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ABSTRACT

Consider the ring Mo(X, u) of functions which are discontinuous on
a set of measure zero which is introduced and studied extensively
in [2]. In this paper, we introduce a ring Bi(X,pu) of functions
which are pointwise limits of sequences of functions in Mo (X, n). We
study various properties of zero sets, B1(X, u)-separated and B1(X, p)-
embedded subsets of B1(X,u) and also establish an analogous ver-
sion of Urysohn’s extension theorem. We investigate a connection be-
tween ideals of B1(X,u) and Zp-filters on X. We study an analogue
of Gelfand-Kolmogoroff theorem in our setting. We define real maxi-
mal ideals of B1(X, u) and establish the result |RMax(Mo(X,un))| =
|[RMax(B:1(X,p))|, where RMax(Mo(X,pn)) and RMax(B1(X, p1))
are the sets of all real maximal ideals of Mo (X, ) and By (X, p), re-
spectively.
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INTRODUCTION

Let (X, 7) be a Ty topological space. Let A be a o-algebra containing T,
which is defined as follows: A is a collection of subsets of X satisfying (i) X € A,
(ii) A is closed under complementation and (iii) A is closed under countable
union. A mapping p : A — [0, 00) is called a measure on (X, A) if u(@) = 0 and
satisfies the countable additive property i.e., for any countable family {A,, : n €

o0 (o)
N} of pairwise disjoint members of A, p( U A,) = Z 1(Ay). The quadruplet
n=1 n=1
(X, 7, A, p) is called a TAu-space. The collection Mo(X, ) = {f € RX : the
measure of discontinuity-set Dy of f is zero} is a lattice ordered ring, discussed
extensively in [2]. Now we define By (X, ) = {f € RX : there exists a sequence
{fn} iIn Mo(X,u) such that {f,} converges to f pointwise}. Then B;(X, )
is a commutative lattice ordered ring if the relevant operations are defined
pointwise on X and moreover we have Mo(X,p) C Bi(X,u) € M(X,A),
where M(X, A) is the ring of measurable functions, discussed in [1].

It is shown in the paper [2] that the ring C'(X) of all real-valued continuous
functions on X is a special case of the ring M (X, u) if we choose A = P(X),
the power set of X and w is the counting measure on P(X). The ring B;(X)
of all real-valued Baire class one functions on X, which lies between the rings
C(X) and M(X, A) has been investigated extensively in [3, 4, 5]. The goal
of this article is to pursue research on the ring By (X, i), a generalization of
B (X).

In Section 1, we show that Bj(X, p) is a commutative lattice ordered ring
which lies between M, (X, u) and M(X,A). For f € B1(X,pn), Z(f) = {z €
X : f(z) = 0} is called the zero-set of f. Let Z[B1(X,u)] = {Z(f) : f €
Bi1(X, 1)} be the collection of all zero-sets induced by elements of By (X, u).
It is easily verified that Z[B1(X,u)] = Z[B7 (X, )], where Bi(X,u) = {f €
Bi(X,p) : f is bounded on X}. In Theorem 1.7, we establish that By (X, u) is
closed under uniform limit and with help of this theorem, we prove Theorem
1.8 which states that Z[B; (X, ut)] is closed under countable intersection. Using
Theorem 2.10 of [2], it can be easily shown that for any 7 Au-space (X, 7, A, ),
there exists a quadruplet (X, 7, A*, u*), where A* is a o-algebra containing 7
and p* is a complete measure defined on A* such that By (X, u) = B1(X, u*)
[Theorem 1.9]. With similar ideas, we establish By (X, ) = B1(X, u|g), for
any TAp-space (X, 7, A, 1) and for the quadruplet (X, 7, 8, p|g), where (3 is the
Borel o-algebra containing 7 and p|g is the restriction of p on £.

In the next section, we introduce and study the notions of By (X, p)-separated,
B1 (X, p)-embedded and Bji (X, p)-embedded subsets of X. We establish an
analogous version of Urysohn’s extension theorem [see Theorem 2.5].

In Section 3, we introduce the notion of filter of zero sets in Z[B; (X, p)] and
call it Zp-filter. We investigate the correspondence between ideals of By (X, u)
and Zp-filters. Also, we define Zp-ideals of B;(X,u) and in Theorem 3.6,
we provide a characterization of prime Zp-ideals of By (X, p). We establish
an analogous version of Gelfnd-Kolmogoroff theorem in our setup (Theorem
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3.10). In Example 3.11, we show that 8X, S, X and S5, X are mutually not
homeomorphic, where X is the Stone-Cech compactification of X, 3 .G
the index set for the family of all Z-ultrafilters on X, defined in [2] and S5, X
is the index set for the family of all Zg-ultrafilters on X.

In Section 4, we define positive elements of the residue class of By (X, u)
modulo ideals and in Theorem 4.7, we study a complete description of non-
negative elements of By (X, u)/I, when I is a Zp-ideal of By(X, ). In this
section, we also define and study real maximal ideals of By (X, u). Theorem
4.14 is a characterization of infinitely large element of B (X, u)/I. We discuss
the characterization of real maximal ideal in B (X, i) in Theorem 4.17. Also,
we define real compact spaces, analogous version of 8.1 [7] and provide a char-
acterization of a real compact space via ring homomorphism from B; (X, i) to
R (Theorem 4.20).

In the next section, we discuss relations between real maximal ideals of
Mo (X, 1) and maximal ideals of By(X,p). In this section, we prove that a
maximal ideal M of M, (X, u) is real if and only if M = Mp N Mo (X, u),
where Mp = {f € R¥ : there exists a sequence of functions {f,} € M such
that f, — f pointwise} (Theorem 5.2). We introduce the closed ideals of
B (X, ) and establish the result |RMax(Mo(X, p))| = |[RMax(B1(X, 1)),
where RMaxz(Mo(X, 1)) and RMaz(B1(X,p)) are sets of all real maximal
ideals of M, (X, ) and By (X, ), respectively (Theorem 5.10).

Finally, we define a Bj(X, u)-compact space. Also, we show that every
B1(X, p)-compact space is 7Apu-compact (see Theorem 6.3). The converse
need not be true and it is established in Example 6.4. Lastly, we develop a
result (see Theorem 6.8) which is an analogous version of the Stone Weierstrass
Theorem ([12]).

1. ZERO SET IN THE RING Bj(X, )

For any topological space X, we define By (X, u) = {f € R¥ : there exists a
sequence {f,} in Mo(X, p) such that {f,} converges to f pointwise on X }.

Let {f,} converge to f pointwise on X and {g,} converge to g pointwise on
X. Then

(i) {fn + gn} converges to f + g pointwise on X.

(ii) {—fn} converges to —f pointwise on X.
(iii) {fngn} converges to fg pointwise on X.
(iv) {|fn|} converges to |f| pointwise on X.
Using the above results, and the fact that for any f,g € B1(X,u), fVg =
Lf+g+|f—ygl)and fAg = —(—fV —g) are in Bi(X,p), it is easy to
verify that (B1 (X, pt),+,-) is a commutative lattice ordered ring if the relevant
operations are defined pointwise on X. It is clear that M, (X, ) C B1(X, u)
and the following example shows that M, (X, ) is a proper subring of the ring
Bl (X7 /’[’) .

Example 1.1. Let 7 be the topology on X = [0, 1] inherited from the Euclidean
topology on the set R of reals, P(X) be the power set of X. For any A € P(X),
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define dirac measure §; on P(X) as follows:

1, iflea
6m®_{0,ﬁl¢A

For each n € N, we define f,, : X — R by f,(z) = 2" for all z € X. Then each
fn € Mo(X,61) and f,, — f pointwise on X, where

1, ifzx=1
ﬂ@_{o,ﬁogx<L

Clearly, f € B1(X,01) and f ¢ Mo(X,61). Therefore Mo(X,61) & B1(X,41).

