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ABSTRACT

In the realm of the convergence spaces, the generalisation of topological
groups is the convergence groups, and the corresponding extension of
the Pontryagin duality is the continuous duality. We prove that local
quasi-convexity is a necessary condition for a convergence group to be c-
reflexive. Further, we prove that every character group of a convergence
group is locally quasi-convex.
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1. INTRODUCTION AND PRELIMINARIES

The character group G of an abelian topological group G is the group of all
continuous characters equipped with the compact-open topology. Pontryagin
duality theorem states that for any locally compact abelian (LCA) topological

group, the canonical map ag : G — G (from the group to the double dual
group) is a topological isomorphism. Martin-Peinador [10] proves that if G is
reflexive and the evaluation map e : G x G — T defined as e(x, z) = x(z) is
continuous, then the group G is locally compact. This result explains the role
of local compactness in the Pontryagin duality theory. This result is further
generalized in [11, Theorem 1.1] where the same statement with the condition
“reflexive” replaced by the “quasi-convex compactness property” is proved.
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In the last seventy years, extending the Pontryagin duality theory beyond
local compactness has gained the attention of several researchers [8, 13]. One
of these approaches is the continuous duality theory [5]. The compact-open
topology on the continuous character group is replaced with the continuous
convergence structure, and as a consequence of this, the evaluation map is
always continuous. A comparison of this approach with the Pontryagin duality
is presented in [7].

On the other hand, there are several situations in analysis (like convergence
in measure) where non-topological convergence originates, and the correspond-
ing generalisation of a topological space is the convergence space. In the realm
of the convergence spaces, the generalisation of topological groups is the con-
vergence groups. For details regarding the continuous duality for convergence
groups refer [4, 6]. Further, the notion of locally quasi-convex convergence
groups is introduced in [12]. Here, we prove that local quasi-convexity is a nec-
essary condition for a convergence group to be c-reflexive, and then we prove
that every character group of a convergence group is locally quasi-convex.

Before proceeding further, we present certain terms and notations required
for the rest of the article.

A filter F is a non-empty family of non-empty subsets of a set X which is
closed under supersets and finite intersection. We denote the set of all filters
on a set X by FX. Further, a subset H of a filter F is called basis of the filter
if each set in F contains a set in H. If F and G are filters on a set X then, F
is called coarser than G if 7 C G. Let A be an arbitrary relation between X
and FX. The relation is called convergence (and the pair (X, \) a convergence
space) on X if for 71, Fs in FX and z in X the following conditions hold:

(i) Centred: z' € \(x),

(ii) Isotone: If F; € A(z) and Fy < Fa, then F2 € A(z) , and
(iii) Finitely deep: If Fi, F2 € A(x), then F1 N Fa € A(z).
This relation is also denoted by F ;) x.

A convergence space X is Hausdorf if every filter on X converges to at most
one point. Further, a map f : (X, A1) — (Y, )\2) between two convergence
spaces is said to be continuous if (F - = f(F) = f(x)).

1 2

For any convergence spaces (X, A1) and (Y, A2) let C(X,Y") denote the set of
all continuous functions from X to Y. The evaluation mapping e : C(X,Y") x
X — Y is defined as

e(f,x) =f(z) VfeCX,Y)andz € X.

The continuous convergence structure on C(X,Y) is defined as: a filter G
converge to f in C(X,Y) iff e(G x F) converge to f(z) in Y, whenever F
converge to z in X. The space C(X,Y) equipped with continuous convergence
structure is denoted by C.(X,Y).

A convergence group is a group with a compatible (the group operations
are continuous in the sense of convergence) convergence structure. The class
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of convergence groups contains the class of topological groups. Some other
examples include the underlying groups of the convergence vector spaces.

For details about convergence spaces and convergence groups, we refer the
reader to [3, 9].

For a convergence abelian group (G, \) denote by I'G the set of all con-
tinuous homomorphisms of G into the circle group T. The set of all contin-
uous homomorphisms with the structure of continuous convergence is defined
as convergence dual of G and is denoted as (I'G,)\.). The evaluation map
k: G — I'TG defined as x(g)(x) = x(g9) V g € G, x € I'G is a continuous
group homomorphism. The convergence group is c-reflexive if this evaluation
map k is a bicontinuous isomorphism.

As proved in [3, Example 8.5.14], there exists a locally compact non-reflexive
convergence group. Therefore, the analog of Pontryagin duality theorem, valid
in the context of abelian topological groups, cannot be directly extended to
abelian convergence groups. Motivated from the notion of local quasi-convexity
[2] in topological groups, the notion of local quasi-convexity for convergence
groups is defined in [12].

For a convergence abelian group G we define the polar and the inverse polar
of subsets of G and of I'G as follows:

Definition 1.1 (Polar and inverse polar). For any subset H of G and L of I'G
the polar and the inverse polar of H and L respectively are subsets defined as:

H” ={xelG:x(H)cTy}; L={geG:x(9)CTy, VxeL}
here Ty = {z € T: Re (z) > 0}.
The local quasi-convexity for convergence groups is defined as:

Definition 1.2 (Quasi-convex set [3]). A subset A of a convergence abelian
group G is quasi-convex if for each point g in G\ A, there is a character y in
the polar set of A such that Rex(g) < 0, that is A< = A.

