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Abstract: For our research, we are motivated by dynamic simulations of 3D fiber-reinforced mate-
rials in lightweight structures. In such materials, the material reinforcement is performed by fiber
rovings with a separate bending stiffness, which can be modelled by a second-order gradient of the
deformation mapping (see Reference [1]). Therefore, we extend a thermo-viscoelastic Cauchy con-
tinuum for fiber-matrix composites with single fibers by an independent field for the gradient of the
right Cauchy-Green tensor. On the other hand, we focus on numerically stable dynamic long-time
simulations with locking free meshes, and thus use higher-order accurate energy-momentum schemes
emanating from mixed finite element methods. Hence, we adapt the variational-based space-time
finite element method in Reference [2] to the new material formulation, and additionally include in-
dependent fields to obtain well-known mixed finite elements [3, 4, 5]. As representative numerical
example, Cook’s cantilever beam is considered. We primarily analyze the influence of the fiber bend-
ing stiffness, as well as the spatial and time convergence up to cubic order. Furthermore, we look at
the influence of the physical dissipation in the material.

1 INTRODUCTION

We consider an anisotropic material with the fiber roving direction aaa0, moving in the Euclidean space
Rndim with the constant ambient temperature Θ∞. The strain energy function of the material with a
thermo-viscoelastic matrix and a thermoelastic fiber roving is given by

Ψ(CCC,CCCv,Θ,aaa0) = ΨM(CCC,CCCv,Θ)+ΨF(CCC,Θ,aaa0)+Ψ
X
HOG(. . . ,aaa0), (1)

which is split into a matrix part ΨM a fiber roving part ΨF and a higher-order gradient part ΨX
HOG.

Here FFF = ∇qqq define the deformation gradient by the position qqq, CCC = FFFT FFF define the right Cauchy-
Green tensor, CCCv define the viscous right Cauchy-Green tensor and Θ define the absolute temperature.
The specific dependencies are given by

ΨM(CCC,CCCv,J,Θ) = Ψ
iso
M (CCC,J)+Ψ

vol
M (J)+Ψ

cap
M (Θ)+Ψ

coup
M (Θ,J)+Ψ

vis
M (CCCCCC−1

v ) (2)

ΨF(CCC,Θ,aaa0, . . .) = Ψ
ela
F (CCC,aaa0)+Ψ

cap
F (Θ)+Ψ

coup
F (Θ,CCC) (3)

with the volume dilatation J(CCC) = det[FFF ] =
√

det[CCC]. The elastic part of the matrix function ΨM is
split into an isochoric part Ψiso

M , a volumetric part Ψvol
M , a heat capacity part Ψ

cap
M , a part of the thermo-

mechanical coupling effect Ψ
coup
M and the viscoelastic free energy function of the matrix Ψvis

M . The
parts of the fiber free energy is separated in the same manner. It is split into an elastic part Ψela

F , a heat
capacity part Ψ

cap
F and a part of the thermo-mechanical coupling effect Ψ

coup
F . The functions of the
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thermo-mechanical coupling Ψ
coup
X with the coefficients of linear thermal expansion βX, the structural

tensor MMM = aaa0⊗aaa0 and the fourth invariant I4 = tr[CCCMMM] are given by

Ψ
coup
M =−2ndimβM(Θ−Θ∞)J

∂Ψvol
M (J)
∂J

Ψ
coup
F =−2βF(Θ−Θ∞)

√
I4

∂Ψela
F (I4, . . .)

∂I4
(4)

We distinguish between two different variants for the higher-order gradient part ΨX
HOG. One concern-

ing the gradient of the deformation gradient FFF and one concerning the gradient of the right Cauchy-
Green tensor CCC. In comparison with Ψela

F which considers the fiber roving stretch, this part capture
the bending of the fiber roving. The formulation regarding FFF is shown in Reference [1]. Here the
sixth and seventh invariants are given by

IF
6 (FFF ,∇FFF) = κκκ

F
0 ·κκκF

0 IF
7 (FFF ,∇FFF ,CCC) = κκκ

F
0 ·CCC ·κκκF

0 κκκ
F
0 = ΛΛΛ

F ·aaa0 (5)

with the referential representation

ΛΛΛ
F(FFF ,∇FFF) = FFFT ·aaa0 ·∇FFFT (6)

It is important to note here, that I7 is depend on CCC as well as ΛΛΛ. Thus, for the strain energy function
of the higher-order gradient, the dependencies are

