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Abstract: This study explores the utilization of Neural Radiance Fields (NeRFs), with a specific focus
on the Instant NeRFs technique. The objective is to represent three-dimensional (3D) models within
the context of the industrial metaverse, aiming to achieve a high-fidelity reconstruction of objects in
virtual environments. NeRFs, renowned for their innovative approach, enable comprehensive model
reconstructions by integrating diverse viewpoints and lighting conditions. The study employs tools
such as Unity, Photon Pun2, and Oculus Interaction SDK to develop an immersive metaverse. Within
this virtual industrial environment, users encounter numerous interactive six-dimensional (6D) mod-
els, fostering active engagement and enriching the overall experience. While initial implementations
showcase promising results, they also introduce computational complexities. Nevertheless, this
integration forms the basis for immersive comprehension and collaborative interactions within the
industrial metaverse. The evolving potential of NeRF technology promises even more exciting
prospects in the future.
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1. Introduction

In the industry, virtual spaces are increasingly being utilized for worker training,
process simulations, and quality control. However, a major challenge associated with these
spaces is that, at first glance, they may captivate attention but often seem to have more
resemblance to a video game than real-life scenarios.

To enhance the realism of these virtual environments, advanced three-dimensional
(3D) models capable of accurately reproducing textures and details of real-world objects
are essential. While various mesh-based 3D modeling techniques demonstrate efficacy
for simpler objects, challenges arise when dealing with more complex models involving
reflections and flexible elements. The precision required to model these sophisticated
features presents a substantial obstacle.

To confront this challenge, there is an urgent need to advance 3D modeling techniques
tailored for virtual industrial environments. The difficulty in accurately capturing complex
characteristics underscores the necessity for research and development in more sophisti-
cated 3D modeling technologies. This pursuit aims to achieve a more precise and detailed
representation, ultimately enhancing the practicality and effectiveness of virtual spaces in
industrial applications.

1.1. Motivation

The implementation of six-dimensional (6D) models based on Neural Radiance Fields
(NeRFs) in an industrial metaverse presents itself as an interesting choice for various
reasons. Firstly, it represents an opportunity for technological innovation in various fields,
such as industrial, heritage, or educational. By utilizing advanced technology, a detailed
and realistic representation of objects and scenes in the environment is achieved. This has
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a significant impact on design and simulation processes, enhancing the way objects are
represented and visualized.

Another relevant aspect is the ability to promote collaboration and communication
among teams and professionals. By having a shared virtual representation of objects and
scenes in an industrial metaverse, remote collaboration and joint decision-making are
facilitated. This overcomes geographical limitations and allows different users to interact
with and visualize the same data, which is particularly useful in industrial environments
where collaboration between teams is essential.

1.2. Technological Context and Related Research

Virtual environments, computer-generated 3D simulations, enable the exploration
and manipulation of digital worlds, offering advantages such as access to information
from anywhere and the development of skills like creativity and critical thinking. Despite
their benefits, it is crucial to consider potential negative effects, such as vision problems
or software dependence, requiring careful design and attention to updates to ensure
compatibility with specific goals [1]. In the industrial context, these virtual environments
play a crucial role in training and decision-making, providing professionals with a secure
and controlled environment for studying complex processes [2].

The concept of the metaverse, a shared virtual space for the creation and experience
of interactive virtual worlds, has sparked controversy. Its increasing relevance in areas
such as entertainment, education [3], and industry is highlighted [4]. In Figure 1, an ex-
ample illustrates what a metaverse looks like and how avatars are visualized. Current
advancements are crucial for the future of the metaverse, as mentioned in [5]. The emphasis
lies in enhancing aspects such as reducing latency for seamless interactions, acquiring
high-quality data to ensure an immersive and precise experience, and crafting virtual
worlds that are more realistic and interactive, among other considerations.

(a) (b)
Figure 1. Example of interaction in the metaverse: virtual visit to Valencia city in the follow-
ing. https://www.spatial.io/s/Visit-Valencia-639b11ab10f4070001b4a87b?share=85202435970757
64882 (accessed on 19 February 2024). (a) Users interacting with elements in the metaverse. (b) Cus-
tomized avatars.