Let (X,7) be a topological space and A be a o-algebra on X containing
7. Then (X,.A) is called a measurable space. A function f : X — R is
called A-measurable or a measurable function if {z € X : f(z) > a} € A,
for any real number «. Then the set M(X,.A) of all real valued measurable
functions is a commutative lattice ordered ring with unity, discussed in [1].
Since Mo (X, ) & M(X, A) and pointwise limit of measurable functions is
again a measurable function, we have By (X, p) € M(X,.A). Now we want to
show that By (X, u) is a proper subring of M(X,.A). For this purpose we first
state the following theorem.

Theorem 1.2 ([14]). Let X be a normal topological space and By(X) denotes
the set of all Baire class one functions from X to the real line R. Then f €
B1(X) if and only if f~Y(Q) is an F,-set, for every open set G C R.

Example 1.3. Consider (R, 7, £, tioo ), where 7, is the usual topology on R, £
is the o-algebra of all Lebesgue measurable subsets of R and p, is a measure
on L, defined as follows: for any A € L,

uoo(A)z{ 0 ifAd=o

oo otherwise.
Then Mo (R, pteo) = C(R). Now consider a function f : R — R defined as

follows:
_J 0 ifze@
@) = { 1 otherwise.
Clearly, f € M(R, L), where the last set is the ring of all measurable functions
from R to R with respect to above mentioned measure and f~(3,3) =R\ Q
is not a F,-set. Therefore f ¢ B1(X, tioo) by Theorem 1.2.

Now we define zero set of f € By (X, u) by Z(f) ={x € X : f(x) =0}.

Theorem 1.4. Let f,g € B1(X,u) and r € R. Then

(i) Z(f*+9°) = 2(£)n Z(g) = Z(|f] + lg))-

(ii) Z(f-9) = Z(f)U Z(g)-

(i) {x € X : f(x) >r} and {z € X : f(z) <1} are zero sets in X.

(iv) Z(f) =Z(=1V f A1). Thus B1(X,u) and Bf (X, u) produce the same
family of zero sets in X, where Bf (X,u) = {f € Bi(X,u) : f is
bounded }.
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Here for f,g € B1(X, ), the functions fV g and f Ag are in B1(X, ),
defined in the most obvious manner: (f V g)(x) = Maz{f(x),g(x)}
and (f A g)(x) = Min{f(z), g(z)},z € X.
We denote Z[B1(X, p)] for the collection {Z(f) : f € B1(X,u)} = {Z(g) :
g € Bf(X,p)} of all zero sets in X. It follows from the Theorem 1.4 that
Z[B1(X, p)] is closed under finite union and also closed under finite intersec-

tion. Moreover, we will establish that Z[B;(X, )] is closed under countable
intersection too. For this, we first prove some results.

Lemma 1.5. If f € B1(X,pu) and |f| < M for some M € R, then there
exists a sequence {gn} C Mo (X, 1) such that g, — f pointwise and each g, is
bounded by M.

Proof. Let f € B1(X, ). Then there exists a sequence {f,} in Mo(X, ) such
that f, — f pointwise. Set g, = (=M V f,) A M, then each g, € M,(X, u)
and g, — f pointwise. This completes the proof. O

Lemma 1.6. Let {fk} C Bi(X,u) and |fx(x )\ < My, for all k € N (M), > 0)
and for all x € X. IfZMk<oo then f = kaEBl(Xu)

Proof. For each f, € Bi(X,u), there exists a sequence {gr;} in Mo(X,pu)
such that gy; — fi pointwise. By Lemma 1.5, we can choose {gj;} such that
lgri| < My, for all i € N. For each n € N, let hy,, = g1 + gon + -+ * + Gnn, then

hp, € Mo(X, p). We will show that h,, — f pointwise. Since Y, M} < oo, for

k=1
o0
any € > 0 there exists a ¥/ € N such that >, M < e. Now we choose an
k=k/+1

integer N > k' such that |gr;i(z) — fr(z)| < 5 for 1 <k <k’ and for all i > N.
Again for any n > N, we have |hn(z) — f(2)] = | 32 grn(z) = > fi(z)] <
k=1 k=1

35 @ @)@ S A@] <] S (Gonl@)—Fe@N+ S Jgun@)|+

k= k=n-+1 k=1 k=k'+1

—

o0

K’ 00
Yo k@) < X 5 +2 Y Mg < 3e. It follows that {h,} converges
k=k'+1 k=1 k=FK'+1

pointwise to f. Thus f(z) = > fr(z) belongs to By (X, u) O
k=1

Theorem 1.7. Let {f,} be a sequence of functions in B1(X, u) that converges
to a function f uniformly on X. Then f € B1(X,p) i.e., B1(X,pn) is closed
under uniform limit.

Proof. Let {f,} be asequence in By (X, u) and f,, — f uniformly. We will show
that f € By(X,u). By definition of uniform convergence for each k € N, there
exists a subsequence f,,, such that | f,, (z)— f(z)| < 5 for all z € X. Consider
the sequence {fn, , = fu.}, then |fo, () = fn,(z )l < |friga (@) = (@) +
| (@) = f(2)] < getr +95 = 5277, Set My = 327%, then | fn,., (2) = fa, (2)] <
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&) (&)
M, for all x € X and ) Mj, < co. Then by Lemma 1.6, the sum > [fp, , —
k=1

k=1
00 N
f"k] belongs to Bl(Xa ,LL) Now kzl[fﬂwrl (IZZ) - fnk (LE)] = ngnoo kzl[fnk+1 (ZL’) -
fnk(x)] = f(l’) - fnl(lL') Since fn1 € Bl(X,M)a f € Bl(XvN“) U

Theorem 1.8. Z[B1(X, )] is closed under countable intersection.

Proof. Let f, € B1(X, n) for each n € N. We have to show that [ Z(f,) =
n=1

Z(g) for some g € By (X, ). Infact, for each z € X, welet g(z) = 3 (55 A | fu(@)]).

n=1
Then by Weierstrass M-test, this series is uniformly convergent over X. Since

for each n € N, 35 A|fn] € B1(X, ), then by Theorem 1.7 we have g € By (X, p)

and also it is clear that Z(g) = (| Z(fn)- O
n=1

The following theorem shows that to study the rings B (X, 1) and B} (X, u),
we can take the measure p on the o-algebra containing 7 being always complete.

Theorem 1.9. Let (X, 7, A, 1) be a TAu-space. Then it is possible to construct
another space (X, T, A*, u*) of the same type with the following properties: A*
is a o-algebra on X containing A; p* : A* — [0,00] is a complete measure,
extending the original measure p : A — [0,00] and Bi(X,p) = Bi(X,u*).
Moreover Bf (X, u) = Bf (X, u*).

Proof. From the Theorem 2.10 [2], we have M (X, 1) = Mo (X, u*). Therefore
Bi1(X, n) = B1(X, p*) and also it is easy to see that Bf (X, u) = Bf (X, p*). O

Now the notion of subspace of (X, 7, A, 1) is defined as follows:

Definition 1.10 ([2]). Let (X, 7, A, 1) be a T Apu-space. For any E € A,
Al ={ENA: A€ A} is a o-algebra on the set E. Suppose that (E,7|g) is a
subspace of (X, 7). Let u|lg : (E, Alg) — [0,00] be defined by p|g(F) = pu(F)
for any F' € A|g. Then (X, 7, A|g, u|g) is called a subspace of the T Au-space
(X, 1, A, ).

Theorem 1.11. Let (X, 7, A, u) be a TAp-space. Take (X, T, 5, u|g), where
is a Borel o-algebra containing T and p|g is the restriction of pu on B(C A).
Then B1(X, u) = B1(X, ulg).

Proof. To prove this result, it is enough to show that Mo (X, 1) = Mo (X, plg).
Let f € Mo(X, ). Then pu(Dys) = 0, where Dy is the discontinuity set of f.
Since Dy is a F,-set (see [11]), Dy € 5. Thus p|g(Dy) = p(Dy) =0, s0 f €
Mo(X, plg). Therefore Mo (X, n) C Mo(X, u|g). Next, let f € Mo(X, ulg),
then u|lg(Dy) = 0. Again Dy is a F,-set implies Dy € f C A. Thus
uls(Dy) = i(Dy) = 0, 50 f € Mo(X,70). Hence Mo(X,uls) C Mo(X,p).
Thus Mo (X, ) = Mo (X, u|g). Therefore By (X, n) = B1(X, ulg). O
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2. B1(X, t)-SEPARATED AND Bj (X, ;1)-EMBEDDED SUBSETS OF X

It is well known that two subsets A and B of a topological space X are said
to be completely separated [see 1.15,[7]] if there exists a continuous function
f:X —[0,1] such that f(A) = {0} and f(B) = {1}.

