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Abstract: The accuracy of the predictions of age-specific probabilities of death is an essential objective
for the insurance industry since it dramatically affects the proper valuation of their products.
Currently, it is crucial to be able to accurately calculate the age-specific probabilities of death over
time since insurance companies’ profits and the social security of citizens depend on human survival;
therefore, forecasting dynamic life tables could have significant economic and social implications.
Quantitative tools such as resampling methods are required to assess the current and future states of
mortality behavior. The insurance companies that manage these life tables are attempting to establish
models for evaluating the risk of insurance products to develop a proactive approach instead of
using traditional reactive schemes. The main objective of this paper is to compare three mortality
models to predict dynamic life tables. By using the real data of European countries from the Human
Mortality Database, this study has identified the best model in terms of the prediction ability for each
sex and each European country. A comparison that uses cobweb graphs leads us to the conclusion
that the best model is, in general, the Lee–Carter model. Additionally, we propose a procedure that
can be applied to a life table database that allows us to choose the most appropriate model for any
geographical area.
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1. Introduction

The accuracy of the prediction of age-specific probabilities of death is the main objective for
life insurance companies. A more precise valuation of age-specific probabilities of death provides
better valuations of insurance companies’ life products. Therefore, sophisticated models have been
implemented in the actuarial literature to improve the accuracy of the future age-specific probabilities
of death. The vast majority of the mortality models proposed in the literature are encompassed in the
framework of age-period-cohort methodology. Among the stochastic mortality models, the Lee–Carter
model [1] is one of the most well-known and applied methods in the demographic and actuarial fields.
This model [1] has inspired numerous variants and extensions to improve the goodness-of-fit and the
forecasting properties of the model since its publication in 1992 [2–4]. Various modifications have also
extended the Lee–Carter model by incorporating additional terms [5–8]. Furthermore, in recent years,
different models have been developed to calibrate mortality with different methodologies [9–12].

However, there is no single criterion to evaluate the prediction accuracy of mortality models.
In the literature, since 2005, different measures have been employed to compare observed and
predicted age-specific probabilities of death. These criteria are encompassed in two groups:
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nonpenalized and penalized measures. Nonpenalized measures do not consider the number of model
parameters; therefore, the selected model is the one that minimizes the error measure. In contrast,
penalized measures add a penalty function that penalizes the models that are overparametrized.
Both penalized and nonpenalized measures have been used to compare observed and predicted
age-specific probabilities of death. Among the nonpenalized measures, we can include measures
such as the sum of squares errors (SSE), mean square errors (MSE), mean absolute error (MAE),
mean absolute percentage error (MAPE) and r-square (R2). Penalized measures encompass the Akaike
information criterion (AIC) and Bayesian information criterion (BIC). Therefore, there is not a clear
trend among authors to employ a specific criterion (as shown in Table 1), as it as challenging to select a
particular goodness-of-fit measure to choose the best mortality model.

In this sense, tools from other disciplines can be used to overcome the problem of assessing
the forecasting ability of mortality models. In this paper, we propose the use of machine learning
techniques to evaluate the predictions of mortality models. With the explosion of ‘big data” problems,
machine learning has emerged as a new subfield in statistics, and it is focused on supervised and
unsupervised modeling and prediction. Within learning machine techniques, “resampling methods”
refers to repeatedly drawing subsamples from a given sample and refitting the model by using each
subsample to obtain additional information about the model [13]. In addition, resampling methods
can be used to estimate the accuracy associated with different models to evaluate their out-of-sample
performance. These methods have been employed in fields such as finance, biology, marketing,
and other fields to assess the accuracy of different models [14,15]. Thus, we have implemented these
techniques to evaluate the forecasting ability of mortality models.

Two of the most commonly used resampling methods are cross-validation and bootstrapping.
In this paper, we propose using different cross-validation methods [16,17], which have not been
applied to compare mortality models. These methods have been widely used in other fields to assess
algorithms’ generalizability in classification and regression [18,19]. In contrast, bootstrapping [20] is
one of the most popular resampling methods applied in the actuarial field, although it has been mainly
employed to construct confidence intervals for forecasted mortality rates [21–26]. Accordingly, in this
paper, we do not include bootstrapping (for more details, see for instance [27–29]).

We conclude the literature reviewe by identifying a knowledge gap and research possibilities
that, mainly concern how best to use the existing resample methods to evaluate predictive life table
models. To the best of our knowledge, resampling methods have not been employed to assess the
forecasting ability of different mortality models. Moreover, resampling methods have to be adapted
for time series analysis [18,30] as dynamic life tables are a type of cross-sectional time series data.
Specifically, these data contain observations (ages) about different cross-sections across time (periods),
which means “panel data”. Therefore, we adapt the use of time series resampling methods to evaluate
the forecasting ability of different models that employ panel data.
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Table 1. Summary of goodness-of-fit measures.