In the industrial context, the metaverse offers advantages such as product visualiza-
tion, worker training, and effective communication, but high-quality virtual models that
accurately reproduce the physical and visual characteristics of real objects are required [6].

Currently, 3D technologies have experienced exponential growth, reshaping vari-
ous sectors of modern society, including entertainment [7], education [8], medicine [9],
and culture [10]. These technologies have fundamentally altered how humans perceive and
engage with the world around them. The creation of 3D models, which includes detailed
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information about the geometry, textures, and physical properties of 3D objects, presents a
notable challenge in the realms of computer graphics and artificial vision. Choosing the
most fitting 3D modeling technique to fulfill the specific requirements of an application
is not always a straightforward task. Despite the apparent simplicity of crafting a basic
3D model, producing an accurate and photorealistic computer model of a complex object
continues to demand substantial effort [11]. This complexity amplifies when attempting to
capture reflections and intricate details of the model.

In the realm of virtual reality, an innovative concept has captured the scientific com-
munity’s attention. This concept is the NeRF, a promising technique for generating highly
detailed and realistic virtual content (see an example in Figure 2). This method represents
a scene using a fully connected deep neural network, known as a multilayer perceptron
(MLP). Its input is a single continuous coordinate in five dimensions, i.e., spatial location
(x, y, z) and viewing direction (θ, ϕ), and its output is the volumetric density and emitted
radiance (light intensity) dependent on the view at that spatial location [12]. In other words,
it is a technique that employs Artificial Intelligence to achieve highly realistic and detailed
results by calculating the camera position and the light intensity it receives. Thus, by cap-
turing images from different angles and positions of the object or scene to be modeled,
an extremely realistic virtual recreation can be achieved.

Figure 2. Graphical example of the NeRF method’s operation [12].

Applying the NeRF technique in an industrial context within a metaverse opens
up opportunities for more accurate representation of models than traditional meshing
methods, for machinery, products, and manufacturing processes in a shared virtual space.
One of the key features that sets this technique apart from traditional ones is its ability to
capture reflections on materials. However, it is important to note that using NeRFs can
be computationally intensive, resulting in significant processing overhead and requiring
powerful hardware.

Several studies aim to enhance NeRF’s capabilities in different areas. For example,
in [13], efforts are made to improve the NeRF technique to capture scenes in motion, while,
in [14], the goal is to achieve high-quality results in less time than the traditional NeRF
method. As the NeRF technique is a developing technology, it remains a work in progress,
implying that its effectiveness and applicability may improve over time. This leads to
ongoing monitoring and adaptation as its limitations are investigated and addressed,
with the potential emergence of new, similarly performing techniques in the near future.

The current literature highlights the increasing use of virtual environments in indus-
trial settings, but it underscores the necessity for more advanced 3D modeling techniques
to accurately represent complex objects and scenarios. While traditional methods have
limitations in capturing reflections and intricate details, the emergence of Neural Radiance
Fields (NeRFs) offers a promising solution.

1.3. Objectives and Main Contributions

The main objective is the generation of 6D models using the NeRF technique and artificial
vision, with the aim of integrating realistic models into an industrial metaverse. By introducing
these 6D models into an industrial metaverse, interaction and collaboration among users are
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encouraged. Multiple users can explore and manipulate the models simultaneously, enabling
a more immersive experience and facilitating joint decision-making.

Furthermore, the implementation of this technology contributes to the efficiency and
optimization of industrial processes. These models allow for a more precise representation
of objects and their interaction with the environment compared to classic mesh-based 6D
modeling, making it easier to identify improvements and conduct realistic simulations.
This can have a significant impact on the productivity and competitiveness of companies.

Lastly, the use of NeRFs as a representation of 6D models opens the door to future
applications and developments. This technology is constantly evolving, providing the
opportunity to lay the foundations for the creation of new products, services, or tools in
the industrial field through research.

1.4. Structure

The paper’s structure is outlined as follows: the proposed application is developed
in Section 2. Subsequently, Section 3 provides insights into the interface’s usability and
additional aspects. Finally, the paper concludes with a discussion and concluding remarks
presented in Sections 4 and 5.