In an analogous manner we call two subsets A and B of a TAu-space
(X,7,A, 1), B1(X,pu)-separated (Mo,-separated [13]) if there is an element
f € Bi(X,u) (respectively f € Mo(X,p) ) such that f(X) C [0,1] with
f(4) = {1}, f(B) = {0}. Equivalently, for any two real numbers r, s with
r < s, there exists f : X — [r,s], f € B1(X, u)( respectively f € Mo(X,u))
such that f(A4) = {r} and f(B) = {s}. Since Mo(X,u) C By(X,pu), any
two M-separated subsets of X are also Bj(X, u)-separated. The following
example shows that the converse need not be true.

Example 2.1. Let X = [0,1] with 7, the topology on it inherited from the
usual topology on the set R of reals, P(X) be the power set of X and d; be
the dirac measure at 1. Now define f,, : X = R by f,(x) =1 —2" for n € N,
then each f, € Mo(X,d1) and f, — f pointwise, where
0, if x=1
f(“j)_{ 1, if0<x<1.
Thus f € B1(X,01) \ Mo(X,d;) and it separates two sets {1} and [0,1). But
there does not exist any function in M, (X, 1) which separates {1} and [0,1).

Theorem 2.2. Two subsets P,Q of (X, 1, A, u) are B1(X, p)-separated in X
if and only if they are contained in two disjoint zero sets in Z[By (X, p)].

Proof. Let P and Q be two Bj(X, u)-separated subsets in X. Then there
exists f € B1(X,p), f: X — [0,1] such that f(P) = {0} and f(Q) = {1}. Let
Zy={reX:f(x)<i}and Zo ={z € X : f(x) > 3}. Then Zy, Z, are two
disjoint zero sets in Z[B1(X, p)] with P C Z;,Q C Z,.

Conversely, let P C Z(f),Q C Z(g), where Z(f) N Z(g) = ¢, f,9 € B1(X, p).
Take h = gl X — [0,1). Then Z(f) N Z(g) = Z(f* + ¢*) = ¢ and
so h € Bi(X,p). Again we have h(P) = {0}, h(Q) = {1}. Hence P,Q are
By (X, p)-separated in X. O

Corollary 2.3. Any two disjoint zero sets in Z[B1(X, )] are B1(X, u)-separated
mn X.

We recall from [1.16, [7]] that a subset A of a topological space X is said to
be C-embedded (C*-embedded) in X if each function f € C(A)( respectively
f € C*(A)) can be extended to a function in C(X). Urysohn’s Extension
Theorem [Theorem 1.17, [7]] in C'(X) tells that a subset A of X is C*-embedded
in X if and only if any two completely separated sets in A are also completely
separated in X.

Definition 2.4. A measurable subset E of X (ie., E € A) is said to be
B (X, p)-embedded (Bj (X, u)-embedded) in X if each f € Bi(E, u|g) (re-
spectively f € BY(F, u|g)) has an extension to a g € By (X, p).
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It is clear that if £ € A is Bf(X,pu)-embedded in X, then each f €
B} (FE, u|g) has an extension to a g € Bf (X, ).

The following theorem is an analogous version of Urysohn’s Extension The-
orem in our setting.

Theorem 2.5. A measurable subset E of X is BY (X, u)-embedded in X if and
only if any two members of Alg which are B1(X, u)-separated in E are also
B1(X, u)-separated in X .

Proof. Let E be Bf(X, p)-embedded in X. Let A, B € A|g be two B1(X, p)-
separated sets in E. Then there exists f € By (X, u|g), f : E — [0,1] such that
f(A) = {0} and f(B) = {1}. Since E is Bf(X, p)-embedded in X, f has an
extension g € By (X, u) such that g|g = f. Consider h = (QV g) A 1. Then
h € By (X,u),h(X) C[0,1], h(A) = {0} and h(B) = {1}. Thus A and B are
B (X, p)-separated in X.

Conversely, let each pair of B;(X, u)-separated members of A|g in E be
B1(X, u)-separated in E are also By (X, u)-separated in X. Let f1 € BY (E, p|g)-
Then |f1| < m for some m € N. Take r,, = Z(2)" for all n € N. Then we have
|fil < 3r1 and thus inductively given f, € MZ(E, u|g) we have |f,| < 3rp,.
Consider 4, = {& € E : fp(x) < —rp} and B, = {z € E : f.(z) > r,}.
Then A,, B, are disjoint zero sets in Z[By(F, pu|g)]. Hence, by Theorem 2.2,
Ay, B, are By (X, p)-separated in F and so by hypothesis, A,,, B, are By (X, u)-
separated in X. Thus there exists g, € B1(X, ) such that ¢g,(X) C [—ry, 2],
gn(An) = {_Tn}vgn(Bn) = {Tn} Now set fn+1 = fn— gn‘E~ Then it is
easy to check that |f,y1| < 2r, = 3r,11. Therefore the induction step is

completed. For each z € X, let g(z) = > gn(z). Then by Weierstrass’
n=1

formula the infinite series is uniformly conve_rgent to g on X and hence by
Theorem 1.7, g € B1(X, ). Now for all x € E, g(z) = ILm {g1(x) + g2(z) +
(@) = i {A1(@) ~ @) @) ~ @)+ K fale) ~ faia () =

fi(x) = lim f,41(x) = fi(x). Hence, the proof is complete.
n—oo

O

The following result decides when a B} (X, u)-embedded subset of X become
B1(X, p)-embedded in X. The proof of this result can be figured out by closely
adapting the arguments in the proof of Theorem 1.18 in [7] and thus, the proof
is omitted.

Theorem 2.6. Let E € A be B (X, u)-embedded in X. Then E is B1(X, u)-
embedded in X if and only if it is By(X, u)-separated from any zero set in
Z|B1 (X, p)] disjoint from it.

3. Zp-FILTERS AND Zp-IDEALS OF Bj(X, i)

Throughout the article, an ideal will always be a proper ideal.

To develop a connection between ideals of By (X, 1) and Zp-filters on X, we
first prove the following theorem which is a sufficient condition for an element
f of B1(X,p) to be a unit in By (X, p).
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Theorem 3.1. Let f € By(X,u) be such that either f(x) > 0 for all x € X
or f(x) <0 for allz € X. Then % exists and belongs to B1(X, u).

Proof. We first take f € B1(X,u) and f(x) > 0 for all x € X. Then there
exists a sequence of functions { f,,} C M, (X, u) such that f,, — f pointwise on
X. For each z € X, let g,,(x) = |fn(z)| + L for all n € N. Then g,(z) > 0 for
all z € X and for all n € N and also g,, — f pointwise on X. Now consider the
function g : R\{0} — R defined by g(z) = < on R\{0}. Then gog,, € M (X, x)
for each n € N. We now show that gog,, — go f pointwise. Using the continuity
of g, for any € > 0 there exists a 6 > 0 such that |g(gn(z)) — g(f(x))| < € for
lgn(x) — f(z)| < 6. Since g, — f pointwise, there exists a k € N such that
lgn(z) — f(z)| < 0 for all n > k. Thus |g(gn(x)) — g(f(x))| < € for all n > k.
Therefore g o g, — g o f pointwise i.e.,, go f € By(X,u) and go f(x) = f(lz)
shows % € B1(X, ).

Similarly, we can prove the result when f(z) < 0 for all z € X. ]

Definition 3.2. A non-empty subfamily F of Z[By (X, p)] is called a Zp-filter
on X if it satisfies the following conditions:
(i) ¢ ¢ F,
(il) Z1,Z, € F implies Z1 N Zy € F and
(i) If Z € F and Z' € Z[By(X, p)] such that Z C Z’, then Z' € F.