Paper Measure of Mortality Models Selected ModelGoodness Fit

[31] R2 Gompertz–Makeham (0, 11) Logit–Gompertz–Makeham (0, 11)
MAPE Logit–Gompertz–Makeham (0, 11)

Heligman–Pollard–2law

[32] MAE LC1/LM BMS with small differences
ME BMS/HU

LC-smooth

[33] AIC LC1-Negative Binomial LC1-Negative Binomial
BIC LC1-Poisson

[24] MAPE LC1-Logit/LC2-Logit MP
MSE Median Polish (MP)

[34] MAPE LC1-SVC/LC1-GLM LC2
MSE LC1-ML/LC2-SVD

LC2-GLM/LC2-ML

[6] BIC LC1/LC2-Cohort LC2-Cohort
APC/M5 M8
[35]
M6/M7/M8

[36] SSE M5-Logit M5-Logit
M5-Log/M5-Probit

[37] BIC [37] model [37] model
LC1/M7/M5
LC2-Cohort
[35] model

[38] Deviance LC1/LC1-res LC-APC
MSE LC2/LC2-res
MAPE LC-APC/LC-APC-res

MP/MP-res
MP-APC/MP-APC-res

[39] MAPE LC1/APC1 [39] model
BIC APC2/CBD

[39] model

[40] AIC LC1/H1 M7/M8/H1
BIC M/LC2
HQC M5/M6

M7/M8

[41] RSSE [41] model RH
UVx LC1/RH [41]
BIC H1/M3

[37] model

[42] MSE LC1/CBD [42] model
MAPE [42] model

[43] MAPE P-Double-LC2/M-Double-LC2 P-Common-LC2
AIC P-Common-LC2/M-Common-LC1
BIC P-Simple-LC1/M-Simple-LC1
MAPE P-Division-LC1/M-Division-LC1

P-One-LC1/M-One-LC1

[44] BIC PCFC PCFC
MAPE PCFM

[45] AIC GAS Poisson/GAS Binomial GAS Negative Binomial
MAPE GAS Negative Binomial

GAS Gaussian/GAS Beta
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This study’s main objective is to emphasize the use of resampling methods to select the model
with the best forecasting ability. In addition, we also propose to compare the predictions of the
probabilities of death in different countries by employing a radar plot. This radar plot is a useful
graphical display method for multivariate data. We present an analysis of the resampling methods
with mortality data from 30 different European countries from the Human Mortality Database [46],
which is available to any researcher. Three different models are used to analyze the data to identify
the main features of dynamic life tables and to predict future mortality rates. Then, we employ radar
charts to illustrate three different mortality models’ forecasting ability among 30 European countries.
Our paper describes all the steps that are taken and the R-packages [47] for the purposes of replicability
and reproducibility.

The contents of the remainder of this article are structured as follows. In Section 2, we present the
original version of the Lee–Carter model and the extended two factor version of this model developed
by [2,7]. In addition, we consider the proposal of [48] who maintain the structure of the former
models but include some orthogonality constraints in the model parameters. In Section 3, we describe
four resampling methods that are applied to assess the forecasting ability of these mortality models.
In Section 4, we present a brief summary of the different measures used to compare the forecasting
accuracy of the mortality models. The application of five resampling methods to several European
countries for the 1990–2016 period to evaluate the forecasting abilities of the three versions of the
Lee–Carter model is presented in Section 5. The outcomes of each resampling method are also collected
in Section 5. Finally, Section 6 establishes the main conclusions that are drawn from the outcomes of
the previous section.

2. Fitting and Prediction of the Lee–Carter Models

We consider a set of crude probabilities of death q̇x,t, for age x ∈ [x1, xk] and calendar year
t ∈ [t1, tn], which we use to produce smoother forecast estimates, q̂x,t, of the true but unknown
mortality probabilities qx,t. A crude rate at age x and time t is typically based on the corresponding
number of deaths recorded, dx,t, relative to those initially exposed to risk, Ex,t.

The original Lee–Carter model [1] is one of the most popular mortality models. This model is a
type of age-period (AP) model where the central rate of mortality mx,t is assumed to depend on age x
and period t,

mx,t = exp
(

ax + b(1)x k(1)t + εx,t

)
, (1)

or equivalently,
ln (mx,t) = ax + b(1)x k(1)t + εx,t. (2)

In (2), ax and b(1)x are parameters that depend on age, k(1)t is an index that describes the general
tendency of mortality over time, and; εx,t is the error term with a zero mean, and σ2

ε is the variance
that represents the part of the mortality probability that is not captured by the model.

