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Abstract

The quality of computed radiography (CR) images typically relate to patient
radiation exposure. The lower the X-ray dose exposure, the higher the level of
inherent noise in the CR images. In this work, we address the noise reduction
problem by using an estimation of the standard deviation of the noise as an
objective function to minimize. We propose a hybrid genetic algorithm for
this aim, which produces improved versions of CR images. We also applied an
edge-detection method based on the Canny algorithm to preserve the edges of
the original CR images. We executed our proposed algorithm for CR images
obtained under different radiation exposures. Experimental results show that
our solution improves lower radiation CR images reaching a quality as similar
to those with higher radiation doses.

Keywords: Computed radiography, Radiation dose, Evolutionary
algorithms

1. Introduction

Computed radiography (CR) is a digital X-ray imaging modality based
on the principle of photostimulable phosphor luminescence. CR systems use
a phosphor plate, similar in appearance to a conventional film-screen, to
store an X-ray image as a latent energy distribution. This plate releases the
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trapped energy in the form of light which is converted to a digital image that
is proportional to the X-ray intensity.

X-rays produce ionizing radiation which is potentially harmful to patients.
The amount of ionizing radiation transmitted in X-rays is small; however, the
probability of stochastic effects increases with doses on patient. In medical
diagnostic imaging, ionizing radiation exposure in patients should always be
kept ‘as low as reasonably achievable’ (ALARA), giving the minimum amount
of radioactive tracer necessary to provide a useful diagnostic test (ICRP,
1964). Additionally, the radiation dose transmitted to the patient may vary.
According to Hall (2002), children are up to ten times more sensitive to
ionizing radiation than adults.

The ionizing radiation exposure to a patient during a CR examination
is directly proportional to an X-ray tube current, measured in milliampere-
seconds (mAs). Higher mAs in CR systems could tolerate a high level of
over-exposure without image quality degradation (Ma et al., 2013). However,
if the exposure factors and radiation dose are too low, the resulting images
can appear noisy due to photon deficiency (Kei et al., 2014). Therefore, the
tradeoff between radiation dose and image quality is critical.

Noise is one of the primary factors that affect the quality of a CR image.
However, only a few papers have studied the relationship between noise in
CR images and X-ray tube current (mAs) settings. Juste et al. (2008) val-
idate a technique to evaluate the similarity between CR images perturbed
by Gaussian noise and their corresponding versions obtained with a lower
radiation dose. Based on this study, Sdnchez et al. (2014) uses a nonlinear
diffusion filter (NDF) to reduce Gaussian noise in CR images acquired with
a low radiation dose. They conclude that it is possible to reduce the radia-
tion dose in patients by decreasing the radiation exposure (mAs) and then
filtering the image with the NDF. Similar studies of noise in Computed To-
mography can be found in (Li et al., 2002; Flores et al., 2016; Parcero et al.,
2017).

In this paper, we address the noise reduction problem in lower radiation
CR images. Our motivation is to produce images with a quality similar to
those obtained through higher radiation doses. Our work is inspired by the
approaches proposed by Sanchez et al. (2014) and Juste et al. (2008) but we
address the problem from a different perspective. We use the standard devi-
ation of the noise in CR images as an objective function to minimize through
an evolutionary approach. We propose a hybrid genetic algorithm which inte-
grates the execution of two filters and combine their results to improve them.



We performed experimental simulations to compare the resulting images of
the proposed algorithm with CR images with higher radiation doses.

We organize the paper as follows. Section 2 explains our methodology
and describes the proposed hybrid genetic algorithm. Section 3 discusses the
results of the experimental study. Finally, Section 4 presents some concluding
remarks.

2. Methodology

The methodology is as follows. First, we compute the standard deviation
of the noise in the CR image. Then, we use this value to estimate the
radiation dose that was employed to generate the CR image. Later, we use
a hybrid genetic algorithm which seeks to minimize the standard deviation
of the noise in the CR image. Finally, we compare the resulting image of the
algorithm against a CR image obtained with a higher radiation dose.