2. Development of a Prototype of Industrial Metaverse for Teaching/Learning Activities
2.1. Design Methodology

The methodology proposed in this work for designing an industrial metaverse is
graphically depicted in Figure 3, which shows the systematic progression through key
phases. It initiates with client specification gathering, involving the establishment of initial
contact to comprehensively understand the client’s specific needs and vision for utilizing
the virtual environment. Following this, the collaborative preliminary design phase unfolds,
where, based on the client’s specifications, a joint effort is made to conceptually outline
each element of the metaverse without delving into programming. Mock-ups are generated
during this phase, providing a tangible representation for client feedback before transition-
ing to the subsequent development stage. After the client’s validation, the selection of tools,
software development kits (SDKs), platforms, and hardware is carefully undertaken, ensur-
ing technical viability and effectiveness for the industrial metaverse’s unique requirements.
The implementation phase starts, presenting an alpha version for validation by testers
and subsequently generating a beta version for client validation. This iterative process
incorporates feedback, addressing necessary adjustments and refinements. The evaluation
and delivery phase involves subjecting the beta version to a thorough evaluation during an
agreed-upon period with clients and testers, culminating in the delivery of the finalized
industrial metaverse. The methodology concludes with a prolonged validation period and
continuous improvements, where the final version undergoes extended validation by users
within the industrial environment, with ongoing refinements based on user feedback to
ensure continuous adaptation and optimal efficiency.

Unity, renowned for its versatility and user-friendly interface, has been selected as
the preferred software for this work [15]. The platform, excelling in the development of
interactive applications in 2D and 3D, empowers developers to create immersive virtual
environments and interactive applications effectively. With a robust game engine and
a diverse set of tools, developers can seamlessly integrate innovative technologies like
NeRFs to achieve a highly realistic 3D representation in the industrial metaverse under
development. The specific version utilized for this work is Unity 2021.3.2f1. This choice
over alternatives like Unreal Engine [16] is motivated by Unity’s simplicity, efficiency in
disk space usage, and compatibility with C# language. Unity’s smaller file sizes reduce
the demand for disk space and system resources, making it particularly suitable for the
requirements of this work, even though Unreal Engine may be more attractive for larger
projects with advanced graphics needs. In this specific context, Unity emerges as the most
fitting and advantageous choice.
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Figure 3. Methodology proposed for designing an industrial metaverse.

2.2. Development of the Metaverse Platform

In the development of the metaverse, a template focused on an industrial factory has
been employed to shape the virtual space. For an immersive virtual reality experience,
the Oculus SDK [17] software (version 62.0) has been chosen, specifically designed for
interaction with Oculus virtual reality devices. This decision has enabled the creation
of a realistic and engaging virtual environment, enriching user interaction within the
virtual space.

Regarding user communication, the API from the Photon PUN2 library [18] has been
utilized. This tool facilitates data synchronization and real-time interaction among users,
enabling the creation of multiplayer rooms. Additionally, for voice communication in
multiplayer applications using Photon, Photon Voice [19], a dedicated plugin facilitating
real-time communication between users, has been integrated. In summary, the combination
of Oculus SDK and Photon PUN2 has facilitated the development of an industrial metaverse
with visually appealing and functional environments, supported by specialized tools for
interactivity and real-time communication.

2.3. Development of Realistic Industrial Objects Based on NeRFs

In Figure 4, a detailed workflow is presented for creating immersive industrial metaverses
in Unity using NeRFs. This groundbreaking methodology enables the generation of realistic
3D models from captured images, offering a novel approach to virtual representation.

To achieve a seamless integration of physical models into the virtual space, the work-
flow has been structured into six steps as detailed below, each crucial for the overall success
of the process.

(S1) Capture of model images: Record a video around the object from different perspec-
tives, followed by the extraction of the individual images for use in the NeRF model
generation process.

(S2) NeRF Generation: Create a folder structure in Instant NeRF [20] and generate JSON file
based on captured images for 3D reconstruction. This step culminates in generating
the NeRF 3D model.
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(S3) Exporting NeRF to Unity: Transfer the NeRF model from Instant NeRF to Unity. Dur-
ing this process, resolution is configured to ensure a visually adequate representation
of the model in the Unity environment.

