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Abstract

We study topological groups of monotonic automorphisms on a gen-
eralized ordered space L. We find a condition that is necessary and
sufficient for the set of all monotonic automorphisms on L along with
the function composition and the topology of point-wise convergence
to be a topological group.
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1. Introduction

For brevity, a homeomorphism of a topological space X onto itself will be
called an automorphism. In this paper we study sets of monotonic automor-
phisms on generalized ordered spaces endowed with the topology of point-wise
convergence. Recall that a linearly ordered topological space, abbreviated as
LOTS, is a linearly ordered set along with the topology generated by sets in
the form (a, b), {x ∈ L : x < a}, {x ∈ L : x > a} (see [5] for general facts
about LOTS). A generalized ordered space, abbreviated as a GO-space, is a
subspace of a linearly ordered space (see [6] for general facts about GO-spaces).
Note that the Sorgenfrey Line S is an example of a GO-space, which is not a
LOTS. Recall that S is the real line endowed with the topology generated by
subsets in from [a, b). It is a result of Čech that the topology of a generalized
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ordered space is generated by a collection of convex subsets [3]. When we dis-
cuss several linearly ordered spaces, to distinguish their intervals we will use
subscription as in [a, b]L (and in other types of intervals), where a, b can be in
L or in a superspace understood from the context. It is a traditional exercise
that the set of all monotonic automorphisms M(L) on a GO-space L along
with the operation of composition is a group (for completeness, a proof is given
in Proposition 2.1). We observe that this group along with the topology of
point-wise convergence, denoted by Mp(L), is a paratopological group. Recall
that a group G along with a topology on G is a paratopological group if the
group operation of G is continuous with respect to the topology of G × G.
The operation of inversion, however, need not be continuous in Mp(L). We,
therefore, identify a condition that is necessary and sufficient for Mp(L) to be
a topological group. In the main result of this work (Theorem 2.7), we prove
that given a GO-space L, the space Mp(L) is a topological group if and only
any set in from U(x; {y}) = {f ∈M(L) : f(x) = y} is open whenever x is limit
from at most one side. It is not hard to see that for a LOTS L, such sets are
always open. Therefore, a corollary to our main result is the recent result of
B. Sorin [7] that the group of order-preserving bijectiions of a linearly ordered
space L with the operation of composition and endowed with the topology of
point-wise convergence is a topological group. Sorin’s argument uses the fact
that the topology of point-wise convergence of the group of continuous exten-
sions over the smallest linearly ordered compactification is generated by sets
dependent on points of L only. This, however, is no longer true for a GO-
space. It is also worth mentioning that the group of isometries on a metric
space with the topology of point-wise convergence is a topological group too
(see [2, Theorem 3.5.1]). Since monotonic maps are either order-preserving
or order-reversing, we can view them as the order counterparts of isometries
on metric spaces. In general, the topology of point-wise convergence need not
turn a group of automorphisms on a space (even linearly ordered space) with
operation of composition into a topological group. It is easy to see that neither
taking the inverse nor the operation of composition are continuous with respect
to this topology even for automorphisms of Q.

Given a GO-space L, standard open sets of Mp(L) are of the form

U = U(x1, .., xn; I1, ..., In) = {f ∈M(L) : f(xi) ∈ Ii, i = 1, ..., n},

where xi’s are some fixed elements of L and Ik’s are open convex sets of L.
When introducing a set in the form U(x1, .., xn; I1, ..., In), we will then refer
to it by its short name U . Note that U(x1, .., xn; I1, ..., In) = U1(x1; I1) ∩ ... ∩
Un(xn; In). An unordered pair of elements is a gap in a GO-space L if the
elements of the pair are the immediate neighbors of each other with respect to
the order of L. In a complete linear ordering we denote by ∞Lthe maximum
and by −∞L the minimum of L. In notations and terminology of general
topological nature we will follow [4].
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2. Study

Before we begin our study let us reflect on the structure of groups of mono-
tonic automorphisms on a GO-space. First, if a GO-space under a discussion
is a LOTS, then ”monotonic automorphism” is equivalent to a ”monotonic bi-
jection”. In this study, all maps are monotonic automorphisms. For the sake
of completeness, let us start by proving the following fact.

