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Abstract: Phase-transition processes have great relevance for both engineering and scientific
applications. In production engineering, for instance, metal welding and alloy solidification
are topics of ongoing research, whereas understanding the melting of ice and permafrost is at
the centre of many geoscience research questions. In this contribution we focus on one spe-
cific phase-change process, namely the convection-coupled solid-liquid phase change of a single
species, e.g. water. The material is assumed to be incompressible within the two phases, but
we account for density changes across the phase interface. To describe the process, we need
to solve the incompressible Navier-Stokes equations and the heat equation for both phases over
time. The position of the phase interface is tracked with a level-set method [1]. The level-set
function is advected according to the phase interface’s propagation speed. Such speed depends
on local energy balance across the interface and it is determined through a heat-flux jump con-
dition referred to as the Stefan condition [2]. One of the challenges of this method lies in the
approximation of the heat-flux discontinuity at the interface based on the evolving temperature
and velocity fields.

To model the temperature and velocity fields within each phase, we employ the space-time
finite element method. However, commonly used interpolation functions, such as piecewise-
linear functions, fail to capture discontinuous derivatives over one element that are needed to
assess the level-set’s transport term. Available solutions to this matter, such as local enrichment
with extended finite elements [3], are often not compatible with existing space-time finite element
codes and require extensive implementation work. Instead, we consider a different method and
we decide to extend the ghost-cell technique to finite element meshes [4]. The idea is that we can
separate the two subdomains associated with each phase and solve two independent temperature
problems. We prescribe the melting temperature at an additional node close to the interface
and we retrieve the required heat flux on each side of the interface. This allows us to locally
evaluate the heat-flux jump.

In this work we describe the ghost-cell method applied to our space-time finite element solver
[5]. Then, we demonstrate test cases in 3D in view of future applications.
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1 INTRODUCTION

In this paper we propose a numerical strategy to simulate convection-coupled solidification
and melting processes. Many approaches to track the phase-change interface (PCI) are avail-
able [6], but we focus on the level-set method [1]. In our formulation we need to retrieve
discontinuities in the first derivatives at the PCI. Extended finite elements solve the problem
by locally enriching the basis functions [3], but this changes the number of degrees of freedom
over time. Instead, we decide to build upon existing work from Gibou et Al. and extend the
ghost-cell approach to our space-time finite element framework [4, 7, 8].

2 NUMERICAL MODELLING

We consider a domain of interest Ω ⊂ Rd, where d is the number of space dimensions, that
consists of a solid region and a liquid region. The two phases are separated by a distinct PCI.
The goal of the model is to determine the evolving velocity, pressure and temperature fields in
both phases and over time.

2.1 Governing equations for flow and temperature

Let t ∈ (0, T ) be a time instant. We call Ω1(t), Ω2(t) the two time-dependent subdomains
associated with the liquid region and the solid region, respectively, such that Ω1(t)∪Ω2(t) = Ω
for each t. We describe the flow problem with the incompressible Navier-Stokes equations for
a Newtonian fluid

ρ∗

(
∂u

∂t
+ u · ∇u− f

)
+∇p− µ∗∆u = 0 in Ω× (0, T ), (1)

∇ · u = 0 in Ω× (0, T ), (2)

where ρ∗ and µ∗ denote the density and the dynamic viscosity. To model the temperature field
we consider the transient heat equation

ρ∗(cp)∗

(
∂T

∂t
+ u · ∇T

)
= κ∗∆T in Ω× (0, T ), (3)

where (cp)∗ is the heat capacity and κ∗ is the thermal conductivity. The subscript ∗ in Eqs. (1)-
(3) indicates the phase-dependent material properties, such that ρ∗(x, t) = ρ1 if x ∈ Ω1(t) and
ρ∗(x, t) = ρ2 if x ∈ Ω2(t). Note that such properties are phase-wise constant. The advective
term u in Eq. (3) gives rise to a one-way coupling with the Navier-Stokes Equations (1), (2).

We solve both problems with our in-house space-time finite element solver [5, 9]. The sta-
bilised space-time formulation can be found in [10], together with the values for the stabilisation
terms.

