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1. Introduction

One of the most important results used in nonlinear analysis is the well
known Banach contraction principle [16] which states that any contraction
mapping on a complete metric space has a unique fixed point. This principle
[16] has played a key role in the development of metric fixed point theory in
the recent past. The fruitfulness of this basic principle is evident from the fact

Received 13 October 2022 – Accepted 15 March 2023

http://dx.doi.org/10.4995/agt.2023.18557


M. Abbas, R. Anjum and R. Anwar

that several researchers have obtained its several interesting extensions and
generalizations in different directions (see [1, 2, 4, 8, 3]).

These generalization are done on the basis of two main aspects, one is the
ambient space and the other is the contraction map. Motivated by this idea,
several authors have studied various generalizations of this notation in different
types of metric spaces.

In 1994, Matthews [19] introduced the notion of a partial metric space and
proved the Banach contraction principle [16] in this new distance structure.
Afterwards, many fixed point theorems in partial metric spaces were obtained
by several mathematicians.

In 2014, Asadi et al.[13] extend the concept of partial metric spaces and
presented some examples to show that their definition is a real generalization
of partial metric space by introducing the concept of M -metric space. On the
other hand, Altun et al. in [7] discussed on the topological structures of M -
metric space. They emphasized that the sequential topology is stronger than
the topology induced by open balls.

One of the interesting generalization of metric space was given by Bran-
ciari [17] by introducing the concept of generalized metric space. Moreover,
Branciari proved the analogue of Banach fixed point theorem in the general-
ized metric spaces. Latter on, Özgür et al. [25] introduced the concept of a
rectangular M -metric space, along with proving the analogue of Banach fixed
point theorem in the rectangular M -metric spaces [25].

As mentioned earlier, another way to generalize the Banach fixed point
theorem by extended the notion of contractive condition instead of distance
structure. Based on this fact, in 2012, Wardowski [27] introduced the con-
cept of F -contraction and proved a fixed point theorem which extends the
Banach fixed point theorem in the setting of complete metric space. In 2018,
employing the idea of Branciari and Wardowski, Zheng-ying [18] proved the
analogue of Wardowski fixed point result in the generalized metric space. In
2019, Sahin et al. [26] proved two fixed point results for multivalued F -
contraction on M -metric space. For more results in this direction, we refer
to [11, 12, 14, 20, 21, 22, 23, 24, 26, 9, 10, 5, 6].

On the other hands, Asim et al. [15] introduced the concept of F -contraction
in rectangular M -metric space as follows:
Let (X,mr) be a rectangular M -metric space and F ∈ F . A mapping T : X →
X is called F -contraction if there exist τ > 0 such that for all x, y ∈ X with
mr(Tx, Ty) > 0, we have

τ + F (mr(Tx, Ty)) ≤ F (mr(x, y)), (1.1)

where F is the set of all functions F : R+ → R satisfying the following condi-
tions:

(F1) F is strictly increasing: s < t⇒ F (s) < F (t);
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(F2) For each sequence {sn}n∈N in R+, limn→∞ sn = 0 if and only if
limn→∞ F (sn) = −∞;

(F3) There exists k ∈ (0, 1) such that lims→0+ skF (s) = 0.

Let us recall the statement of the Theorem 3.2 from [15].

Theorem 1.1 ([15]). Let (X,mr) be a rectangular M -metric space and T :
X → X be a continuous F -contraction. Then, T has a unique fixed point
x∗ ∈ X and for every x0 ∈ X, a sequence {Tnx0 : n ∈ N} is convergent to x∗.

In this paper, we show that the assumption of continuity considered in The-
orem 1.1 can be removed. Moreover, we give an example of a mapping on a
rectangular M -metric space where the result of Asim et al. [15] is not applica-
ble.

2. Preliminaries

Let us recall some of the concepts given in [25].