Based on the original model proposed by [1], other authors have suggested some extensions.
In particular, [2,7] proposed incorporating an additional term b(2)x · k

(2)
t so that the central mortality

rate becomes the following:

ln (mx,t) = ax + b(1)x k(1)t + b(2)x k(2)t + εx,t. (3)

The objective of this proposal is to improve the quality of the fit by adding new terms. The authors
eliminate the pattern of the residuals in the original Lee–Carter model.

Another version of the bifactorial extension of the Lee–Carter model was proposed by [48]
who kept the structure of the bifactorial model but orthogonalized the parameters b(i)x and k(i)t and
incorporated some additional constraints (see Table 2).
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Table 2. List of the Lee–Carter models used in this study, with the acronyms, parameter constraints
and equations.

Label Parameter Constraints FormulaModel

LC ∑x b(1)x = 1
ln

(
qx,t

1−qx,t

)
= ax + b(1)x k(1)t + εx,t

∑t k(1)t = 0

LC2 ∑x b(1)x = ∑x b(2)x = 1 ln
(

qx,t
1−qx,t

)
= ax + b(1)x k(1)t + b(2)x k(2)t + εx,t

∑t k(1)t = ∑t k(2)t = 0

LC2-O ∑x |b
(1)
x | = ∑x |b

(2)
x | = 1 ln

(
qx,t

1−qx,t

)
= ax + b(1)x k(1)t + b(2)x k(2)t + εx,t

∑t k(1)t = ∑t k(2)t = 0

∑t b(1)x · b
(2)
x = 0

∑t k(1)t · k
(2)
t = 0

In this paper, we use the logit link version of these models for the death probabilities [34] so that
the eventually analyzed model becomes

ln
(

qx,t

1− qx,t

)
= ax + b(1)x k(1)t + b(2)x k(2)t + εx,t, (4)

where ax, b(1)x and b(2)x are parameters that depend on age, and k(1)t and k(2)t depend on time t. Table 2
summarizes the main features of the models evaluated in this paper, namely, the acronyms used for
each of the models, the constraints that must satisfy the parameters, and the model formula.

The three models are evaluated in the next section by applying resampling methods. The model
fit is properly obtained by using the gnm library [49] from [47].

For forecasting the age-specific probabilities of death, q̇x,t, by considering [34,48], we assume
that k(1)t and k(2)t follow ARIMA (Autoregressive Integrated Moving Average model) independent
processes. To estimate the ARIMA parameters, we use the auto.arima function from the R package
forecast [50], which also provides the ARIMA model that offers the best results according to the Akaike
information criterion (AIC). Once the ARIMA parameters are estimated, the expected future values of
k(1)t and k(2)t are estimated and used to forecast the probabilities of death.

This procedure is applied by using three models (the unifactorial Lee–Carter model (LC),
the bifactorial Lee–Carter model (LC2) and the bifactorial Lee–Carter model with orthogonalized
parameters model (LC2-O)) to conduct forecasting for each of the populations covered in this study.

3. Resampling Methods for Evaluating the Forecasting Abilities of the Models

In this section, we describe the class of methods usually employed to evaluate model forecasting
ability that consists of repeatedly drawing samples from a data set and refitting the model on
each sample. These methods obtain additional information about the model fit that would not
be available when fitting the model only once [13]. These methods are generally referred to as
“resampling methods”.

Notably, in this paper, we apply four statistical learning methods that are categorized as
resampling methods. These methods consist of randomly dividing the sample into the two subsets of
the training set and the validation set. The first set is used to fit the model, and the second set is used
to evaluate the forecasting ability by using the goodness-of-fit measures. Depending on the way that
these two sets are generated, we have different resampling methods. In this study, we focus on the
following methods:
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1. Hold-out;
2. Repeated hold-out;
3. Leave-one-out-CV (Cross Validation); and
4. K-fold CV.

3.1. Hold-Out or Out-Of-Sample

The first method, the hold-out or the H-method, consists of randomly dividing the sample into two
subsets of data for training and testing only once [51]. Usually, the training set contains 75% of the
data, and the validation set contains the remaining 25%, although it is easy to find examples with
different divisions, such as 80% and 20% or 2/3 and 1/3. [13,52,53]. If the data set is too small, then the
training set may not be sufficiently large; therefore, this method is preferred when the data set is large
(more than 10,000 observations).

