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Abstract:
This research paper introduces an adaptive differential evolution algorithm (ADE algorithm) designed to address 
the multi-compartment vehicle routing problem (MCVRP) for cold chain transportation of a case study of twenty-
eight customers in northeastern Thailand. The ADE algorithm aims to minimize the total cost, which includes 
both the expenses for traveling and using the vehicles. In general, this algorithm consists of four steps: (1) The 
first step is to generate the initial solution. (2) The second step is the mutation process. (3) The third step is the 
recombination process, and the final step is the selection process. To improve the original DE algorithm, the 
proposed algorithm increases the number of mutation equations from one to four. Comparing the outcomes of 
the proposed ADE algorithm with those of LINGO software and the original DE based on the numerical examples 
In the case of small-sized problems, both the proposed ADE algorithm and other methods produce identical 
results that align with the global optimal solution. Conversely, for larger-sized problems, it is demonstrated 
that the proposed ADE algorithm effectively solves the MCVRP in this case. The proposed ADE algorithm is 
more efficient than Lingo software and the original DE, respectively, in terms of total cost. The proposed ADE 
algorithm, adapted from the original, proves advantageous for solving MCVRPs with large datasets due to its 
simplicity and effectiveness. This research contributes to advancing cold chain logistics with a practical solution 
for optimizing routing in multi-compartment vehicles.
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1.	 Introduction 

Due to the perishable nature, limited shelf life, 
and temperature sensitivity of agricultural goods 
and processed foods, consumers are becoming 
increasingly concerned about the quality of food 
products, particularly in the case of agricultural 
goods and processed foods. Implementing cold 

chain management is crucial for ensuring the 
safety, freshness, and overall quality of perishable 
products throughout the supply chain, which 
ultimately benefits the consumer. The cold chain is 
the temperature-controlled supply chain that ensures 
the quality and safety of products from their origin 
to their final consumers. Various stakeholders, 
including producers, wholesalers, retailers, storage 

To cite this article: Sankul, S., Supattananon, N., Akararungruangkul, R., Wichapa, N. (2024). An adaptive differential evolution algorithm to solve the multi-
compartment vehicle routing problem: A case of cold chain transportation problem. International Journal of Production Management and Engineering, 12(1), 91-104. 
https://doi.org/10.4995/ijpme.2024.19928 

http://polipapers.upv.es/index.php/IJPME

Int. J. Prod. Manag. Eng. (2024) 12(1), 91-104Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 91

https://doi.org/10.4995/ijpme.2023
https://orcid.org/0009-0003-8880-0757
https://orcid.org/0000-0001-6107-882X
https://orcid.org/0000-0003-2744-7999
https://orcid.org/0000-0002-7292-8647
mailto:naratip.su@rmuti.ac.th
http://polipapers.upv.es/index.php/IJPME


services, and transportation services, are involved. 
Cold storage and cold transportation are the two 
primary components of the cold chain. Cold storage 
is the temporary storage of cold chain products prior 
to their transport to the market or customers, whereas 
cold transportation is the movement of these products 
from storage facilities or various stakeholders to 
other storage facilities or stakeholders, markets, or 
customers. The cold chain is essential for maintaining 
product quality, decreasing food spoilage, extending 
shelf life, and assuring food safety. It enables the 
storage of products while preserving their quality and 
facilitates transport over greater distances, ultimately 
resulting in greater consumer satisfaction. The impact 
of poor cold chain management is significant and, 
affecting various aspects of supply chain operations, 
food safety, and economic efficiency. From studies 
on temperature-controlled transportation, it was 
found that the majority of costs are incurred in the 
energy consumption of fuel, amounting to over 15 
percent, and in temperature control or refrigeration, 
which accounts for 40 percent (Li et  al., 2022). 
This is to prevent spoilage of goods, which can 
reach up to 30 percent, particularly in the case of 
agricultural products or goods that experience high 
levels of decay during transportation, amounting to 
a value of over 526 billion baht (Zhang et al., 2020; 
Zhu et al., 2021). Preliminary surveys indicate that 
in developed countries, there is a high demand for 
temperature-controlled products or goods, such as 
consumer goods (meat, milk, fresh vegetables, frozen 
ready-to-eat foods, and ice cream), a trend which is 
on the rise. However, products or goods transported 
from distribution centers to stores need to maintain 
appropriate temperatures to prevent damage, 
with each product type requiring different storage 
temperatures ranging from 0-4 degrees, 2-8 degrees, 
and below -18 degrees Celsius. Currently, efforts 
are being made to address these issues by increasing 
costs or expenses related to the wastage resulting 
from spoilage of goods in the objective equation 
of temperature-controlled transportation problems, 
including considerations of different types of 
trucks or vehicles used in temperature-controlled 
transportation (Qiu et al., 2020). The current growth of 
the cold chain and frozen food industry in Thailand is 
continuously increasing at a rate of 12.0-14.0 percent 
per year. This is attributed to the expansion of urban 
communities into fast-paced urban societies, leading 
to a higher demand for these products. The market 
for temperature controlled goods transportation, 
known as Cold Chain Logistics, in Thailand is 
trending towards a higher growth rate of 8.0 percent 

or an estimated value of over 26,000 million baht. 
Currently, there are several companies engaged in 
the cold chain logistics business in Thailand.