Definition 2.1 ([25]). Let X be a nonempty set. A mapping mr : X ×X →
[0,∞) is said to be mr-metric if for any x, y ∈ X, the following conditions hold:

(1) mr(x, y) = mrx,y
= Mrx,y

⇔ x = y,
(2) mrx,y

≤ mr(x, y),
(3) mr(x, y) = mr(y, x),
(4) mr(x, y)−mrx,y ≤ mr(x, u)−mrx,u +mr(u, v)−mru,v +mr(v, y)−mv,y

for all u, v ∈ X\{x, y},

where mrx,y
= min{mr(x, x),mr(y, y)} and Mrx,y

= max{mr(x, x),mr(y, y)}.

The pair (X,mr) is called a rectangular M -metric space.

Definition 2.2 ([25]). A sequence {xn} in a rectangular M -metric space X is
said to be:

(a): convergent to some x ∈ X if and only if

lim
n→∞

(mr

(
xn, x)−mrxn,x

)
= 0.

In this case we write xn → x as n→∞;
(b): a mr-Cauchy sequence if and only if

lim
n,m→∞

(mr

(
xn, xm)−mrxn,xm

)
and lim

n,m→∞
(Mrxn,xm

−mrxn,xm
)

exist and finite.

A rectangular M -metric space X is said to be mr-complete if every mr-
Cauchy sequence in X is convergent in X such that

lim
n→∞

(mr

(
xn, x)−mrxn,x

)
= 0 and lim

n,m→∞
(Mrxn,x

−mrxn,x
) = 0.

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 2 345



M. Abbas, R. Anjum and R. Anwar

Lemma 2.3 (). [25] Assume that xn → x and yn → y as n → ∞ in a
rectangular M -metric space. Then

lim
n→∞

(
mr (xn, yn)−mrxn,yn

)
= mr(x, y)−mrx,y

.

Lemma 2.4 ([25]). Assume that xn → x as n→∞ in a rectangular M -metric
space. Then

lim
n→∞

(
mr (xn, y)−mrxn,y

)
= mr(x, y)−mrx,y , ∀y ∈ X.

3. Main Result

Before stating the main result, we first prove the following lemma for the
class of F -contraction mappings on rectangular M -metric spaces.

Lemma 3.1. Let T be a F -contraction on rectangular M -metric space (X,mr).
If Picard iteration defined by

xn = Txn−1 n ∈ N, (3.1)

where x0 is an initial guess in domain of an mapping T, converges to u∗ ∈ X.
Then

lim
n→∞

Txn = Tu∗.

Proof. We divide the proof into follwing two cases.
Case 1 :
Suppose that

lim
m→∞

mr(Txm, Tu
∗) = 0. (3.2)

Since

mrTxm,Tu∗ = min{mr(Txm, Txm),mr(Tu
∗, Tu∗)} ≤ mr(Txm, Tu

∗).

On taking limit as m→∞ on both sides of the above inequality, we have

lim
m→∞

mrTxm,Tu∗ ≤ lim
m→∞

mr(Txm, Tu
∗).

By (3.2), it follows that

lim
m→∞

mrTxm,Tu∗ = 0. (3.3)

From (3.2) and (3.3), we get

lim
m→∞

(
mr(Txm, Tu

∗)−mrTxm,Tu∗

)
= 0.

Hence, Txm → Tu∗ as m→∞.

Case 2 : Suppose that

lim
m→∞

mr(Txm, Tu
∗) > 0. (3.4)

Since mr(Txm, Tu
∗) ∈ [0,∞), for all m ∈ N, there exists N ∈ N such that

mr(Txm, Tu
∗) > 0, ∀m ≥ N. (3.5)
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By (1.1) and (3.5), we obtain that

F (mr(Txm, Tu
∗)) ≤ F (mr(xm, u

∗))− τ < F (mr(xm, u
∗)), ∀m ≥ N.

From (F1), we get

mr(Txm, Tu
∗) < mr(xm, u

∗), ∀m ≥ N. (3.6)

Further, we consider the following two subcases:
Case (a) : Suppose that

mr(u
∗, u∗) ≤ lim

m→∞
mr(xm, xm). (3.7)

In this subcase, we show that mr(u
∗, u∗) = 0.