(S4) Creation of 3D texture: Assemble a mosaic of model images. This mosaic is imported
into Unity as a 2D texture, which is then transformed into a 3D texture to be applied
to the NeRF object.

(S5) Incorporating NeRF Object into Unity Scene: Create a material based on the 3D texture
and apply the 3D texture to the NeRF object. A GameObject is configured to effectively
represent the NeRF model within the virtual scene created in Unity.

(S6) Metaverse integration: Develop scripts that allow real-time interactions with the
NeRF model. Specific components are configured to share the object in a metaverse,
utilizing Photon PUN2 to synchronize and enable interaction among different users
in the virtual environment.

This comprehensive workflow offers a step-by-step guide for seamlessly transition-
ing physical models into immersive industrial metaverse. It is important to note that
the NeRF representation within Unity serves as a virtual copy, meticulously capturing
the form of the real NeRF based on the acquired images. Leveraging this NeRF technol-
ogy opens new possibilities for virtual representation, collaboration, and exploration in
industrial environments.

Figure 4. Workflow for creating a NeRF-based industrial metaverse.

Case Study: Obtaining a NeRF in Unity

This case study provides a practical demonstration of the step-by-step process outlined
earlier for obtaining a NeRF in Unity. By following the detailed steps discussed, this case
study offers a hands-on example that illustrates the seamless integration of NeRF into the
Unity development environment.

In the initial phase of this case study, the process began with the capture of model
images (S1). A video was recorded around the object from various perspectives and then
individual images were extracted from the video. As shown in Figure 5, the images are
placed in the “images” folder, which should be created within a directory where Instant
NeRF is located.

Transitioning to the next phase (S2), the process involves obtaining a JSON file contain-
ing camera parameter values for each captured image. Colmap [21] is used in this work to
generate this file. The subsequent step unfolds as Instant NeRF takes center stage, utilizing
the acquired JSON file to adeptly reconstruct the NeRF model within a matter of seconds,
as showcased in Figure 6.

Proceeding to the next step (S3), the subsequent phase involves acquiring the 3D
texture for a Unity-ready representation of the obtained NeRF. In the Instant NeRF tools
window, a pivotal option labeled “save PNG sequence” is available. This option facilitates
the exportation of NeRF slices, which are cross-sectional views of the 3D volume. Prior to
extraction, modifications can be made to tailor the NeRF to specific requirements, including
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volume trimming and resolution adjustments to meet the desired specifications for inte-
gration into Unity. These images serve as the foundation for creating a 3D texture within
Unity, effectively producing a replica of the real NeRF volume in the Unity environment.

Figure 5. Folder with the images of the model.

Figure 6. NeRF generated in Instant NeRF.
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In the fourth phase of the process (S4), the creation of the 3D texture is started from
the previously exported slices. The initial step involves generating a mosaic of the exported
slices, shown in Figure 7. This mosaic will subsequently be introduced to Unity as a 2D
texture, serving as the foundation for creating the required 3D texture for the NeRF object
representation. Following the introduction of the mosaic to Unity, necessary adjustments
such as size and alpha channel can be made, resulting in the desired 3D texture for the
NeRF object, see Figure 8a,b. To generate the mosaic, Image Magick [22] has been employed,
although any image editor can be utilized.

Figure 7. Example of a 512 × 512 image mosaic.

(a) (b) (c)
Figure 8. Inspector window. (a) Two-dimensional texture options. (b) Three-dimensional texture op-
tions. (c) Material with 3D texture.
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The subsequent step involves the visualization of the object within the Unity scene
(S5). To achieve this, it is essential to assign a material created from the 3D texture to a
GameObject. The chosen shader for the material is “VolumeShad2” ([23]), selected for its
high-quality visualization and straightforward implementation.

Upon material creation, the 3D texture is assigned and values are adjusted as needed
until the model appears visually appealing, see Figure 8c. Following this, a new GameOb-
ject, specifically a cube, is created and the newly crafted material is assigned to it. Once
incorporated into the scene, the NeRF model becomes visible within Unity. The outcome is
showcased in Figure 9.