A Zp-filter on X which is not properly contained in any Zp-filter on X is
called Zp-ultrafilter. Using Zorn’s lemma, it can be established that a Zp-
filter on X can be extended to a Zp-ultrafilter on X. It is interesting to note
that there is a duality between ideals (maximal ideals) in B;(X,u) and the
Zp-filters (respectively Zp-ultrafilters) on X and this is emphasized by the
following result.

Theorem 3.3. For the ring B1(X, ), the following statements are true.

(i) If I is an ideal(proper) of B1(X,p), then Z[I| = {Z(f) : f € I} is
a Zp-filter on X. Dually for any Zp-filter F on X, Z71[F] = {f €
Bi(X, ) : Z(f) € F} is an ideal(proper) in By(X, ).

(ii) If M is a mazimal ideal of B1(X, ) then Z[M] is a Zg-ultrafilter on
X. IfU is a Zp-ultrafilter on X, then Z~Y[U] is a mazimal ideal of
Bi(X, ). Moreover the assignment: M — Z[M] defines a bijection
on the set of all maximal ideals in By(X,p) and the collection of all
Zp-ultrafilters on X.

Proof. (i) We first show that @ ¢ Z[I]. If possible, let @ € Z[I], then there
exists a f € I such that Z(f) = @. Then f2 € I and it is a unit by Theorem
3.1, which contradicts our assumption that I is a proper ideal. Next let Z(f)
and Z(g) € Z[I]. Then Z(f)NZ(g) = Z(f?+g¢?) in Z[I], since f, g € I implies
f?+ g% € I. Finally, let Z(f) € Z[I] and Z(f) C Z(h) for some h € By(X, ),
then Z(h) = Z(f - h) € Z[I] as f - h € 1. Therefore Z[I] is a Zp-filter on X.
Since @ ¢ F,1¢ Z71[F| as Z(1) = @. Thus Z~'[F] is a proper subset of
Bi(X,u). Let f,g € Z7[F]. Then Z(f),Z(g) € F and Z(f) N Z(g) € F as
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F is a Zp-filter. Now Z(f)NZ(g) C Z(f — g) implies Z(f —g) € F as F is a
Zp-filter. This shows that f —g € Z71[F]. If f € Z7[F] and h € By(X, ),
then Z(f)U Z(h) = Z(f - h) D Z(f) implies Z(f - h) € F by the property of
filter. Thus f-h € Z~'[F]. Therefore Z~'[F] is an ideal of By (X, p).

(ii) The proof of this part easily follows from the Theorem 2.5 [7]. |

Definition 3.4. An ideal I of By (X, p) is called fixed if NZ[I] # @. Otherwise
it is called a free ideal.

For any p € X, M, = {f € Bi1(X,u) : f(p) = 0} is a fixed maximal
ideal of By (X, i) and each fixed maximal ideal of By (X, i) is of this form. It
follows from Theorem 3.3 that for any p € X, Z[M,| = U,, where U, = {Z €
Z[B1(X, )] : p € Z} is a typical fixed Zp-ultrafilter on X.

Definition 3.5. An ideal I of By(X, ) is said to be Zp-ideal if Z71Z[I] =1
ie, for f,g € By(X,p) with Z(f) = Z(g), and f € I implies g € I.

From the above definition and by Theorem 3.3, we can easily prove that every
maximal ideal of By (X, u) is a Zp-ideal. But if we take (R, 7, £, ) where 7, is
the usual topology on R, L is the o-algebra of all Lebesgue measurable subsets
of R and p is the Lebesgue measure on £, then the ideal I = {f € B1(R, y) :
f(2) = f(3) =0} is a Zp-ideal that is not a maximal ideal.

The following theorem is a characterization of prime Zpg-ideals of By (X, u).

Theorem 3.6. For a Zg-ideal I of B1(X, ), the following statements are
equivalent:
(i) I is a prime ideal of B1(X, u).
(ii) I contains a prime ideal of B1(X, p).
(i) If fg =0 for f,g € B1(X, ), then either f € I or g € I.
(iil) For any f € B1(X, ) there exists Z € Z[I] such that f does not change
its sign on Z.

Proof. The proof is analogous to the proof of Theorem 2.9 of [7] and thus, it
is omitted. (]

With the help of above theorem and the fact that the intersection of an
arbitrary collection of Zp-deals of By(X,u) is a Zp-ideal, we can state the
following theorem which is an analogue version of Theorem 2.11 [7].

Theorem 3.7. Every prime ideal of B1(X,u) can be extended to a unique
mazimal ideal of B1(X, ) and therefore B1(X, u) is a Gelfand ring.

Let Maxz(B1(X, p)) be the structure space of B1(X, u) i.e., Max(B1(X, u))
is the set of all maximal ideals of By (X, u) equipped with hull-kernel topology.
Then {My : f € Bi(X,u)} form a base for closed sets of this hull-kernel
topology, TM [7], where M; = {M € Mazx(B1(X,p)) : f € M}. Using
Theorem 1.2 of [10], we have Max(B1(X, 1)) is a Hausdorff compact space. It
is checked that the structure space of B;(X, u) is the same with the set of all
Zp-ultrafilters on X with Stone topology.

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 262



Pointwise convergence on the rings of functions which are discontinuous on a set of measure zero

Let 8p, X be an index set for the family of all Zg-ultrafilters on X i.e., for
each p € fBp, X, there exists a Zp-ultrafilter on X, which is denoted by U”.
For any p € X, we can find a fixed Zp-ultrafilter ¢/, and set U, = UP. Then
we can think X as a subset of 8p, X.

Now we want to define a topology on 8p, X. Let 8= {Z : Z € Z|B1(X, p)]},
where Z = {p € Bp, X : Z € UP}. Then f is a base for closed sets for some
topology on 3z, X. Since X belongs to every Zp-ultrafilters on X, X = g, X.
Againp€e ZNX & Z cUP < p € Z. Therefore ZNX = Z. It is easy to
observe that if Zy, Zy € Z[B1(X, u)] with Z; C Z, then Z; C Z,. This leads
to the following result.

Theorem 3.8. For Z € Z|By(X, )], Z = ClﬁalXZ~

Proof. Let Z € Z[By(X,u)] and Z; € 8 be such that Z C Z;. Then Z C
Z1NX = Z;. This implies Z C Z,. Therefore Z is the smallest basic closed
set containing Z. Hence Z = Clg, xZ. O

Now, we want to show that Max(B1(X, 1)) and Sp, X are homeomorphic.

Theorem 3.9. The map ¢ : Max(B1(X, 1)) — Bp, X, defined by ¢(M) = p
is a homeomorphism, where Z[M] = UP.

Proof. The map ¢ is bijective by Theorem 3.3 (ii). Basic closed set of
Maz(Bq(X, p)) is of the form My = {M € Max(B:1(X,p)) : f € M}, for
some f € Bi(X,u). Now M € My & fe M < Z(f) € Z[M] (since max-

imal ideal is a Zp-ideal) < Z(f) € U? < p € Z(f). Thus ¢(M;) = Z(f).
Therefore ¢ interchanges basic closed sets of Max (B (X, u)) and S5, X. Hence
Max(B;(X, 1)) is homeomorphic to Sp, X. O

Now we prove the following theorem which is an analogous version of the
Gelfand-Kolmogoroff Theorem 7.3 [7].

Theorem 3.10. Every maximal ideal of By (X, ) is of the form MP = {f €
Bi(X,p) :p € Clgy, xZ(f)}, for some p € Bp, X.

Proof. Let M be any maximal ideal of By (X, ). Then Z[M] is a Zp-ultrafilter
on X. Thus Z[M] = UP, for some p € Bp, X. So, f € M & Z(f) € Z[M] as
M is a Zp-ideal & Z(f) € Z[M] =UP & p € Z(f) = Clg,, xZ(f). Hence
M = {f € Bi(X,u) : p € Clg, xZ(f)} and so we can write {f € By(X,p) :
p € Clgy, xZ(f)} = MP, p € Bp, X. This completes the proof. O

It is interesting to note that the Stone-Cech compactification X of X,
Bm, X (index set for the family of all Z-ultrafilters on X, defined in [2]) and
Bp, X (defined above) are the same if X is equipped with the discrete topology.
The following example shows that these spaces may not be homeomorphic to
each other.