2.1. The standard deviation of noise

In this work, we use the total variation minimization framework of Rudin
et al. (1992), for which a diversity of variational methods for image restora-
tion has been proposed (Guidotti and Lambers, 2009; Hajiaboli, 2011; Pu-
vanathasan and Bizheva, 2009). In particular, we consider the following
equation as described in (Rudin et al., 1992; Vogel and Oman, 1996; Weick-
ert et al., 1998), which have proved to be suitable for medical imaging:
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where I, denotes the observed image (perturbed by noise), u is the desired
true solution (a denoised version of [,), f is RRRRRR, ¢ is a constant that
represents RRRRRR, € represents the error value, and € is a convex region
in R? which constitutes the support space of the surface area u(z,y) of the
image. When 8 = 1, the first term of the equation represents the surface area
of the image, while § = 0 gives the total variation of u (Vogel and Oman,
1996). The second term denotes the distance between the observed image
and the desirable solution. Finally, the last term controls the regularity of
the solution.

The noise reduction problem corresponds to the following constrained
optimization problem:
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where o denotes the standard deviation of the noise, which describes the
magnitude of the error e. The parameter ¢ is a priori unknown, so we use a
robust estimation of the standard deviation of the noise proposed by Donoho
(1995) and expressed as follows:

median(| D;; |)
= 3
7 06475 )
where D;; represent the diagonal coefficients of Daubechies wavelet of order
25.

Next, we describe our proposed hybrid genetic algorithm.

2.2. The hybrid genetic algorithm

The proposed hybrid genetic algorithm consists of a modified version
of the algorithms presented in (Paiva et al., 2015) and (Fajardo-Delgado
et al., 2016). This algorithm takes as input a CR image I,,, and returns as
output an improved version of I, (with a lower standard deviation of the
noise). The algorithm uses a Gaussian low-pass filter and the fuzzy metric
peer group filter (FMPGF) (Camarena et al., 2008) to produce denoised
images of I,, denoted as I and Ig, respectively. These images are merged
to integrate them as ‘individuals’ of an evolving population. In this context,
each individual represents a CR image that characterizes a version of [,, and
a population represents a set of individuals. Hereinafter, we will use ‘image’
and ‘individual’ interchangeably.

The general procedure for the hybrid genetic algorithm consists of the
following steps:

1. (Initialization) Execute filters Gaussian low-pass and FMPGF over I,
to generate two new images, I and [, respectively. Then, perform a
pixel recombination procedure that randomly exchanges pixels between
I and I to generate an initial population of size p.

2. (Estimation) Use Eq. (3) to compute o (an estimation of the density
of noise) for each image of the population.



. (Parent selection) Randomly selects, with replacement, pairs of images
from the population until building a pool of A = P.u ‘parents’, where
P, is the recombination rate.

. (Recombination) Recombine pairs of the selected parents to generate
A ‘offsprings’. We implemented the same recombination operators a
proposed in (Fajardo-Delgado et al., 2016).

. (Mutation) Mutate each offspring with probability P, through the exe-
cution of one of the filters Gaussian or FMPGF selected randomly and
uniformly.

. (Population replacement) Combine the set of images from the previous
generation and their offsprings, and selects the p images with the lowest
o to create a new generation.

. Repeat steps 2-6 until complete 7 generations and returns the best
image of the last generation.

Table 1 shows the parameters settings of the proposed algorithm. We

selected the values of these parameters by the execution of preliminary trials
considering the tradeoff between time and efficiency. For the case of FMPGF,
we use the parameters proposed by (Camarena et al., 2008). The Gaussian
low-pass filter uses the default parameters provided by Matlab.

Table 1: Configuration set for the hybrid genetic algorithm.

Size of the population w =30
Recombination rate (P.) 0.98

Mutation rate (Py,) 0.3

Population replacement  (u + A) selection

Completion criteria when the algorithm reaches 7 = 10
generations

FMPGF m=2k=1024,d = 0.93

Gaussian low-pass filter A correlation kernel of size 3 x 3, and
a standard deviation of 0.5

Finally, since filters used in the proposed algorithm may blur the edges of

images, we initially extract the edges from the original CR image through the
traditional Canny edge detection method (Canny, 1986). After the evolution
process, we added the extracted edges to the resulting CR image.



