analysed. On the other hand, the ability of the system to take
into account the social context of the participating agents is also verified.

4.1 Testing the Performance

The performance tests have been repeated and their results compared for the following decision policies:

• Random policy (CBR-R): each agent uses its Domain CBR module to propose a solution for the
problem to solve. Then, a random choice among all solutions proposed by the agents is made.
Agents do not have an Argumentation CBR module.

• Majority policy (CBR-M): each agent uses its Domain CBR module to propose a solution for the
problem to solve. Then, the system selects the most frequently proposed solution. Agents do not
have an Argumentation CBR module.

14



• Argumentation policy (CBR-ARG): agents have Domain and Argumentation CBR modules. Each
agent uses its Domain CBR module to propose a solution for the problem to solve and its Ar-
gumentation CBR module to select the best positions and arguments to propose in view of its
argumentation experience. Then, agents perform an argumentation dialogue to select the final
solution to apply.

To evaluate the effect of the available argumentative knowledge that agents have, some tests are also
repeated for the following specific settings of the argumentation policy. These settings cover the more
interesting options regarding which agents have argumentation skills:

• CBR-ARG All-Argument-Cases (CBR-ARG AAC): All participating agent have argument-cases in
their argument-cases case-base.

• CBR-ARG Initiator-Argument-Cases (CBR-ARG IAC): Only one agent, say the initiator agent,
has argument-cases in its argument-cases case-base. Note that the selection of the initiator as the
agent that has argumentative knowledge is just made for the sake of simplicity in the nomenclature.
The behaviour of this agent only differs from the other agents’ in the fact that it is in charge of
starting the dialogue process and conveying the information about the final outcome. This do not
affect its performance as dialogue participant and does not grant this agent any privileges over their
partners.

• CBR-ARG Others-Argument-Cases (CBR-ARG OAC): All agents except from one, say the initiator,
have argument-cases in their argument-cases case-bases.

With these tests, we evaluate the efficiency of the system that implements our framework under the
different decision policies. By default, all agents know each other, all are in the same group and the
dependency relation between them is charity. The values of each agent have been randomly assigned and
agents know the values of their partners. Also, all agents play the role of operator. The influence of the
social context will be evaluated in the Section 4.2. In addition, the agents that follow the argumentation
policy assign weights to the similarity degree (wSimD) and the support factor (wSF ) proportionally to
the number of domain-cases and argument-cases that they have in their case-bases. Depending on the
application domain, a different assignment for the weights could influence the performance of the system.
However, due to the reduced size of our tickets case-bases, a proportional assignment is be suitable enough
for the objectives of this performance evaluation. Equation 10 shows the simple rule that has been used
in the tests.

wSimD =
#domaincases

#domaincases+ #argumentcases
(10)

wSF =
#argumentcases

#domaincases+ #argumentcases

Also, by default agents set the same weight for all elements of the support factor.

4.1.1 Number of cases that the framework learns with respect of the time.

To perform this test, all agents follow the argumentation policy, with an initial number of 5 domain-cases
in their domain-cases case-bases. The argument-cases case-base of all agents are initially empty. In each
iteration, the agents use their CBR modules to propose and select positions and arguments and after this
process, each agent updates its case-bases with the knowledge acquired.

If the system works properly, the knowledge acquired about past problem solving processes should
increase with the time until some threshold, where the learning process should stabilize (because the
cases in the case-bases of the agents cover most possible problems and arguments in the domain). To
perform this test, we have executed several rounds to simulate the use of the system over certain period
of time. For each repetition, we compute the average number of domain-cases and argument-cases in
the case-bases of the agents. Figure 1 shows the results obtained in this test. The experiment has been
repeated for 3, 5, 7 and 9 agents and the average number of domain-cases (DC) and argument-cases

15



Figure 1: Number of domain-cases (left) and argument-cases (right) that agents learn.

(AC) that all agents learn in each iteration has been computed. As expected, in all cases, the agents
are able to learn the 48 domain-cases of the tickets case-base. However, if more agents participate in
the dialogue, the quantity of domain knowledge that agents have available and interchange among them
increases and the domain-cases case-bases are more quickly populated. Also, the quantity of argument-
cases that agents are able to learn increases with the number of agents, since more potential positions
and arguments give rise to more complex argumentation dialogues. As shown in the figure, the learning
curve for the argument-cases is less soft than for the domain-cases, presenting peaks at some points. This
is due to the fact that at some points of the dialogue, the agents can learn a specific domain-case that
change its opinion about the best solution to apply for a specific category of problem. Therefore, the
outcome of subsequent dialogues differ from the outcome that could be expected taking into account past
similar dialogues and the argument-cases learning rate of the agents in those situations notably increases.

The results of this test have helped us to set the value of some parameters of the subsequent evaluation
tests. The test shows that in 48 simulation runs, 3 agents are able to learn an average of the 54.8 %
domain-cases of the tickets case-base, 5 agents the 56,6 %, 7 agents the 66,9 % and 9 agents the 73.1 %.
The maximum number of argument-cases that agents are able to learn reaches an average of 20 argument-
cases when 9 agents participate in the dialogue (18 argument-cases in the worst case). Therefore, due to
the small size of the whole tickets case-base and the learning rates obtained in this test, the evaluation
tests have been executed with a maximum number of 9 agents participating in the dialogue, with domain-
cases case-bases populated with a maximum number of 45 domain-cases and argument-cases case-bases
populated with a maximum number of 20 argument-cases (except from the social context tests, where a
more varied choice of social contexts enables the learning of a larger number of argument-cases). Thus, the
domain-cases of the case-bases of the agents will be randomly populated and increased from 5 to 45 cases in
each experimental round. The argument-cases case-bases of the agents for the argumentation-based policy
are populated with 20 randomly selected argument-cases (from those acquired during the performance
of the present test). Also, to evaluate the influence of the quantity of argumentative knowledge that
the agents have in some tests, those tests are repeated for the case of 7 agents, setting the number of
domain-cases of the case-bases of the agents to 20 (approximately the half part of the available cases in
the tickets case-base), while varying the number or argument-cases of the argumentative agents from 0
to 18 cases, with an increase of 2 randomly selected argument-cases in each round. The number of the
agents for these tests has been set to 7 to allow complex enough argumentation dialogues where the use of
argument-cases can be useful, while having a reasonable case learning rate to avoid filling the case-bases
with all the available knowledge for this case of study with a small number of simulations.