2.2 Tracking the phase-change interface: Level-set method

We now introduce the level-set formulation to track the evolving PCI. Let Φ : Ω×(0, T )→ R
be a scalar, continuous function such that Φ(x, t) < 0 in Ω1(t) and Φ(x, t) > 0 in Ω2(t). The
phase interface is the zero level set of Φ, that is every x ∈ Ω : Φ(x, t) = 0,∀t ∈ (0, T ) [11].
Thus, Φ gives information on which subdomain a point x is located. We then describe the
material properties as function of Φ, e.g. ρ∗ = ρ1 + (ρ2 − ρ1)Hε(Φ). The function Hε(·) is the
smoothed Heaviside function introduced in [12], which alleviates numerical difficulties.
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(a) Complete domain (b) Left phase (c) Right phase

Figure 1: 1D example of ghost split. Fig. 1a shows a fictitious temperature field computed
on the whole domain. Note that the solution is differentiable across one element and we do
not retrieve the heat-flux jump at the PCI. Figs. 1b, 1c show the independent temperature
problems solved for each phase after the ghost split. The melting temperature Tm is imposed
at the ghost nodes n1 and n2.

The evolution of the PCI is described by the level-set equations

∂Φ

∂t
+ v · ∇Φ = 0 in Ω× (0, T ),

Φ(x, 0) = Φ0(x) in Ω,
(4)

where v denotes the local propagation velocity of the interface. We select the initial condition
Φ0(x) such that Φ(x, t) is the signed distance function from the PCI. Problem (4) is a scalar
advection problem that shares many similarities with Eq. (3). More details on its space-time
formulation are available in Section 3.10 of [13].

Note that the transport term v in Eq. (4) is not known, so that we need an additional relation
to close the problem. Localized at the zero set of the level-set function, the propagation velocity
v(x, t) needs to match the local phase-change rate and can be modelled as the Stefan condition
[2]. Thus, v is proportional to the heat-flux jump at the interface

ρ hmv(x, t) = −κL∇T
∣∣
X− + κS∇T

∣∣
X+ = [κ∇T ]SL = qL − qS, ∀x : Φ(x, t) = 0, (5)

where hm is the latent heat of melting, ρ denotes the material’s density, κ the material’s
conductivity, X± denote the limits taken from either side of the PCI and [·]SL refers to the
liquid and solid regions. Note that we have closed the problem by coupling the level-set Eq.
(4) with the temperature Eq. (3). However, we need to accurately retrieve the discontinuity of
the heat flux within our numerical framework, which we will address in the next section.

3 HEAT-FLUX DISCONTINUITY AT THE PHASE INTERFACE

In the previous section we have described our numerical model for melting and solidification
problems. What we need is a method to recover the heat-flux jump in Eq. (5) when using finite
elements with element-wise continuously differentiable shape functions.

3.1 Evaluation points for the heat fluxes

First, we select evaluation points for the representative fluxes qL, qS in Eq. (5). The intuitive
approach would be to choose points normal to the PCI, but this presents issues since the normal
is not well-defined at the intersections with the mesh. Thus we adopt a different approach based
on three assertions:
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(a) t = 1s (b) t = 15s

Figure 2: Phase-change coupled 3D lid-driven cavity. The temperature profile is shown at
two different time instants. The yellow surface denotes the phase-change interface. The black
arrows represent the velocity vectors at each point, their size is proportional to the velocity
magnitude. The domain is transparent for y > 0.5.

1. If an element face is cut by the PCI, we consider the nodes that belong to the face as
flux nodes. We use the numerical gradients at these nodes as representative fluxes in Eq.
(5). The sign of the level-set function carries information on the corresponding phase qL
or qS;

2. Each nodal gradient is computed as the arithmetic average of the gradients on all the
elements that surround the node;

3. If the PCI intersects a mesh node, we consider the average of all the nodes in the adjacent
faces.

3.2 The ghost-split method

The second issue comes from the computation of the numerical gradient, since its mathe-
matical properties depend on the properties of the basis functions. In particular, we employ
piecewise linear shape functions that can show discontinuities in the heat flux only at element
nodes. This is where the ghost split comes into play. Since we know that the temperature
solution at the PCI must equal the melting temperature Tm at each time instant, the PCI
can be viewed as a Dirichlet type boundary for each phase. Then, we solve two independent
temperature problems in each subdomain and retrieve the representative fluxes to compute
the interface propagation velocity as in Eq. (5). However boundary conditions can be imposed
only on mesh nodes, so we have to consider additional nodes for each subdomain to enforce
the melting temperature at the approximate position of the PCI. These extra nodes are called
ghost nodes. Figure 1 shows an example of ghost split for a 1D temperature profile. By solving
two separate problems on each subdomain, we can retrieve the heat-flux jump at the PCI.

