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Abstract

In this paper, we introduce some concepts of ?-(quasi)-pseudometric
spaces, and give an example which shows that there is a ?-quasi-
pseudometric space which is not a quasi-pseudometric space. We also
study the conditions under which ?-quasi-pseudometric semitopological
groups are paratopological groups or topological groups.

2020 MSC: 22A05; 54H11; 54D30; 54G20.

Keywords: invariant ?-(quasi-)pseudometric; topological group; paratopo-
logical groups; topological semigroup.

1. Introduction

Finding a stronger topological structure is one of the central problems in
topological algebra. In 1957, R. Ellis showed that Every locally compact Haus-
dorff semitopological group is a topological group [3]. In 1960, W. Zelazko
established that each completely metrizable semitopological group is a topo-
logical group [19]. Later, in 1982, N. Brand proved that every Čech-complete
paratopological group is a topological group [2].

In 1975, Kramosil and Michalek introduced a notion of metric fuzziness [10]
which quickly became an important issue (for example, [4, 5, 6, 7, 8]).

Definition 1.1. A fuzzy metric (in the sense of Kramosil and Michalek) on
a set X is a pair (M, ∗) such that M is a fuzzy set in X ×X × [0,∞) and ∗ is
a continuous t-norm satisfying for all x, y, z ∈ X:
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1) M(x, y, 0) = 0;
2) M(x, y, t) = 1 for all t > 0 if and only if x = y;
3) M(x, y, t) = M(y, x, t);
4) M(x, z, t+ s) >M(x, y, t) ∗M(y, z, s) for all t, s > 0;
5) M(x, y, ) : [0,+∞)→ [0, 1] is a left continuous function.

Recently, fuzzy metric topological groups have been widely studied in fuzzy
topological algebra (see, among others, [15, 18]).

In particular, I. Sánchez and M. Sanchis found that some special fuzzy
metrics (such as left invariant fuzzy quasi-pseudometrics and invariant fuzzy
pseudometrics) can improve some topological algebraic structures into stronger
topological structures. The main results are: (1) If (G,M, ∗) is a fuzzy quasi-
pseudometric right topological group such that (M, ∗) is left-invariant, then
(G,M, ∗) is a fuzzy paratopological group (see [16, Theorem 3.2]). (2) If
(G,M, ∗) is a fuzzy pseudometric right topological group such that (M, ∗) is
left-invariant, then (G,M, ∗) is a fuzzy topological group (see [16, Theorem
3.3]). (3) Let (M, ∗) be a fuzzy quasi-pseudometric on a semigroup S. If
(M, ∗) is invariant, then (S,M, ∗) is a fuzzy topological semigroup (see [16,
Theorem 3.10]).

Given a function d : X × X → R+ on a set X, we consider the following
conditions, for every x, y, z ∈ X:

(1) d(x, x) = 0;
(2) d(x, y) = d(y, x);
(3) d(x, y) 6 d(x, z) + d(z, y);
(4) if d(x, y) = 0, then x = y;
(4’) if d(x, y) = d(y, x) = 0, then x = y,

for all x, y, z ∈ X.
The function d is called a pseudometric if it satisfies (1), (2) and (3). A

pseudometric that also satisfies (4) is called a metric. A quasi-pseudometric on
an arbitrary set X is a function d : X ×X → R+ satisfying the conditions (1)
and (3). If d satisfies further (4’) then it is called a quasi-metric.

Recently, Khatami and Mirzavaziri (in [11]) generalized the concept of met-
ric. They first gave a new operation called t-definer which is extended by
t-conorm. It is defined as:

Definition 1.2 ([11, Definition 2.1]). A t-definer is a function ? : [0,∞) ×
[0,∞)→ [0,∞) satisfying the following conditions for each a, b, c ∈ [0,∞):

(T1) a ? b = b ? a;
(T2) a ? (b ? c) = (a ? b) ? c;
(T3) if a 6 b, then a ? c 6 b ? c;
(T4) a ? 0 = a;
(T5) ? is continuous on its first component with respect to the Euclidean

topology.
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The residuum of a t-definer plays a role such as the role of minus operator
for addition operator. Let ? be a t-definer. The residuum of ? is defined by

a
.→ b = inf{c : c ? a > b}.