4.1.2 Percentage of problems that were properly solved with respect to the knowledge of
the agents.

In this test, the percentage of problems that the system is able to solve, providing a correct solution, are
computed. To check the solution accuracy, the solution agreed by the agents for each ticket requested
is compared with its original solution, stored in the tickets case-base. One can expect that with more

16



Figure 2: Solution prediction accuracy achieved by 3 (top-left), 5 (top-right), 7 (bottom-left) and 9
(bottom-right) agents ([5, 45]∆5 domain-cases; 20 argument-cases).

knowledge stored in the case-bases the number of problems that were correctly solved should increase.
Figure 2 shows how as the number of agents participating in the dialogue increases, the solution proposed
by them is more appropriate and similar to the actual solution registered in the tickets case-base for
the ticket that has been requested to the agents (the mean error percentage in the solution predicted
decreases). Obviously, if more agents participate in the problem solving process, the probability that
one or more of them have a suitable domain-case that can be used to provide a solution for the current
problem increases. The same happens if the number of domain-cases of the agents case-base increases.
This applies also in the case of the random policy, although this policy never achieves the 100% of correct
solution predictions. Also, the results achieved by the argumentation policy improve those achieved by
the other policies, even when the domain-cases case-bases are populated with a small number of cases.
The argumentation policy achieves more than a 50% of improvement for a domain-cases case-base size
up to 25 cases if 3 agents participate in the dialogue, up to 20 cases if 5 agents participate and up to 15
cases if there are 7 or 9 agents participating. These results demonstrate that if agents have the ability of
arguing, the agents whose solutions are more supported by evidence have more possibilities of wining the
argumentation dialogue and hence, the quality of the final solution selected among all potential solution
proposed by the agents increases. Finally, Figure 3 shows the results of this test if the number of domain-
cases is set to 20 and the number of argument-cases that the agents have is increased in each round.
The results show that the argumentative knowledge has no substantial influence on the accuracy of the
solution proposed, at least for the data used in this case of study.

17



Figure 3: Solution prediction accuracy achieved by 7 agents (20 domain-cases; [0, 18]∆2 argument-cases).

4.1.3 Percentage of agreements reached with respect to the knowledge of the agents.

In this test, we evaluate the percentage of times that an agreement is reached and a frequency-based or
a random choice among all possible solutions proposed by the agents is not necessary. Figure 4 shows
the results obtained. For all policies, the overall trend of the agreement percentage is to increase as the
knowledge about the domain that agents have increases. Nevertheless, figures show slight fluctuations
between results. This behaviour can be explained since the addition of a small quantity of new domain-
cases between two simulation rounds can give rise to temporary situations, such as some agents changing
temporarily their opinions until new information is gained or obtaining the same suitability degree for
several positions and arguments. In the last case random choices are made, which can have a slight
negative effect on the overall performance of the system.

For the case of 3 agents, the small number of participants in the dialogue results in all policies achieving
similar agreement percentages. However, when the number of agents grows up to 5, if agents follow an
argumentative policy that allows them to argue and persuade other agents, those who have more support
for their positions win the dialogue and convince the others to accept them. Thus, the percentage of
agreements reached increases. In addition, the improvement on the agreement percentage grows more
quickly for a larger number of agents, reaching more than the 80% with little knowledge about the domain
(e.g. 10 domain-cases) for 7 and 9 agents participating in the dialogue. These results capture the fact
that with more participating agents, the knowledge available among all of them to solve tickets increases
and more useful argument-cases improve the performance of complex argumentation dialogues.

More interesting results can be observed if we compare the agreement percentage that the argumen-
tation policy achieves when useful argument-cases are available. To perform this test, the percentage
of agreement that agents reach in those cases that they have been able to find useful argument-cases
(argument-cases which problem description matches the current situation) has been computed. Note
that the fact that agents have argument-cases in their argument-cases case-bases does not necessarily
mean that these cases match the current dialogue context and are actually used by the agents to make
their decisions. Therefore, Figure 5 shows the percentage of agreements that the argumentation policy
achieves when one or more agents use their argumentative knowledge. In these tests, the fluctuations
between subsequent simulation rounds are notably greater than in the previous tests. These fluctuations
are due to the fact that the percentage of useful argument-cases highly depends on the domain knowledge
that agents have and on the dialogue context.

In the case of 3 agents, the small number of dialogue participants give rise to very simple dialogues and
no argument-cases are actually used. This explains that the CBR-ARG policy gets the same results in the
agreement percentage as the other policies, as shown in Figure 4. For 5, 7 and 9 agents, we can observe
that when enough domain knowledge is available and agents engage in more complex dialogues (up to
30 domain-cases for 5 agents and up to 15 domain-cases for 7 and 9 agents), the agreement percentage

18



Figure 4: Percentage of agreement reached by 3 (top-left), 5 (top-right), 7 (bottom-left) and 9 (bottom-
right) agents ([5, 45]∆5 domain-cases; 20 argument-cases).

has a global trend to increase when the initiator agent is the only agent that has useful argument-cases.
This behaviour shows how the use of argumentative knowledge allows the initiator to argue better and
persuade the other agents to accept their positions and reach an agreement. However, if more agents are
also able to improve their argumentation skills by using their argumentative knowledge (CBR-ARG AAC
and CBR-ARG OAC policies), less agents are persuaded to accept other agents’ positions and hence,
no agreement is reached in almost all simulations (except for the case of 45 domain-cases in the agents
domain-cases case-bases).