Example 3.11. Let X = (1,2) U {3}. Consider (X, 7,,P(X),d3°), where 7,
is the subspace topology on X of the real line and P(X) be the power set of X
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and for any A € P(X), define a measure 63° on P(X) as follows:

[, if3c4
53(A)—{o, it3¢ A

Then we have M, (X,05°) = B1(X,65°) = RX. So Bum, X = Bp, X is
equal to the Stone-Cech compactification of X, if X is equipped with discrete
topology. Now clearly Sy, X = B, X has uncountably many isolated points
(in fact, each point of X). But X has exactly one isolated point namely at 3.
Hence Bam, X = Bp, X is not homeomorphic to SX.

Again take X = {1 : n € N} U {0}. Consider (X,7,,P(X), ), where 7,
is the subspace topology on X of real line and p., the counting measure on
P(X). Then C(X) = Mo (X, ). Thus fX = By, X. Since X is a perfectly
normal space, by Theorem 2.6 in [9], B1(X) = B1(X, ) 2 C(X)F (ring of
functions which are discontinuous on a finite set [6]). Since X contains only
one non-isolated point, the cardinality of the discontinuity set of any f € R¥
is not more than 1 and hence By (X, u.) = RY = C(X,7,), where C(X,14)
is rings of continuous functions with discrete topology 74. Hence g, X is the
Stone-Cech compactification of X, if X is equipped with discrete topology and
the cardinality of 8p, X is equal to |3N| = 2¢, where AN is the Stone-Cech
compactification of the set N of natural numbers. Since (X, 7,) is a compact
space, X is homeomorphic to X. Now the cardinality of X is N, implies
Bp, X is not homeomorphic to X = B, X.

Therefore the spaces X, i, X and Sp, X are not homeomorphic to each
other.

4. RESIDUE CLASS OF Bj(X, ) MODULO IDEALS AND REAL MAXIMAL IDEAL
OF B1(X, )

Definition 4.1. For a partial ordered ring R, an ideal I is called convex if
a,b,c € Rwith a <b<c¢, and a,c € I implies b € I.

Definition 4.2. For a lattice ordered ring R, an ideal I is called absolutely
convex if a,b € R with |a|] < |b], and b € I implies a € I.

Example 4.3. Let ¢ : Bi(X,u) — Bi(Y,u') be a homomorphism. Then
Kery is an absolute convex ideal of By (X, ut). Indeed, let f,g € B1(X, u) with

[f| < lgl and g € Keri. Then 4(|g]) = |¢(g)] = 0. This implies (| f]) =
[(f)] = ¥(f) = 0 as homomorphism preserves order. Thus f € Keriy and
hence Keriy is an absolute convex ideal of By (X, u).

Example 4.4. Every Zp-ideal I of B;(X, ut) is absolutely convex as |f| < |g]
and g € I, implies Z(g) C Z(f) and Z(g) € Z[I]. Thus Z(f) € Z[I] and hence
f €I asTis Zg-ideal. Thus every maximal ideal of B; (X, u) is absolutely
convex.

The following theorem follows from the Theorems 5.2, 5.3 [7].
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Theorem 4.5. Let I be an absolute convez ideal of a lattice ordered ring R.
Then

(i) R/I is a lattice ordered ring according to the definition: I(a) > 0 if
there exists x € R such that x > 0 and I(a) = I(x). Here I(a) denote
the residue class of a in R.
(ii) I(a) >0 if and only if I(a) = I(|al).
(iii) I(la]) = |I(a)| for each a € R.

The following theorem is an immediate consequence of Example 4.4 and
Theorem 4.5.

Theorem 4.6. If I is a Zp-ideal of B1(X, u), then the quotient ring B1(X, 1) /I
is a lattice ordered ring.

The following theorem gives a description of non-negative elements of By (X, u)/I,
when I is a Zp-ideal of B (X, p).

Theorem 4.7. Let I be a Zp-ideal of B1(X,p) and f € B1(X,p). Then
I(f) > 0 in B1(X,p)/I if and only if there exists Z € Z[I] such that f >0 on
Z.

Proof. First assume that I(f) > 0. Then by Theorem 4.5, I(f) = I(|f]). This
implies f —|f| € I. Let Z' = Z(f —|f]) € Z[I]. Then f > 0 on Z’'. Conversely,
assume that there exists Z € Z[I] such that f > 0 on Z. Then f = |f| on
Z = ZCZ(f-I|fl)and Z € Z[I] = Z(f - |f]) € 2ll] = f—I|fl€l,
as I is Zp-ideal = I(f)=I(|f|) > 0. O

The following theorem is a description of the maximal ideal of By (X, u) with
the help of zero sets.

Theorem 4.8. Let M be a mazimal ideal of B1(X,u). Then for any f €
B1(X, ), there exists Z € Z[M] on which f does not change its sign.

Proof. Let f € B1(X,u) and M be a maximal ideal of By(X, ) . Since (f V
0)-(f A0) =0 and each maximal ideal is prime, f V0 € M or f A0 € M. This
implies Z(f vV 0) € Z[M] or Z(f AN0) € Z[M]. Also f > 0 on Z(f v 0) and
f<0on Z(f A0). Thus there exists Z € Z[M] on which f does not change
its sign. (I

Corollary 4.9. Let M be a maximal ideal of By(X, p). Then the residue class
ring B1(X, p)/M is totally ordered.

Proof. Let f € B1(X,u) and M be a maximal ideal of By(X,u). Then by
Theorem 4.8, there is a Z € Z[M] on which f > 0 or f < 0. Thus in view of
Theorem 4.7, M(f) > 0 or M(f) <0 in By(X,u)/M. Hence By(X,p)/M is
totally ordered. (I

Definition 4.10. A maximal ideal M of By (X, u)( or Bf (X, 1)) is called real
if the canonical map ¢ : R — B (X, u)/M (respectively ¢ : R — By (X, u)/M)
defined by r — M(r) is onto. A maximal ideal M is called hyperreal if it is
not real.
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It is easy to check that ¢ is an ordered preserving injective map.

By using Theorem 0.22 [7], we can show that a maximal ideal M of By (X, u)
is real if and only if By(X, u)/M is isomorphic to R.

A totally ordered field F' is called archimedean if for any a € F, there exists
an n € N such that a < n. So, a non-archimedean ordered field F' contains
an element a € F such that a > n for all n € N. Such element «a is called an
infinitely large element in F'.

The following theorem is noted in Theorem 0.21 [7].

Theorem 4.11. An ordered field is archimedean if and only if it is isomorphic
to a subfield of R.

Theorem 4.12. Let M be a maximal ideal of By(X, u)(By (X, un)). Then M
is real mazimal of By (X, p)(Bi (X, 1)) if and only if B1(X, u)/M (respectively
B (X, p)/M) is archimedean.

Proof. First we assume that M isreal. Then By (X, u)/M = R. Thus By (X, p)/M
is archimedean. Conversely, let B1(X, u)/M be archimedean. Then by The-
orem 0.21 [7], there exists an isomorphism ¢ from B;(X,u)/M into R. We
claim that ¢(By (X, u)/M) = R. If ¢(B1(X,n)/M) S R. Then ¢ o) is an iso-
morphism from R onto a proper subfield of R, which contradicts the Theorem
0.22 [7]. Thus ¢(B1(X,pu)/M) = R. Therefore By (X, u)/M isomorphic to R.
Hence M is real.

By using the same arguments, we can show that the result is also true for

Bi (X, p). 0
The following theorem characterizes all maximal ideals of B (X, p).

Theorem 4.13. Fach mazimal ideal M of Bf (X, u) is always real.

Proof. Choose f € Bf(X,u), then |f| < n for some n € N. This implies
M(f) < M(n). Thus Bf(X, u)/M contains no infinitely large element. Hence
M is real by Theorem 4.12. (I

The following result shows the relation between the infinitely large elements
in the residue class field By (X, u)/M, where M is a maximal ideal of By (X, u)
and the unbounded functions of By (X, u).