Ψ
F
HOG(ΛΛΛ

F,CCC,aaa0) = f̂ (IF
6 (ΛΛΛ

F), IF
7 (ΛΛΛ

F,CCC)) (7)

A variant of the higher-order gradient formulation in CCC is shown in Reference [6]. From this we derive
the following formula for the sixth invariant

IC
6 (∇CCC) = (aaa0 ·∇CCC ·aaa0) · (aaa0 ·∇CCC ·aaa0) (8)

If we now set

ΛΛΛ
C(∇CCC) = aaa0 ·∇CCC (9)

we get the same expressions for the invariants as for FFF , given by

IC
6 (∇CCC) = κκκ

C
0 ·κκκC

0 IC
7 (CCC,∇CCC) = κκκ

C
0 ·CCC ·κκκC

0 κκκ
C
0 = ΛΛΛ

C ·aaa0 (10)

and the final dependencies read

Ψ
C
HOG(∇CCC,CCC,aaa0) = f (IC

6 (∇CCC), IC
7 (∇CCC,CCC)) (11)

2 FINITE ELEMENT FORMULATION

The finite element discretization follows from the mixed principle of virtual power (see Reference [5,
2]). Here, we need the complete internal energy, which consists of the assumed temperature field
Θ̃, the entropy density field η as the corresponding Lagrange multiplier, the superimposed stress
tensor S̃SS to derive an energy–momentum scheme, an independent mixed field C̃CC and the corresponding
Lagrange multiplier SSS. The internal energy functional reads

Π
int =

∫
B0

ΨM(C̃CC, J̃,Θ)dV +
∫

B0

ΨF(C̃CCA,Θ)dV +
∫

B0

1
2

SSS : (CCC(qqq)−C̃CC)dV +
∫

B0

S̃SS : C̃CCdV

+
∫

B0

η (Θ− Θ̃)+
∫

B0

p (J(C̃CC)− J̃)dV +
∫

B0

p̃J̃dV +
∫

B0

1
2

SSSA : (C̃CC−C̃CCA)dV

+
∫

B0

S̃SSA : C̃CCAdV +Π
X
HOG (12)
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We introduce an independent volume dilatation J̃ (see Reference [3]) and the field C̃CCA (see Refer-
ence [4]) for the anisotropic part ΨF to avoid locking effects. Here, the Lagrange multiplier p plays
the role of the hydrostatic pressure and the Lagrange multiplier SSSA represents the stress tensor of the
anisotropic part. To obtain an energy–momentum scheme, we also introduce the superimposed pres-
sure p̃ and superimposed stress tensor S̃SSA. For the higher-order gradient fomulation with respect to FFF
(HF), we introduce an independent field for FFF , for ∇FFF and for ΛΛΛ

F

Π
F
HOG =

∫
B0

P̃PP : (FFF− F̃FF)dV +
∫

B0

BBB�3 (∇(F̃FF)− Γ̃ΓΓ)dV +
∫

B0

HHH : (ΛΛΛF(F̃FF , Γ̃ΓΓ)− Λ̃ΛΛ)dV

+
∫

B0

Ψ
F
HOG(Λ̃ΛΛ,C̃CCA,aaa0)dV +

∫
B0

H̃HH : Λ̃ΛΛdV (13)

By the independent definition of F̃FF and Γ̃ΓΓ it is later in the discrete setting not necessary to construct a
double gradient of the spatial shape functions. The introduction of Λ̃ΛΛ is necessary to have an objective
quantity for the construction of an energy–momentum scheme with the superimposed field H̃HH. For
the higher-order gradient fomulation with respect to CCC (HC), we build the functional in a similar way

Π
C
HOG =

∫
B0

1
2

SSSG : (CCC−C̃CCG)+
∫

B0

BBB�3 (∇(C̃CCG)− Γ̃ΓΓ)dV +
∫

B0

Ψ
C
HOG(Γ̃ΓΓ,C̃CCA,aaa0)dV

+
∫

B0

B̃BB�3 Γ̃ΓΓdV (14)

We introduce an independent field for CCC and ∇CCC. The further field with respect to CCC is introduced
because SSSG is assumed to be asymmetric, and therefore no symmetries in the Voigt notation are used
later in the programming. Compared to the formulation in FFF (HF), we build the superimposed field
based on Γ̃ΓΓ. Furthermore, this leads to a less complex weak form. The superimposed fields (see
Reference [2] and [5]), which have both variants in common, are given by