As in Figure 4, Figure 5 shows that when the number of agents that participate in the dialogue
increases, the agreement percentage also increases for the CBR-ARG IAC policy. This can be observed
by comparing the agreement percentage achieved between 5 and 7 agents. Between 7 and 9 agents, no
significant changes in the agreement percentage for the CBR-ARG IAC policy are observed, while the
CBR-ARG AAC and CBR-ARG OAC policies improve their results when agents have a high amount of
domain knowledge. However, this increase has less to do with the use of argumentative knowledge than
with the fact that more agents participate in the dialogue with almost full knowledge about the domain.
Thus, most of them are able to provide the same accurate solution for the problem to solve.

Figure 5 also shows the average number of locutions interchanged among the agents during the
argumentation dialogue. As expected, results demonstrate that more locutions are needed to solve tickets
if there are more agents participating in the process. However, the number of interchanged locutions seems
to stabilize when the percentage of agreements reached approaches to 100%. Also, when only one agent
has argumentative knowledge, the number of locutions (or let us say, the number of dialogue steps) that

19



Figure 5: Percentage of agreement reached by 5 (top), 7 (bottom-left) and 9 (bottom-right) agents when
useful argument-cases are available ([5, 45]∆5 domain-cases; 20 argument-cases).

are necessary to reach a final decision among agents is more stable than in the cases where more agents
use their argument-cases. In fact, the dialogue steps in the cases of 7 and 9 agents are almost the same
for this policy. Therefore, the CBR-ARG IAC policy is also the more efficient policy, achieving the best
performance results with shorter argumentation dialogues among the agents.

Finally, to evaluate the influence of the amount of argumentative knowledge of the agents on the
agreement percentage, Figure 6 shows the results obtained by the argumentation policy when the number
of argument-cases available for one or more agents is increased. When the initiator agent is the only
agent that uses argumentative knowledge, as this knowledge increases, the probability of finding useful
argument-cases to apply in each argumentation dialogue also increases. Therefore, this agent improves its
argumentation skills and it is able to persuade the others to reach an agreement and accept its position as
the best solution to apply for the ticket to solve. However, when several agents have a small quantity of
argument-cases, the probability of finding a useful argument-case is very low. In these cases (CBR-ARG
AAC with 6 argument-cases and CBR-ARG OAC with 2 argument-cases), the performance of the system
suffers from a high randomness, and this agent that finds a useful argument-case has a higher advantage
over the others, being able to persuade them to reach an agreement that favours its preferences. Regarding
the number of locutions interchanged among the agents, Figure 6 shows how the number of locutions to
reach the agreement is stable for all policies and does not depend on the argumentation knowledge that
agents have. Thus, as pointed out before, the CBR-ARG IAC policy gets higher percentage of agreement
when useful argument-cases are actually used.

4.1.4 Percentage of positions accepted with respect to the number of argument-cases.

This test evaluates the percentage of position that an agent (the initiator, for instance) gets accepted by
the other agents in different settings of the argumentative policy, when useful argument-cases are used.
The CBR-R and the CBR-M policies do not allow agents to argue and hence, they do not accept or defeat
the position of other agents. Therefore, these policies are not considered for this test. Figure 7 shows
how, independently of the number of agents participating in the dialogue, once the knowledge about

20



Figure 6: Percentage of agreement reached by 7 agents when useful argument-cases are available (20
domain-cases; [0, 18]∆2 argument-cases).

the domain overpasses certain threshold (15 domain-cases), if an agent has argument-cases that match
the current dialogue context, it gets its position accepted, even if the other participants have also useful
argument-cases. However, if this agent does not have argumentative knowledge, but the other agents
does, the percentage of acceptance depends on how useful the argumentative knowledge of the others is
and it varies until the agent has enough domain knowledge to propose a good enough solution, as shown
by the results obtained by the CBR-ARG OAC policy.

Finally, to evaluate the influence of the amount of argumentative knowledge that an agent has in the
percentage of acceptance of its positions, Figure 8 shows the results obtained by setting the number of
domain-cases to 20 and increasing the number of argument-cases by 2 in each round. Results show that
if only one agent has argumentative knowledge (CBR-ARG IAC policy), once it has argument-cases that
apply to the current dialogue situation and enough domain knowledge, it gets its position accepted. If
other agents also have argumentative knowledge (CBR-ARG AAC policy), the percentage of acceptance
varies until enough useful argument-cases can be used (from 10 forwards), since this percentage depends
also on how good are the argumentation skills of the other participants. Finally, if all participants have
useful argumentative knowledge (CBR-ARG OAC policy), the percentage of acceptance of the initiator’s
position depends on which agent is able to create more persuasive arguments and convince the others to
accept its position as the best to solve the requested ticket.

4.2 Testing the Social Context

The ability of the framework to represent the social context of the system has also been evaluated. To
perform these tests, the system has been executed with 7 participating agents, following the argumentation
policy (CBR-ARG). These settings are selected by taking into account the results of the performance
tests, which show that this configuration allows agents to argue with fair enough information to provide
suitable positions and arguments, but leaving room for the argumentation to make sense. The knowledge
about the domain that each agent has is increased by 5 domain-cases in each round, from 5 to 45 domain-
cases. Argumentative agents have a full argument-cases case-base populated with 20 cases. By default,
all agents know each other, all are in the same group and the dependency relation between them depends
on the specific test. The influence of different degrees of friendship and group membership are difficult to
evaluate with the limited amount of data of our tickets case-base and remains future work. The values
of each agent have been randomly assigned from a set of pre-defined values (efficiency of the problem
solving process, accuracy of the solution provided and savings in the resources used to solve the ticket).