3. Results and discussions

We used the chest of a female Alderson RANDO® phantom to conduct
our experiments. This phantom comprises a synthetic human skeleton em-
bedded in a mass with properties comparable to human soft tissue. This
mass is designed to have the same levels of absorption that are similar to
human tissue exposed to a radiation dose. We scanned the phantom with an
AGFA digital imaging device at 1, 0.8, 0.6, 0.4 mAs using 70 and 80 kilovolt-
age (kV). Fig. 1(a) shows the chest of the phantom, and Fig. 1(b) shows an
example of a CR image obtained at 80kV and 0.4 mAs. We used a portion of
CR images, with a size of 512 x 512 pixels, as input for the proposed hybrid
genetic algorithm (HGA). We compute an estimation of the standard devi-
ation (SD) of the output images of HGA to evaluate their similarity with a
CR image of 1 mAs. We also compared the results of this evaluation with
those obtained by a nonlinear filter (NDF) as reported in (Sénchez et al.,
2014). We executed the algorithm on a 3.6 GHz Intel Core i7 Mac, with 8
GB of RAM, and under the operating system OS X 10.14.1. The algorithm
and the filters were coded in Matlab R2016b.
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(a)

Figure 1: (a) A female Alderson RANDO phantom; (b) a CR image from the RANDO
phantom at 80kV and 0.4 mAs.

Table 2 shows the values of SD of the noise for the resulting images at
70kV. We observe that HGA reduces the values of SD better than NDF.
Even more, the values of SD for the resulting images of HGA corresponds to
CR images with a radiation dose higher than 1 mAs. This is not the case for
the NDF. On the other hand, notice that the HGA produced an increment
in the value of SD for the case of 0.6 mAs to 0.8 mAs. We conjecture that
this behavior is due to the stochastic nature of the algorithm, which uses a
degree of randomness for the simulated evolution.



Table 2: Values of standard deviation of the noise for the CR images at 70kV.
0.4 mAs 0.6 mAs 0.8 mAs 1 mAs

Original 29.2156 24.9404 24.5312  18.4855
NDF 21.0745 17.9217 17.5932  13.2957
HGA 15.1916 12.1718 13.1421  9.4116

) 0.4 InAs (b) 0.6 mAs (c) 0.8 mAs ) 1 mAs

2 I!:

(e) 0.4 mAs (f) 0.6 mAs (g) 0.8 mAs (h) 1 mAs

Figure 2: Result at 70kV; (a)-(d) original images; (e)-(h) output images of the HGA.

Table 3 shows the values of SD of the noise for the resulting images at
80kV. These values present the same behavior as those obtained at 70kV, in
which the resulting images corresponds to CR images with a radiation dose
higher than 1 mAs. Notice that, in general, images with a higher kV present
less SD of noise. Figs. 2 and 3 show the resulting images after the execution
of filters at 70kV and 80kV, respectively.

Table 3: Values of standard deviation of the noise for the CR images at 80kV.
0.4. mAs 0.6 mAs 0.8 mAs 1 mAs

Original 24.0432 20.1867 19.9276  14.4075
NDF 17.2756 14.4930 14.3879  10.3120
HGA 12.8888 13.1171 11.0188  8.2112

4. Conclusions

In this work, we address the reduction of radiation dose in CR images
as an optimization problem. Our approach consists on applying a hybrid
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Figure 3: Result at 80kV; (a)-(d) original images; (e)-(h) output images of the HGA.

genetic algorithm (HGA) to minimize the standard deviation (SD) of noise
for a CR image obtained with low radiation exposure (mAs). Experimental
results show that the proposed algorithm reduces the values of SD better
than algorithms reported in the literature for the same purpose. The values
of SD for the resulting images of HGA corresponds to CR images with a radi-
ation dose higher than 1 mAs. However, it would be interesting the medical
verification of our results through the evaluation of a specialized radiologist.
We leave this verification as an open issue for future work. It would also be
convenient to study this methodology through other optimization techniques
and the use of different filters.
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