S̃SS =
Ψ̃(1)− Ψ̃(0)−

∫ ∂Ψiso
M

∂C̃CC
: ˙̃CCC−

∫ ∂(Ψ
cap
M +Ψ

cap
F )

∂Θ
Θ̇−

∫ ∂Ψvis
M

∂CCCv
: ĊCCv

˙̃CCC : ˙̃CCC
˙̃CCC (15)

p̃ =
Ψ̃(1)− Ψ̃(0)−

∫ ∂(Ψiso
M +Ψvol

M )

∂J̃
˙̃J−

∫ ∂Ψ
coup
M

∂Θ
Θ̇

˙̃J ˙̃J
˙̃J (16)

S̃SSA =
Ψ̃(1)− Ψ̃(0)−

∫ ∂Ψela
F

∂C̃CCA
: ˙̃CCCA−

∫ ∂Ψ
coup
F

∂Θ
Θ̇

˙̃CCCA : ˙̃CCCA

˙̃CCCA (17)

and the superimposed fields regarding the different higher-order gradient formulations read

H̃HH =
Ψ̃(1)− Ψ̃(0)−

∫ ∂ΨF
HOG

∂Λ̃ΛΛ
: ˙̃

ΛΛΛ

˙̃
ΛΛΛ : ˙̃

ΛΛΛ

˙̃
ΛΛΛ B̃BB =

Ψ̃(1)− Ψ̃(0)−
∫ ∂ΨC

HOG
∂Γ̃ΓΓ
�3

˙̃
ΓΓΓ

˙̃
ΓΓΓ�3

˙̃
ΓΓΓ

˙̃
ΓΓΓ (18)

For the mixed principle of virtual power, we also need the kinetic power, given by

Ṫ =
∫

B0

(ρ0vvv− ppp) · v̇vvdV +
∫

B0

ṗpp · (q̇qq− vvv)dV +
∫

B0

ppp · q̈qqdV (19)

with the velocity vvv, the linear momentum ppp and the mass density ρ0. As external power, we assume

Π̇
ext =−

∫
B0

ρ0ggg · q̇qqdV −
∫

∂B0

λλλq · (q̇qq− q̇qqref)dA+
∫

B0

∇

(
Θ̃

Θ

)
·QQQdV +

∫
B0

Θ̃

Θ
DintdV

+
∫

B0

ĊCCv : V(CCCv) : ĊCCvdV QQQ =−
[

J(C̃CCA)
kF− kM

C̃CCA : MMM
MMM+ kJ(C̃CC)C̃CC−1

]
∇Θ (20)
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Here, we have the Piola heat flux vector QQQ derived from Duhamel’s law (see Reference [2]), where kM
and kF denotes the material conductivity coefficients for matrix and fiber roving. The time evolution
of a prescribed boundary displacement is given by q̇qqref with the Lagrange multiplier λλλq. The vector ggg
denotes the gravitational force. The non-negative internal viscous dissipation Dint is given by

Dint = ĊCCv : V(CCCv) : ĊCCv V(CCCv) =
1
4

(
Vvol−

Vdev

ndim

)
CCC−1

v ⊗CCC−1
v +

Vdev

4
Is : CCC−1

v ⊗CCC−1
v , (21)

with the viscosity constants Vvol and Vdev, which represent the volumetric and deviatoric viscosity
constants and the fourth-order symmetric projection tensor Is. The operator⊗ represents the standard
dyadic product.

The total energy balance Ḣ thus reads

Ḣ = Ṫ (q̇qq, v̇vv, ṗpp)+ Π̇
ext(q̇qq,λλλq,ĊCCv,Θ̃,Θ̇)+ Π̇

int(q̇qq,Θ̃, η̇,ĊCCv,
˙̃CCC, ˙̃J, ˙̃CCCA,SSS, p,SSSA, . . .) (22)

Note, that we define the superimposed fields (S̃SS,p̃,S̃SSA,H̃HH,B̃BB), the viscous dissipation Dint as well as the
Piola heat flux vector QQQ as parameters not as arguments. We obtain the total weak forms by variation
with respect to the variables in the argument of Eqn. (22). With

∫
T δ∗Ḣ dt ≡

∫
T [δ∗Ṫ + δ∗Π̇

ext +
δ∗Π̇

int]dt = 0, the weak forms which occur in both variants of the higher-order gradient formulation
read ∫