In this case, we adapt this method to time series. According to [30], a sample should be divided
chronologically, as shown in Figure 1. Therefore, when dividing the sample into two subsets, the first
subset is the training set, and all the remaining observations that correspond to the events that occurred
late are the validation set to be used to test the model. This method is known as the out-of-sample
method [54] since the validation set is used to evaluate the forecasting ability of the model. Ref. [54]
justifies this division of the sample as representing the “real-world forecasting environment, in which
we stand in the present and forecast the future”. The forecasting ability of the model is measured just
once, and the goodness-of-fit of the model is evaluated with the validation dataset.

This procedure to evaluate mortality models was used in [55] to select the model that best
describes and forecasts mortality rates in Colombia. Other authors such as [38,42,43,45,56,57] have
employed this technique although some authors do not refer to it as the hold-out method.

3.2. Repeated Hold-Out

A variation of the hold-out method is known as the repeated hold-out method [58], and it involves
repeating the hold-out several times, as seen in Figure 2. This technique allows for testing the model b
times, where b is the number of times that the sample is randomly subdivided into alternative training
and validation sets. The measure of the forecasting ability of the model when applying the repeated
hold-out method is the average of each of the b measures of the goodness of fit:

Repeated Hold-Outb =
1
b

b

∑
j=1

Goodness-of-fit measurej. (5)

This method is only suitable when dealing with sufficiently large databases (more than 1000
observations [53]).

Unlike the hold-out and other resampling methods, when fitting the model, we use all the data
that compose the entire sample since each iteration does not exclude any observations because they
are part of the training data. This is shown in Figures 1 and 2.

In this paper, we apply the standard repeated hold-out without the modifications suggested
in [18] (the first paper that, to the best of our knowledge, justifies the use of a repeated hold-out for
time series).

Notably, the validation sets in repeated hold-out methods can share observations, and this is not
possible in CV methods. To the best of our knowledge, repeated hold-out methods have not been
applied to evaluate the forecasting ability of mortality models.
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Figure 1. A schematic display of the employed resampling methods for an embedded time series.
The training set, validation set and omitted set are shown in gray, white and black, respectively.

3.3. Leave-One-Out Cross-Validation

According to this method, the sample, again, should be divided into two subsets. However,
instead of generating two subsets of a similar size, only one observation is used as the validation set,
and the remaining observations are used as the training set, as shown in Figure 2. For more details
about this process, i.e., the “leave-one-out CV” (LOOCV) method, see [59,60].

This process is repeated n times (where n is the number of observations in the entire sample).
A measure of the forecast quality should be calculated at each iteration, and then, the forecast accuracy
is calculated as an average of this measure:

Leave-One-Out CVn =
1
n

n

∑
i=1

Goodness fit measuresi. (6)

This procedure, the LOOCV, possesses some advantages over other methods. First, this procedure
reduces the sample bias, sicne the training set contains n− 1 observations, which is nearly as many
as the entire sample. Second, there is no randomness when selecting the training and the validation
sets because all the data are used for both purposes (fitting and testing the model). For more details,
see [13].

When applying this method to time series, as in our case, the training set must contain only the
observations that correspond to dates prior to the data to be predicted; therefore, future observations
must not be used to build the training set, as seen in Figure 1. Thus, the training set consists of
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a window with a fixed origin, and in each iteration, a new datum is chronologically added to it.
This procedure is also known as an “evaluation on a rolling forecasting origin one-step ahead” [61]. In a
particular application of LOOCV, Reference [62] compared the forecasting ability of parametric and
nonparametric mortality models.

Figure 2. A schematic display of the employed resampling methods for nonembedded time series.
The training sets and validation sets are shown in gray and white, respectively.

3.4. K-Fold Cross-Validation

An alternative to LOOCV is “K-fold CV” [59]. When applying this method, we first randomly
divide the sample into k data subsets with the same size. Then, we choose one of these subsets and
use the remaining k− 1 data subsets as the training set. The subset chosen becomes the validation set,
and it is used to measure the forecasting ability of the model. The process has to be repeated with a
different subset as the validation set each time, and all the remaining data are the training set. As a
result, we obtain k different measures of the forecasting ability of the model. As before, the model
accuracy is measured by using the average forecasting ability of the k iterations:

K-Fold CVk =
1
k

k

∑
h=i

Goodness-of-fit measuresh. (7)

In practice, the number of subsets or folds is usually 5 or 10. The main advantage that the K-fold
CV has over the LOOCV is its computational efficiency, since it requires only 5 or 10 repetitions of the
procedure. Other advantages can be found in [52,63]. In Figure 2 we can observe the case when k = 4,
that is, the 4-fold CV where the sample has been subdivided into four subsets. Each time, three-fourths
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of the sample is used as the training set, and the rest of the subsets are used as the validation set.
According to [53], this method is particularly appropriate for medium-sized data sets (between 100
and 1000 observations).