Then, by the residuation property of ? and
.→, we have

a?(a
.→ b) = max{a, b}. (1.1)

Khatami and Mirzavaziri changed the condition (3) in the metric axiom
into the ?-triangle inequality. Then the following definition of ?-metrics can be
obtained.

Definition 1.3 ([11, Definition 2.2]). Let X be a non-empty set and ? a t-
definer. If for every x, y, z ∈ X, a function d? : X × X → [0,∞) satisfies the
following conditions:

(M1) d?(x, y) = 0 if and only if x = y;
(M2) d?(x, y) = d?(y, x);
(M3) d?(x, y) 6 d?(x, z) ? d?(z, y),

then d? is called a ?-metric on X. The set X with a ?-metric is called ?-metric
space, denoted by (X, d?).

Assume that (X, d?) is a ?-metric space. For any a ∈ X and r > 0, denote
by

Bd?(a, r) = {x ∈ X : d?(a, x) < r}
and

Td? = {U ⊆ X : for each a ∈ U there is r > 0 such that Bd?(a, r) ⊆ U}.
Khatami and Mirzavaziri proved the following result:

Theorem 1.4 ([11, Theorems 3.2, 3.4, 3.5]). For every ?-metric space (X, d?),
Td? forms a Hausdorff topology on X and the topological space (X,Td?) is first
countable and satisfied the normal separation axiom.

Then, we have proved that

Theorem 1.5 ([9, Theorem 2.4]). Every ?-metric space is metrizable.

In this paper, we extend some concepts of ?-metric spaces (in [11]) to ?-
quasi-pseudometric spaces, and give an example to show that ?-quasi-pseudo-
metrics are not necessarily quasi-pseudometrics. Then, we will discuss the
basic topological properties of ?-metric spaces. Further, we combine topologi-
cal structure with algebraic structure. Our aim is to obtain conditions under
which ?-quasi-pseudometric semitopological groups are paratopological groups
or topological groups.

We show that: (1) if (G, d?) is a ?-quasi-pseudometric right topological
group such that d? is left-invariant, then (G, d?) is a paratopological group (see
Theorem 3.5); (2) if (G, d?) is a ?-quasi-pseudometric left topological group
such that d? is right-invariant, then (G, d?) is a paratopological group. If in
addition (G, d?) is a ?-pseudometric left topological group, then (G, d?) is a
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topological group (see Theorem 3.6); (3) let d? be a left-invariant ?-quasi-
pseudometric on a monoid G such that for each x ∈ G, λx is open and ρx is
continuous at the identity e of (G, d?). Then (G, d?) is a topological semigroup
(see Theorem 4.1).

2. Topology of ?-quasi-metric

In this section, we extend some concepts of ?-metric spaces to ?-quasi-metric
spaces and ?-quasi-pseudometric spaces. Then we discussed the basic topolog-
ical properties of ?-quasi-metric spaces and ?-quasi-pseudometric spaces.

Definition 2.1. Let X be a non-empty set and ? a t-definer. A ?-quasi-
pseudometric on X is a function d? : X ×X → [0,∞) satisfying the following
conditions:

(D1) d?(x, x) = 0 ;
(D2) d?(x, y) 6 d?(x, z) ? d?(z, y).

In this case (X, d?) is called a ?-quasi-pseudometric space.
In addition, if d? is a ?-quasi-pseudometric and satisfies the condition:

(D3) for every x, y ∈ X, if d?(x, y) = 0, then x = y,

then d? is called a ?-quasi-metric on X, and (X, d?) is called a ?-quasi-metric
space.

If d? is a ?-quasi-pseudometric and satisfies the condition:

(D4) d?(x, y) = d?(y, x),

then d? is called a ?-pseudometric on X, and (X, d?) is called a ?-pseudometric
space.

The following example shows that there are ?-quasi-pseudometrics which are
not quasi-pseudometrics.

