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1. Introduction

1.1. Predictive Maintenance

In the research conducted in the late 90’s, Predictive 
maintenance was defined as the maintenance policy 
which is developed through the physical parameters of a 
machine which are continuously or alternatively sensored, 
measured and recorded to fulfill the requirement of 
supporting, assessing, validating information to help 
in making decisions in favor of the maintenance and 
operation of the machine. (Rao, 1996).

As a policy of maintenance, it is divided into two 
wide categories according to its application and user 
requirement:

Statistical-based Predictive Maintenance (SBM) is the 
first category of Predictive Maintenance.

The application of this maintenance policy is conducted 
through the data of breakdown and stoppages. Through 
this data, statistical model is developed to predict failure 
which in turn helps in creating a preventive maintenance 
policy. (Carnero, 2006).

Condition-based Predictive Maintenance (CBM) is the 
second category of Predictive Maintenance. In contrast 
to statistical based PM, this maintenance policy utilizes 
real-time data of the detoriation process of mechanical 
components to determine the overall health of the ma-
chine. (Carnero, 2006).

In this research paper, SBM is considered. The main 
reason behind this selection is that in the case of CBM, 
a maintenance action is taken only after the validation of 
one or more than one conditions depicting detoriation of 
the machine or process. This maintenance policy relies 
on continuous monitoring of the machine or the process. 
The maintenance activity cannot be planned beforehand. 
(Susto et al., 2012).

CBM requires tools such as vibration monitoring, 
thermography, tribology, process parameters, visual 
inspection, ultrasonic, and other non-destructive testing 
techniques, which are expensive. (Mobley, 2002)

In contrast to this, SBM does not require real time 
monitoring of the machine or process. It utilizes prior 
failure data to predict failure. This method also allows us 
to plan maintenance activity and inventory in advance.

Therefore, in this study statistical tools are used through 
recorded failure data. This methodology is economical 
and requires less tools as compared to Condition-based 
predictive maintenance.

The BOPP Production line which is considered as a Case 
Study for SBM, is part of a Production Plant consisting 
of 22 machines. Out of 22, this production line had been 
considered due to its market share and profitability. 
The production line is divided into 5 sections where, 
Transverse Direction Orienter Section is with the most 
number of failures per annum. Through record keeping, 
it was confirmed that breakdown is due to the bearing 
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failure within this section of the production line. There are 
8 types of bearings installed in this section. Through this 
study, the most critical bearing was determined out of 8 
bearings through FMECA and its failure data was fitted on 
a distribution model to determine the parameters. These 
parameters are the main source to predict time to failure 
of any future state.

1.2. �FMECA (Failure Modes, Effects and 
Criticality Analysis)

FMECA is a simple tool to narrow down issues and 
formulate objectives to implement corrective actions 
to resolve them. This tool consist of three main steps, 
Identify, Prioritize and Formulate.

The three steps can be elaborated as follows (Carlson, 
2014):

•	 Identify and fully understand potential failure modes 
and their causes, and the effects of failure on the 
system or end users, for a given product or process.

•	 Prioritize the issues for corrective actions after 
assessing the risk associated with the identified failure 
modes, effects and causes.

•	 Eliminate the issues by addressing the concerns 
having the highest priority by carrying out corrective 
actions.

 Initially, FMEAs were used primarily as a safety analysis 
on the system hardware after the design was nearly 
complete. This application meant that any problems 
uncovered by the analysis were likely to be extremely 
expensive to fix. Recent refinements in the methodology 
have expanded the types of failures that can be analyzed 
to include functional failures in a functional representation 
of the system, failures of software components, and 
failures in the processes through which a product is built 
or maintained. (Becker & Shipley, 2002)

The Transverse Direction Orienter (TDO) section had 8 
types of bearings installed. To determine the most critical 
bearing FMECA was performed.

In this study, FMECA is used as a supporting tool along with 
statistical analysis to solve a problem. The goal of FMECA 
is to obtain failure conditions, determine the most critical 
conditions and eliminate them by providing compensating 
provisions. Failure Mode and Effects Analysis (FMEA) and 
the Criticality Analysis (CA) are two analysis which make 
up the FMECA. Firstly, various failure modes and their 
effects on the machine or process are assessed through 
FMEA. After which CA is conducted to prioritize the failures 
based on three factors that are severity of each effect 
of failure (S), likelihood of occurrence for each cause of 
failure (O) and likelihood of prior detection for the cause 
of failure (D). The process of prioritization is conducted by 
a subjective ranking procedure which provides us with a 
Risk Prioritization Number (RPN) where RPN = S × D × O. 
(Sahoo et al., 2014).