T

∫
B0

[
1
ρ0

ppp− q̇qq
]
·δv̇vvdV dt = 0

∫
T

∫
∂B0

[
−λλλq

]
·δq̇qqdAdt = 0∫

T

∫
B0

[
η+

∂Ψ

∂Θ

]
δΘ̇dV dt = 0

∫
T

∫
B0

[
Div[QQQ]

Θ
+

Dint

Θ
+ η̇

]
δΘ̃dV dt = 0∫

T

∫
B0

1
2

[
˙̃CCC−ĊCC

]
: δSSSdV dt = 0

∫
T

∫
B0

[
Θ− Θ̃

]
δη̇dV dt = 0∫

T

∫
B0

[
∂Ψ

∂CCCv
+ĊCCv : V(CCCv)

]
: δĊCCvdV dt = 0

∫
T

∫
∂B0

[
˙̃qqq− q̇qqref(t)

]
·δλλλqdAdt = 0∫

T

∫
B0

[
˙̃J− J̇

]
δpdV dt = 0

∫
T

∫
B0

[
p−
[

∂Ψ

∂J̃
+ p̃
]]

δ
˙̃JdV dt = 0∫

T

∫
B0

1
2

[
˙̃CCCA− ˙̃CCC

]
: δSSSAdV dt = 0

∫
T

∫
B0

[
1
2

SSSA−
[

∂Ψ

∂C̃CCA
+ S̃SSA

]]
: δ

˙̃CCCAdV dt = 0∫
T

∫
B0

[
1
2

SSS−
(

∂Ψ

∂C̃CC
+

p
2J(C̃CC)

cof[C̃CC]+
1
2

SSSA + S̃SS
)]

: δ
˙̃CCCdV dt = 0

The weak forms associated with the higher-order gradient formulation in FFF (HF) are given by∫
T

∫
B0

[
SSS :

1
2

∂ĊCC
∂q̇qq

+PPP :
∂ḞFF
∂q̇qq
− ṗpp
]
·δ∗q̇qqdV dt = 0

∫
T

∫
B0

[
˙̃FFF− ḞFF

]
: δ∗PPPdV dt = 0

∫
T

∫
B0

[
PPP−

(
HHH :

∂ΛΛΛ
F

∂
˙̃FFF

+BBB�3
∂∇

˙̃FFF

∂
˙̃FFF

)]
: δ∗

˙̃FFFdV dt
∫

T

∫
B0

[
∇( ˙̃FFF)− ˙̃

ΓΓΓ

]
�3 δ∗BBBdV dt = 0

∫
T

∫
B0

[
ΛΛΛ

F− Λ̃ΛΛ

]
: δ∗HHHdV dt = 0

∫
T

∫
B0

[
HHH−

[
∂Ψ

∂Λ̃
+ H̃HH

]]
: δ∗

˙̃
ΛΛΛdV dt = 0

∫
T

∫
B0

[
BBB−HHH :

∂ΛΛΛ
F

∂
˙̃
ΓΓΓ

]
�3 δ∗

˙̃
ΓΓΓdV dt = 0
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and the weak forms associated with the higher-order gradient formulation in CCC (HC) take the form∫
T

∫
B0

[
SSS :

1
2

∂ĊCC
∂q̇qq

+SSSG :
1
2

∂ĊCC
∂q̇qq
− ṗpp
]
·δ∗q̇qqdV dt = 0

∫
T

∫
B0

[
˙̃CCC− ˙̃CCCG

]
: δ∗SSSGdV dt = 0

∫
T

∫
B0

[
1
2

SSSG−BBB�3
∂∇

˙̃CCCG

∂
˙̃CCCG

]
: δ∗

˙̃CCCGdV dt
∫

T

∫
B0

[
∇( ˙̃CCCG)− ˙̃

ΓΓΓ

]
�3 δ∗BBBdV dt = 0

∫
T

∫
B0

[
BBB−

[
∂Ψ

∂Γ̃
+ B̃BB
]]
�3 δ∗

˙̃
ΓΓΓdV dt = 0

The operator�3 represents the triple construction of two tensors. Obviously, for the higher-order gra-
dient formulation in CCC, we have less weak forms and thus the tangent becomes substantially simpler.