Proposition 2.1. Let L be a GO-space. Then the set M(L) along with the
function composition is a group.

Proof. First, recall that if f and g are homeomorphic bijections on a topological
space X, then so are f−1 and f ◦ g. Also, observe that the identity map iL
is an increasing function, and therefore, is in M(L). Therefore, it remains to
show that f ◦ g and f−1 are in M(L) whenever f, g ∈M(L).

To show that f−1 is in M(L), assume that f is increasing and fix a, b ∈ L
with a < b. Since f is an increasing bijection, there exist c, d ∈ L such that
c < d, f(c) = a, and f(d) = b. Then c = f−1(a) < f−1(b) = d. Hence,
f−1 ∈M(L). A similar argument applies if f is decreasing.

Now let us show that f ◦ g ∈M(L) given g, f ∈M(L). For this, fix a, b ∈ L
with a < b. We have the following four cases:

Case(f and g are increasing): We have g(a) < g(b) and f(g(a)) < f(g(b)).
Hence, f ◦ g is increasing.

Case(f and g are decreasing): We have g(a) > g(b) and f(g(a)) < f(g(b)).
Hence, f ◦ g is increasing.

Case(f is increasing, g is decreasing): We have g(a) < g(b) and f(g(a)) >
f(g(b)). Hence, f ◦ g is decreasing.

Case(f is decreasing, g is increasing): We have g(a) > g(b) and f(g(a)) >
f(g(b)). Hence, f ◦ g is decreasing.

�

We will also use the following statement.

Lemma 2.2. Let L be a GO-space. Then the set of decreasing (increasing)
automorphisms on L is clopen in Mp(L).

Proof. Let f be a decreasing automorphism and a < b Since f(a) > f(b) there
exist open intervals I and J containing f(a) and f(b), respectively, such that
I is strictly to the right of J . Then U = {g ∈ M(L) : g(a) ∈ I and g(b) ∈ J}
contains f and does not not contain any increasing automorphisms. Hence,
the set of all decreasing automorphisms on L is open in Mp(L). Similarly, the
set of all increasing automorphisms is open in Mp(L). Since there are no other
elements in Mp(L) the conclusion follows. �

Note that any monotonic automorphism maps extremities to extremities.
This and Lemma 2.2 imply that sets U(∞L; {y}) and V (−∞L; {y}) are open
in Mp(L) for any y ∈ L. We will use this fact implicitly throughout the paper.
To initiate our study let us start with the following positive observation.
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Lemma 2.3. Let L be a GO-space. Then 〈f, g〉 7→ f ◦ g is a continuous map
from Mp(L)×Mp(L) to Mp(L).

Proof. Fix f, g ∈ Mp(L). Let z = f(g(x)) and y = g(x). Let Wf◦g be an
arbitrary neighborhood f ◦ g. Our goal is to find open neighborhoods Vf and
Ug of f and g, respectively, such that f1 ◦ g1 ∈ Wf◦g whenever f1 ∈ Vf and
g1 ∈ Ug. For our argument we will assume that f and g are increasing. Other
variations are treated using very similar arguments. The structure of basic
neighborhoods and Lemma 2.2 allow us to assume that Wf◦g is of the form
Wf◦g(x; I) = {h ∈ M(L) : h(x) ∈ I} for some fixed x ∈ L and a convex open
set I ⊂ L. We have the following three cases:

Case (z is isolated ): Then, x and y are isolated too. Put, Uf = Uf (x; {y})
and Vg = Vg(y; {z}).

Case (z is isolated on one side only): Without loss of generality, z is a
limit point of {x ∈ L : x < z}. Hence, {x ∈ L : x > z} is clopen
in L. Therefore, there exists z′ < z such that [z′, z] ⊂ I. Since f is
onto, there exists y′ ∈ L such that f(y′) = z′. Since f is increasing,
y′ < y. Since f is a monotonic homeomorphism, f([y′, y]) = [z′, z].
Put Vf = Vf (y, y′; I, I). Clearly, Vf is an open neighborhood of f .
Put Ug = Ug(x; (y′, y]). To show that the selected neighborhoods
are as desired, pick f1 ∈ Vf and g1 ∈ Ug. We have g1(x) ∈ (y′, y].
Since f1 is monotonic, we have f1(g1(x)) is between f1(y′) and f1(y).
By the definition of Vf and convexity of I, f1(g1(x)) is in I. Hence,
f1(g1(x)) ∈Wf◦g.