In addition, argumentative agents assign weights to the similarity degree (wSimD) and the support

21



Figure 7: Percentage of positions accepted for 3 (top-left), 5 (top-right), 7 (bottom-left) and 9 (bottom-
right) agents when useful argument-cases are available ([5, 45]∆5 domain-cases; 20 argument-cases).

factor (wSF ) proportionally to the relation between the number of domain-cases and argument-cases that
they have in their case-bases, as it was done in the performance tests. Also, by default agents set the
same weight for all elements of the support factor.

Following, the influence of the presence of an expert and the knowledge about the values of other
agents in the system performance is evaluated.

4.2.1 Presence of an Expert

In this test, an agent has been allowed to play the role of an expert, while the rest of agents play the
role of operators. An expert is an agent that has specific knowledge to solve certain types (categories) of
problems and has its case-base of domain-cases populated with cases that solve them. Thus, the expert
domain-cases case-base has as much knowledge as possible about the solution of past problems of the
same type. That is, if the expert is configured to have 5 domain-cases in its domain-cases case-base, and
there are enough suitable information in the original tickets case-base, these cases represent instances of
the same type of problems. In the case that the tickets case-base has less than 5 cases representing such
category of problems, 3 for instance, the remaining two cases are of the same category (if possible).

In our case, the expert agent has an power dependency relation over other technicians. Therefore,
if it is able to propose a solution for the ticket requested, it can generate arguments that support its
position and that will defeat other operators’ arguments. This relation assigns more importance to the
arguments of an agent that has a power dependency relation over other agents.

22



Figure 8: Percentage of positions accepted for 7 agents (20 domain-cases; [0, 18]∆2 argument-cases).

All simulation tests have been executed and their results compared for the random based decision
policy (CBR-R Expert), the majority based decision policy (CBR-M Expert) and the argumentation
based policy (CBR-ARG Expert). For these policies, the domain-cases case-base of the expert has
been populated with expert domain knowledge. To evaluate the global effect of this expert knowledge,
the results obtained for the accuracy of predictions when the domain-cases case-base of all agents are
populated with random data are also shown for each policy (CBR-R, CBR-M and CBR-ARG).

Figure 9 shows how all policies are able to solve the same percentage of problems, but the accuracy
of predictions is higher if agents are allowed to argue following the CBR-ARG Expert policy. Comparing
the results obtained when the initiator has (CBR-R Expert, CBR-M Expert and CBR-ARG Expert) or
does not have expert knowledge (CBR-R, CBR-M and CBR-ARG), as expected, agents are able to reach
better accuracy in their final prediction when they are able to argue and there is an expert participating
in the argumentation dialogue (CBR-ARG Expert). This demonstrates that the decisions of the expert
prevail and, as it has more specialised domain-knowledge to propose solutions, the predictions of the
system are more accurate.

4.2.2 Knowledge about Other Agents’ Social Context

With these tests, we have evaluated the influence that the knowledge about the social context has in
the performance of the system. Therefore, we have compared the performance of the system when the
participating agents follow an argumentation policy and have full information about the social context of
their partners (CBR-ARG), or on the contrary, do not know the preference over values that their partners
have (CBR-ARG NV). In a real company, the dependency relations over technicians and the group that
they belong are known by the staff. Hence, we assume that agents know this information about their
partners.

In our evaluation domain, an agent assigns the same importance (weight) to both domain and argu-
mentation knowledge to generate and select positions and arguments. However, if it does not know the
value preferences of their partners, many times the agent uses argument-cases that are not suitable for
the current situation. This makes the agent to make wrong decisions that worsen the global performance
of the system.

Figure 10 shows clearly that the performance of the system is negatively affected when argumentative
agents use incorrect argument-cases to make their decisions. Then, for instance, the percentage of solved

23



Figure 9: Percentage of problems that are solved by 1 expert and 6 operators (left) and accuracy of their
predictions (right) ([5, 45]∆5 domain-cases; 20 argument-cases).

Figure 10: Percentage of problems that are solved by 7 agents (left) and accuracy of their predictions
(right) ([5, 45]∆5 domain-cases; 20 argument-cases).

problems that argumentative agent are able to solve when they have full knowledge about the social
context of their partners reaches almost the 100% with low knowledge about the domain (15 domain-
cases), while it barely reaches the 50% when agents do not know the values of their partners. Similarly,
the prediction error for well-informed agents is almost null with 15 domain-cases, while it still has a 5%
error percentage with a high amount of knowledge about the domain (45 domain-cases) when agents
ignore the values of the other agents.

Finally, Figure 11 shows also how system presents a poor performance in terms of the agreement
percentage and the percentage of agents that agree when argumentative agents ignore the values of their
partners. Again, the use of wrong argument-cases makes argumentative agents to propose solutions and
arguments that hinder to reach agreements. This could be avoided if the system assigns less importance
to the argumentative knowledge, by reducing the weight of the support factor (wSF ). In this way, a
system that supports our framework can also perform well in domains where acquiring social context
information about competitors is difficult, although this would significantly reduce the advantages of
learning this type of information.

24



Figure 11: Percentage of agreement reached by 7 agents (left) and percentage of agents that agree (right)
([5, 45]∆5 domain-cases; 20 argument-cases).

5 Discussion

For simplicity purposes, in this report we have assumed that a proponent agent addresses its arguments to
an opponent of its same group, having complete knowledge about the dependency relation that links them
and about other agents’ preferences (except from the social context tests). However, in real systems, some
features of the social context of agents could be unknown. For instance, the proponent of an argument
obviously knows its value preferences, probably knows the preferences of its group but, in a real open
MAS, it is unlikely to know the opponent’s value preferences. However, the proponent could know the
value preferences of the opponent’s group or have some previous knowledge about the value preferences
of similar agents playing the same role as the opponent. If agents belong to different groups, the group
features could be unknown, but the proponent could use its experience with other agents of the opponent’s
group and infer them.

Moreover, either the proponent or the opponent’s features could represent information about agents
that act as representatives of a group and any agent can belong to different groups at the same time. In
any case, the framework is flexible enough to work with this lack of knowledge, although the reliability
of the conclusions drawn from previous experiences would be worse.