In the next step, we discretize all quantities over the elements in space and time and transform the
integrals to reference elements. For the shape functions in space, N, we use Lagrangian shape func-
tions (see Reference [7]) and approximate the different mixed fields independently. Also we use the
same shape functions for the Lagrangian multipliers as for their corresponding mixed fields. We use
Lagrangian shape functions in time as well (see Reference [2]), given by

Mi(α) =
k+1

∏
j=1
j 6=i

α−α j

αi−α j
, 1≤ i≤ k+1 M̃i(α) =

k

∏
j=1
j 6=i

α−α j

αi−α j
,1≤ i≤ k (23)

The time rate variables and mixed fields (qqq,vvv,ppp,Θ̃,Θ,η,CCCv,C̃CC,C̃CCA,J̃,Γ̃ΓΓ,Λ̃ΛΛ,F̃FF ,C̃CCG) are approximated by

(•)e,h =
k+1

∑
I=1

nno

∑
A=1

MI(α)NA(ξξξ)(•)eA
I (24)

and the approximation of Lagrangian multipliers and variation fields (λλλq,SSS,SSSA,p,BBB,HHH,PPP,SSSG,δ∗•) takes
the form

(•)e,h =
k

∑
I=1

nno

∑
A=1

M̃INA(•)eA
I (25)

Here, k is the polynomial degree in time and nno is the number of nodes of the spatial discretization.
We approximate each integral with the corresponding Gaussian quadrature rule and condense out
the resulting formulation at the element level to a displacement and temperature formulation (see
Reference [4]), after eliminating ppp and η. Note, all mixed fields, except qqq and Θ, are discontinuous
at the boundaries of spatial elements. The internal variable CCCv is solved on the element level using
the Newton-Raphson method, not at each spatial quadrature point. Since the higher-order gradient
formulation results in internal torques, the conservation of angular momentum must be corrected. For
the procedure which is described in Reference [11], we obtain for the formulation in FFF

J n+1− J n =
∫ tn+1

tn

∫
B0

[(
HHH :

∂ΛΛΛ
F

∂
˙̃FFF

+BBB�3
∂∇

˙̃FFF

∂
˙̃FFF

)
× F̃FF

]
dV dt +

∫ tn+1

tn

∫
∂B0

[qqq×λλλq]dAdt

+
∫ tn+1

tn

∫
B0

[qqq×ρ0ggg]dV dt (26)

and for the formulation in CCC

J n+1− J n =
∫ tn+1

tn

∫
B0

[
BBB�3

∂∇
˙̃CCCG

∂
˙̃CCCG
× F̃FF

]
dV dt +

∫ tn+1

tn

∫
∂B0

[qqq×λλλq]dAdt

+
∫ tn+1

tn

∫
B0

[qqq×ρ0ggg]dV dt (27)
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We use our In-House Matlab code fEMcon based on the implementation and ideas shown in Ref-
erence [7]. To solve the linear systems of equations we use the Pardiso solver from Reference [8].
For the assembly procedure of all nel finite elements, we use the fast sparse routine shown in Refer-
ence [9].

3 NUMERICAL EXAMPLES

x

y

z

0.15

0.02

0.01

A

ε1 = 0.1e6 βF = 1e−6
ε2 = 100e6 c0

F = 200
kM = 0.1 c1

F = 0.0002
βM = 1e−6 ρ0 = 1000
c0

M = 800 Θ∞ = 300
c1

M = 0.0008 T = 1
ε3 = 0 TOL = 1e−4
kF = 100 g = [0 −2 0]

Figure 1: Geometry, configuration and simulation parameters of the cantilever beam for nel = 24.

As numerical example serves a simple cantilever beam which oscillates in a gravitational field. The
geometry, configuration and simulation parameters can be found in Figure 1. The corresponding
strain energy functions are

Ψ
iso
M =

ε1

2
(tr[CCC]−3−2ln(J)) Ψ

vol
M =

ε2

2

(
ln(J)2 +(J−1)2

)
Ψ

cap
X = c0

X(1−Θ∞c1
X)(Θ−Θ∞−Θ ln

Θ

Θ∞

)− 1
2

c0
X c1

X(Θ−Θ∞)
2

Ψ
ela
F =

ε3

2
(tr[CCCMMM]−1)2

Ψ
X
HOG = l2 (IX

6
)2

The elastic part of the fiber roving Ψela
F can be found in [10] and for the capacitive part the function

Ψ
cap
X in Reference [2] . We use a quadratic serendipity mesh (20 nodes) with nel = 24 and approximate

J̃ linear and C̃CCA constant to avoid potential locking effect. We introduce a length scale parameter l2

with c = ε1l2 for the material parameters of ΨX
HOG. Futhermore, the strain energy function of the

viscous matrix part is given by Ψvis
M = Ψiso

M (CCCCCC−1
v )+Ψvol

M (CCCCCC−1
v ).