The case study company in this research is one 
of the companies that provides refrigerated food 
transportation services, covering the northeastern 
region of Thailand. However, based on data survey, 
it was found that the transportation costs of the case 
study company are still high due to inefficiencies 
caused by increasing demand for goods each year 
and customers ordering multiple types of products 
simultaneously. Additionally, the vehicles have 
limited capacity, with each compartment being able to 
accommodate only one type of product. Furthermore, 
there is a requirement for timely delivery to meet 
customer demands. Addressing these transportation 
challenges is complex. Therefore, one possible 
approach to reduce transportation costs for the case 
study company is to strategically plan transportation 
routes systematically, aiming for low costs and 
maximizing customer satisfaction.

Solution discovery is a challenging aspect of the 
Vehicle Routing Problem (VRP), a well-known 
optimization problem. However, it holds significant 
prominence in academic literature and captures 
the attention of numerous researchers owing to its 
capacity to potentially minimize transportation 
expenses for organizations (Chowmali & Sukto, 
2021; Marinaki et  al., 2023; Pitakaso et  al., 2020; 
Tiwari & Sharma, 2023). As a result, the exploration 
of practical solutions in current transportation 
research has gained significant attention in addressing 
the challenges of VRP that encompass both original 
and remanufactured products. Extensive scholarly 
attention has been devoted to refining the problem’s 
characteristics and assumptions, resulting in 
numerous variations of VRPs and the development 
of various heuristic/metaheuristic modifications to 
address VRP problems (Kalatzantonakis et al., 2023; 
Kyriakakis et  al., 2022; Wichapa & Khokhajaikiat, 
2018). The VRP exhibits numerous variants because 
different instances of the problem often entail 
specific conditions that transform the traditional 
VRP into specialized cases, posing even greater 
challenges for existing algorithms. The majority of 
VRP research is devoted to scenarios involving a 
particular commodity type. Nevertheless, there exist 
distinct circumstances in which the transportation of 
distinct commodities within the same compartment 
is not possible. Involving vehicles with multiple 
compartments, the Multi-Compartment Vehicle 
Routing Problem (MCVRP) is an expansion of the 
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VRP. The goal of the MCVRP is to identify the most 
efficient routes for a fleet of vehicles to service a group 
of customers, considering the capacity limitations 
of each vehicle’s compartments. Every customer 
has a specific demand that needs to be fulfilled, 
and the vehicles are tasked with delivering goods 
from the depot to the customers while adhering to 
various constraints, including vehicle capacity, time 
windows, and the necessity to compartmentalize 
certain product categories.The MCVRP is more 
difficult than the traditional VRP because it requires 
decisions regarding compartment allocation and 
cargo loading (Chowmali & Sukto, 2020, 2021; 
Guo et  al., 2022; Heßler, 2021; Ostermeier et  al., 
2021). Using a fleet of multi-compartment vehicles 
that are equipped with distinct goods that necessitate 
isolation from one another, the MCVRP for goods 
delivery entails devising the transportation routes 
for the delivery of multiple items from a central 
depot to consumers. Cars are commonly employed 
to transport merchandise while ensuring their 
segregation from other items.

Figure 1. A vehicle with multi-compartments.

Figure1 depicts a vehicle with two compartments 
that is utilized for the delivery of goods; each 
compartment cannot contain different categories 
of goods. This renders the MCVRP more difficult 
than the standard VRP and further complicates the 
task of solving the problem using an exact method. 
Characteristics that distinguish the MCVRP (1) Each 
vehicle is equipped with multiple compartments, 
each of which possesses a distinct capacity; (2) 
Each compartment contains a single type of goods; 
(3) Each vehicle operates between a depot and a 
predetermined set of customers, returning to the 
depot; (4) A single vehicle will fulfill the demand of 
each customer; and (5) All other limitations persist 
unchanged from the initial VRP. The MCVRP in 
this particular scenario is exceedingly challenging to 
solve precisely due to its numerous characteristics.

The solution methods for MCVRPs fall into two 
categories (Chowmali & Sukto, 2021; Eshtehadi 
et  al., 2020; Guo et  al., 2022; Heßler, 2021): the 

exact method and the heuristic or metaheuristic 
method. Finding the optimal solution to the MCVRP 
is computationally intensive and challenging due to 
the fact that it is an NP-hard optimization problem, 
especially when dealing with large-scale peoblems 
that involve a substantial number of consumers 
or nodes. For the aforementioned factors, exact 
methods may fail to locate the optimal solution. 
Therefore, researchers in this field frequently prefer 
to solve MCVRPs using heuristic or metaheuristic 
approaches. Despite the fact that heuristic or 
metaheuristic methods cannot guarantee the global 
optimal solution, the obtained solutions are generally 
acceptable in practice. The benefit of heuristic and 
me-taheuristic methods is their ability to locate 
solutions rapidly while still producing results that are 
close to the optimal solution.

The DE algorithm improves the population iteratively 
by exploring and exploiting the search space, 
progressively convergent on a better solution for the 
VRP. DE utilizes fitness values as a means to adjust 
the population in an effort to determine a collection 
of routes that maximizes the objective function of 
the VRP, which may be the reduction of the total 
distance covered or the overall expense associated 
with the routes. For solving VRPs, DE is a prevalent 
population-based optimization algorithm. The 
process involves iteratively traversing the solution 
space in search of an optimal or nearly optimal 
solution by utilizing this metaheuristic algorithm. 
It is found that the Differential Evolution (DE) 
algorithm is a popular metaheuristic method widely 
applied to solve VRPs (Erbao et al., 2008; Moonsri 
et  al., 2022; Punyakum et  al., 2022; Sethanan & 
Jamrus, 2020; Souza et al., 2023; Xia et al., 2015). 
From the literature review, the DE algorithm is 
a powerful optimization algorithm that offers 
simplicity, robustness, and versatility. Its ability to 
handle various problem types, explore complex 
search spaces, and find high-quality solutions makes 
it a valuable tool for solving MCVRPs in different 
domains.