If limm→∞mr(xm, xm) = 0. Then it follows from (3.7) that

mr(u
∗, u∗) = 0.

On the other hand, if limm→∞mr(xm, xm) > 0. Then, there exists ν ∈ N such
that

mr(xm, xm) > 0, ∀m ≥ ν. (3.8)

From (1.1), we have

F (mr(xm, xm)) ≤ F (mr(xm−1, xm−1))− τ, ∀m ≥ ν.
Continuing this way, we can obtain

F (mr(xm, xm)) ≤ F (mr(x0, x0))−mτ, ∀m ≥ ν.
It follows that

lim
m→∞

F (mr(xm, xm)) = −∞. (3.9)

By using (F2) in (3.9), we get

lim
m→∞

mr(xm, xm) = 0.

By (3.7), we obtain

mr(u
∗, u∗) ≤ lim

m→∞
mr(xm, xm) = 0.

That is,
mr(u

∗, u∗) = 0. (3.10)

Since mr(Tu
∗, Tu∗) ∈ [0,∞). If mr(Tu

∗, Tu∗) = 0. Then from (3.10), we have

mr(Tu
∗, Tu∗) = 0 = mr(u

∗, u∗). (3.11)

On the other hand, if mr(Tu
∗, Tu∗) > 0. Then from (1.1), we get

F (mr(Tu
∗, Tu∗)) ≤ F (mr(u

∗, u∗))− τ < F (mr(u
∗, u∗)).

From (F1), we obtain

mr(Tu
∗, Tu∗) < mr(u

∗, u∗).

By using (3.10), the above inequality becomes

mr(Tu
∗, Tu∗) = 0 = mr(u

∗, u∗). (3.12)
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It follows from (3.11) and (3.12) that

mrxm,u∗ = min{mr(xm, xm),mr(u
∗, u∗)} = mr(u

∗, u∗) = 0, ∀m ≥ ν and
(3.13)

mrTxm,Tu∗ = min{mr(Txm, Txm),mr(Tu
∗, Tu∗)} = mr(Tu

∗, Tu∗) = 0, ∀m ≥ ν.
(3.14)

Since, xm → u∗ as m→∞. This implies that

mr(xm, u
∗)−mrxm,u∗ → 0, m→∞.

By using (3.13) in the above inequality, we have

mr(xm, u
∗)→ 0, m→∞. (3.15)

On taking limit as m→∞ in (3.6), we have

lim
m→∞

mr(Txm, Tu
∗) ≤ lim

m→∞
mr(xm, u

∗). (3.16)

By using (3.15) in (3.16), we get

lim
m→∞

mr(Txm, Tu
∗) = 0. (3.17)

Taking limit as m→∞ in (3.13), we have

mrTxm,Tu∗ → 0, m→∞. (3.18)

By combining (3.17) and (3.18), we obtain

mr(Txm, Tu
∗)−mrTxm,Tu∗ → 0, m→∞.

Thus Txm → Tu∗ as m→∞.
Case (b) : Now, suppose that

mr(u
∗, u∗) ≥ lim

m→∞
mr(xm, xm). (3.19)

In this case, we show that

lim
m→∞

mrxm,u∗ = 0. (3.20)

If mr(u
∗, u∗) = 0. Then from (3.19), we obtain (3.20).

If mr(u
∗, u∗) > 0. Assuming limm→∞mr(xm, xm) = 0, we have

lim
m→∞

mrxm,u∗ = 0.

Now if
lim
m→∞

mr(xm, xm) > 0.

Following the same procedure as in the case (a), we obtain that

lim
m→∞

mr(xm, xm) = 0.

As xm → u∗ as m→∞, we have

mr(xm, u
∗)−mrxm,u∗ → 0 m→∞.