1.3. Statistical Model

The bearing having the highest probability of failure that 
is highest RPN was expected to have a failure rate of 

increasing nature. And as the bearing detoriates with 
time, it becomes more susceptible to failure. The failure 
rate function would have a bath-tub shaped curve where 
there is a possibility of infant mortality. In the case of this 
data, the time during which the data is recorded is long 
after the infant mortality state. Therefore, the possibility of 
infant mortality can be disregarded. The primary concern 
was the distribution of life of the bearing during its early 
life. Due to this, the distributions which, during early life 
data, have strictly increasing failure rates were considered 
such as Weibull, Rayleigh and Exponential distributions. 
But this also included lognormal distribution as well which 
fails the increasing failure rate test to verify the case. 
Once a distribution fitted well on the failure data, then 
parameters were distribution through which probability 
plots could be generated and failure-time distribution 
functions. (Muller, 2003)

1.3.1. �Weibull Distribution and its relation to 
Rayleigh and Exponential Distribution

The most commonly used distribution used in life data 
analysis is Weibull Distribution. As mentioned in 1.3, the 
failure rate does not have a possibility of infant mortality 
therefore a bath-tub shaped curve would not exist and 
Weibull distribution is not a good fit for data sets with bath 
tub shaped failure rates. (Merovci & Elbatal, 2015).

It is a well-suited model for failure data of mechanical 
equipment. The different values of the two parameters, 
shape and scale, of this distribution showcase different 
behaviours. The shape of the PDF curve and failure rate is 
affected by the shape parameter, denoted by β. Following 
are the different behaviours observed at different values 
of β;

0 < β < 1, the failure rate is a monotonic, decreasing 
function.

β = 1, the failure rate is constant for all values of t.
β > 1, we can show that the failure rate is a monotonic, 

increasing function

In case of β = 1, the Weibull distribution reduces to the 
memory-less distribution, the exponential distribution. 
Here is how exponential distribution is introduced. As it 
is mentioned, the failure rate is constant for all values of 
t therefore this distribution is used to represent process 
or systems with an assumption of having constant 
failure rate. It is considered as a special case of Weibull 
distribution. The failure rate in this distribution is denoted 
as λ, which is a constant. Similarly, exponential distribution 
has two parameters, scale and location, denoted as 1/λ 
and γ respectively. (Muller, 2003).

In case of β > 1, the Weibull distribution creates a special 
case called as Rayleigh Distribution, where β = 2. As it 
is mentioned, the failure rate is an increasing function. 
Rayleigh distribution has two parameters, scale and 
location, denoted as λ and γ respectively.

1.3.2. Lognormal Distribution

Usually lognormal distribution is used in case of design 
probability, material strengths, assessing fatigue. When 
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the natural logarithms of time-to-failure data is normally 
distributed only then this distribution is used. This 
distribution has two parameters, μ which is the location 
parameter, and σ which is the scale parameter. It is closer 
to normal distribution but it is essential to explore all 
possibilities and validate the usage through trial. (Muller, 
2003).

2. Methodology
The research is based on a 5-step process. The author 
acquired the failure of data of 8 bearings from the BOPP 
production line from 2013 to 2016 from the Maintenance 
department. The data was then organized to be assessed 
and utilized for the study. Qualitative analysis was applied 
in 2-steps that are FMEA where failure effects, modes 
and the severity, detectability and occurrences of each 
failure were analysed. The step 2 of qualitative analysis 
was CA where a Risk Prioritization Number (RPN) was 
calculated through the analysis of FMEA.

Table 1: Severity, Detectability and Occurrence.

Rank Severity Criterion Detectability Criterion
Occurrence 

Criterion

1 No effect on the 
production

Stethoscope, Alarm on 
HMI or drive display, 

Temperature Detection

One 
occurrence

2 Motor stops but 
production continues

Stethoscope, 
Temperature Detection

Two 
occurrences

3

Section in which 
motor is installed 

stops but production 
continues

Temperature Detection Three 
occurrences

4 Complete Production 
stoppage No Detectability Four 

occurrences

After the determination of the bearing with highest RPN, 
its time-to-failure data was assessed to obtain goodness 
of fit. As shown in Figure 3, 4 types of distribution models 
were applied on the data and their errors were calculated 
through RMSE. The distribution fit with least errors was 
considered as the best fit.

 

Figure 1: Flowchart to depict the Methodology.