Theorem 4.14. Let f € By(X,u) and M be a mazimal ideal of B1(X, ).

Then the following statements are equivalent.
(i) |M(f)] is an infinitely large element of the residue class field By (X, u)/M.
(il) For all Z € Z[M], f is unbounded on Z.
(ii) ForallneN,Z, ={x € X :|f(x)| > n} € Z[M].
Proof. (i) < (ii): Now M(f) < M(n) for some n € N. & |f| < n on some
Z € Z[M], as M is Zp-ideal. Thus f is bounded on some Z € Z[M]. This
proves (i) < (ii).
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(#4) = (i4i): Assume (4i7) holds and choose Z € Z[M]. So f is unbounded
on Z. Hence Z N Z, # @, for all n € N. Thus each Z,, meets each set Z in
Z[M]. So Z,, € Z[M], for all n € N, as Z[M] is a Zg-ultrafilter on X.

(i4i) = (4i): Suppose (i7) does not hold. Then there exists a Z € Z[M]
on which f is bounded i.e., there exists n € N, for which |f| < n on Z. Hence
Zni1 & ZIM] as Z, 11 N Z = ¢. Hence, (iii) does not hold. O

Theorem 4.15. A function f € B1(X,p) is unbounded on X if and only if
there exists a mazimal ideal M in By(X, ), for which |M(f)| is an infinitely
large element of B1(X, u)/M.

Proof. First we assume that f € By(X,p) is unbounded on X. Then Z, =
{r € X : |f(z)] > n} is non-empty for all n € N. In fact, {Z, : n € N} is a
family of zero sets in X with finite intersection property. Hence there exists
a Zp-ultrafilter Z[M] on X for some maximal ideal M in B;(X, ) such that
Zy € Z[M], for all n € N. Then by Theorem 4.14, |M(f)| becomes infinitely
large in By (X, u)/M.

Conversely, suppose there exists a maximal ideal M in By (X, u) for which
|M(f)| is infinitely large in By (X, u)/M. Then by Theorem 4.14, f becomes
unbounded on each Z € Z[M]. In particular f is unbounded on X. O

From the following theorem we can assert that each hyperreal maximal ideal
must be a free ideal in By (X, ).

Theorem 4.16. Fvery fized mazimal ideal in By (X, u) is real.

Proof. Any fixed maximal ideal of By (X, ) is of the form M, = {f € B1(X, u) :
f(p) = 0} for some p € X. Consider the mapping ¢ : B1(X, 1) — R such that
f+— f(p). Then ¢ is an onto homomorphism. Therefore By (X, 1)/ Keryp = R,
by first isomorphism theorem. Now Kery = {f € B1(X,pu) : ¢¥(f) = 0} =
{f € Bi(X,pn) : ¥(f) = f(p) = 0} = M,. Therefore Bi(X, p)/M, = R. This
shows that M, is a real maximal ideal of By (X, u). O

The following result gives a characterization of real maximal ideal of By (X, u).

Theorem 4.17. For a mazimal ideal M of B1(X, u), the following statements
are equivalent:

(i) M is a real mazimal ideal of B1(X, p).
(ii) The Zp-ultrafilter Z[M] is closed under countable intersection.
(iii) Z[M] has countable intersection property.

Proof. (i) = (i1): Assume that (i7) is false. This means that there exists
a sequence of functions {f,} in M such that ﬂ Z(fn) ¢ Z[M]. Set f =

OO

Z(IfnlA w), then f € By(X,p) and Z(f) = 01 Z(fn) ¢ ZIM] = [ ¢

M — M(f) > 0. For any k € N, set Z = Z( )N Z(f2) NN Z(fr). Now

foralle e Zfx) = 5 (fu@|Ag) = 0<f@)< > Q%ﬁ:»
n=k+1 n=k+1
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0 < M(f) < M(5x), for all k € N. This shows that M(f) is not an infinitely
large element of By (X, u)/M. So, B1(X, u)/M becomes non archimedean i.e.,
M is hyperreal. Thus (i) becomes false.

(i7) = (iii): Trivial.

(t6i)) == (i): Assume (i) is false i.e., M is hyperreal. So, there exists
f € B1(X, ), for which |M(f)| is an infinitely large in B (X, u)/M. Hence by
Theorem 4.14, we can say that each Z,, = {x € X : |f(z)| > n} € Z[M] for all

n € N. We see that [\ Z, = ¢, which shows that the condition (i) becomes
n=1
false. This completes the proof. (|

Definition 4.18. A 7 Au-space X is called real compact if every real maximal
ideal of By (X, u) is fixed.

Example 4.19. Take (R, 7,, L, 1), where 7, is the usual topology on R, L is
the set of all Lebesgue measurable subsets of R and p is Lebesgue measure on
L. Let M be a real maximal ideal of By (R, ). Then the identity map ¢ on R
is an element of By (R, ). Since M is a real maximal ideal in By (X, i), there
exists r € R such that M (i) = M(r). Theni—r € M, and so Z(i—r) € Z[M].
Now Z(i—r) is a singleton set. Thus M is fixed. Therefore it is a real compact
space.

The following theorem characterizes real compact spaces with the help of
ring homomorphisms from Bj (X, 1) into R.

Theorem 4.20. A T Au-space X is real compact if and only if for each non-
zero homomorphism v : By(X, ) — R, there exists a point x € X such that
U(f) = f(x) for all f € Bi(X, p).

Proof. Let X be real compact. Let ¢ : B;1(X,u) — R be a non-zero homo-
morphism, then ¢(r) = r for all » € R and B1(X,u)/Keryy = R. So Kery
is of the form M, for some z € X. Now we define ¢ : B1(X,u)/Keryp —
Bi(X,p)/Kery by ¢(f + Keryp) = f(z) + Kery. Then ¢ is a homomor-

phism. Since the identity map is the only non-zero homomorphism from
Bi(X,u)/Kery to B1(X,u)/Ker, thus f + Keryp = f(z) + Kerty. This
implies ¥ (f — f(z)) = 0. Hence ¢(f) = f(x). Conversely, let M be a real
maximal ideal of By (X, p) and ¢ : B1(X,u)/M — R be an isomorphism. De-
fine a homomorphism ¢ : By (X, u) — R by ¢(f) = ¢(f + M). Then by the
given hypothesis ¢ (f) = f(z) for some z € X and for all f € B;(X,u). Thus
o(f + M) = f(x), implies f(x) =0 if and only if f € M. Therefore M = M,
is a fixed maximal ideal of B1(X, ). This completes the proof. |

5. REAL MAXIMAL IDEAL OF M, (X, u) AND By (X, p)

For an ideal I of M, (X, 1), we define Iz = {f € RX : there exists a sequence
of functions {f,} C I such that f,, — f pointwise}. We can easily prove that
Ip is an ideal of By (X, ) and I C Ip N Mo (X, p).

The next theorem states that for any fixed maximal ideal M of M, (X, u),
the ideal Mp of B1(X, u) is fixed.
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Theorem 5.1. For any p € X, we have (M,)p = Z\Yp, where M, = {f €
Mo (X, ) f(p) =0} and My, = {f € Bi(X, ) : f(p) =0}

Proof. Let f € (M,)p. Then there exists a sequence {f,} C M, such that
fn — [ pointwise on X. Since each f,, € M, fn(p ) = 0 for all n € N. Hence

f(p) = 0 and thus (M,)p C M Next, let f € M Then f(p) = 0. Since
f € Bi(X,p), there exists {g,} C Mo (X u) such that gn — f pointwise on
X. Set fn = gn — gn(p), then f,(p) =0 for all n € N and each f, € Mo (X, u).
Also it is clear that f, — f pointwise on X. Hence f € (M,)s. Therefore

Mp C (Mp)p. This completes the proof. O

A maximal ideal M of M, (X, ) is called a T Ap-real maximal ideal (see
Definition 9 in [13]) or simply a real maximal ideal of M (X, ) if Mo (X, p)/M
is isomorphic to R.