Figure 9. Representation of the NeRF model in scene.

In the final phase (S6), the focus shifts to configuring the GameObjects to become
a shared resource accessible to all users within the metaverse. Specific components,
as illustrated in Figure 10, are added to the GameObject. Additionally, various grab
points have been strategically created on the GameObject, enabling users to interact from
multiple angles.
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Figure 10. Inspector window with shared object components.

3. Results
3.1. Showcasing the Results through User Experience

To demonstrate the applicability of using NeRF-based 3D models for training activities,
the industrial metaverse described in Section 2.2 is utilized, enabling the simultaneous
connection of two users. Meta Quest 2 VR hardware devices are employed, equipped
with hand tracking that allows users to interact with virtual objects naturally and keep
their hands free of devices. Additionally, this environment enables voice communication,
allowing operators to communicate during their training as they would in a real space.

It is worth mentioning that the industrial metaverse developed for this work offers two
forms of user movement: natural translation, involving movement through the real space,
and teleportation-based translation, enabling users to move even in confined real-world
spaces. These two forms of movement are common in virtual spaces because, on the one
hand, for true immersion in the virtual world, users should experience it similarly to how
they would in the real world. On the other hand, due to real-world space limitations,
teleportation is necessary to navigate through the entire virtual space.

The target objects for training can be seen in Figure 11: spiral pneumatic tube,
Figure 11a; pneumatic motor for surface treatment operations with robots, Figure 11b;
industrial gripper for robots, Figure 11c; vision system for studying surface defects using
deflectometry, Figure 11d. These objects have been chosen for their industrial relevance
and the challenge in obtaining a visually realistic model, particularly the vision system due
to light reflections.

The results of the models viewed from the metaverse are depicted in Figure 12.
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(a) (b)

(c) (d)

Figure 11. Real objects to be scanned and recreated using NeRFs. (a) Spiral pneumatic tube. (b) Driller.
(c) Industrial clamp. (d) Vision system.

(a) (b)

(c) (d)

Figure 12. Results of the 3D models in NeRFs viewed from the industrial metaverse. (a) NeRF spring.
(b) NeRF driller. (c) NeRF industrial clamp. (d) NeRF vision system.
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To showcase the solution’s results, a demonstration was conducted where two users
entered the industrial metaverse developed (see https://media.upv.es/player/?id=186f8
2f0-613b-11ee-8548-1bcf94a5ee62) (accessed on 19 February 2024). This aimed to validate
the outcomes and verify its proper functionality in real time. The demonstration provided
a tangible view of the capabilities and possibilities offered by the industrial metaverse,
emphasizing its real-time performance.

Figure 13 shows several captured moments from the user experience for various
actions within the metaverse. In particular, Figure 13a depicts the hand gesture required
for spatial navigation within the virtual environment. This not only broadens the age range
of users but also grants complete freedom for natural interaction with virtual objects and
avatars. In Figure 13b, one of the 6D models distributed across the industrial metaverse is
showcased. Each model is positioned on a tray atop a pedestal, with the trays featuring
grip points for user interaction. Figure 13c displays the available options panel within
the metaverse, triggered when the user places both hands in front of their field of view.
Pressing the green button activates a mobile device, allowing users to take photos to save
images of the training session for later use. The red button allows users to exit the virtual
space. Figure 13d,e illustrate user interaction with elements within the space: the first one
shows user-to-user interaction, passing a model from one user to another, whereas the
second one depicts a user comparing two 6D models, manipulating both simultaneously.
Note that during the session, the users interact with each other by communicating verbally,
explaining details of the actions and training provided. This can be observed at various
moments in the demonstration video.

It is worth noting that, to enhance usability and ensure a satisfactory user experience
when interacting with the proposed industrial models, a tray with only four grip positions
has been implemented. These positions are indicated by gray handles on the tray, as illus-
trated in examples in Figure 12. When the user grasps the object at one of these positions
on the tray, it automatically aligns so that the handgrip and the handle coincide, replicating
the experience with a real handle. Additionally, the tray consistently positions itself to
ensure that the model is always visible on top of it, facilitating continuous user engagement
with the model (refer to Figure 13e). This design approach eliminates awkward viewing
and gripping scenarios, preventing user distractions and maximizing the focus on the
training content.