Example 2.2. Let X = [0,∞). Clearly, x ? y = (
√
x+
√
y)2 is a t-definer, for

every x, y ∈ X. The function

d?(x, y) =

{
(
√
x−√y)2, x > y;

0, x < y.

forms an ?-quasi-pseudometric which is not a quasi-pseudometric.
Obviously, d?(x, y) satisfies (D1) of Definition 2.1. Now, we show that also

(D2) of Definition 2.1 holds.
Now, we need to prove the following 6 cases.
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(1) When x > z > y, we have

d?(x, y) = (
√
x−√y)2 = (

√
x−
√
z +
√
z −√y)2

6

[√
(
√
x−
√
z)2 +

√
(
√
z −√y)2

]2

=
[√

d?(x, z) +
√
d?(z, y)

]2
= d?(x, z) ? d?(z, y).

(2) When z > x > y, we have d?(x, y) = (
√
x−√y)2, d?(x, z) = 0, d?(z, y) =

(
√
z−√y)2. Therefore d?(x, y) = (

√
x−√y)2 6 (

√
z−√y)2 = 0?(

√
z−√y)2 =

d?(x, z) ? d?(z, y).
(3) When x > y > z, we have d?(x, y) = (

√
x−√y)2, d?(x, z) = (

√
x−
√
z)2,

d?(z, y) = 0.Therefore d?(x, y) = (
√
x−√y)2 6 (

√
x−
√
z)2 = (

√
x−
√
z)2?0 =

d?(x, z) ? d?(z, y).
(4) When z 6 x < y, we have d?(x, z) = (

√
x−
√
z)2, d?(z, y) = 0, d?(x, y) =

0. Therefore d?(x, y) = 0 6 (
√
x−
√
z)2 = (

√
x−
√
z)2 ? 0 = d?(x, z) ? d?(z, y).

(5) When x 6 z 6 y, we have d?(x, z) = 0, d?(z, y) = 0, d?(x, y) = 0.
Therefore d?(x, y) = 0 = 0 ? 0 = d?(x, z) ? d?(z, y).

(6) When x < y 6 z, d?(x, z) = 0, we have d?(z, y) = (
√
z−√y)2, d?(x, y) =

0. Therefore d?(x, y) = 0 6 (
√
z −√y)2 = 0 ? (

√
z −√y)2 = d?(x, z) ? d?(z, y).

Thus, (D2) holds.
However, d?(1, 25) = 16 
 d?(1, 16) + d?(16, 25) = 10, which means d?(x, y)

is not a quasi-pseudometric.

Khatami and Mirzavaziri gave a generalization of metrics, put forward ?-
metrics, and give an example that ?-metrics are not metrics. Further, we
extend the ?-metrics to obtain ?-quasi-metrics, ?-pseudometrics, and ?-quasi-
pseudometrics. In Example 2.2, we find that there is a ?-quasi-pseudometric,
which is not a quasi-pseudometric. This shows that our promotion is very
meaningful. The following figure briefly describes the relationship between
them.

metrics ?-metrics

pseudometrics

quasi-metrics

?-pseudometrics

?-quasi-metrics ?-quasi-pseudometrics

Similar to metric spaces, we will give the definition of open balls in ?-quasi-
pseudometric spaces below.
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Definition 2.3. Let (X, d?) be a ?-quasi-pseudometric space. We define open
ball Bd?(x, r) with x ∈ X and radius r > 0 as

Bd?(x, r) = {y ∈ X : d?(x, y) < r}.

Theorem 2.4. Let (X, d?) be a ?-quasi-pseudometric space. Define

Td? = {U ⊆ X : for each x ∈ U there is r > 0 such that Bd?(x, r) ⊆ U}.

Then Td? is a topology on X.

Lemma 2.5. In ?-quasi-pseudometric space (X, d?) every open ball is an open
set.

Proof. Let ? be a t-definer,
.→ be the residuum of ?. For every x ∈ X and

r > 0, we claim that there exist ε > 0, such that for every y ∈ Bd?(x, r), we
have

Bd?(y, ε) ⊆ Bd?(x, r).

In fact, take ε = d?(x, y)
.→ r and for every z ∈ Bd?(y, ε), then d?(y, z) <

d?(x, y)
.→ r. By formula (1.1), we have

d?(x, y) ? d?(y, z) < d?(x, y) ? (d?(x, y)
.→ r) = r.

Therefore, we have d?(x, z) ≤ d?(x, y) ? d?(y, z) < r which shows that z ∈
Bd?(x, r). �

Now, by Definition 2.3 and Lemma 2.5, for a ?-quasi-(pseudo)metric space
(X, d?), the set B = {Bd?(x, ε) | x ∈ X, ε > 0} is a base for the topology
induced by d? on X.