Consequently, the objective of this paper is to 
propose an adaptive differential evolution algorithm 
(ADE algorithm) as a solution for the cold chain 
transportation problem case study MCVRP. The 
proposed ADE algorithm provides numerous 
benefits. The algorithm has been modified from its 
original form. This algorithm is advantageous for 
solving MCVRPs with large datasets because it is 
both simpler and more effective. In addition, this 
research contributes to the advancement of cold 
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chain logistics and offers a practicable solution for 
optimizing the routing of multiple compartment 
vehicles. The primary contributions of this study are 
the following:

1.	 In this paper, the original DE algorithm is 
modified into an ADE algorithm in order to solve 
the MCVRP. This will be incredibly beneficial for 
field research because it is simple and efficient to 
solve MCVRPs with massive datasets.

2.	 This research provides a practical solution for 
optimizing the cold chain logistics transport 
routes. This will be extremely useful for research 
in this discipline in nearly every country, 
especially agricultural nations with a large 
agricultural product output.

The subsequent sections of the paper are organized 
as follows: The pertinent literature is presented in 
Section 2, whereas the mathematical model and the 
formulation of the proposed ADE are detailed in 
Section 3. The paper’s results and conclusion are 
respectively presented in Sections 4 and 5 of the 
paper.

2.	 Literature review

This section discusses heuristics/meta-heuristics 
and exact methodologies for solving MCVRPs 
for the goods delivery problem. For solving 
MCVRPs, Kaabachi et  al. (2019) introduced a 
hybrid self-adaptive neighborhood algorithm 
and a hybrid artificial bee colony algorithm. The 
primary objective of the MCVRP is to reduce the 
overall distance covered by a minimum number of 
vehicles. The efficacy of the suggested algorithms 
is evident from the results, which are derived from 
a practical case study of gasoline transportation in 
Italy. MCVRPs: a case study of the petrol station 
replenishment problem were addressed by Yahyaoui 
et al. (2020) via an adaptive variable neighborhood 
search (AVNS) and a Partially Matched Crossover 
PMX-based Genetic Algorithm (GA). Decreased 
total distance traveled by used vehicles is the primary 
objective of the delivery procedure. According to the 
findings, the convergence of the optimizer towards 
the optimal or near-optimal solution is accelerated 
when vehicles with numerous compartments are 
utilized. A case study of glass waste recycling in 
which Henke et al. (2019) proposed a branch-and-cut 
algorithm for the MCVRP with flexible compartment 
sizes. The primary aim of the delivery process is 
to minimize the overall mileage accumulated by 

pre-owned vehicles. The corresponding outcomes 
illustrate that the algorithm effectively resolves 
instances comprising a maximum of 50 locations 
while achieving an 87% reduction in computation 
time when compared to instances documented in the 
literature. Hübner and Ostermeier (2019) offered a 
large neighborhood search (LNS) for MCVRPs in 
context of grocery distribution. A store case study, 
benchmark data, and random data are used to verify 
it. Comparing outcomes to current techniques. 
Adding loading and unloading expenditures affects 
routing and saves merchants money, according 
to the model’s calculations. Two meta-heuristic 
algorithms, simulated annealing (SA) and GA, were 
proposed by Rabbani et al. (2017) to solve MCVRP 
in the context of greenhouse gas emissions. In all 
capacities, the researchers conclude that SA is the 
worst algorithm for solving this problem. In contrast 
to the SA algorithm, the hybrid GA-SA algorithm 
exhibits superior scalability compared to the GA 
algorithm. To solve the MCVRP: A case study of 
the petroleum delivery problem, Chowmali and 
Sukto (2021) proposed a hybrid method combining 
the Fisher and Jaikumar Algorithm (FJA) and 
Adaptive Large Neighborhood Search (ALNS). In 
this scenario, minimizing the total distance traveled 
while employing the fewest number of multi-
compartment vehicles feasible is the objective. The 
efficacy of the proposed algorithm in resolving the 
MCVRP in this particular instance is demonstrated 
by its application to the four numerical examples. An 
iterated tabu search for the MCVRP in the literature 
was presented by Silvestrin and Ritt (2017). A number 
of investigations are conducted by researchers to 
assess the effectiveness of the iterative tabu search 
in comparison to previously published outcomes. 
We find that its solutions are consistently superior 
to those of existing heuristic algorithms. In their 
study, Efthymiadis et al. (2023) introduced a Mixed-
Integer Linear Programming (MILP) approach for 
MCVRP, which they applied to a practical scenario 
involving an oil company managing a Thessalian 
depot and supplying five unique fuel variations to 19 
filling stations. The MILP model reduces commute 
times by 18.6% and costs by 7.2%, resulting in cost 
savings for the business. Manual route planning is 
time-intensive and prone to error. The model and 
strategy will reduce the time required for transport 
planning, generate cost-effective routes, and account 
for operational constraints, thereby improving 
efficiency, productivity, and customer satisfaction. 
Guo et  al. (2020) offered a hybrid method, a 
combination of an ant colony optimization algorithm 
(ACO) and variable neighborhood descent (VND), 
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for MCVRP in the literature. The proposed algorithm 
is subjected to a series of numerical comparisons and 
statistical analyses, and the obtained results show 
that it is accomplished of producing outcomes that 
are superior to those of prior algorithms. An ALNS 
algorithm for MCVRP was presented by Chen et al. 
(2019) within the framework of an actual cold-
chain distribution company. The ALNS algorithm’s 
effectiveness and efficiency are demonstrated 
through experiments when compared to the manual 
approach, which is predominantly founded on 
experience. A Branch-and-Price algorithm was put 
forth by Mirzaei and Wøhlk (2019) for MCVRP. 
Computational outcomes for instances containing 
a maximum of 100 customers are provided, while 
the algorithm demonstrates optimal performance 
when dealing with instances consisting of up to 50 
customers and four commodities.