Also, this report does not show how agents can set different weights to the elements of the support
factor to take strategic decisions about which arguments are more suitable in a specific situation. For
instance, by assigning more importance to the efficiency degree, an agent can use the information stored
in previous dialogue graphs to decide whether continuing with a current argumentation dialogue is worth.
Then, to improve efficiency in a negotiation an argumentation dialogue could be finished if it is being
similar to a previous one that didn’t reach an agreement. Else, opponent moves in a dialogue could be
inferred by looking a similar previous dialogue with the same opponent. These issues will be dealt with
in future evaluation tests.

In our AF, cases are stored at the end of the argumentation process, but not all cases are necessarily
stored. As in most CBR systems, argument-cases and domain-cases would be only stored if there is no
similar enough case in the case-bases and the new domain and argumentation knowledge acquired must
be kept. However, slightly different arguments could be represented with the same past argument-case by
only updating its attacks information or attaching a new dialogue graph to its justification. Nevertheless,
if the problem description, the acceptability of the argument or the conclusion change, a new argument-
case has to be created. Also, to improve efficiency in searches, case-bases require a constant update to
eliminate outdated cases, generalise and merge cases in a unique case when they are always indistinctly
used, etc. Different case-base maintenance policies would be studied and tested in future research.

Regarding the application of the framework to different domains, our approach has also been tested
in the context of a society of agents that must reach agreements about water resources allocation in a

25



river basin [12]. Broadly speaking, the framework is suitable to be applied to any domain where different
entities can engage in argumentation dialogues and the social context of these entities determines the way
in which they can argue. In the call center example we have assumed that agents do their best to win the
argumentation process, thus following a persuasion dialogue. In this way, they get economical rewards and
increase prestige. Despite that, those solutions that are better supported prevail. Hence, if agents do not
follow a dialogue strategy that deviates the final outcome of the dialogue to fit their individual objectives,
no matter if they give rise to the best solution to apply, the system reaches agreements that produce high
quality solutions for the tickets received. This assumption has allowed us to perform more comprehensive
tests with the small amount of data that we have available. However, a cooperative approach where
agents are not interested and collaborate to reach the best agreement would be appropriate for this
example and will be implemented and evaluated in the future.

In the abstract formalisation of the argumentation framework proposed, the approach that we have
followed is closely related with the proposal of value-based argumentation frameworks [4]. Also, a re-
lated work on abstract argumentation scheme frameworks [3] combines argumentation frameworks with
argumentation schemes and makes use of the structure provided by the schemes to guide dialogues and
provide contextual elements of argument evaluation. However, unlike our framework, the actual structure
of arguments and their computational representation are obviated. In addition, previous argumentation
experiences are not used to guide current argumentation processes such as we propose.

Other works use domain-dependent structures for the computational representation of arguments. The
few current approaches for case-based argumentation in MAS, which use cases as previous knowledge to
manage arguments, suffer from this domain-dependency or centralise the case-based argumentation abili-
ties in a mediator agent [11]. The latter is the approach taken by the ProClaim system [27], which allows
agents to argue and decide who is the best recipient of an organ transplantation. Close to the approaches
on case-based argumentation is the research on experience-based argumentation using association rules,
presented as the PADUA protocol in [29]. This work pools the opinions of several agents that have access
to different datasets to predict the classification of a new example. In a subsequent research, the PADUA
protocol has been extended to allow multi-agent dialogues by proposing the PISA protocol [30, 31]. As
in our approach, in this research agents take profit from previous experiences to solve a new problem,
but the knowledge gained from the argumentation process is not stored nor used to improve the agents
argumentation skills. In addition, PISA and PADUA have been designed to solve classification problems
and not any type of problem that can be characterised by a set of features, which is the target of our
research. However, the extension of our framework to allow agents to dynamically create groups and
argue about the best move to make as a group in each step of the dialogue still remains future work.

In this work, we differentiate the concept of agent society from the concept of an agent organisation
or a group of agents that play specific roles, follow some interaction patterns and collaborate to reach
global objectives. Many works in argumentation in MAS that refer to the term ’agent societies’ follow
this approach [9][17], which is not targeted to the study of the structure of agent societies and the
underlying social dependencies between agents. By contrast, we consider that the society is the entity
that establishes the dependency relations between the agents, which have values and can dynamically
group together to pursue common objectives in a specific situation. Similarly, our approach of an agent
society differs from the notion of agent coalitions used in [2] and [7], which are temporary associations
between agents in order to carry out joint tasks, without any consideration about the social links and
values that characterise those agents.

Recent research presents a novel argumentation-based negotiation framework that allows agents to
detect, manage and resolve conflicts related to their social influences in a distributed manner within a
structured agent society [15, 16]. However, this approach defines the social context of agents with a
set of roles that agents can play, a set of generic relationships over them and a set of weighted social
commitments for each of the active relationships, with no mention to values nor preferences over them.
Other important difference between this proposal and our argumentation framework is the main objective
pursued. While it focus on solving conflicts regarding conflicting social commitments between agents, our
framework enables argumentation to solve a generic problem by using previous experiences, taking into
account the social dependencies between agents but also their preferences over a set of values. Also, the
authors do not specify the types of dependency relations that agents can have, leaving this concept as a

26



generic relation. In our framework, the specific dependency relation between a pair of agents plays an
important role in deciding if an argument posed in a past argumentation dialogue can be still persuasive
in a current situation (where, possibly, agents hold a different dependency relation). For the time being,
we do not deal with conflicts on dependency relations between agents, but this is an interesting extension
that opens the pathway to future work.

6 Conclusions

In this report, we have followed a case-based approach to propose an argumentation framework that allow
agents to reach agreements taking into account their social context. The knowledge resources presented
to generate, select and evaluate arguments are flexible enough to represent different types of arguments
and their associated information. Also, the reasoning process that agents can follow to automatically
manage their positions and arguments has been also presented. In addition, the case-based argumentation
framework proposed has been tested in a customer-support application domain.