By using (3.20) into the above, it follows that

lim
m→∞

mr(xm, u
∗) = 0. (3.21)
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By using (3.21) and (3.6), we have the following

lim
m→∞

mr(Txm, Tu
∗) = 0. (3.22)

Moreover, we have

mrTxm,Tu∗ ≤ mr(Txm, Tu
∗). (3.23)

On taking limit as m→∞, we obtain

lim
m→∞

mrTxm,Tu∗ = 0. (3.24)

By using (3.23) and (3.24), we have

Txm → Tu∗, m→∞.

�

We now need the following propositions to prove the main result.

Proposition 3.2. Let (X,mr) be a rectangular M -metric space, T : X → X
a F -contraction mapping and x0 ∈ X. If the Picard iteration defined by

xn = Txn−1 n ≥ 1

has the following property

mr (xn, xn) = 0 for some n ∈ N.

Then, we have

mr (xm, xm) = 0, ∀m ≥ n. (3.25)

Proof. We will prove it by induction on M .
Suppose that the result is true for m = k > n. This can also be expressed as

mr (xk, xk) = 0. (3.26)

We now to prove that

mr (xk+1, xk+1) = 0.

Assume on the contrary that mr (xk+1, xk+1) > 0. By (1.1), we have

F (mr (xk+1, xk+1)) ≤ F (mr (xk, xk))− τ < F (mr (xk, xk)) .

It follows from (F1) that

mr (xk+1, xk+1) < mr (xk, xk) .

Using (3.26) into the above inequality, we obtain the desired result. �

Proposition 3.3. Let (X,mr) be a rectangular M -metric space, x0 ∈ X and
T : X → X a F -contraction mapping. Suppose that a sequence {xm} is given
by

xm = Txm−1 m ≥ 1.

Then, for each fixed n ∈ N, we have

mrxn,xm
= min{mr (xn, xn) ,mr (xm, xm)} = mr (xm, xm) , m > n. (3.27)
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Proof. On the contrary suppose that

mrxn,xm
= mr (xn, xn) , ∀m > n. (3.28)

We now divide the proof into two the following cases.
Case 1 : If mr (xn, xn) = 0. It follows from Proposition 3.2 that

mr (xm, xm) = 0, ∀m > n.

Note that

mrxn,xm
= min{mr (xn, xn) ,mr (xm, xm)}, ∀m > n.

= min{0, 0}, ∀m > n.

= 0 = mr (xm, xm) , ∀m > n.

Thus,

mrxn,xm
= mr (xm, xm) , ∀m > n.

Case 2 : If mr (xn, xn) > 0.
It follows from (3.28) that

mr (xm, xm) > 0 ∀m > n. (3.29)

By using (1.1) and (3.29), we have

F (mr (xm, xm)) = F (mr (Txm−1, Txm−1))

≤ F (mr (xm−1, xm−1))− τ ≤ · · · ≤ F (mr (xn, xn))− (m− n)τ

< F (mr (xn, xn)) ,

that is,

F (mr (xm, xm)) < F (mr (xn, xn)) .

By using (F1), we obtain that

mr (xm, xm) < mr (xn, xn) ; ∀m > n,

which is a contradiction to (3.28). �

Now, we will prove the main result.

Theorem 3.4. Let (X,mr) be a complete rectangular M -metric space and
T : X → X be an F -contraction mapping. Then T has a unique fixed point.

Proof. We divide the proof into the following two cases.
Case 1 : If there exists a natural number n such that xn+1 = xn. Then, xn is
a fixed point of T .
Case 2 : Suppose that xn+1 6= xn for all n ∈ N.
We divide this case into two further subcases.
Subcase 1 : Take

mr (xn+1, xn) = 0, for some n ∈ N. (3.30)

Note that

mrxn+1,xn
≤ mr (xn+1, xn) = 0.
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Thus
mrxn+1,xn

= 0. (3.31)

From the Proposition 3.3, we have

mrxn+1,xn
= mr (xn+1, xn+1) . (3.32)

Combining (3.31) and (3.32), we get

mr (xn+1, xn+1) = 0. (3.33)

Since mr (xn+1, xn+1) = 0, it follows from the Proposition 3.2 that

mr (xn+2, xn+2) = 0. (3.34)

We now divide subcase 1 into further subcases:
Subcase 1a : Suppose

mr (xn+1, xn+2) = 0. (3.35)

It follows from (3.33), (3.34) and (3.35) that

mr (xn+1, xn+1) = mr (xn+2, xn+2) = mr (xn+1, xn+2) = 0.