Nevertheless, these methodologies can be broadly 
categorized into two distinct classifications: 
heuristics/meta-heuristics and exact methods. When 
the number of nodes is substantial, it is impossible to 
locate optimal excursions in a reasonable amount of 
time using any exact method. Hence, the literature 
often resorts to employing heuristic/meta-heuristic 
methods to tackle large-scale MCVRPs. In most 
of the related papers, meta-heuristics are used. The 
metaheuristic algorithm Differential Evolution (DE) 
has been widely applied in the resolution of numerous 
optimization challenges, including the MCVRP. 
MCVRP is the process of determining the optimal 
routes for vehicles with multiple compartments to 
deliver products to various customers or locations 
while taking into account various constraints and 
objectives.DE is based on evolutionary and genetic 
algorithmic principles. It maintains a population of 
candidate solutions and enhances them iteratively 
through mutation, crossover, and selection 
operations. The algorithm explores the search space 
by generating new candidate solutions and selecting 
the individuals with the highest fitness values for the 
next iteration. In the context of MCVRP, DE can be 
used to identify near-optimal solutions by optimizing 
the assignment of vehicles to compartments, 
determining the sequence of customer visits, and 
optimizing the routes for maximizing the profit or 
minimizing the total cost. During the optimization 
process, the algorithm dynamically modifies its 
parameters to improve its search capability and 
convergence speed. DE has demonstrated promising 
results in the resolution of MCVRP, delivering 
efficient and effective solutions. It can manage 
the complexity of MCVRPs and is suitable for 

logistics and transportation applications in the real 
world. The DE algorithm’s effectiveness hinges on 
key parameters: Population Size, which balances 
search capability against computational load; 
larger populations enhance exploration (Storn & 
Price, 1997). Mutation Factor (F) governs variation 
among individuals, influencing exploration (Zhang 
& Sanderson, 2009). Crossover Rate (CR) affects 
population diversity and convergence speed, vital for 
exploration-exploitation balance (Das & Suganthan, 
2011). Selection Mechanism determines offspring 
survival, impacting efficiency in solution space 
navigation. Optimizing these parameters for specific 
problems is crucial for DE’s optimal performance.

The transformation of DE into Adaptive Differential 
Evolution (ADE) aims to rectify DE’s limitations 
and boost its performance. ADE’s dynamic 
parameter adaptation enhances flexibility and 
efficiency across various problem settings, as noted 
by Brest et  al. (2006). It accelerates convergence 
and improves solution quality by adjusting search 
behaviors adaptively, a feature highlighted by Qin 
and Suganthan (2005). ADE prevents premature 
convergence in complex scenarios (Cui et  al., 
2016), and is better suited for dynamic and noisy 
environments (Das et al., 2009). It exhibits increased 
robustness in diverse optimization challenges (Neri 
& Tirronen, 2010), and its self-adapting nature makes 
it more user-friendly, reducing reliance on expert 
parameter tuning (Mallipeddi & Suganthan, 2010). 
These enhancements underscore ADE’s improved 
adaptability, performance, and broader applicability 
compared to DE.

These are the important reasons for enhancing the 
DE algorithm into the ADE algorithm, to be used 
in improving the efficiency of the original DE 
algorithm for solving the MCVRP problem in this 
research. The details of the proposed methods will be 
presented in the following section.

3.	 The proposed method

The ADE algorithm is a metaheuristic approach 
designed for addressing the MCVRP and VRP, 
particularly within the framework of cold chain 
transportation, as evidenced by a case study. In 
this specific scenario of the MCVRP, the objective 
is to efficiently formulate route plans for a fleet of 
vehicles featuring multiple compartments to cater to 
a group of customers. Several constraints need to be 
considered, including vehicle capacity, compartment 
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compatibility, and customer demands, with the aim 
of optimizing the overall efficiency of the routing 
solution. The framework for this study can be 
described in Figure 2.

Figure 2. The framework for this study.

3.1.	 Data Collection

Collect data from a case study, specifically studying 
the transportation format and gathering information 
about the locations of frozen food operators or 
warehouses, customer locations, transportation 
distances between each node, customer demand for 
products, characteristics and capacity of vehicles 
used for product delivery. The study collected 
transportation data for 3 days in order to generate 
distance metrics and related information for further 
calculations.

3.2.	 The MCVRP model in context of cold 
chain transportation

In this section, a MILP model for coldchain 
transportation is presented. As an extension of 
MCVRP, MCVRP with a heterogeneous fleet is 
represented by a mathematical model that differs 
only slightly. Adjusting the constraints to allow for 
various types of vehicles enables the formulation of 
the MCVRP model as a MILP model. The MCVRP 
mathematical model for this paper is depicted in 
Figure 3.

Figure 3. A distribution network for the cold chain 
transportation.