On one hand, the performance of the system has been evaluated under different settings. The tests
show how those agents that follow an argumentation policy based in our argumentation framework are
able to provide more accurate solutions to the problems that the system receives. The ability of the agents
to argue allows those who have better arguments to support their decisions to win the argumentation
dialogue. Therefore, the solutions with higher quality are selected among those proposed.

In terms of the percentage of agreement, the argumentative agents get better results than agents
following other policies, specially when the number of technicians that are arguing to solve the problem
increases. Agents that have proposed less accurate solutions are persuaded to withdraw them and accept
other agents’ proposals, resulting in more agreements reached. In addition, it has been demonstrated
that if an agent uses its argumentation knowledge and has enough domain-knowledge, its positions are
accepted by other agents with more frequency.

The influence of the amount of argumentation knowledge that argumentative agents have has also
been evaluated. If only one agent has argumentation knowledge that matches the context of current
argumentation processes, as this knowledge increases, the amount of agreements reached and the number
of agents that agree also increases. This demonstrates that this agent is effectively using its argumentation
knowledge to select the best positions and arguments to put forward in a dialogue with other agents.
Thus, as many useful arguments an agent has, as more proficient the agent is to persuade other agents
to accept its proposals. However, if all or most agents have the ability of learning from argumentation
dialogues, all of them have the same (high) persuasive power to defend their decisions and the agreement
is difficult to achieve.

Finally, the influence of the knowledge that an agent has about the social context of their partners
has been also evaluated. Results show that our framework gives preference to the arguments of experts,
due to their power dependency relation over operators. Therefore, if an expert is actually better informed
to assign high quality solutions to specific types of problems, the performance of the system improves.
The quantity of knowledge that agents has about the values of other agents also determines the good
performance of the system. Therefore, if an agent assigns the same importance (weight) to both domain
and argumentation knowledge to generate and select positions and arguments, but it does not know the
value preferences of their partners, many times the agent uses argument-cases that are not suitable for
the current situation. This makes the agent to make wrong decisions that worsen the global performance
of the system.

Funding

This work is supported by the Spanish government grants [CONSOLIDER-INGENIO 2010 CSD2007-
00022, TIN2008-04446, and TIN2009-13839-C03-01] and by the GVA project [PROMETEO 2008/051].

27



References

[1] A. Aamodt and E. Plaza. Case-based reasoning: foundational issues, methodological variations and
system approaches. AI Communications, 7(1):39–59, 1994.

[2] L. Amgoud. An argumentation-based model for reasoning about coalition structures. In 2nd Inter-
national Workshop on Argumentation in Multi-Agent Systems, ArgMAS-05, pages 1–12. ACM Press,
2005.

[3] K. Atkinson and T. Bench-Capon. Abstract argumentation scheme frameworks. In Proceedings of
the 13th International Conference on Artificial Intelligence: Methodology, Systems and Applications,
AIMSA-08, volume 5253 of Lecture Notes in Artificial Intelligence, pages 220–234. Springer, 2008.

[4] T. Bench-Capon and K. Atkinson. Argumentation in Artificial Intelligence, chapter Abstract argu-
mentation and values, pages 45–64. Springer, 2009.

[5] T. Bench-Capon and P. Dunne. Argumentation in artificial intelligence. Artificial Intelligence,
171(10-15):619–938, 2007.

[6] T. Bench-Capon and G. Sartor. A model of legal reasoning with cases incorporating theories and
values. Artificial Intelligence, 150(1-2):97–143, 2003.

[7] N. Bulling, J. Dix, and C. I. Chesñevar. Modelling coalitions: Atl + argumentation. In Proceedings of
the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS-08,
volume 2, pages 681–688. ACM Press, 2008.

[8] F. Dignum and H. Weigand. Communication and Deontic Logic. In R. Wieringa and R. Feen-
stra, editors, Information Systems - Correctness and Reusability. Selected papers from the IS-CORE
Workshop, pages 242–260. World Scientific Publishing Co., 1995.

[9] J. Ferber, O. Gutknecht, and F. Michel. From Agents to Organizations: an Organizational View
of Multi-Agent Systems. In Agent-Oriented Software Engineering VI, volume 2935 of LNCS, pages
214–230. Springer-Verlag, 2004.

[10] S. Heras. A Case-Based Argumentation Framework for Agent Societies. PhD thesis, Departamento
de Sistemas Informáticos y Computación. Universitat Politècnica de València, 2011.

[11] S. Heras, V. Botti, and V. Julián. Challenges for a CBR framework for argumentation in open MAS.
Knowledge Engineering Review, 24(4):327–352, 2009.

[12] S. Heras, V. Botti, and V. Julián. An abstract argumentation framework for supporting agreements
in agent societies. In 5th International Conference on Hybrid Artificial Intelligence Systems, HAIS-
10, volume 6077 of LNAI, pages 177–184. Springer, 2010.

[13] S. Heras, J. A. Garćıa-Pardo, R. Ramos-Garijo, A. Palomares, V. Botti, M. Rebollo, and
V. Julián. Multi-domain case-based module for customer support. Expert Systems with Applica-
tions, 36(3):6866–6873, 2009.

[14] N. Karacapilidis and D. Papadias. Computer supported argumentation and collaborative decision-
making: the HERMES system. Information Systems, 26(4):259–277, 2001.

[15] N. C. Karunatillake. Argumentation-Based Negotiation in a Social Context. PhD thesis, School of
Electronics and Computer Science, University of Southampton, UK, 2006.

[16] N. C. Karunatillake, N. R. Jennings, I. Rahwan, and P. McBurney. Dialogue Games that Agents
Play within a Society. Artificial Intelligence, 173(9-10):935–981, 2009.

28



[17] E. Oliva, P. McBurney, and A. Omicini. Co-argumentation artifact for agent societies. In 5th
International Workshop on Argumentation in Multi-Agent Systems, ArgMAS-08, pages 31–46. ACM
Press, 2008.