Qualitatively, users provided feedback on the application. Overall, it was noted that
the application was user-friendly and did not necessitate prior knowledge, aside from initial
instructions on navigating the environment. Socially, the realistic facial expressions of the
avatars enhanced the interaction, fostering a greater sense of empathy. While interacting
with objects was generally straightforward, there were occasional instances of objects being
lost. This occurrence was attributed to limitations in the tracking system of the devices used.

3.2. Case Study: A Comparative Analysis of Models Based on NeRF and Models Based
on Photogrammetry

In this section, 3D models obtained using standard photogrammetry techniques are
compared with NeRF-based 3D models. The mesh-based models using photogrammetry
were generated using RealityCapture [24] software (version 1.3), while the NeRF-based
models were created using Nerfstudio [25] software (version v1.0.1). In both cases, 80 im-
ages of the objects in various positions and orientations were used as input, captured from
a smartphone camera video.

Given the challenge of using a fair quantitative metric to express the similarity between
the obtained 3D models and real-world systems in the case under study, where similarity
involves not only morphology but also the realism of the object including reflections,
transparency, textures, and colors, the comparison will be qualitative. Models will be
described and compared through images from different viewpoints as necessary.

https://media.upv.es/player/?id=186f82f0-613b-11ee-8548-1bcf94a5ee62
https://media.upv.es/player/?id=186f82f0-613b-11ee-8548-1bcf94a5ee62
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(a) Time instant 1 m 37 s of the video. (b) Time instant 1 m 16 s of the video.

(c) Time instant 0 m 32 s of the video. (d) Time instant 1 m 09 s of the video.

(e) Time instant 3 m 24 s of the video.

Figure 13. Demonstration test with users in the metaverse: (a) navigation mode; (b) industrial model;
(c) options panel; (d) users’ interaction; and (e) user interaction with different 6D models. Link to the
video: users’ experience video https://media.upv.es/player/?id=186f82f0-613b-11ee-8548-1bcf94a5
ee62 (accessed on 19 February 2024).

Firstly, Figure 14 presents the obtained models of the vision system depicted in
Figure 12d. Figure 14a,b show two different viewpoints of the mesh-based photogrammetry

https://media.upv.es/player/?id=186f82f0-613b-11ee-8548-1bcf94a5ee62
https://media.upv.es/player/?id=186f82f0-613b-11ee-8548-1bcf94a5ee62
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model obtained with RealityCapture. Figure 14c,d display two very similar viewpoints to
their respective ones in Figure 14a,b of the NeRF-based model obtained with Nerfstudio. It
is noticeable, first and foremost, that the NeRF model better preserves the morphology of
the real target system. This is evident, for instance, in the two metallic gray support rods
for the camera system at the top or in the semicircular dome, where even the mesh-based
system has failed and generated holes in areas with light reflection. Additionally, regarding
the visual realism of the model, it can be observed how the NeRF model resembles the real
target system more closely than the mesh-based model. This is particularly clear in the
dome area, where the reflection of light varies depending on the viewing angle.

(a) (b)

(c) (d)

Figure 14. Comparison between photogrammetry mesh-model and NeRF model. (a) Photogrammetry
(view 1). (b) Photogrammetry (view 2). (c) NeRF (view 1). (d) NeRF (view 2).

While the morphology of the mesh-based model could be enhanced by introducing
a greater number of input images captured with higher precision, the level of realism
achieved would still be inferior to that of NeRF models.

To further highlight the advantages of NeRF-based modeling over conventional mesh-
based techniques in industrial applications, Figure 15a showcases an electric automatic
polisher commonly employed by industrial robots for surface treatment tasks, particularly
in sectors such as automotive manufacturing. In the image, the tool features a non-rigid
and fibrous component (depicted in white) that comes into contact with the surfaces being
polished. Similar to the previous case study, the modeling process relies on 80 images
captured from various angles to generate the models.
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(a)

(b) (c)

Figure 15. Comparison between photogrammetry mesh-based model and NeRf model for the
polishing tool. (a) Real object. (b) Photogrammetry mesh-based model. (c) NeRF model.