However, when the sample is a time series, the method cannot be directly applied. In this case,
the sample cannot be randomly divided. Each subset must contain only consecutive observations.
Additionally, we can use only previous information for forecasting future observations, as shown in
Figure 1. Thus, when applying this methodology for testing the forecasting ability of a mortality model
in the first iteration, only the first subset (chronologically ordered) is used to forecast the data of the
next subset that is used as the validation subset. In the next iteration, the first two blocks are used as
the training set, and the next block (in chronological order) is used as the validation set, etc. This type
of cross-validation methodology is known as “blocked cross- validation” [30]. To the best of our
knowledge, the K-fold CV has never been used to analyze the forecasting ability of mortality models.

4. Choosing the Optimal Mortality Model

To measure the forecasting ability of mortality models, different measures have been used in the
literature. These measures can be grouped into the two classes of nonpenalized and penalized measures.
First, the so-called nonpenalized measures attempt to find the model that minimizes the calibration
or forecasting error independently of the number of model parameters. Usually, a model with a
large number of parameters tends to yield a smaller calibration and sometimes, smaller forecasting
errors. Thus, nonpenalized measures tend to select the models with a more significant number of
parameters. For this reason, these types of measures are not adequate to select among a model from
all the models with different numbers of parameters. In contrast, penalized measures consider the
number of model parameters to thus correct the goodness-of-fit/forecasting measure to prevent the
risk of over parametrization.

However, there is not a single criterion to evaluate the forecasting ability of these models. Table 1
summarizes the goodness-of-fit measures that have been used in the literature in recent years together
with the mortality models considered in these papers and the model that was eventually chosen.
Table 1 clearly shows that since 2005, different measures (penalized and nonpenalized) have been
applied to compare mortality models. Therefore, it is difficult to use a particular goodness-of-fit
measure to select a mortality model.

In fact, we decide to employ different criteria to choose the optimal mortality model, specifically,
the following nonpenalized measures:

SSE = ∑
x

∑
t
(q̇x,t − q̂x,t)

2 , (8)

MSE =
1

nd
∑
x

∑
t
(q̇x,t − q̂x,t)

2 =
1

nd
SSE, (9)

MAE =
1

nd
∑
x

∑
t
|q̇x,t − q̂x,t| , (10)

MAPE =
1

nd
∑
x

∑
t

∣∣∣∣ (q̇x,t − q̂x,t)

q̇x,t

∣∣∣∣ , (11)

and,

R2 = 1− ∑x ∑t (q̇x,t − q̂x,t)
2

∑x ∑t

(
q̇x,t − q̇x,t

)2 . (12)

As is well known, when these accuracy measures are smaller, the forecasting ability of the model
is better, except for the R2, which is a bounded measure between zero and one, with values closer to
one indicating a better model fit.
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In addition, we employ the most popular penalized measures, namely, the Akaike Information
Criterion (AIC) [64] and the Bayes Information Criterion (BIC) [65]. Both criteria penalize the
complexity of the models in such a way that using a model with more parameters must produce a
significant increment of the likelihood function (l̂) to reduce the AIC or BIC:

AIC = −2 log
(

l̂
)
+ 2np, (13)

and
BIC = np · log (nd)− 2 log

(
l̂
)

. (14)

In all of these measures, nd is the number of observations in the validation set, and np is the
number of parameters used for each model.

Many authors select the best model based on the best accuracy fit. However, [48,66] consider it to
be more suitable to select the model on the grounds of its demographic significance, that is, in terms
of its underlying biological, medical or socioeconomic relevance and its impact on mortality rates at
specific ages. In some countries, the unifactorial Lee–Carter model can capture the demographic feature
of the data. However, other countries need to include an additional term (a bifactorial Lee–Carter
model) to capture particular demographic features that the LC cannot encompass. For instance, in
Spain, the unifactorial Lee–Carter can not capture the anomalous demographic changes in the male
population produced by the effect of AIDS during the nineties. Nevertheless, the bifactorial Lee–Carter
model strives to collect all the information present in the data. Therefore, when we select the model,
we must consider whether the parameters allow us to explain all the demographic events present in
the population.