[18] S. Ontañón and E. Plaza. Learning and joint deliberation through argumentation in multi-agent
systems. In 7th International Conference on Agents and Multi-Agent Systems, AAMAS-07. ACM
Press, 2007.

[19] C. Perelman and L. Olbrechts-Tyteca. The New Rhetoric: A Treatise on Argumentation. University
of Notre Dame Press, 1969.

[20] I. Rahwan and G. Simari, editors. Argumentation in Artificial Intelligence. Springer, 2009.

[21] I. Rahwan, F. Zablith, and C. Reed. Laying the foundations for a world wide argument web. Artificial
Intelligence, 171(10-15):897–921, 2007.

[22] J. Searle. Rationality in Action. MIT Press, 2001.

[23] C. Sierra, V. Botti, and S. Ossowski. Agreement Computing. KI - Künstliche Intelligenz, DOI:
10.1007/s13218-010-0070-y, 2011.

[24] D. Skalak and E. Rissland. Arguments and cases: An inevitable intertwining. Artificial Intelligence
and Law, 1(1):3–44, 1992.

[25] L.-K. Soh and C. Tsatsoulis. A real-time negotiation model and a multi-agent sensor network
implementation. Autonomous Agents and Multi-Agent Systems, 11(3):215–271, 2005.

[26] K. Sycara. Persuasive argumentation in negotiation. Theory and Decision, 28:203–242, 1990.

[27] P. Tolchinsky, K. Atkinson, P. McBurney, S. Modgil, and U. Cortés. Agents deliberating over
action proposals using the ProCLAIM model. In 5th International Central and Eastern European
Conference on Multi-Agent Systems and Applications, CEEMAS-07, pages 32–41. Springer, 2007.

[28] D. Walton, C. Reed, and F. Macagno. Argumentation Schemes. Cambridge University Press, 2008.

[29] M. Wardeh, T. Bench-Capon, and F. P. Coenen. PISA - Pooling Information from Several Agents:
Multiplayer Argumentation From Experience. In Proceedings of the 28th SGAI International Con-
ference on Artificial Intelligence, AI-2008, pages 133–146. Springer, 2008.

[30] M. Wardeh, T. Bench-Capon, and F. P. Coenen. Padua: a protocol for argumentation dialogue
using association rules. AI and Law, 17(3):183–215, 2009.

[31] M. Wardeh, F. Coenen, and T. Bench-Capon. Arguing in groups. In 3rd International Conference
on Computational Models of Argument, COMMA-10, pages 475–486. IOS Press, 2010.

29



Algorithm 1 generatePositions
Require: ProblemDescription, n, generation method (D, S, M) //The description of the problem to solve, the maximum

number n of positions to generate (all possible if n=0) and the method to generate positions
1: matchCases = ∅
2: solutions = ∅
3: positions = ∅
4: argSchemes = ∅
5: extendedDesc = ∅
6: similarity = 0
7: SD = ∅
8: i = 0; j = 0; k = 0
9: if D ∈ GenerationMethod then

10: for all c ∈ DomainCasesCB do
11: similarity = computeSimilarity(ProblemDescription, c)
12: if similarity > δ then
13: matchCases[i] = c //If the similarity exceeds certain threshold, the domain-case is selected to generate the

position
14: SD[i] = similarity //The similarity degree of this domain-case is stored
15: i++
16: solutions = generateSolutions(matchCases)
17: if lenght(solutions) ≥ 1 then
18: for [s = 0;s < lenght(solutions);s+ +] do
19: positions = addPosition(ProblemDescription, solutions[s], SD[i])
20: if M ∈ GenerationMethod then
21: for all c ∈ DomainCasesCB do
22: similarity = computeSimilarity(ProblemDescription, c)
23: if similarity > δ then
24: matchCases[i] = c //If the similarity exceeds certain threshold, the domain-case is selected to generate the

position
25: SD[i] = similarity //The similarity degree of this domain-case is stored
26: i++
27: extendedDesc = aggregateDescriptions(matchCases)
28: if ProblemDescription 6= extendedDesc then
29: ProblemDescription = extendedDesc
30: if S /∈ GenerationMethod then
31: addGenerationMethod(S)
32: else
33: solutions = generateSolutions(matchCases)
34: if lenght(solutions) ≥ 1 then
35: for [s = 0;s < lenght(solutions);s+ +] do
36: positions = addPosition(ProblemDescription, solutions[s], SD[i])
37: if S ∈ GenerationMethod then
38: for all as ∈ ArgumentationSchemesOnt do
39: similarity = computeSimilarity(ProblemDescription, as)
40: if similarity > η then
41: argSchemes[j] = k //If the similarity exceeds certain threshold, the argumentation-scheme is selected to generate

the position
42: SD[j] = similarity //The similarity degree of this argumentation-scheme is stored
43: j++
44: solutions = generateSolutions(argSchemes)
45: if lenght(solutions) ≥ 1 then
46: for [s = 0;s < lenght(solutions);s+ +] do
47: positions = addPosition(ProblemDescription, solutions[s], SD[i])
48: Return positions

30



Algorithm 2 Position Generation and Selection
Require: ProblemDescription, generation method (D, S, M), wSimD, wPD, wSD, wRD, wAD, wED,

wEP //The description of the problem to solve, the generation method for generating cases from
domain-cases (D), argumentation-schemes (S) or from both (M) and the weights for each element of
the similarity degree and the support factor

1: positions = ∅
2: argumentCases = ∅
3: SimD = ∅
4: SF = ∅
5: selectedPositions = ∅
6: positions = generatePositions(ProblemDescription, n)
7: for [i = 1;i ≤ lenght(positions);i+ +] do
8: argumentCases[i] = generateArgumentCase(ProblemDescription, positions[i])
9: SimD[i] = retrieveSimilarityDegree(positions[i])