Case (z is a limit point on both sides): Since z is limit on both sides, so
are x and y. Fix y1, y2 ∈ L such that y1 < y < y2 and f(y1), f(y2) ∈
I Next, fix x1, x2 ∈ L such that x1 < x < x2 and g(x1), g(x2) ∈
(y1, y2). By monotonicity, g(x) is between g(x1) and g(x2) while f(y)
is between f(y1) and f(y2). Put Ug = Ug(x1, x2; (y1, y2), (y1, y2)} and
Vf = Vf (y1, y2; I, I). Clearly, the sets contain g and f , respectively.
Fix g1 ∈ Ug and f1 ∈ Vf . Then g1(x) is between g1(x1) and g1(x2),
and therefore, g1(x) ∈ (y1, y2). Since f1 ∈ Vf , f1((y1, y2)) ⊂ I. Hence,
f1(g1(x)) ∈ I. Therefore, f ◦ g(x) ∈ I.

�

In connection with our observation, it must be mentioned that the operation
of inversion need not be continuous on Mp(L) when L is a GO-space.

Example 2.4. The operation of inversion is not continuous on Mp(S), where
S is the Sorgenfrey Line.

Proof. Let f be the identity map on S. Put Vf−1 = {h−1 : h ∈M(S), h−1(0) ∈
[0, 1)}. Clearly, f−1 = f and f−1 ∈ Vf−1 . Our goal is to show that any
neighborhood Uf of f contains g such that g−1 is not in Vf−1 . We may assume
that Uf is of the form Uf (x1 = 0, x2, ..., xn; [0, 1), I2, ..., In}. Clearly, we can can
find an increasing g ∈M(S) such that g ∈ Uf and g(0) > 0. Then g−1(0) < 0,
meaning that g−1 6∈ Vf−1 . �
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Lemma 2.5. Let L be a GO-space. If the operation of inversion is continuous
on Mp(L), then any set in form W (x; {y}) is open in Mp(L) whenever x is
isolated from at least one side.

Proof. Fix an arbitrary x ∈ L, which is isolated from at least one side and
any y ∈ L. Without loss of generality we may assume that x isolated from
the right. To show that W = W (x; {y}) is open in Mp(L), fix an arbitrary
f ∈ W . We may assume that f is increasing. We need to find an open
neighborhood of f which is a subset of W . Since f ∈ W , we have f(x) = y.
Since x is isolated on the right, the set I = {z ∈ L : z ≤ x} is open. Put
Vf−1 = {h−1 : h ∈ M(L), h−1(y) ∈ I}. Since the operator of inversion is
continuous on Mp(L), there exists an open neighborhood Uf of f such that
(Uf )−1 ⊂ Vf−1 . We may assume that there exist x2, ..., xn and open convex
mutually disjoint sets I1, ..., In ⊂ L such that Uf is the set of all increasing
functions of U(x1 = x, x2, ...xn; I1, ..In). Since x is isolated from the right
and f is increasing we may assume that max I1 = y. It remains to show that
Uf ⊂ W . For this fix g ∈ Uf . We already know that g(x) ≤ y. Assume that
g(x) < y. Since g is increasing, we conclude that g−1(y) > x. This contradicts
the fact that (Uf )−1 ⊂ Vf−1 . Therefore, g(x) = y. Hence, Uf ⊂W . �

Lemma 2.6. Let L be a GO-space. If any set in the form W (x; {y}) is open
in Mp(L) whenever x is isolated from at least one side, then the operation of
inversion is continuous in Mp(L).