Definition 2.6. Let {xn}n∈N be a sequence of a ?-quasi-pseudometric space
(X, d?), and x ∈ X. If for every ε > 0, there exists k ∈ N such that d?(x, xn) < ε
whenever n > k, then the sequence {xn}n∈N converges x under d?.

The following propositions are easy to prove.

Proposition 2.7. Let (X, d?) be a ?-quasi-pseudometric space. Then the fol-
lowing statements are equivalent:

(1) {xn}n∈N converges to x0 under Td? ;
(2) {xn}n∈N converges to x0 under d?.

Remark 2.8. The Proposition 2.7 illustrates that for a ?-quasi-pseudometric
space, xn → x if and only if d?(x, xn)→ 0.

Proposition 2.9. Let (X, d?) be a ?-quasi-pseudometric space. Then the set
X with the topology induced by d? is first countable.

In Proposition 2.9, we get that, for every x ∈ X, Bx = {Bd?(x, 1
n ) : n ∈ N}

is a neighborhood base at x in the ?-quasi-pseudometric space (X, d?).

Proposition 2.10. Every ?-quasi-metric space (X, d?) is a Hausdorff space.
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Proof. Choose two distinct points x, y ∈ X. We shall show that, there exists
r > 0 such that Bd?(x, r) ∩ Bd?(y, r) = ∅. Since the ? is continuous and
d?(x, y) > 0, we have d?(x, y) > r ? r. Now, we assume that there exists
z ∈ Bd?(x, r) ∩Bd?(y, r) then we get the following contradiction:

d?(x, y) 6 d?(x, z) ? d?(z, y) < r ? r < d?(x, y).

Hence, Bd?(x, r) ∩Bd?(y, r) = ∅. �

The notions and concepts of topological spaces are defined as usual (e.g.
see [1] or [13]). Unless otherwise stated, ?-quasi-metric spaces and ?-quasi-
pseudometric spaces do not satisfy any separation axiom.

3. ?-quasi-pseudometric topological groups

We now move on to notions from topological algebra. Let G be an algebraic
group. For a fixed element x ∈ G. The function λx: G → G defined by
λx(g) = xg is called the left translation of x on G. Similarly, ρx: G → G
defined as ρx(g) = gx is known as the right translation of x on G.

A topological semigroup (G, τ) is an algebraic semigroup G with a topology
τ that makes the multiplication in G jointly continuous. A paratopological
group G is a topological semigroup such that G is an algebraic group. A
topological group G is a paratopological group G such that the inverse mapping
is continuous.

(G, τ) is said to be a left (respectively, right) topological group if the trans-
lations λx (respectively, ρx) are continuous in G for all x ∈ G, and a semi-
topological group is a left topological group which is also a right topological
group.

Next, we will give the definitions related to ?-quasi-pseudometric topological
groups.

Definition 3.1. By a ?-(quasi)-pseudometric semigroup we mean a pair (G, d?)
such that (G, d?) is a ?-(quasi)-pseudometric space and (G,Td?) is a topological
semigroup.

A ?-(quasi)-pseudometric paratopological group is a ?-(quasi)-pseudometric
semigroup (G, d?) such that G is an algebraic group.

Definition 3.2. By a ?-(quasi)-pseudometric right (left) topological group we
mean a pair (G, d?) such that (G, d?) is a ?-(quasi)-pseudometric space and
(G,Td?) is a right (left) topological group.

We give the definition of left (right) invariance in ?-(quasi)-pseudometric
topological groups. This notion plays an important role in our results.

Definition 3.3. A ?-(quasi)-pseudometric d? on a group G is left-invariant
(respectively, right-invariant) if d?(x, y) = d?(ax, ay) (respectively, d?(x, y) =
d?(xa, ya)) whenever a, x, y ∈ G. We say that d? is invariant if it is both
left-invariant and right-invariant.
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Now, we give a well known result which is an internal characterization of a
(para)topological group.