Indices: The model for the MCVRP in cold 
chain transportation can be established on a fully 
connected undirected network. A set of n customers 
and a solitary central depot (node 0) compose the 
network’s node set N. A complete graph denoted by 
G = (N, A), in which N is the node set and A is the 
arc set, is utilized. The arc between nodes i and j is 
denoted by the symbol (i, j). Furthermore, P signifies 
the assortment of distinct product categories, whereas 
K denotes the collection of multi-compartment 
vehicles that are accessible at the depot.

Parameters: The variable dtij denotes the actual 
distance between nodes i and j in kilometers. 
Customer j’s demand for a particular product type p, 
denoted in packaging cases, is represented by djp. The 
capacity of vehicle k for product type p, as indicated 
on packaging crates, is denoted by qkp. uk represents 
the transportation cost per unit for vehicle k in 
Baht per kilometer. vk signifies the cost of utilizing 
vehicle number k in Baht. L represents the maximum 
allowable route length.

Decision variables: The binary variable Xijk is 
defined as follows: if node i and node j are connected 
by vehicle k, Xijk = 1; otherwise, Xijk = 0. Yjkp is a 
binary variable that takes on the value 1 if a vehicle k 
services the product type p at node j and 0 otherwise.
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The objective function denoted as Equation (1) is 
designed to minimize the total cost, encompassing 
expenditures related to both transportation and 
vehicle utilization. According to Equation (2), each 
consumer j may only be visited once by each route. 
Equation (3) states that a multi-compartment vehicle 
is required to depart after entering customer j. As 
sub-tour elimination constraints, Equation (4) is 
derived. In the absence of a visit from vehicle k to 
customer j, as per Equation (5). Vehicle number k 
cannot be utilized to travel between points i and j if 
it has not been activated for service, as confirmed by 
Equation (6). Yjkp is set to zero. As per Equation (7), a 
solitary vehicle attends to the needs of each consumer 
j who requests fuel type p. The quantity of each fuel 
cannot surpass the capacity of its compartment, as 
indicated by Equation (8). Equation (9) guarantees 
that the measured distance of the route does not 
surpass its utmost length. Equation (10) specifies 
that the variables X and Y are binary.

3.3.	 The proposed ADE algorithm
One of the most frequently employed techniques for 
resolving optimization problems is the original DE 
algorithm. Nevertheless, to optimize the solution’s 
efficacy, this study implemented a greedy decoding 
technique to enhance the decoding process. The 
calculation steps of the proposed DE algorithm, 
called ADE algorithm, proposed are as follows. (1) 
Generating an initial solution: In this stage, an initial 
target vector code is generated, which corresponds 
to the population size that has been specified. The 

dimensions of each target vector are equivalent to the 
quantity of customers (N). Then, random numbers 
between [0, 1] are assigned to each coordinate 
of the target vector. (2) Mutation: In this step, we 
modified original mutation to be adaptable between 
diversified by random target vectors and intensified 
on the best of target vectors Equation (11). First, 
three target vectors are randomly selected and the 
best of vector targets Xbest,j,g. Then, the random values 
of corresponding coordinates among the selected 
vectors and the best of target vectors are used to 
perform value mutation according to Equation (11). 
The factor that determines the magnitude of vector 
differentiation is set to a value of 2, and the last 
two values yield the mutated vector (Vi,j,g). In this 
research, the mutation process will be performed 
using the following method, known as “ mutation.
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Table 1. Product demand data.

Customer
Demand (Packaging box)

Day 1 Day 2 Day 3
1 (46, 86) (50, 88) (26, 78)
2 (37, 74) (34, 80) (23, 58)
3 (100, 122) (98, 138) (87, 116)
4 (52, 162) (71, 157) (48, 164)
5 (112, 17) (124, 18) (109, 24)
6 (82, 28) (85, 45) (70, 43)
7 (78, 143) (61, 126) (59, 150)
8 (79, 18) (60, 31) (76, 20)
9 (115, 139) (126, 154) (101, 127)
10 (66, 150) (85, 162) (78, 169)
11 (179, 24) (177, 35) (172, 32)
12 (16, 45) (1, 51) (31, 61)
13 (43, 100) (29, 118) (26, 82)
14 (56, 138) (57, 135) (43, 153)
15 (172, 41) (163, 52) (156, 38)
16 (182, 160) (180, 163) (200, 161)
17 (144, 15) (125, 20) (152, 8)
18 (174, 186) (178, 191) (181, 199)
19 (188, 151) (206, 158) (169, 161)
20 (12, 25) (6, 22) (32, 35)
21 (41, 69) (49, 51) (32, 81)
22 (117, 76) (124, 83) (101, 74)
23 (26, 93) (14, 78) (42, 85)
24 (42, 171) (35, 166) (34, 156)
25 (43, 26) (46, 24) (24, 33)
26 (52, 51) (72, 35) (40, 42)
27 (197, 81) (185, 67) (197, 63)
28 (152, 43) (158, 33) (155, 29)
Total (2603, 2434) (2599, 2481) (2464, 2442)
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When F is the scaling factor and α is the cyclic value 
on generation cycle M that calcutated by 𝑔 modulo 
M and divided by M to scale value in range [0, 1]. (3) 
Recombination: The recombination process involves 
presenting N trial vectors to generate candidate 
target vectors for the next generation. In this step, 
a subset of each Vi,j,g and Xi,j,g is randomly selected. 
These selected subsets, denoted as Xi,j,g or Vi,j,g, are 
then used to create trial vectors Ui,j,g. The selection of 
Xi,j,g or Vi,j,g is performed using random values randi,j 
as shown in Equation (12).
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CR denotes the probability of a crossover.