5. Analysis of the Mortality Data from the Human Mortality Database

5.1. Description of the Data

The data employed in this study consist of the life tables of 30 European countries provided
by [46]. The countries included in this study are Austria, Belarus, Belgium, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Latvia,
Lithuania, Luxembourg, Nederland, Norway, Poland, Portugal, Russia, Slovakia, Slovenia, Spain,
Sweden, Switzerland, the United Kingdom and Ukraine. The sample period covers 1990 to 2016
and the ages range from 0 to 109 years old. It should be noted that Ukraine and Russia have data
only between 1990 and 2013 and 1990 and 2014, respectively. Therefore, the resampling methods
are equally applied to these two countries by employing a different data set period. All the data
for the male and female populations are studied separately. However, this database includes some
countries with minimal populations or with missing values, thereby producing anomalous estimates
of the parameters involved in the models. In particular, the populations that produce these types of
anomalies are the male populations in Denmark, Slovenia and Slovakia, the female populations in
Luxemburg, and both the male and female populations in Iceland. Therefore, the outcomes associated
with these countries should be carefully considered.

The fitting is conducted by using [47]. The life tables were downloaded from [46] with the
HMDHFDplus library [67]. This library allows us to obtain the data in the data.frame format by using
the readHMDweb function, thereby simplifying the data treatment. The demography library [68] is
also available and allows us to obtain the data but in this case, in matrix format.

5.2. Forecasting Abilities of the Models

In this section, we first analyze if the forecasting ability of the three models described in Section 3
is independent of the studied country or if, on the contrary, the forecasting ability depends on the
idiosyncratic characteristics of each particular country. Second, we analyze whether the results
are robust to the measure and the technique used to quantify the forecasting ability of the models.
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Therefore, we apply the resampling methods explained in Section 3, and for each method, we calculate
all the forecasting accuracy measures described in Section 4.

Finally, the cobweb graph or radar graph compares the forecasting ability of the three mortality
models. In each vertex, we represent the number of countries for which a model outperforms the other
two competing models according to the given goodness-of-fit/forecasting criterion. Therefore, the best
model tends to take an outer position in the cobweb, which signal that this model has produced better
forecasts for more countries independent of the method employed to measure the forecasting ability
of the model. The application used to draw these graphs is the R package fmsb [69]. The resampling
methods are applied to evaluate the prediction ability of each European country for their male and
female populations. Futhermore, we have incorporated an individual analysis of the considered
European countries in Appendix A. Figures A1–A6 display the values of the Sum Squared Errors (SSE)
and Mean Absolute Errors (MAE) measures in all European countries and for each resampling method
by applying every model considered in the paper, namely, the unifactorial Lee-Carter (LC1), bifactorial
Lee-Carter (LC2) and bifactorial Lee-Carter with orthogonalized parameters (LC2-O) models.

5.3. Hold-Out

The steps followed to apply the hold-out method to mortality models are the following.

1. The sample is subdivided into two subsets: the training set contains 75% of the data that
correspond to the 1990–2009 period, and the validation set comprises the remaining 25% of
the data that cover the 2010–2016 period. The validation set that includes the last years of the
sample period is employed to evaluate the forecasting ability of the models.

2. The three mortality models are fitted by using the training set, and the corresponding estimations
of parameters ax, b(i)x and k(i)t are obtained for each model.

3. Once the k(i)t values are estimated with the training set data, we proceed to fit an ARIMA model
to forecast the kt values of the validation set (2010–2016). The particular ARIMA model is selected
according to the AIC, as explained in Section 2.

4. Forecasted life tables are obtained for each model, and then, the forecasting ability of each model
is obtained by using the goodness-of-fit measures described in Section 4 that are calculated with
the validation dataset.

Figure 3 uses cobweb maps to show the number of times that each model yields the best result
according to the seven criteria employed to measure the forecasting ability of the models. As seen in
Figure 3, LC outperform the two alternative models when penalized measures are used to quantify
the forecasting ability of the models. However, the results are more ambiguous when nonpenalized
measures are applied.
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Figure 3. Radar graph summarizing the number of countries for which each model (LC, LC2,
and LC2-O) achieves the best forecasting ability according to the hold-out method for males (a)
and females (b).

5.4. Repeated Hold-Out

The second resampling method is the repeated hold-out that follows a similar procedure but
considers the peculiarities of our sample.

1. We randomly subdivide the sample into two subsets. Of the total data, 75% are used as the
training subset, and the remaining 25% are the validation subset. Here, the data that correspond
to the years 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006,
2009, 2011, 2013, 2014 and 2016 are used as the training set, and the data that correspond to the
years 1997, 2004, 2007, 2008, 2010, 2012 and 2015 form the validation set.

2. The three models are fitted with the training data set that obtains the corresponding estimates ax,
b(i)x and k(i)t .

3. Since the training set does not contain serialized data, we use the na.kalman function from the
imputeTS library of [70] to estimate the missing values by using ARIMA time series models and
obtain the k(i)t values that corresponds to the years included in the validation set.