Proposition 3.4 ([1, Theorem 1.2.12]). Let G be a group with identity e and
U a family of subsets of G containing e. If U satisfies the following conditions:

(i) for every U, V ∈ U , there exists an W ∈ U such that W ⊆ U ∩ V ;
(ii) for every U ∈ U and x ∈ U , there exists an V ∈ U such that V x ⊆ U ;

(iii) for every U ∈ U and x ∈ G, there exists an V ∈ U such that xV x−1 ⊆
U ;

(iv) for every U ∈ U , there exists an V ∈ U such that V 2 ⊆ U ;

then the family {Ux : x ∈ G,U ∈ U } is a base for a topology τU on G. With
this topology, G is a paratopological group, and the family {xU : x ∈ G,U ∈ U }
is a base for the same topology on G. In addition, if U satisfies

(v) for every U ∈ U , there exists an V ∈ U such that V −1 ⊆ U .
Then (G, τU ) is a topological group.

Theorem 3.5. If (G, d?) is a ?-quasi-pseudometric right topological group such
that d? is left-invariant, then (G, d?) is a paratopological group.

Proof. Let e be the identity ofG. According to Proposition 2.9, Be = {Bd?(e, 1
n ) :

n ∈ N} is a local base at e. Let us show that Be = {Bd?(e, 1
n ) : n ∈ N} satisfies

conditions (i) − (iv) in Theorem 3.4, that is, the topology TBe associated to
the family Be makes G into a paratopological group.

(i). It follows from the fact that Be is a local base at e in (G,Td?). So, Be

satisfies (i).
(ii). Take n ∈ N and x ∈ Bd?(e, 1

n ). Since ρx is continuous at e and

ρx(e) = ex = x ∈ Bd?(e, 1
n ), there exists m ∈ N such that

ρx(Bd?(e,
1

m
)) = Bd?(e,

1

m
)x ⊆ Bd?(e,

1

n
).

Thus, (ii) holds.
(iii). First we show that, for each n ∈ N and x ∈ G, we have

xBd?(e,
1

n
) = Bd?(x,

1

n
). (1)

In fact, take y ∈ Bd?(e, 1
n ), namely xy ∈ xBd?(e, 1

n ). Since d? is left-
invariant, we have

d?(x, xy) = d?(e, y) <
1

n
.

By the foregoing, xBd?(e, 1
n ) ⊆ Bd?(x, 1

n ).

On the other hand, take z ∈ Bd?(x, 1
n ). Because d? is left-invariant, we have

d?(e, x−1z) = d?(x, z) <
1

n
.

This proves that x−1z ∈ Bd?(e, 1
n ), and from this it follows further that

z ∈ xBd?(e, 1
n ) which shows (1).

Now, we shall show (iii). Take n ∈ N and x ∈ G. Note that every right
translation is a homeomorphism and x ∈ Bd?(e, 1

n ). So Bd?(e, 1
n )x is an open
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neighborhood of x. Hence there is m ∈ N such that Bd?(x, 1
m ) ⊆ Bd?(e, 1

n )x.
From this and (1) it follows that

xBd?(e,
1

m
)x−1 = Bd?(x,

1

m
)x−1 ⊆ Bd?(e,

1

n
).

So, Be satisfies (iii).
(iv). For every n ∈ N, since the ? is continuous, there is m ∈ N such that

1
m ? 1

m < 1
n . Then for each y, z ∈ Bd?(e, 1

m ), the following inequalities hold

d?(e, yz) 6 d?(e, y) ? d?(y, yz) = d?(e, y) ? d?(e, z) <
1

m
?

1

m
<

1

n
.

Therefore, Bd?(e, 1
m )Bd?(e, 1

m ) ⊆ Bd?(e, 1
n ), Be satisfies (iv).

By Proposition 3.4, (G,TBe
) is a paratopological group and {xBd?(e, 1

n ) :
x ∈ G,n ∈ N} is a base for TBe

. Notice that equation (1) implies that
{xBd?(e, 1

n ) : x ∈ G,n ∈ N} also is a base for Td? so that TBe
= Td? . This

shows that (G, d?) is a paratopological group. �

Theorem 3.6. If (G, d?) is a ?-pseudometric right topological group such that
d? is left-invariant, then (G, d?) is a topological group.