By using the property of mr, we have

xn+1 = xn+2,

that is,
xn+1 = Txn+1.

that is, xn+1 is the fixed point of T.
Subcase 1b : Suppose that

mr (xn+1, xn+2) > 0. (3.36)

By using (1.1), we have

F (mr (xn+1, xn+2)) = F (mr(Txn, Txn+1))

≤ F (mr (xn, xn+1))− τ
< F (mr (xn, xn+1)) .

From the condition (F1), we obtain that

mr(xn+1, xn+2) < mr(xn, xn+1).

It follows from (3.30) that

mr(xn+1, xn+2) < mr(xn, xn+1) = 0.

So,
mr(xn+1, xn+2) = 0,

a contradiction to (3.36).
Subcase 2 : Suppose that mr(xn, xn+1) > 0 for all n ∈ N.
Let

βn = mr (xn, xn+1) , ∀n ∈ N.
By (1.1), we get

F (βn) ≤ F (βn−1)− τ ≤ F (βn−2)− 2τ ≤ · · · ≤ F (β0)− nτ, ∀n ∈ N.
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Therefore,

F (βn) ≤ F (β0)− nτ, ∀n ∈ N. (3.37)

On taking limit as n→∞ in (3.37), we have

lim
n→∞

F (βn) = −∞.

From (F2), we have

lim
n→∞

βn = 0. (3.38)

By (F3), there exists k ∈ (0, 1) such that

lim
n→∞

βknF (βn) = 0. (3.39)

Multiplying βknon the both sides of (3.37), we obtain that

βknF (βn) ≤ βknF (β0)− βknnτ, ∀n ∈ N,

that is,

βknF (βn)− βknF (β0) ≤ −βknnτ, ∀n ∈ N.
On taking limit as n→∞ on both sides of the above inequality, we have

lim
n→∞

βknF (βn)− lim
n→∞

βknF (β0) ≤ − lim
n→∞

βknnτ. (3.40)

As n ∈ N, k ∈ (0, 1), τ > 0 and βn ∈ [0,∞),

lim
n→∞

βknnτ ≥ 0. (3.41)

Using (3.41) into (3.40), we obtain

lim
n→∞

βknF (βn)− lim
n→∞

βknF (β0) ≤ − lim
n→∞

βknnτ ≤ 0. (3.42)

From (3.38) and (3.39), we have

0 ≤ − lim
n→∞

βknnτ ≤ 0, ∀n ∈ N.

Hence,

lim
n→∞

nβkn = 0.

Thus, there exists n0 ∈ N such that nβkn ≤ 1 for all n > n0 and so

βn ≤
1

n1/k
∀n > n0. (3.43)

We now prove that

lim
n→∞

mr (xn, xn+2) = 0. (3.44)

If mr (xn, xn+2) = 0 for all n ∈ N, then we have (3.44).
On the other hand, if mr (xn, xn+2) > 0 for all n ∈ N. By using (1.1), we get

F (mr (xn, xn+2)) ≤ F (mr (xn−1, xn+1))− τ, ∀n ∈ N.

Continuing this way, we have

F (mr (xn, xn+2)) ≤ F (mr (xn−1, xn+1))−τ ≤ · · · ≤ F (mr (x0, x2))−nτ, ∀n ∈ N.
(3.45)
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On taking limit as n→∞ in (3.45), we obtain

lim
n→∞

F (mr (xn, xn+2)) = −∞.

From (F2), we have
lim
n→∞

mr (xn, xn+2) = 0.