Proposition 1.3. Let G be a convergence group, H C G and L C T'G. The
polar H” and the inverse polar LY are quasi convexr subsets of T'.G and G
respectively.

Definition 1.4 (Locally quasi-convex convergence group [12]). A convergence
group G is locally quasi-convex if for each filter F ? 0 , there exists another

filter G coarser than F such that G ? 0 and G has a filter base composed of
quasi-convex sets.
2. MAIN RESULTS

Proposition 2.1. For a filter U on a convergence group G and for allU,V € U
we have (UNV)P> CUPE NVPE,

Proof. The proof is trivial. O
Proposition 2.2. {U*" : U € U} is a basis of a filter in T'.T'.G.
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Proof. The proof is similar to [3, Theorem 8.4.3]. O

We denote the filter generated by {UP® : U € U} as UPP.
Similarly, {U>< : U € U} is a basis of a filter in G which we denote by U> <.

Lemma 2.3. For a convergence abelian group G, the following statements hold:
(1) If a filter ® = 0, then A® € ® for every finite subset A of G.

(2) For every filter F ? 0, there is B € F such that B* € ®.

Proof. The proof follows from [3, Proposition 8.1.8]. O

Theorem 2.4. For a convergence abelian group G, if U ? 0, thenU”" W
0' c c

Proof. Applying Lemma 2.3 to I'.G we need to prove that
a. A” € UPP for each finite set A C I'.G, and

b. for each filter ® which converges to 0 in I'.G, there is some P € ® such that
P> e UPP.

a) Let A = {x1,..,Xn}, then x;(U/) — 0 for all i = 1,...,n. Further, there
are U; € U such that x;(U;) CTy. U =U;N...N Uy, then x;(U) C Ty
for all ¢ which implies A C U". Finally we have, U®> C A" and hence,
AP e YUPP.

b) If ® - 0in I' G, then ®(U) — 0 in T. Further, there are P € ® and U € U
such that P(U) C Ty. This gives P C U which implies U®> C P and
hence, P*> € U>.

O

Theorem 2.5. If a convergence group G is c-reflexive then it must be locally
quasi-convez.

Proof. To prove this result it is sufficient to prove that if a convergence group
is embedded then it must be locally quasi-convex.
In a convergence abelian group G let,

el G— FCFCG

be an embedding. If &/ — 0 in G then by Theorem 2.4, we have, U®> — 0 in
I'.I'.G and so k1 (U>>) — 0 in G. Now we have

K—l(ubb) — ul><1 g u.
In view of Proposition 1.3 the proof follows. (]

Next we prove that the continuous character group of a convergence group
is locally quasi-convex.
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Lemma 2.6. Let X be a convergence space and A is a subset of X. Further-
more, let G be a convergence group and M C G a quasi-convex set. Then

P(A,M) = {g € Cc(X,G) : g(A) C M}
is quasi-convex in the group C.(X, Q).
Proof. Take any go € P(A,M). Then there is a point g € A such that

go(zo) ¢ M. Since M is quasi-convex there is some x € I'(G) such that
x(M) C Ty while x(go(x0)) € T+. Define ¢ : C.(X,G) — T by

#(g9) = x(g(0))

Then ¢ is a continuous character, ¢(go) = x(go(zo0)) € T4+ while ¢(g) =
x(g(z0)) € x(M) C M for all g € P(A, M). O

The next lemma is an extension of [1, Proposition 6.2, (ii)] to the realm of
convergence groups.

Lemma 2.7. Let G be a convergence group and B be a family of quasi-convex
subsets of G. Then

By=(\{B:BeB}
s a quasi-convex subset of G.

Proof. A direct proof is easy, so omitted. O

Theorem 2.8. Let X be a convergence space and G be a locally quasi-convex
topological group. Then C.(X,G) is locally quasi-convez.

Proof. Choose a zero neighbourhood basis B in G consisting of quasi-convex
sets and take a filter G on C,(X, G) which converges to 0. Then G(®) - 0 € G
for each « € X, and each filter ® on X which converges to x. So for each B € B
there are G, ¢, € G and F; ¢ g € ® such that
Gz0.8(Fs0.8) C B.
Set
H; s 5= P(F. 3 5,B)
then {H; ¢ 5 : ® — x, B € B} is the subbasis of a filter H which converges to 0

in C.(X,G). By the Lemma 2.6 and Lemma 2.7, H has a base of quasi-convex
sets and H C G since G605 C Hy o p for all z, ®, B. O

Corollary 2.9. For each convergence group G, T'.G is locally quasi-conver.

Proof. Since T and C.(G, T) are locally quasi-convex so is I'.(G) as a subgroup.
O
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