4. Finally, we obtain the forecasted life tables of the years included in the validation set; then,
the forecasting ability of the model is obtained by using the goodness-of-fit measures described
in Section 4 that are applied to the validation dataset.

This procedure is repeated b = 100 times, where the years that form the training and the
validation sets are randomly changed. To obtain a global measure of the forecasting ability of each
model, we proceed to calculate the average value by using Equation (5) for the 100 outcomes obtained
for each country and sex in step 4.

Figure 4 summarizes the number of times that each model outperforms the other two alternatives
according to the different criteria. When using this resampling method, the results are even more
favorable to LC. The penalized measures choose LC for nearly all the countries, and even when
nonpenalized measures are used, LC usually outperforms the other two models.
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Figure 4. Radar graph summarizing the number of countries for which each model (LC, LC2,
and LC2-O) achieves the best forecasting ability according to the repeated hold-out method for males
(a) and females (b).

5.5. Leave-One-Out CV

Again, we have to adapt the methodology to apply it to a time series. In this case, the CV method
undertakes the following steps.

1. We use the first three years of the sample (1990, 1991 and 1992) as the training set. According to
the tsCV function of the forecast library developed by [50], three is the minimum number of years
necessary to fit the mortality models used in this study.

2. We obtain the estimations of ax, b(i)x and k(i)t .

3. By using the ARIMA model that best fits the k(i)t values, a single forecast is obtained for the k(i)t
that correspond to the year 1993.

4. Once these data are projected for 1993, we obtain the corresponding forecasted probabilities of
death for all ages (from zero to 109 years), countries and populations, and we then proceed to
calculate the forecasting ability measures with the 1993 data as the validation set.

This procedure is repeated 24 times. Each iteration incorporates an additional year into the
training set and uses the data that correspond to the following year as the validation set.

A global measure of the forecasting ability of each model is calculated as the average of the 24
results obtained each time that the model is applied. These results, again, are shown in Figure 5 by
using a cobweb graph where each vertex represents the number of times that a model produces the
best result according to the seven measures used in this study. Again, we obtain more evidence in
favor of LC even when using nonpenalized measures of the goodness-of-fit.
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Figure 5. Radar graphs summarizing the number of countries for which each model (LC, LC2,
and LC2-O) achieves the best forecasting ability according to the leave-one-out method for males (a)
and females (b).

5.6. The 5-Fold CV

The fourth method that we apply in this analysis is the 5-fold CV, since we have 24 years, and it
follows the process shown bellow.

1. We proceed to subdivide the sample into six equally sized subsets, that include subset data from
four consecutive years. The first subset consists of data from 1990 to 1994 and is used only as a
training set. The second subset contains data from 1995 to 1998, the third subset contains data
from 1999 to 2002, the fourth subset contains data from 2003 to 2006, the fifth subset contains data
from 2007 to 2011 and the sixth subset contains data from 2012 to 2016.

2. With the data that correspond to the period from 1990 to 1994, we obtain the estimations of ax,
b(i)x and k(i)t .

3. We fit the ARIMA model to the values of k(i)t by obtaining projections for the k(i)t values that
correspond to the second subset (from 1995 to 1998) that is used as the validation set.

4. Finally, we forecast the life tables for each country according to sex and age from 1995 to 1998,
and we can then proceed to determine the different measures of the forecasting ability of the
mortality models employed in this study.

This procedure is repeated by enlarging the training set each time by using the following sample
subset and the next four years of data as the validation set. That is, the next iteration consists of using
data from 1990 to 1998 as the training set and the data from 1999 to 2002 as the validation set, etc.

Again, the forecasting power of a model is obtained as the average of the results of each iteration.
Figure 6 illustrates these outcomes for each forecasting ability measure and indicates the number of
times that a model yields the best results for the 30 countries considered in this study. Those models
located in outer places are the models with the best result for most countries. The outcomes confirm
again that LC outperforms the two other models, thereby showing the convenience of using resampling
methods for evaluating alternative mortality models.
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Figure 6. Radar graph that summarizing the number of countries for which each model (LC, LC2,
and LC2-O) achieves the best forecasting ability according to the 5-fold CV method for males (a) and
females (b).

6. Conclusions

This paper has described the usefulness and simplicity of resampling methods and a radial
plotting technique called radar plotting for multivariate graphical data. Although they are commonly
used in other fields such as business management and engineering, these methods have not found a
foothold in the presentation of research results related to mortality forecasting models. This provides
an essential opportunity for knowledge translation to the actuarial community.

We propose using resampling methods to evaluate the forecasting ability of three different
mortality models. Additionally, it is important to mention that these methods are very suitable
for evaluating the predictive ability of models, especially the cross-validation models. Specifically,
cross-validation models are especially suitable for our sample size.