Proof. Since, ?-quasi-pseudometrics are ?-pseudometrics, according to Theo-
rem 3.5, (G, d?) is a paratopological group. To complete the proof, it is enough
to show that the family B = {Bd?(e, 1

n ) : n ∈ N} satisfies (v) of Proposition

3.4. For every n ∈ N. Take x ∈ Bd?(e, 1
n ). As a consequence of left-invariance

of d?, we have

d?(e, x−1) = d?(x, e) = d?(e, x) <
1

n
.

We conclude that x−1 ∈ Bd?(e, 1
n ). So, (G, d?) is a topological group. �

Similar to the proof of Theorems 3.5 and 3.6, we can obtain the following
Theorem.

Theorem 3.7. If (G, d?) is a ?-quasi-pseudometric left topological group such
that d? is right-invariant, then (G, d?) is a paratopological group. If furthermore
(G, d?) is a ?-pseudometric left topological group, then (G, d?) is a topological
group.

Since a semitopological group is both a left and right topological group.
According to the result of Theorems 3.5, 3.6 and 3.7 we can get the following
corollary.

Corollary 3.8. Suppose that (G,Td?) is a semitopological group whose topology
Td? is induced by a right-(or left-)invariant ?-quasi-pseudometric d?. Then
(G,Td?) is a paratopological group.

Corollary 3.9. Suppose that (G,Td?) is a semitopological group whose topology
Td? is induced by a right-(or left-)invariant ?-pseudometric d?. Then (G,Td?)
is a topological group.
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It is known that a (quasi-)pseudometric is a ?-(quasi-)pseudometric. So, it
is easy to draw the following conclusions:

Corollary 3.10 ([16, Corollary 3.4]). Suppose that (G, τ) is a left (right) topo-
logical group whose topology τ is induced by a right-(left-)invariant quasi-pseudometric.
Then (G, τ) is a paratopological group.

Corollary 3.11 ([16, Corollary 3.8]). Suppose that G is a left (right) topolog-
ical group whose topology is induced by a right-(left-)invariant pseudometric.
Then G is a topological group.

We said that a topological space X is said to be ?-(quasi-)metrizable if there
exists a ?-(quasi-)metric d? on the set X that induces the topology of X. A
?-quasi-metric d?(x, y) is called left-continuous if d?(x, ) is continuous.

Recall that a topological space X is called a sequential space if a set A ⊂ X
is closed if and only if together with any sequence it contains all its limits.

Theorem 3.12. Suppose that G is a ?-quasi-metrizable paratopological group
with respect to a left continuous, left-invariant ?-quasi-metric. Then G is a
?-metrizable topological group.

Proof. First we prove that the ?-quasi-metrizable paratopological group G is a
topological group. It is sufficient to prove that the inverse operation is contin-
uous.

Let G be a paratopological group with respect to a left continuous, left-
invariant ?-quasi-metric d? and e be the neutral element. First we prove that
if xn → x, then x−1n → x−1. Since xn → x and d? is left continuous, then
d?(xn, x) → d?(x, x) = 0. As a consequence of the left invariance of d?, we
have

d?(e, x−1n x) = d?(xne, xnx
−1
n x) = d?(xn, x)→ 0.

Then x−1n x → e by Proposition 2.7. By the foregoing, x−1n → x−1. Let U
be open. We shall prove that U−1 is open. Since G is a sequential space,
it is sufficient to prove U−1 is sequential open. Let yn → y ∈ U−1, then
y−1n → y−1 ∈ U . Since U is open, {y−1n : n ∈ N} is eventually in U . Hence
{yn : n ∈ N} is eventually in U−1. Therefore, U−1 is open.

The inverse operation on G is continuous, hence G is a topological group.
According to [1, Theorem 3.3.12], A Hausdorff topological group satisfying
the first-countable axiom is metrizable. By Propositions 2.9 and 2.10, G is a
Hausdorff topological group satisfying the first-countable axiom and from this
it follows by the foregoing that G is metrizable. Therefore G is ?-metrizable
by Theorem 1.5. �

From Theorem 3.12, we can easily get Liu’s conclusion in [12]

Corollary 3.13 ([12, Theorem 2.1]). Suppose that G is a quasi-metrizable
paratopological group with respect to a left continuous, left-invariant quasi-
metric. Then G is a metrizable topological group.