10: for [i = 1;i ≤ lenght(argumentCases);i+ +] do
11: SF[i] = computeSF(ProblemDescription, argumentCases[i], argumenCases, wPD, wSD, wRD, wAD,

wED, wEP )
12: selectedPositions = selectPosition(positions, argumentCases, SD, SF)
13: Return mostSuitable(selectedPositions)

31



Algorithm 3 computeSF
Require: ProblemDescription, argCase, argumentCases, wPD, wSD, wRD, wAD, wED, wEP //The description of the

problem to solve, an argument case, the set of all argument-cases that represent all potential positions and the weights
for each element of the support factor

1: SF=0; PD=0; SD=0; RD=0; AD=0; ED=0; EP=0
2: att=0; minAtt=0; maxAtt=0; attAC=0
3: n=0; minS=0; maxS=0; stepsAC=0
4: kr=0; minKr=0; maxKr=0; krAC=0
5: arg = ∅
6: argC = ∅
7: argAccC = ∅
8: argAccCAtt = ∅
9: arg = retrieveSameProblem(argCase, ArgumentCasesCB)

10: argC = retrieveSameConclusion(argCase, ArgumentCasesCB)
11: argAccC = retrieveAccepted(argCase, ArgumentCasesCB)
12: argAccCAtt = retrieveAcceptedAttacked(argCase, ArgumentCasesCB)
13: if lenght(argC) 6= 0 then
14: PD = argAccC/argC
15: if lenght(arg) 6= 0 then
16: SD = argAccC/arg
17: if lenght(argC) 6= 0 then
18: RD = argAccCAtt/argC
19: att = computeNumberOfAttacks(argCase)
20: minAtt = att
21: maxAtt = att
22: for all [ac ∈ argumentCases] do
23: attAC = computeNumberOfAttacks(ac)
24: if minAtt > attAC then
25: minAtt = attAC
26: if maxAtt < attAC then
27: maxAtt = attAC
28: if maxAtt 6= minAtt then
29: AD = (att - minAtt)/(maxAtt - minAtt)
30: n = computeNumberOfSteps(argCase)
31: minS = n
32: maxS = n
33: for all [ac ∈ argumentCases] do
34: stepsAC = computeNumberOfSteps(ac)
35: if minS > stepsAC then
36: minS = stepsAC
37: if maxS < stepsAC then
38: maxS = stepsAC
39: if maxS 6= minS then
40: ED = 1 - ((n - minS)/(maxS - minS))
41: kr = computeNumberOfKR(argCase)
42: minKr = kr
43: maxKr = kr
44: for all [ac ∈ argumentCases] do
45: krAC = computeNumberOfKR(ac)
46: if minKr > krAC then
47: minKr = krAC
48: if maxKr < krAC then
49: maxKr = krAC
50: if maxKr 6= minKr then
51: EP = (kr - minKr)/(maxKr - minKr)
52: Return SF = (wPD ∗ PD + wSD ∗ SD + wRD ∗ (1−RD) + wAD ∗ (1−AD) + wED ∗ ED + wEP ∗ EP )

32



Algorithm 4 Position Evaluation
Require: position, incPosition, positions //The position of an agent, an incoming position and the set

of potential positions generated by the agent
1: dependencyR = checkDependencyRelation(opponent, proponent)
2: if (dependencyR =! ”Power”) then
3: if position = incPosition then
4: acceptPosition(incPosition) //If the positions are the same, the agent accepts the incoming posi-

tion
5: if (position 6= incPosition) && (incPosition ∈ positions) then
6: decideAttack(incPosition)
7: if incPosition notin positions then
8: askForSupport(incPosition)
9: else

10: acceptPosition(incPosition) //If the opponent agent has a power relation over the proponent, it
changes its position and accepts the incoming position

Algorithm 5 Argument Generation
Require: position, incArgument //The position of the agent and the incoming argument

1: requestType = evaluateIncomingRequest()
2: if requestType = supportAsked then
3: decideSupport(position)
4: if requestType = attackReceived then
5: evaluateArgument(incArgument)

Algorithm 6 generateAttack
Require: incArgument, DomainCasesCB, ArgumentCasesCB, ArgumentationSchemes //The argument

to attack, the case-bases of domain-cases and argument-cases and the argumentation-schemes ontology
1: support = checkSupportSet(incArgument)
2: supportElement = selectElementToAttack(support)
3: if supportElement = Premises then
4: generateDPAttack(incArgument)
5: if supportElement = ArgumentationSchemes then
6: if ArgumentationScheme ∈ ArgumentationSchemesOnt then
7: generateASAttack(incArgument)
8: else
9: storeAS(ArgumentationScheme)

10: if (supportElement = Domain-Case) or (supportElement = Argument-Case) then
11: CE=generateCounterExample(incArgument)
12: if CE 6= ∅ then
13: generateCEAttack(incArgument)
14: else
15: generateDPAttack(incArgument)
16: if support = ∅ then
17: generateCEAttack(incArgument)

33



Algorithm 7 evaluateArgument
Require: incArgument //The incoming argument to evaluate

1: if defeats(currArgument, incArgument) then
2: generateAttack(incArgument)
3: else
4: newS = generateNewSupport(position)
5: if newS == 0 then
6: withdraw(position)

34


	Introduction
	Case-Based Knowledge Resources
	Argument-Case Structure
	Problem.
	Solution.
	Justification.


	Reasoning Process
	Position Management
	Position Generation.
	Position Selection.
	Position Evaluation.

	Argument Management
	Argument Generation.
	Argument Selection.
	Argument Evaluation.


	Evaluation Example
	Testing the Performance
	Number of cases that the framework learns with respect of the time.
	Percentage of problems that were properly solved with respect to the knowledge of the agents.
	Percentage of agreements reached with respect to the knowledge of the agents.
	Percentage of positions accepted with respect to the number of argument-cases.

	Testing the Social Context
	Presence of an Expert
	Knowledge about Other Agents' Social Context


	Discussion
	Conclusions