The main result is that overall, the LC model provides the best results independently of the
resampling method used and the criterion used to measure the forecasting ability. This result is
valid for both the male and female populations. Despite the simplicity of this model (with a smaller
number of parameters), its forecasting ability is better than the two other models, which require the
estimation of many more parameters. These results are particularly evident when penalized measures
of accuracy are employed to evaluate the forecasting ability of the models. For both the AIC and the
BIC, the LC model produces the best results. Even when using nonpenalized measures, LC provides
better outcomes in most cases.

When we apply nonpenalized measures in the hold-out method, we do not find precise results
regarging the “best” model. The hold-out is a traditional method. However, when we apply the
other three resampling methods (repeated hold-out, LOOCV, and K-fold CV) and compare the results,
the LC model produces the best results (the only case where the LC model produces the worst results
is for females when applying the repeated hold-out method). Therefore, the resampling methods allow
us to determine the best model.

Concerning the work of other authors, we should emphasize that many of them seek to find the
best model that predicts mortality in Europe. In this paper, we make a general bibliographical review
of the different criteria employed to measure the goodness-of-fit of mortality models. Additionally,
we do not apply a single resampling method but rather test a battery of resampling methods such as
cross-validation by using hold-out, leave-one-out and k-fold CV. In addition, we have specified how to
apply the resampling methods when we have access to time series data.

Finally, we would like to note that although this paper conducts predictions only by using
European life tables, the methodology can be extended to the life tables of any geographical area.
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The influence of social relationships on the risk of mortality is comparable to that of
well-established risk factors for mortality [71]. Social networks have generated enormous volumes of
data about human interaction. Big data research, which includes to these large datasets, offers insight
into many domains, especially complex and social network applications [72], that we suggest can be
applied to human mortality.
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Appendix A

Figures A1–A6 display the values of the SSE and MAE measures in all European countries
after applying every model considered in this paper, namely, the unifactorial Lee–Carter (LC),
bifactorial Lee–Carter (LC2) and bifactorial Lee–Carter with orthogonalized parameters (LC2-O)
models. We can therefore identify which model works best in each European country. The red line
corresponds to the median, and each symbol corresponds to each resampling method. We do not
employ penalized measures because we seek an individual analysis of the forecasting accuracy in the
models. We include only the MAE and SSE for the sake of brevity although the rest of the criteria are
available to the reader on request.

In Figures A1 and A2, we can observe that LC fits best in countries where the exposure to risk is
high. France, Germany, Italy, Netherlands, and Spain perform better than the rest of the countries for
both sexes. Conversely, countries with a small population present the worst results (Belarus, Denmark,
Iceland, Luxemburg and Slovenia). Suprisingly, the countries that were part of the former USSR have
an inferior result in terms of goodness-of-fit.

In Figures A3 and A4, we display the results that correspond to LC2. It can be seen that this
model performs better for women than for men. Italy, Sweden, Spain, and the United Kingdom have
the lowest error measure; meanwhile, Belarus, Iceland, Ireland, Luxemburg, Slovakia, and Slovenia
yield the worst results. Finally, we exhibit the measures for LC2-O in Figures A5 and A6. Once again,
we observe that females produce smaller error measures than males. Denmark, Hungary, Iceland,
Ireland, Lithuania, Luxemburg, Slovakia, and Slovenia are the European countries with the worst
results, while Austria, France, Germany, Italy, Netherlands, Spain, Switzerland, and the United
Kingdom produce the lowest values in the SSE and MAE. Clearly, whatever model is used to forecast
mortality rates, the quality of the fitting is highly dependent on the population size and stability
of mortality.

Figure A1. Plot summarizing the sum of squares errors (SSE) of each European country that applies the
unifactorial Lee–Carter model to males and females, according to every employed resampling method.
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Figure A2. Plot summarizing the mean absolute measure (MAE) of each European country that
applies the unifactorial Lee–Carter model to males and females, according to every employed
resampling method.

Figure A3. Plot that summarizing the sum of squares errors (SSE) of each European country that applies
bifactorial Lee–Carter model to males and females, according to every employed resampling method.

Figure A4. Plot summarizing the mean absolute measure (MAE) of each European country that applies
bifactorial Lee–Carter model to males and females, according to every employed resampling method.

Figure A5. Plot summarizing the sum of squares errors (SSE) of each European country that applies
bifactorial Lee–Carter model with orthogonalized parameters to males and females, according to every
employed resampling method.
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Figure A6. Plot summarizing the mean absolute measure (MAE) of each European country that applies
bifactorial Lee–Carter model with orthogonalized parameters to males and females, according to every
employed resampling method.
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