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 2 262



?-quasi-pseudometrics on algebraic structures

4. ?-quasi-pseudometric topological semigroups

We now move on to ?-quasi-pseudometric semigroups.

Theorem 4.1. Suppose that d? be a ?-quasi-pseudometric on a semigroup S.
If d? is invariant, then (S, d?) is a topological semigroup.

Proof. Take y, z ∈ S. Since the ? is continuous, for every n ∈ N, there is m ∈ N
such that 1

m ? 1
m < 1

n . We can claim that Bd?(y, 1
m )Bd?(z, 1

m ) ⊆ Bd?(yz, 1
n ).

Choose a ∈ Bd?(y, 1
m ) and b ∈ Bd?(z, 1

m ), then ab ∈ Bd?(y, 1
m )Bd?(z, 1

m ). Since
d? is invariant, we have

d?(yz, ab) 6 d?(yz, yb) ? d?(yb, ab) = d?(z, b) ? d?(y, a) <
1

m
?

1

m
<

1

n
.

We have proved that multiplication is continuous in (S,Td?). As a consequence,
(S, d?) is a topological semigroup. �

Let us recall that a monoid is a semigroup with a neutral element.

Theorem 4.2. Let d? be a left-invariant ?-quasi-pseudometric on a monoid G
such that for each x ∈ G, λx is open and ρx is continuous at the identity e of
(G, d?). Then (G, d?) is a topological semigroup.

Proof. Let e be the identity of G. We claim that for each n ∈ N and x ∈ G we
have

xBd?(e,
1

n
) ⊆ Bd?(x,

1

n
). (2)

Indeed, take y ∈ Bd?(e, 1
n ). Since d? is left-invariant, we have

d?(x, xy) = d?(e, y) <
1

n
.

This proves (2). As a consequence of (2), we have that left translations are
continuous at e.

Now, we shall show that for every n ∈ N, there is m ∈ N satisfying

Bd?(e,
1

m
)Bd?(e,

1

m
) ⊆ Bd?(e,

1

n
). (3)

Since the ? is continuous, for every n ∈ N, there is m ∈ N such that 1
m ? 1

m <
1
n . Then, for each y, z ∈ Bd?(e, 1

m ), the following inequalities hold:

d?(e, yz) 6 d?(e, y) ? d?(y, yz) = d?(e, y) ? d?(e, z) <
1

m
?

1

m
<

1

n
.

Now, we will prove that the multiplication is continuous in (G,Td?). Take
x, y ∈ G and n ∈ N. By (2), we have xyBd?(e, 1

n ) ⊆ Bd?(xy, 1
n ). By (3),

Bd?(e, 1
m )Bd?(e, 1

m ) ⊆ Bd?(e, 1
n ) for some m ∈ N. Therefore

xyBd?(e,
1

m
)Bd?(e,

1

m
) ⊆ xyBd?(e,

1

n
) ⊆ Bd?(xy,

1

n
). (4)
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It follows from the hypothesis that left translations are open. Hence yBd?(e, 1
m )

is an open set in (G, d?) which contains y. According to assumptions ρx is con-
tinuous at e. Hence there is k ∈ N satisfying

ρy(Bd?(e,
1

k
)) = Bd?(e,

1

k
)y ⊆ yBd?(e,

1

m
). (5)

According to (4)-(5), we have

xBd?(e,
1

k
)yBd?(e,

1

m
) ⊆ xyBd?(e,

1

m
)Bd?(e,

1

m
) ⊆ Bd?(xy,

1

n
).

Since left translations are open, xBd?(e, 1k ) and yBd?(e, 1
m ) are open neigh-

borhoods of x and y, respectively. Hence multiplication in (G, d?) is continu-
ous. �

Applying the previous results, we get the following results in semigroups and
topological monoids.

Corollary 4.3 ([16, Corollary 3.12]). Suppose that d is a invariant quasi-
pseudometric on a semigroup S. Then (S, d) is a topological semigroup.

Corollary 4.4 ([16, Corollary 3.14]). Let d be a left-invariant quasi-pseudometric
on a monoid G such that for each x ∈ G, λx is open and ρx is continuous at
the identity e of (G, d). Then (G, d) is a topological semigroup.
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