2.1. Data Acquisition and Organization

The historical data was acquired from the Maintenance 
Department of Polymer manufacturing plant for the 
period 2013-2016. It consisted of type of bearing, 
installed location, failure effect, compensating provisions 
and the date of occurrence. Bearings were selected to 
conduct research as the failure occurrences at the BOPP 
Production line were majorly due to bearing failure.

2.2. �FMECA (Failure Modes, Effects and 
Criticality Analysis)

FMECA is divided into two section that are FMEA (Failure 
Modes and Effects Analysis) and CA (Criticality Analysis). 
To select which type of bearing is the most critical for 
the Production line, the bearings were ranked based on 
severity, detection and occurrence as shown in Table 1 
as part of the FMEA. The Risk Priority Number (RPN) 
for these bearings were determined as part of the CA. 
(Sahoo et al., 2014).

During assessing the failure modes, a fish bone diagram 
as shown in Figure 2, was also created for the assessment 

 
Figure 2: Fish Bone Diagram to assess Failure modes.
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to be more detailed for the major reasons of bearing 
failures at the BOPP Production line.

As shown in Table 2, 6004 2Z C3 has the highest RPN, 60 
as compared to other 7 types of bearings.

Table 2: RPN (Risk Prioritization Number) Calculation.

Identification 
Number

Severity 
(S)

Detectabili-ty 
(D)

Occurr-
ence (O)

RPN 
(SxDxO)

6004 2Z C3 4 1 15 60

6213 2Z C3 2 3 4 24

6212 2Z C3 2 3 4 24

6308 2Z C3 4 2 2 16

6209 2Z C3 4 1 4 16

6306 2Z C3 2 2 3 12

6205 2Z C3 4 1 1 4

6002 2Z C3 4 1 1 4

2.3. Statistical Model

The bearing, 6004 2Z C3, had the highest RPN and 25 
data points were considered for statistical analysis.

2.3.1. �Distribution fitting on the failure data of 
critical bearing

Time-to-Failure values of 6004 2Z C3 were plotted against 
four types of distribution to determine goodness of fit 
namely, Weibull, Rayleigh, Lognormal and Exponential 
Distribution.

 

Figure 3: Distributions applied under Statistical Model.

2.3.2. RMSE for selection of best distribution fit

In order to determine the prediction efficacy of the 
distributions for the Time-to-Failure data of 6004 2Z C3, 
errors were computed.

As depicted in Table 3, the lowest value of RMSE 
determines the best distribution of the data. Therefore, 
Rayleigh distribution offers best approximation as 
compared to other distribution models considered.

Table 3: RMSE (Root Mean Square Error) to determine 
goodness of fit.

Distribution RMSE Mean Variance Parameters

Rayleigh 0.024215697 25.6697 180.047 λ = 2

Lognormal 0.025639813 27.3379 129.852 μ = 3.22817

Weibull 0.026463182 27.2918 96.9479 β = 30.5514

Exponential 0.028024989 27.1667 738.028 μ = 27.1667

3. Results & Discussion
A framework of qualitative and quantitative integration 
is developed in which FMECA is the qualitative analysis 
used to determine the bearing type with the highest 
probability of failure, then statistical modelling is 
applied where best distribution fit is determined through 
Root Mean Square Error (RMSE) to model the Time to 
Failure of the bearing with highest risk of failure.

First part of the result is depicted through the RPN 
calculation. It shows that 6004 2Z C3 is the most 
critical bearing installed in the BOPP Production 
line. Second part of the result is the determination of 
distribution fit on the time-to-failure data of 6004 2Z 
C3. Rayleigh distribution had the least errors, when 
calculated through RMSE, as compared to errors of 
other distributions.

It is evident from the results that the BOPP Production 
line requires to maintain the conditions as well as the 
inventory of the 6004 2Z C3 bearing and utilize Rayleigh 
distribution as the model to predict Time-to-failure of 
the bearing with highest risk of failure as compared to 
other distributions.

4. Conclusion

For improved reliability of any machine, a cost effec-
tive and less complex maintenance plan is required. 
By the utilization of FMECA and Statistical model, early 
detection of failure can reduce the chances of costly 
maintenance.

In future work the author plans to perform Bayesian 
Inference through the results of this research. The 
first step towards the start of the Bayesian inference 
is attaining a prior distribution of the data which is 
achieved through this conducted research.

The combination of FMECA and Bayesian Inference 
could be used for the prediction of Time to Failure of 
Roller Bearings of a BOPP production line.
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