We now prove that the sequence {xn}n∈N is an mr-Cauchy sequence. Let
m > n with m = n+ o where o > 2. We now consider two cases.
Case (i): Suppose that o is odd. Let o = 2p+ 1, where p ∈ N. Then

mr(xn, xm)−mrxn,xm
= mr(xn, xn+2p+1)−mrxn,xn+2p+1

≤ mr(xn, xn+1)−mrxn,xn+1
+ · · ·+mr(xn+2p, xn+2p+1)−mrxn+2p,xn+2p+1

< mr(xn, xn+1) + · · ·+mr(xn+2p, xn+2p+1)

= βn + · · ·+ βn+2p

≤
∞∑
i=n

βi

≤
∑

n≥n0(ε)

1

n1/k
< ε.

Case (ii): Suppose that o is even. Let o = 2p, where p ∈ N. Then

mr (xn, xm)−mrxn,xm
= mr (xn, xn+2p)−mrxn,xn+2p

≤ mr(xn, xn+2)−mrxn,xn+2
+mr(xn+2, xn+3)−mrxn+2,xn+3

+

· · ·+mr(xn+2p−1, xn+2p)−mrxn+2p−1,xn+2p

< mr(xn, xn+2) +mr(xn+2, xn+3) + · · ·+mr(xn+2p−1, xn+2p)

≤ mr(xn, xn+2) +

∞∑
i=n+2

βi

≤ mr(xn, xn+2) +
∑

n≥n0(ε)

1

n1/k
< ε.

Indeed, the series
∑∞
n=i

1
n1/k converges and limn→∞mr(xn, xn+2) = 0. Thus,

lim
n,m→∞

(
mr (xn, xm)−mrxn,xm

)
,

exist and finite.
Now, if Mrxn,xm

= 0 for all m > n, then mrxn,xm
= 0 for all m > n which

implies that
Mrxn,xm

−mrxn,xm
= 0, ∀m > n,

and hence
lim

n,m→∞
(Mrxn,xm

−mrxn,xm
) = 0.

Assume that

Mrxn,xm
= max{mr (xn, xn) ,mr (xm, xm)} > 0, ∀m > n.

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 2 353



M. Abbas, R. Anjum and R. Anwar

It follows from Proposition 3.3 that

Mrxn,xm
= max{mr (xn, xn) ,mr (xm, xm)} = mr (xn, xn) > 0, ∀m > n.

Suppose µn = mr (xn, xn) for all n ∈ N. Then by (1.1), we have

F (µn) ≤ F (µn−1)− τ ≤ F (µn−2)− 2τ ≤ · · · ≤ F (µ0)− nτ. (3.46)

On taking limit as n→∞ on both sides of the inequality (3.46), we get

lim
n→∞

F (µn) = −∞.

By (F2), we have

lim
n→∞

µn = 0. (3.47)

Therefore, we obtain that

µn ≤
1

n1/h
, ∀n > n1.

Note that

Mrxn,xm
−mrxn,xm

= mr (xn, xn)−mr (xm, xm)

< mr (xn, xn)

≤ mr (xn, xn) +mr (xn+1, xn+1) + · · ·+mr (xm, xm)

≤ µn + µn+1 + · · ·+ µm

≤
∞∑
i=n

µi ≤
∞∑
i=n

1

i1/h
< ε.

Indeed, the series
∑∞
i=n

1
i1/h

converges. Thus,

lim
n,m→∞

(Mrxn,xm
−mrxn,xm

),

exist and finite.
Thus {xn}n∈N is an mr-Cauchy sequence. We now take a point u∗ ∈ X such
that {xn} converges to u∗.
Since mr (xn, xn+1) > 0, by using (1.1) and (F2), we conclude that

lim
n→∞

mr (xn, Txn) = 0. (3.48)

Using mrxn,Txn
≤ mr (xn, Txn), we have

lim
n→∞

mrxn,Txn
= 0. (3.49)

From (3.48) and (3.49), we have

lim
n→∞

(mr (xn, Txn)−mrxn,Txn
) = 0. (3.50)

Since

xn → u∗, n→∞. (3.51)

Therefore, it follows from Lemma 3.1 that

Txn → Tu∗, n→∞. (3.52)
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Using (3.51) and (3.52) into the Lemma 2.3, (3.50) becomes

mr (u∗, Tu∗) = mru∗,Tu∗ . (3.53)

By Proposition 3.3, we have

mrxn,Txn
= mr (Txn, Txn) , ∀n ∈ N.