For any proper ideal I of M, (X, ), we always have I C Ig N Mo (X, u).
The following theorem shows when the equality holds.

Theorem 5.2. A mazimal ideal M of Mo (X, u) is real if and only if M =
MB N Mo(X, /,L)

Proof. Let M be a real maximal ideal of M, (X, pu) and f € Mp N Mo (X, p).
Then there exists {f,} € M such that f,, — f pointwise. Since M is real, Z[M]

is closed under countable intersections (Theorem 18 in [13]). Thus () Z(fn) €
n=1

Z[M]. Also, Z(f) 2 ﬂ Z(fn) and hence Z(f) € Z[M]. By maximality of

M, it follows that f E M Therefore M = Mp N Mo (X, ). Conversely, let
M be a maximal ideal of My (X,u) and M = Mp N Mo (X, u). Consider a
countable family of zero sets {Z(f,) : n € N} in Z[M] and by maximality of M

each f,, € M. We construct a sequence {g,} as follows: g,, = Z (3 ALfi]), for

each n € N. For each i, Z(fi) = Z(3: A |fi]), this implies 3 /\ \f1| € M. Thus
gn € M for all n € N. Then by Weierstrass test g, — g and g € Mo (X, u) as
M (X, p) is closed under uniform limit (Theorem 2.2 [2]). Since each g, € M,

g€ MpNMo(X,pu) =M. Thus Z(g) = ﬂ Z(fn) € Z[M]. Therefore M is a
real maximal ideal of M, (X, i) by Theorem 18 in [13]. O

Next theorem states that if a maximal ideal M of M, (X, u) is hyperreal
then Mp is not a proper ideal of By (X, u).

Theorem 5.3. For a hyperreal mazimal ideal M of Mo (X, p), Mg = B1(X, ).

Proof. Since M is a hyperreal maximal ideal of M, (X, ), by Theorem 5.2, we
have M G MpN Mo (X, ). Since M is maximal, MpN M (X, ) = Mo (X, ).
This implies Mo (X, ) € Mp and 1 € Mp. Therefore Mg = By (X, u), since
Mp is an ideal of By (X, p). O

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 269



D. Mandal, A. Singha and S. Bag

For any proper ideal J of By(X,u), J N Mo(X,u) is a proper ideal of
Mo (X, p). Also (J N Mo(X,u))p is an ideal of By(X,u). Now we want to
investigate when J and (J N M (X, p))p coincide.

Definition 5.4. A proper ideal J of By(X,u) is called closed if J = (J N
Mo (X, 1)) B-

__Using Theorem 5.1, it can be easily shown that every fixed maximal ideal
M, of B1(X, ) is closed.

Theorem 5.5. If J is any closed ideal of B1(X,p) containing an ideal I of
Mo (X, p), then Ip C J.

Proof. Since I C JNMo(X, ), Ig C (JNMo(X, 1)) = J as J is closed. O

Let RMax(Mo(X, 1)) be the set of all real maximal ideals of M, (X, p),
RMax(B1(X,p)) be the set of all real maximal ideals of Bi(X,u) and we
denote C(B1(X,u)) = {M € Mazx(B1(X,u)) : (M NMo(X,u))g = M and
M N Mo(X, 1) € M for some M € RMaz(Mo(X, 1))}

Now we want to discuss the relation between RMax(B1(X, 1)) and C(B1 (X, u))
and finally show that |[RMaxz(M,(X,pn))| = |[RMax(B1(X,p))|, where |P|
stands for the cardinality of P.

Theorem 5.6. If M € RMax(Mo(X,u)), then Mp € C(B1(X, ).

Proof. Since M € RMax(Mo(X, ), by Theorem 5.2, M = Mg N Mo (X, u).
This implies Mp = (MpNM,(X, 1))p. Now Mp is a proper ideal of By (X, p),
otherwise M = Mp N Mo (X, 1) = B1(X, ) "N Mo (X, 1) = Mo(X, 1), a con-
tradiction.

We claim that Mp is maximal among all closed maximal ideals of By (X, ).
Let J be a closed maximal ideal of By(X,u) such that Mg C J. Then
M = MpnNMo (X, p) € JNMo (X, ). Since M is a maximal ideal of M, (X, p),
M=JnNMsX,un) and Mg = (JNMo(X,u))p = J as J is closed.

Now we show that Mp is a maximal ideal in By (X, ). If possible, let M
be an ideal of By(X, ) such that Mp & M. Since Mp is maximal among
closed ideals in By (X, p), M is not closed in Bi(X, ). So, M must be free.
Now M = Mg N Mo(X,p) € M N Mo(X,p) and by maximality of M,
M = M N Mo(X,p). Thus M is free, otherwise M N Mo (X, p) = M, for
some p € X implies Mp = (Mﬁ Mo(X,p))p = (Mp)p = J\’va7 which contra-
dicts that Mp is not a maximal ideal. Since M is any real maximal ideal of
M, (X, 1) and every fixed maximal ideal of M (X, u) is real ([13]), M cannot
be always free which contradicts that M must be free. Hence Mp is a maximal
ideal of B1 (X, u). O

Theorem 5.7. If M € RMax(B1(X, u)) then M N Mo (X, 1) is a member of
RMax(Mo(X, ).
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Proof. Let M be a real maximal ideal of B; (X, ). Then for the canonical
map ¢ : B1(X, n) = Bi(X, u)/]T/f defined by ¢(f) = ]Tj(f), there exists r € R
such that M(f) = M(r) and therefore Y mox o)  Mo(X, ) = Bi(X, )/ M
such that f ~— M (f) is an onto homomorphism. Now M s real implies
Bi(X, ;1)/M = R. Then by 1st isomorphism theorem, M (X, )/ Ker(P)pm, (x,u) =
R. Thus Ker(Y|a, (x,u)) is a real maximal ideal. Now Ker(¢|um, x,)) = {f €
Mo(X, 1) M(f) =0} = {f € Mo(X,p) : f € M} = Mo(X, 1) N M. There-
fore Mo (X, 1) N M is a real maximal ideal of Mo (X, ). This completes the
proof. O

Theorem 5.8. If M € C(By(X,pn)), then there exists a unique M €
RMax(Mo(X,p)) such that M = Mp.

Proof. Since M N Mo(X, ) is a prime ideal of By (X, u) and Mo(X,p) is a
Gelfand ring (Theorem 4.6 [2]), there exists a unique maximal ideal M of
Mo (X, 1) such that M N Mo(X,p) € M. Since M € C(Bi(X,p), M €
RMaz(Mo (X, 1)). So, (M N Mo(X,1)s C Mp. But M is closed implies
M= (MNMo(X,p1))s C Mp. By max1mahty of M, we obtain M = M, for
some M € RMax(Mo(X, p)). O

Theorem 5.9. For any T Au-space X, RMax(B1(X,pn)) = C(B1(X, 1)).

Proof. Let M be any real maximal ideal of By (X, 1) and g € (MNMq(X 1)) B-
Then there exists {gn} C MM, (X, ) such that g, — ¢ pomtw1se Smce M is
real, ﬂ Z(gn) € Z|M)]. This implies Z(g) € Z|M] as Z(g) 2 ﬂ Z(gn). Again

n=1 _n=1

Mis a Zp-ideal, implies g € M. Thus (M NM,(X, 1)) s C M. By Maximality
of M, (Mﬁ/\/l (X,u)p = M. Using Theorem 5. 7 we have M N Mo (X, p) is
a real maximal ideal of Mo (X, ) and so (M N Mo (X, 1))p € C(B1(X, 1)) by
Theorem 5.6. Thus M € C(B1(X,p)). Hence RMax(B1(X, 1)) C C(B1(X, u)).