Now we can compute the interface velocity at the intersections with the mesh. As a last
step we need to define the transport term v of Eq. (4) on all the mesh nodes. Given the Stefan
velocity computed on a crossing, we extend such velocity to all the nodes that are closest to
the crossing. Note that we do not need an additional search to find the nearest neighbours of
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(a) Top view of the domain (b) Close-up of the inflow

Figure 3: Phase-change coupled 3D corner flow. We show the computational domain of the
second test case (not drawn to scale). On the left, a top view section is displayed. On the
right, we show a close-up of the inflow to call attention to the boundary condition. Note that
the parabolic velocity profile is imposed only on the part highlighted in orange.

the mesh nodes, as reinitialising the level-set function entails this information.
Recall that with the ghost split the melting temperature is assigned at an additional node

close to the PCI. By doing so, we introduce an error in the interface location computed at the
subsequent time step. Note, however, that the error depends on the mesh resolution and the
position of the ghost node converges to the correct location of the PCI for finer grids [4]. Higher
order schemes for the temperature extrapolation are available and can be investigated in the
future [7].

4 NUMERICAL EXAMPLES

In the last section we show two different numerical cases in 3D. A detailed verification of the
numerical method against the one-phase Stefan problem can be found in [14], together with
additional 2D examples. In this work we focus only on tridimensional problems in view of more
complex applications.

Recall that the presented numerical method is not bound to the number of spatial dimensions.
We have described the 1D ghost split in Fig. 1 for the sake of clarity, but a more detailed
graphical description on a 2D mesh is available in [14]. Thus, the space-time finite element
solver can handle 3D phase-change processes. Performance issues might arise with very fine
meshes, for instance in the reinitialisation of the level-set function. However different strategies
are available, e.g. the fast marching method [15], that can be investigated in the future.

4.1 Phase-change coupled 3D lid-driven cavity

We consider a 1 × 1 × 1 domain, i.e. a unit cube, which is initially solid for z < 0.5 and
liquid for z > 0.5. At the lateral and bottom boundaries we impose homogeneous Dirichlet
boundary conditions for the velocity and homogeneous Neumann conditions for temperature.
At the top edge we impose the temperature T = 1 and the velocity in x direction u = [1, 0, 0]ᵀ.
The initial temperature is Tm = 0. We select the parameters for the two phases ρ1 =2, ρ2 =1,
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(a) t = 50s (b) t = 2500s

Figure 4: Phase-change coupled 3D corner flow. The temperature profile is shown at two
different time instants. The yellow surface denotes the phase-change interface. The black
arrows represent the velocity vectors at each point, their size is proportional to the second
component of velocity. The domain is transparent for z > 0.05.

(cp)1 =1e3, (cp)2 =1, κ1 =1, κ2 =1, µ1=1, µ2=1e4 and hm =1, where all the values are in SI
units. We simulate 500 time steps with ∆t = 0.1s on a uniform structured grid that comprises
35152 nodes.

Figure 2 shows the computed temperature profile at two time instants. After 10 time steps
the PCI has not moved yet, but we retrieve the expected anti-clockwise circulation in the liquid
region (2a). After 150 time steps the PCI has moved downwards (2b). Note that the left side
of the domain melts faster, since the temperature propagation is driven by the convection of
the flow field.

4.2 Phase-change coupled 3D corner flow

For the second example we consider a recent research topic, namely the flow that develops
around a thermal melting cryorobot that descents into the ice [16]. Figure 3 shows the geometry
of the test case, which resembles an idealised probe moving to the right. The inflow channel
turns 90 degrees into a wider outflow channel. The latter contains two different phases that are
separated by an evolving PCI. We impose a parabolic velocity profile at the inflow such that
uin = [5000y (0.01− y), 0, 0]ᵀ if 0.05 < z < 0.15. Furthermore, we impose no-slip conditions at
each boundary except for the inflow and the outflow. We have Dirichlet temperature conditions
on Γright and Γtop, T = 353 K and T = 278 K respectively. On Γleft we prescribe T = 273 K if
x < 0.25, T = 268 K if x > 0.25. The initial conditions are u(x, 0) = 0, T (x, 0) = 273 K in
Ω1,0, T (x, 0) = 268 K in Ω2,0. The material properties are selected according to water ice [17].
We simulate 500 time steps with ∆t = 5s.

Figure 4 shows the computed temperature profile at two time instants. At the final time
step a bulge is visible in the PCI. As expected, the ice melts as we introduce heat into the
system and we can see the effect right after the 90 degree turn. We recall that this setup is
not reproducible in 2D as heat and flow are applied only on a portion of the inflow, which
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underlines the need for a numerical method that can represent 3D physical phenomena.
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