Figure 15c depicts the NeRF-based model obtained using Nerfstudio, illustrating
detailed representations of both the rigid and non-rigid components with remarkable
realism, closely resembling the actual object. In contrast, Figure 15b presents the mesh-
based model derived from photogrammetry using RealityCapture. Here, noticeable mesh
connections are observed in the non-rigid segment, resulting in a model that deviates from
the real object compared to the NeRF-based counterpart.

3.3. Case Study: A Comparative Analysis of Models Based on NeRF and Mesh Approaches in Unity

This study conducts a comparative analysis between a model created using mesh-
based approaches and the corresponding one based on NeRF in Unity. By examining their
respective strengths, limitations, and application scenarios, this study aims to provide
valuable insights into the optimal use cases for each method. The evaluation encompasses
factors such as realism, computational efficiency, and ease of integration, shedding light
on the practical considerations for developers and researchers in the field of virtual envi-
ronments and 3D modeling. In Figure 16, the left side illustrates the mesh-based model
obtained through LUMA AI [26], while the right side depicts the NeRF-based model.

The comparison reveals that factors such as realism, computational efficiency, and ease
of integration are essential considerations for developers and researchers. As mentioned
earlier, one of the advantages of the NeRF technique is its ability to capture reflections
from real-world objects. Figure 16 demonstrates NeRF’s capability to generate a piece with
appropriate lighting, while the mesh-based model is incomplete and exhibits holes due to
a lack of information for filling, attributed to the presence of light reflecting on the surface.
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Figure 16. Comparison of mesh-based model (left) versus NeRF-based model in Unity (right).

3.4. Case Study: Real NeRF in Unreal Engine

This case study explores the visualization of a real NeRF model in the Unreal Engine.
The study involves a comparison between the actual NeRF obtained from the LUMA AI
plugin and a mesh-based model. The results of this comparison are depicted in Figure 17,
shedding light on the performance and visual representation of a NeRF model within the
Unreal Engine environment.

The superior visualization quality achieved with NeRFs in Unreal (as shown in
Figure 17b) compared to its mesh approximation (depicted in Figure 17a) underscores
its potential for creating realistic objects and immersive environments. This comparison
distinctly showcases the effectiveness of NeRF technique in managing lighting conditions
and reflective surfaces, thereby contributing to a significantly more authentic representation
compared to traditional mesh-based models. The study offers valuable insights into the
suitability of NeRFs for applications where accurate lighting and reflections are pivotal.

However, the success of the NeRF technique also emphasizes the importance of
thoughtful consideration and resource planning when implementing it in projects with
limited computational resources.

(a) (b)
Figure 17. Comparison of mesh-based model versus NeRF model in Unreal. (a) Mesh-based model.
(b) NeRF model.

4. Discussion

The demonstration involving two users entering the industrial metaverse provided a
real-time validation of the solution’s outcomes (Section 3.1). The tangible view showcased
the capabilities and possibilities offered by the industrial metaverse, emphasizing its real-
time performance.
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The comparison between real industrial models (Figure 11) and their counterparts
obtained in the metaverse (Figure 12) confirms a high degree of realism. This affirma-
tion underscores that the models obtained closely resemble their real-world counterparts,
contributing to a heightened sense of realism within the metaverse.

As demonstrated in this study, models based on Instant NeRFs offer a more realistic
visualization of objects compared to conventional techniques. This enhanced realism is par-
ticularly noticeable in objects featuring light reflections, fur, or fiber elements, as illustrated
in the case studies presented in Figures 16 and 17. However, interaction with non-rigid
objects such as plush toys may not provide a fully immersive experience, as manipulation
does not result in deformation. Therefore, a potential avenue for further investigation is
to introduce interactive capabilities where non-rigid models dynamically respond to user
interaction, thereby significantly enhancing immersion.

It is worth noting that the computational cost of NeRF-based models is much higher
than traditional mesh-based models. Additionally, their integration into virtual environ-
ment development applications is not straightforward, requiring the use of external plugins
such as LUMA to import them into Unreal-type editors.