First, we compare the stiffening behavior of the different higher-order gradient fomulations. In Fig-
ure 2 we can see that both formulations stiffen the bending behavior of the beam (HF and HC).
However, it can also be done by the ∇CCC formulation, although not to the same level (green). By
adjusting the material parameters, we obtain a similar behavior here, too (blue). When we look at
the angular momentum in Figure 3, we can see it is perfectly preserved for the different formulations.
This also shows that the correction of the internal moments as a result of the gradient formulations.
In Figure 4 we can see the increasing temperature by the viscous dissipation. As expected, the major
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-0.02

-0.01

0

0.01

0.02

l2 = 0
∇FFF l2 = 10−5

∇CCC l2 = 10−5

∇CCC l2 = 10−4

t

yA
(t
)

Figure 2: Trajectory of point A for the parameters shown in Figure 1 and the different formulations and (aaa0)
T = [1 0 0].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

l2 = 0
∇FFF l2 = 10−5

∇CCC l2 = 10−5

∇CCC l2 = 10−4

t

E
rr

or
J/

T
O

L

Figure 3: Error of angular momentum J for the parameters shown in Figure 1 and the different formulations and (aaa0)
T =

[1 0 0].

increase in temperature is found at the mounting where the largest deformations occur. Next we
check the objectivity of the new superimposed fields of the higher-order gradient formulation on the
basis of a free-flying beam. Therefore, we set the initial rotational speed to ωωωT = [2π 2π 2π] and sim-
ulate until T = 10. In Figure 6-10 we can see that each higher-order gradient formulation and length
scale parameter conserve the total energy. For the high l2, a slightly higher energy error is observed,
but this is also within the tolerance. For example, this can be explained by the fact that although the
higher stiffness, we keep the time step size constant. In Figure 5 we show the current configuration
and v. Mises equivalent stress σV M for t = 10. As expected, the beam is deformed by the rotation and
shows the larger stresses at larger deformations.

4 CONCLUSIONS

We have shown that it is possible to formulate a higher-order gradient material formulation in terms
of the right Cauchy-Green tensor. This is a remarkable result, because this formulation requires
considerably less numerical effort and we can formulate the superimposed field directly in terms
of ∇CCC and thus achieve a roving direction independence. Also, both formulations work in a thermo-
visoelastic context. And we have also shown that the higher-order energy-momentum time integrators
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Figure 4: Configuration and temperature distribution Θ for the parameters shown in Figure 1, (aaa0)
T = [1 0 0], t = 0.24,

∇CCC and l2 = 10−4.

Figure 5: Configuration and v. Mises equivalent stress σV M for the parameters shown in Figure 1, (aaa0)
T = [1 0 0],

ωωωT = [2π 2π 2π], t = 10, ∇CCC and l2 = 10−4.

conserve energy in all cases. In the next step, we want to investigate other material formulation and
will look on potential locking effects.
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Figure 6: Error of energy E for the parameters shown in Figure 1, (aaa0)
T = [1 0 0], ωωωT = [2π 2π 2π], T = 10 and l2 = 0.
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Figure 7: Error of energy E for the parameters shown in Figure 1, (aaa0)
T = [1 0 0], ωωωT = [2π 2π 2π], T = 10, ∇FFF (HF)

and l2 = 10−5.
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Figure 8: Error of energy E for the parameters shown in Figure 1, (aaa0)
T = [1 0 0], ωωωT = [2π 2π 2π], T = 10, ∇FFF (HF)

and l2 = 10−4.
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Figure 9: Error of energy E for the parameters shown in Figure 1, (aaa0)
T = [1 0 0], ωωωT = [2π 2π 2π], T = 10, ∇CCC (HC)

and l2 = 10−4.
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Figure 10: Error of energy E for the parameters shown in Figure 1, (aaa0)
T = [1 0 0], ωωωT = [2π 2π 2π], T = 10, ∇CCC (HC)

and l2 = 10−3.
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