(4) Selection: The selection process involves 
exchanging coordinate values between the target 
vectors and mutated vectors for each NP, using 
Equation (13). This is done by comparing a randomly 
generated real number in the range [0, 1] with a 

specified change rate value, which is set to 0.8. The 
values are then adjusted according to the equation, 
resulting in a new vector called the trial vector (Ui,j,g).
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(5) Decoding: In this paper, the ROV decoding and 
Greedy decoding are use to enhancement, the DE 
algorithm aims for improving the effectiveness of 
the result for MCVRP. Figure 4 depicts the steps 
involved in the ROV decoding process, while 
Figure 5 illustrates the steps of the Greedy decoding 
approach.

3.4.	 Numerical illustrations
This research will test the proposed algorithm for 
solving the MCVRP problems in context of the cold 
chain transportation. The details of the calculations 
will be presented in the next section.

(a) Ranked Order Value (ROV).

(b) Generate the transportation routes.
Figure 4. The steps of ROV decoding.
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4.	 Results

4.1.	 Experimental data
The study encompasses a total of 28 customers, de-
noted as C1, C2,..., C28, along with a centraldepot 
labeled as D. Further details can be found in Figure 6. 
The case study has 20 cargo trucks for transporting 
goods, consisting of two types with two compart-
ments of the same size. Each compartment can only 
carry one type of goods. There are a total of 10 ve-
hicles of type#1, each with two equally-sized cargo 
compartments. The overall capacity is equivalent to 
100 packaging boxes. There are a total of 5 vehicles of 
type#2, each with two equally-sized cargo compart-
ments. The overall capacity is equivalent to 624 pack-
aging boxes. Additionally, there are a total of 5 trucks 
of type 3, with two equally-sized cargo compart-
ments. Each vehicle can carry a total of 912 packag-
ing boxes of goods. The company delivers goods to 
customers every day, and the number of customers 
on this case study is 28. The distances between cus-
tomers are actual distances measured from Google 
Maps. The daily quantity of goods required by cus-
tomers on day 1, day 2, and day 3 is shown in Table 1. 
The candidate vehicles and their capacities are shown 
in Table 2.
Figure 6 shows the distribution network for this case 
study.

In addition, the distance matrix for this case study is 
shown in Table 3.

After obtaining the relevant parameters, the proposed 
ADE algorithm was tested using Python. The 
processing system utilized is powered by an Intel(R) 

Core(TM) i7-9750HF CPU running at 2.60  GHz 
(2.59 GHz), and it is equipped with 16.0 GB of RAM. 
This system is proficient in handling 1,000 iterations, 
with a total of 100  vectors.The control parameters 
for the evolutionary process are CR = 0.7 and F = 2. 
The transportation routes and the use of cargo trucks 
obtained from the proposed algorithm are shown in 
Table 4. It can be observed that the ADE method 
yields the following results: The number of vehicles 
used is 8, consisting of eight routes, and the total 
distance covered is 1,466.5 kilometers.

4.2.	 Result comparison

After obtaining the experimental data, the 
researchers obtained results from a mathematical 
modeling approach by using LINGO software 
for processing to find solutions to this case. In 

Figure 5. The steps of Greedy decoding.

Table 2. The candidate vehicles and their load capacities.

Vehicle type
Compartment

Vehicle usage cost (Baht) Unit cost (Bath/km.)m1 m2 Total
V1 50 50 100 800 12.78
V2 312 312 624 1,000 17.25
V3 456 456 912 1,400 23.32

Figure 6. The distribution network.
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Table 3. The distance matrix for this case study.

D C1 C2 C3 C4 C6 C7 C8 C9 C10 C11 C12 C13 C14
D 0 42.6 62.7 27.1 45.8 53 24 1.7 47.7 16.3 11.8 18 73.1 27.5
C1 42.6 0 61.5 49.9 54.8 61.8 53.4 40.6 79.9 49.3 48.3 56.1 33.7 60.6
C2 62.7 61.5 0 76.4 96.2 103 37.8 60 105 62.9 67.4 76.3 99.9 46.2
C3 27.1 49.9 76.4 0 28.2 35.5 40.7 37.3 53.3 36.7 35.7 38.2 53.4 47.9
C4 45.8 54.8 96.2 28.2 0 11.1 58.3 43.5 59.5 52 53.6 49 43.7 63.2
C5 53 61.8 103 35.5 11.1 0 83 68.3 84.2 76.7 78.4 73.7 61.8 87.9
C6 24 53.4 37.8 40.7 58.3 83 0 24.9 70.9 19.4 19.2 41.1 86.8 17.4
C7 1.7 40.6 60 37.3 43.5 68.3 24.9 0 49.9 15.3 10.2 20.2 76.7 26.5
C8 47.7 79.9 105 53.3 59.5 84.2 70.9 49.9 0 62.2 56.2 32.7 92.7 73.4
C9 16.3 49.3 62.9 36.7 52 76.7 19.4 15.3 62.2 0 4.9 33.5 82.7 15.4
C10 11.8 48.3 67.4 35.7 53.6 78.4 19.2 10.2 56.2 4.9 0 25.7 81.7 19.9
C11 18 56.1 76.3 38.2 49 73.7 41.1 20.2 32.7 33.5 25.7 0 90.4 43.9
C12 73.1 33.7 99.9 53.4 43.7 61.8 86.8 76.7 92.7 82.7 81.7 90.4 0 92.2
C13 27.5 60.6 46.2 47.9 63.2 87.9 17.4 26.5 73.4 15.4 19.9 43.9 92.2 0
C14 48.2 20.9 37.5 59.5 80.9 106 33.3 51.8 87.6 57.8 56.8 65.2 54.1 48.7
C15 61.5 93.7 119 67.1 73.3 98 84.7 63.7 23.8 77 69.5 62.1 115 88.3
C16 110 149 102 145 152 176 120 108 139 108 111 113 180 109
C17 45.8 78 104 51.4 57.6 82.3 67.9 48 16.5 61.3 53.8 46.4 98.8 72.6
C18 39.7 77.8 103 59.9 57 81.8 62.9 44.7 19 53.4 49.2 27.8 101 65.3
C19 53 61.7 103 35.5 11 20.1 67.8 55.2 58.4 59.2 61 54.2 50.6 70.6
C20 55.2 27.8 51.6 66.4 82.1 113 62.2 58.8 94.6 64.8 64.6 71.5 61 70.5
C21 55.4 28.1 51.9 66.7 82.4 113 62.4 59 94.8 65 64.8 71.8 61.3 76.3
C22 88.1 67.8 30.4 99.3 121 145 63.2 91.7 127 81.2 85.8 105 101 71.5
C23 75.6 72.2 17.9 86.8 108 133 50.7 79.2 115 68.7 73.3 92.5 114 59
C24 75.7 48.4 24.4 87 108 133 53.5 79.3 115 71.6 76.1 92.7 81.6 61.9
C25 95.9 71.3 38.2 107 129 153 71 102 135 89 93.6 113 104 79.4
C26 101 122 156 96.1 71.6 59.1 122 101 65.5 114 106 99 115 125
C27 73.3 62.9 107 64.5 39.8 24.6 92 79.4 92.7 83.4 85.2 78.5 39.1 94.7
C28 76.3 115 68.2 112 118 143 86.6 74.7 106 74.6 77.8 80 147 75.8