On taking limit as n→∞ in the above inequality, we obtain

lim
n→∞

mrxn,Txn
= lim
n→∞

mr (Txn, Txn) ,

that is,
lim
n→∞

(mrxn,Txn
−mr (Txn, Txn)) = 0. (3.54)

Using (3.51) and (3.52) into the Lemma 2.3, (3.54) becomes

mru∗,Tu∗ −mr (Tu∗, Tu∗) = 0. (3.55)

By using (3.53) and (3.55), we have

mr (u∗, Tu∗) = mru∗,Tu∗ = mr (Tu∗, Tu∗) . (3.56)

From (3.50), we obtain

lim
n→∞

(
mr (xn, xn−1)−mrxn,Txn

)
= 0. (3.57)

By using (3.51) and (3.52) into the Lemma 2.3, then (3.57) becomes

mr (u∗, u∗) = mru∗,Tu∗ . (3.58)

By using (3.56) and (3.58), we get

mr (u∗, u∗) = mr (Tu∗, u∗) = mr (Tu∗, Tu∗) .

This implies that Tu∗ = u∗. Suppose that there exist two elements x, y ∈ X
such that x = Tx and y = Ty with x 6= y.
Let us consider the following cases:
Case A : If mr(Tx, Ty) = mr(x, y) = 0. Without loss of generality, suppose that

mrx,y
= mr(x, x).

Notice that
mr(x, x) = mrx,y

≤ mr(x, y) = 0.

It follows that
mr(x, x) = 0.

Further, we divide the case A into two subcases.
Subcase A1 : If mr(y, y) = 0. Then, clearly x = y.
Subcase A2 : Suppose that mr(y, y) > 0.
By using (1.1), we have

F (mr(y, y)) = F (mr(Ty, Ty)) ≤ F (mr(y, y))− τ < F (mr(y, y)),

It follows that
F (mr(y, y)) < F (mr(y, y)).

By (F1), we have
mr(y, y) < mr(y, y),

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 2 355



M. Abbas, R. Anjum and R. Anwar

a contradiction.
Case B : If mr(Tx, Ty) = mr(x, y) > 0. Then, by (1.1), we deduce that

F (mr(x, y)) = F (mr(Tx, Ty)) ≤ F (mr(x, y))− τ < F (mr(x, y)),

that is,

F (mr(x, y)) < F (mr(x, y)).

By (F1), we have

mr(x, y) < mr(x, y),

a contradiction. �

Example 3.5. Let X = {1, 2, 3, 4}. Define mr : X ×X → [0,∞) by

mr(1, 1) = 1 and mr(2, 2) = mr(3, 3) = mr(4, 4) = 0
mr(1, 2) = mr(2, 1) = 4
mr(1, 3) = mr(3, 1) = 4
mr(1, 4) = mr(4, 1) = 4
mr(2, 3) = mr(3, 2) = 3
mr(2, 4) = mr(4, 2) = 6
mr(3, 4) = mr(4, 3) = 9.

Note that (X,mr) is a complete rectangular M -metric space. On the other
hand, (X,mr) is not a M -metric space. Indeed,

9 = mr(3, 4) ≥ mr(3, 1) +mr(1, 4) = 4 + 4 = 8.

Define T : X → X as

T (x) =

{
2, x = 1, 2, 3

3, x = 4

For x ∈ {1, 2, 3} and y = 4, we have mr(Tx, Ty) = mr(2, 3) = 3 > 0.
Therefore,

ln(mr(Tx, Ty)) +mr(Tx, Ty) ≤ ln(mr(x, y)) +mr(x, y)− 0.5.

If we take F (t) = ln(t) + t and τ = 0.5. Then, T is a F -contraction.
Hence, all the conditions of Theorem 3.4 are satisfied. Moreover, x = 2 is the
fixed point of T.
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