Proof. Let Wf−1 = {h−1 : h ∈ M(L), h−1(y) ∈ I} for some fixed y ∈ L and
convex open I in L. Let x = f−1(y). We need to find Uf an open neighborhood
of f such that g−1 ∈Wf−1 for every g ∈ Uf . We have the following two cases:

Case (x is isolated on at least one side ): Then Uf = {h ∈M(L) : h(x) ∈
{y}} is open by hypothesis. Clearly, f ∈ Uf . Pick any g ∈ Uf . Then,
g−1(y) = x ∈ I. Hence, g−1 ∈Wf−1 .

Case (x is a limit point on both sides): Fix x1, x2, x
′
1, x
′
2 ∈ I such that

x1 < x′1 < x < x′2 < x2. Let (y1, y2) = f((x1, x2)). Without
loss of generality, f is increasing. Put Uf = {h ∈ M(L) : h(x′1) ∈
(y1, y), h(x′2) ∈ (y, y2)}. Clearly, f ∈ Uf . Fix h ∈ Uf . Then h(x′1) <
y < h(x′2). Hence, h−1 ∈ (x′1, x

′
2) ⊂ I.

�

Lemmas 2.3, 2.5, and 2.6 form the following criterion.

Theorem 2.7. Let L be a GO-space. Then, Mp(L) is a topological group if
and only if any set in the form W (x; {y}) is open in Mp(L) whenever x is
isolated from at least one side.

We already know that the space of monotonic automorphisms of the Alexan-
droff Arrow is not a topological group. Let us next discuss some positive cases.
Firstly, it was proved by Sorin in [7] that Mp(L) is a topological group if L
is a LOTS. Sorin stated his result for the space of order-preserving bijections
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but the argument is valid for the space of all monotonic bijections. To derive
Sorin’s result from our criterion we need the following lemma.

Lemma 2.8. Let L be a GO-space, {al, ar} ⊂ L a gap, and b ∈ L. Then
U(al; {b}) and V (ar; {b}) are open in Mp(L).

Proof. Put S = {f ∈ M(L) : f(al) = b, f is increasing}. By Lemma 2.2, it
suffices to shows that S is open. If there is no increasing f in Mp(L) that maps
al to b, then S is empty, and therefore, open. Otherwise, fix h ∈ S. There
exists a gap {bl, br} such that b = bl, h(al) = b and h(ar) = br. We have

{f ∈M(L) : f(al) = b, f(ar) = br}

=

{f ∈M(L) : f(al) ∈ [−∞L, b]L, f(ar) ∈ [br,∞L)L}

Since {b, br} is a gap, the intervals in the right side of the equality are open
in L. Hence, the sides represent an open subset of Mp(L). Next, observe that
S = {f ∈M(L) : f(al) = b, f(ar) = br}. �

Lemma 2.8 and Theorem 2.7 imply Sorin’s result.

Corollary 2.9 (Sorin [7]). Let L be a LOTS. Then Mp(L) is a topological
group.

Let x be isolated from one side in a GO-space L and let x not belong to
a gap. Suppose that there exists an open neighborhood I of x in L that has
no other points of this kind other than x. Let us show that U = U(x; {y}) is
open in Mp(L) for any y. For this pick f ∈ U . Since f is a homeomorphism,
y is also isolated from one side and is not a member of a gap. Since f is a
homeomorphism, J = f(I) is an open neighborhood of y that has no points
with the properties of y other than y itself . Put Vf = {h ∈M(L) : h(x) ∈ J}.
Since the inclusion h(x) ∈ J implies that h(x) = y, we conclude that Vf = U .
This observation leads to the following statement.

Theorem 2.10. Let L be a GO-space. If L is a disjoint union of clopen sets
each of which is a LOTS, then Mp(L) is a topological group.

It is obvious that if two LOTS are order-isomorphic, then their spaces of
monotonic bijections are homeomorphic and even topologically isomorphic (as
topological groups). If, however, two LOTS are simply homeomorphic, their
spaces of monotonic bijections need not be homeomorphic. For example, Mp(N)
contains only the identity map, while Mp(Z) is infinite. This is a rather
cheap example but it gives a route for exploration. Let Mp[L] = {Mp(L′) :
L′ is a GO − space and is homeomorphic to L}.

Problem 2.11. Identify nice classes P of GO-spaces within which two GO-
spaces L and L′ are homemorphic if and only ifMp[L] =Mp[L′].
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