Table 3. Continued.
C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28

D 61.5 110 45.8 39.7 53 55.2 55.4 88.1 75.6 75.7 95.9 101 73.3 76.3
C1 93.7 149 78 77.8 61.7 27.8 28.1 67.8 72.2 48.4 71.3 122 62.9 115
C2 119 102 104 103 103 51.6 51.9 30.4 17.9 24.4 38.2 156 107 68.2
C3 67.1 145 51.4 59.9 35.5 66.4 66.7 99.3 86.8 87 107 96.1 64.5 112
C4 73.3 152 57.6 57 11 82.1 82.4 121 108 108 129 71.6 39.8 118
C5 98 176 82.3 81.8 20.1 113 113 145 133 133 153 59.1 24.6 143
C6 84.7 120 67.9 62.9 67.8 62.2 62.4 63.2 50.7 53.5 71 122 92 86.6
C7 63.7 108 48 44.7 55.2 58.8 59 91.7 79.2 79.3 102 101 79.4 74.7
C8 23.8 139 16.5 19 58.4 94.6 94.8 127 115 115 135 65.5 92.7 106
C9 77 108 61.3 53.4 59.2 64.8 65 81.2 68.7 71.6 89 114 83.4 74.6
C10 69.5 111 53.8 49.2 61 64.6 64.8 85.8 73.3 76.1 93.6 106 85.2 77.8
C11 62.1 113 46.4 27.8 54.2 71.5 71.8 105 92.5 92.7 113 99 78.5 80
C12 115 180 98.8 101 50.6 61 61.3 101 114 81.6 104 115 39.1 147
C13 88.3 109 72.6 65.3 70.6 70.5 76.3 71.5 59 61.9 79.4 125 94.7 75.8
C14 103 138 87.1 86.9 87 25.1 25.4 44.5 48.9 25.1 48 140 79.3 104
C15 0 169 31.7 43.5 73.6 110 110 143 130 130 151 80.8 97.9 136
C16 169 0 154 138 161 151 151 102 117 124 110 206 185 43.9
C17 31.7 154 0 21.8 65.7 91.8 92.1 125 112 112 133 72.6 90 118
C18 43.5 138 21.8 0 63.4 93.8 94.1 127 114 114 135 82.5 87.6 104
C19 73.6 161 65.7 63.4 0 97.1 97.4 130 118 118 138 63.4 30.6 127
C20 110 151 91.8 93.8 97.1 0 0.55 44.4 64.6 30.7 47.9 148 88 120
C21 110 151 92.1 94.1 97.4 0.55 0 44.3 65.8 30.1 47.8 150 89.1 118
C22 143 102 125 127 130 44.4 44.3 0 16.6 23.3 8.5 182 153 96.3
C23 130 117 112 114 118 64.6 65.8 16.6 0 35.1 24.4 169 141 83.8
C24 130 124 112 114 118 30.7 30.1 23.3 35.1 0 28.6 172 112 90.4
C25 151 110 133 135 138 47.9 47.8 8.5 24.4 28.6 0 189 129 104
C26 80.8 206 72.6 82.5 63.4 148 150 182 169 172 189 0 70 172
C27 97.9 185 90 87.6 30.6 88 89.1 153 141 112 129 70 0 154
C28 136 43.9 118 104 127 120 118 96.3 83.8 90.4 104 172 154 0
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addition, the computational results presented in 
Table 5 demonstrate that optimal solutions for P1 
(Problem 1: 5 customers) were obtained using 
LINGO software, DE, and the proposed ADE. 
However, for other problems, the effectiveness 
of the ADE method in providing the best solution 
for each problem demonstrates that the proposed 
approach is highly efficient and can be applied 
in this case study. Furthermore, when compared 
to the best-known solutions achieved within 72 
hours using LINGO software, the computational 
results for day 1 (CS-D1), day 2 (CS-D2) and day 3 
(CS-D3) using the proposed ADE algorithm were 
superior. These results underscore the importance 
of implementing the suggested algorithm in this 
particular instance. This article provides practical 
implications and significant contributions to future 
investigations, advising scholars on how to devise 
innovative algorithms to tackle the NP-hard MCVRP 
in cold chain transportation. The ADE that has been 
proposed exhibits adaptability and practical utility in 

resolving MCVRPs, rendering it a fitting instrument 
for the present case study. Further, it is expected that 
the algorithm under consideration can be expanded 
to address additional VRPs that may arise in practical 
situations.