However, there are ways to work with NeRF approximations to reduce their com-
putational cost. For example, one solution to reduce data computing consumption is by
using the RT-NeRF technique [27]. As indicated in the study, NeRF’s real-time performance
on AR/VR devices is limited by uniform point sampling and the dense calculations re-
quired, despite its excellent image quality. RT-NeRF represents a significant advancement
in real-time 3D rendering technology, particularly for Augmented and Virtual Reality. By ef-
fectively addressing NeRF’s performance issues, RT-NeRF significantly improves speed
without compromising visual quality.

Another solution could be to convert NeRF to the NVOL format [28], which stores
NeRF in a compressed and optimized manner using a data structure called an octree.
An octree divides the 3D space into smaller cubes, allowing for quick access to information
for each point. Thus, an NVOL can display NeRF in Unreal Engine without the need to
compute neural radiance on each ray. Table 1 shows the performance of NeRF and NVOL
on some current Nvidia cards, using the Stable Diffusion benchmark with FP32 precision
and a batch size of 16 [29]. The data are expressed in samples per second (SPS), indicating
the training and inference speed of the models. As shown in the table, the use of NVOL
results in a 10× acceleration in NeRF performance regardless of the card used. This is
because NVOL reduces the computational load of neural radiance and better utilizes GPU
memory and bandwidth.

Table 1. Comparison of the acceleration performance of NeRF and NVOL expressed in Samples Per
Second (SPS) using the Stable Diffusion benchmark with FP32 precision and a batch size of 16.

Graphic Card NeRF (SPS) NVOL (SPS)
RTX 4090 1.2 12.0
RTX A6000 0.9 9.0
RTX 3090 0.8 8.0
RTX 3080 0.7 7.0
RTX A5000 0.6 6.0
RTX 3070 0.5 5.0

Another aspect to consider is the challenges associated with editing NeRFs. Unlike
meshes, which offer explicit control over vertices and surfaces, NeRFs encode scenes in
a continuous, volumetric manner, complicating tasks such as geometry and appearance
editing [30].

A key challenge in NeRF editing lies in the absence of an object-centric decomposition,
making it arduous to isolate and modify specific scene elements without comprehensive
retraining or elaborate manipulation strategies [31]. Moreover, translating 2D edits into
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the 3D domain is non-trivial, necessitating advanced techniques to ensure accurate and
localized modifications without unintended global repercussions [32].

Further complicating NeRF editing are the difficulties in establishing dense correspon-
dences for tasks like texture transfer, a challenge attributed to NeRF’s implicit nature and
the lack of explicit geometric features [33]. Additionally, achieving view-consistent, artifact-
free color editing demands innovative solutions to modulate color across all viewpoints,
a simpler task in mesh-based models where texture maps can be directly altered [34].

Lastly, the computational demands for real-time editing and rendering of NeRFs
significantly surpass those of traditional meshes. This necessitates research into efficient
manipulation and rendering techniques to make NeRF-based editing feasible for practical
applications [35].

5. Conclusions

This research marks a significant stride in reshaping industries through virtual reality
and the creation of metaverse spaces. By enabling users in the industrial metaverse to col-
laboratively explore and study 6D models, this solution opens new avenues for immersive
experiences and joint decision-making. Rigorous testing with diverse programs has been
instrumental in evaluating the strengths and limitations of each method.

The findings highlight the substantial potential of this approach to drive the adop-
tion of emerging technologies in industrial contexts. The development of a realistic
industrial metaverse not only promises fresh opportunities in design, training, and col-
laboration, but also establishes a sturdy foundation for advancing the representation and
visualization of industrial environments. This, in turn, serves as a crucial step towards
industry transformation through the fusion of virtual reality and metaverse technologies.

This article signifies a pivotal move towards industry transformation, leveraging
the NeRF technique for highly realistic 6D model generation. The incorporation of these
models into the industrial metaverse enhances the capture of virtual object appearance and
lighting, surpassing traditional meshing methods. Beyond improving simulation, design,
and decision-making, this approach holds the promise of innovative applications, ensuring
businesses stay at the forefront of technology and competitiveness in an increasingly digital
and collaborative business landscape.
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