5.	 Conclusion
The distribution of goods is a significant concern that 
directly impacts a company’s performance. Efficient 
distribution not only saves transportation costs but 
also contributes to reduced environmental impact. 
In various practical scenarios, the MCVRP with a 
diverse vehicle fleet becomes a pertinent concern. 
This study aims to minimize the overall cost, leading 
to a specific focus on the cold chain transportation 
problem. Addressing the requirements of 28 
customers over a three-day period in northeastern 
Thailand, we introduce an ADE, an enhanced 
version of the original DE algorithm. The research 

Table 5. The comparison results.

Problem

Details of customers and 
number of vehicles for each 
type (typ#1,typ#2,typ#3)

LINGO DE ADE

Status

Times

(hours) Total cost Total cost Total cost
P1 C1-C5, (0, 2, 0) Optimal 00:00:02 6,936.95* 6,936.95* 6,936.95

P2 C1-C10, (0, 2, 1) Feasible 24:00:00 10,559.60* 10,582.00 10,559.60*

P3 C1-C15, (3, 3, 3) Feasible 24:00:00 17,026.20 16,732.34 16,417.78*

P4 C1-C20, (3, 3, 3) Feasible 24:00:00 26,453.06 17,802.94 16,981.48*

CS-D1 C1-C28, (0, 8, 2) Feasible 72:00:00 48,940.12 45,040.81 43,089.61*

CS-D2 C1-C28, (0, 5, 4) Feasible 72:00:00 47,174.32 44,345.93 41,233.92*

CS-D3 C1-  C28, (0, 9, 1) Feasible 72:00:00 47,194.96 42,708.03 40,802.20*

Table 4. The routes for day 1 obtained by the proposed ADE algorithm.

Vehicle Computational using the proposed ADE algorithm

No. Type Route Distance Total Demand
Transportion 

cost
Vehicle 

usage cost Total cost
1 V2 D-C15-C8-D 133.0 (251, 59) 2,294.25 1,000 3,294.25
2 V2 D-C3-C5-C26-D 119.4 (264, 190) 3,841.58 1,000 3,059.65
3 V2 D-C10-C2-C28-D 223.7 (255, 267) 3,858.83 1,000 4,858.83
4 V3 D-C19-C27-C12-C1-D 199.0 (447, 363) 4,640.68 1,400 6,040.68
5 V3 D-C11-C4-C9-C13-D 161.9 (389, 425) 3,775.51 1,400 5,175.50
6 V3 D-C7-C17-C18-D 111.2 (396, 344) 2,593.18 1,400 3,993.18
7 V3 D-C6-C23-C25-C24-C21-C20-D 213.6 (246, 412) 4,979.99 1,400 6,379.99
8 V3 D-C14-C22-C16-D 304.7 (355, 374) 7,105.60 1,400 8,505.60

28 customers 1,466.5 (2,603, 2,434) 33,089.61 10,000 43,089.61
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initiates with the development of an MCVRP model, 
followed by the formulation of a MILP model 
tailored to a particular case study. Subsequently, 
the ADE algorithm is tailored to solve the MCVRP 
within this context. Validation of the proposed ADE 
algorithm is performed through numerical examples, 
indicating its effectiveness in solving the defined 
MCVRP model. Comparative analysis with Lingo 
software and the original DE demonstrates that the 
proposed ADE algorithm is more efficient in terms 
of total cost. This algorithm proves valuable for 
minimizing the total cost in the distribution network 
for cold chain transportation, substantiated by the 
effectiveness demonstrated in the case study and 
numerical examples.

In the context of solving the MCVRP using an 
ADE algorithm, there are several potential future 
directions to explore. Here are some ideas:

(1) Investigating alternative solution representations 
that better capture the MCVRP constraints, such as 
permutations or tour-based representations;

(2) Exploring adaptive mechanisms to dynamically 
control the ADE algorithm’s parameters based on 
problem instances or the optimization process’s 
current state;

(3) Integrating local search heuristics, like 2-opt 
or 3-opt, within the ADE algorithm to improve the 
exploration of promising solution regions;

(4) Extending the ADE algorithm to handle uncertain 
and dynamic scenarios by considering stochastic 
demand or time-varying parameters and employing 
robust optimization or online learning strategies;

(5) Applying the ADE algorithm to solve the 
MCVRP as a multi-objective optimization problem, 
incorporating additional objectives like minimizing 
travel distance, balancing load distribution, or 
optimizing time windows;

(6) Investigating parallel versions of the ADE 
algorithm to enhance efficiency and scalability for 
large-scale MCVRP instances, utilizing techniques 
such as parallel computing or distributed algorithms;

and (7) Conducting other real-world experiments 
and case studies to validate the ADE algorithm’s 
performance, collaborating with industry partners 
and logistics providers to assess its effectiveness and 
compare it with existing approaches.
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