Now, let M € C(B1(X,p)). Then by Theorem 5.8, there exists a unique
M € RMaxz(Mo(X, 1)) such that M = Mpg. Let {f,} be a countable subset
of Mp. Then each f, € Mp and so there exists {f,,} C M such that f,, — fn
pointwise. Since M is a real maximal ideal of M, (X, ), for each n € N,
N Z(fn) € ZIM]. Thus () () Z(fa,) € ZIM)] C Z[Mp]. Again, () Z(f) 2
i=1 n=1i=1 n=1

ﬁ FO]Z(fn) and Z[Mpg] is a Zp-filter implies ﬁ Z(fn) € Z[Mg]. Thus

n=1i=1 n=1
Z[Mp] is closed under countable intersection. Hence C(Bi(X,u)) C
RMaz(B1(X, 1)). This completes the proof. O

Theorem 5.10. [RMax(Mo(X,u))| = |[RMax(B1(X, u))l.

Proof. In view of Theorem 5.6 and Theorem 5.9, we define a function ¢ :
RMazx(Mo(X, 1)) = RMax(B1(X, p)) by ¢(M) = Mp. By Theorem 5.8, for
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cach M € RMax(B1(X, 1)) = C(B1(X, u)), there exists M € RMax(M(X, 1))
such that M = Mg ie., ¢ maps RMax(Mqo(X, 1)) onto RMaz(Byi(X, 1))
Now, for any M,S € RMax(Mo(X,u)) and Mg = Sp implies that Mg N
Mo(X, 1) = Sgp N Mo(X, u). Then by Theorem 5.2, M = S. Therefore ¢ is
one-one. Hence |[RMax(Mo(X, pn))| = |[RMax(B1(X, ). O

6. B1(X, u)-COMPACT SPACES

Definition 6.1. A quadruplet (X, 7, A, 1) or a 7 Au-space is called By (X, u)-
compact if every family of zero sets in Z[B1 (X, u)] with finite intersection
property has non-empty intersection. In short, we shall say X is By (X, p)-
compact.

Clearly, every finite T-space is a By (X, p)-compact space.
The following theorem provides various equivalent conditions of a By (X, u)-
compact space.

Theorem 6.2. Consider a TAu-space X. Then the following are equivalent.
(i) X is B1(X, p)-compact.

)
) Every mazimal ideal of B1(X, u) is fized.
) Every Zp-filter on X is fized.

)

Proof. (i) = (ii): Assume (i) holds and let I be an ideal of By (X, u). Then Z[I]
is a family of zero sets having finite intersection property. Then by definition
of By (X, u)-compact space, NZ[I] # &. Hence I is fixed.

(2) = (47): Trivial.

(75i) = (i): Let B be a family of zero sets in Z[B;(X,p)] having finite
intersection property. By a straightforward use of Zorn’s lemma, B can be
extended to a Zg-ultrafilter UP for some p € B, X. Then UP = Z[MP], where
MP is a maximal ideal of By (X, ) and so, by given hypothesis, "\UP = Z[MP] #
@. This implies NB # @ as B C UP.

(i) = (iv): Let U be a Zp-filter on X. Then Z '[U] is an ideal I of
By (X, p). This implies NZ[I] = NU # & by (i4). Thus U is fixed.

(iv) = (v): Trivial.

(v) = (4i7): Let M be a maximal ideal of B1(X, p). Then Z[M] is a Zp-
ultrafilter on X. Thus by the given hypothesis, M is fixed. O

We recall that a 7 Au-space X is called 7. Au-compact [13] if every family of
zero sets in Z[ M, (X, )] with finite intersection property has non-empty inter-
section or equivalently, if every maximal ideal of M, (X, p) is fixed. The fol-
lowing theorem gives a relation between 7. Au-compact and By (X, u)-compact
spaces.

Theorem 6.3. If X is By (X, u)-compact, then X is T Au-compact.

Proof. Let X be Bi(X, p)-compact. Let M be a maximal ideal of M, (X, u).
Then the Z-ultrafilter Z[M] (defined in [2]) has finite intersection property.
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Now B1 (X, p) 2 Mo(X, ) implies Z[M] C Z[B1(X, )]. Therefore Z[M] is a
family of zero sets having finite intersection property and so NZ[M] # & as X
is By (X, p)-compact. This shows that X is 7.Au-compact. O

But the converse of the above theorem is false which is shown by the following
example.

Example 6.4. Let X = [0,1]. Consider (X, 7,,P(X), ic), where 7, is the
subspace topology of the usual topology of R on X, and pu. is the counting
measure on P(X). Clearly C(X) = Mo(X, i) and hence every maximal ideal
of Mo (X, p) is fixed. Thus X is a T Au-compact space. Since X is a perfectly
normal space (A topological space is called perfectly normal if it is normal and
every closed subset of it is a Gs-subset), by Theorem 3.7 ([4]), each charac-
teristic function {x,} : @ € X} belongs to B1(X, i) and the ideal generated
by the family B = {x(;} : © € X} is free. Thus by Theorem 6.2, X is not
B1 (X, p)-compact.

Now we can establish the following theorem which is a characterization of
B (X, p)-compact spaces in terms of co-zero sets.

Theorem 6.5. A space X is By(X, p)-compact if and only if every family of
co-zero sets, which covers X, has a finite sub-cover.

Proof. Let X be Bq(X, u)-compact and {Gy}aeca be a family of co-zero sets

such that |J G, = X. Thus X'\ U Go =92 = () (X\G,) =@, where each
aEA a€A

X\ G, is a zero set of Z[B1(X, u)} Smce Xis By (X p)-compact, there exists a
finite sub-collection {G1,Ga, -+, Gy} such that ﬂ (X\ G;) = @, which means
i=1

that X = |J G;. Therefore {G,}aca has a finite sub-cover.

=1
Conversely, let F = {Z, : « € A} be a family of zero sets having finite inter-

section property. If possible, let [\ Z, = @. Then X = X'\ ﬂ Zo = U (X\
aEA (SN aEN
Z). By our absumptlon there exists a ﬁmte sub- collectlon {Z1, Zoy+ Zn}

of F' such that X = U(X\Z) X\ﬂZ This implies ﬂZ =g, a

i=1 i= i=1
contradiction. This completes the proof. ([l

Now we want to develop a theorem like Stone Weierstrass theorem [12], in
our set up. For this purpose we first prove the two following lemmas.

Lemma 6.6. Let X be a By (X, p)-compact space with more than one point and
let L be a closed sub-lattice of B1(X, u) with the property: if © and y are two
distinct points of X and a,b are any two real numbers, then there exists a real

valued function f in L such that f(x) = a and f(y) =b. Then L = B1(X, ).

Proof. Let f be an arbitrary function in By (X,u). We want to show that
f € L. Choose an arbitrary small real number ¢ > 0. Since L is closed, it is
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sufficient to construct a function g € L such that f(z) —e < g(2) < f(2) + ¢
for all z € X.

Let x be a fixed point of X and y € X be any point different from x. By
our assumption, there exists a function f, € L such that f,(z) = f(z) and
fy(y) = f(y). Now consider the co-zero set G, = {z: fy(2) < f(z) +€}. It is
clear that both z,y € G,. So the class G ’s for all points y different from z is a
cover of X. Since X is B;(X, u)-compact, by Theorem 6.5, there exists a finite
family of co-zero sets {G,,,Gy,, -+ , Gy, } that covers X. If the corresponding
functions in L are denoted by fy,, fy,, -, fy, then gz = fy, Afy, A---Afy, €L
such that g, (z) = f(z) and g.(2) < f(z) + € for all z € X.

Now consider the co-zero set H, = {z : g»(2) > f(2) — €}. Since z € H,,
the class H,’s for all x € X is a cover of X. Again since the space X is
B1(X, p)-compact, by Theorem 6.5, there exists a finite subfamily of co-zero
sets {Hy,, Hyy, -+, Hy, } that covers X. We denote the corresponding func-

tions in L by gz, , 9zy, - - , Yz, and we define g as g =9z, V gz, V-V gy, . It
is clear that g € L with the property that f(z) — e < g(z) < f(z) + € for all
z € X. This completes the proof. O

It is routine check to see that B; (X, ) is a normed algebra if we define the
norm as ||f|| = sup |f(z)] for f € B1(X, u) and we have the following lemma.
zeX

Lemma 6.7. Let X be an arbitrary topological space. Then every closed sub-
algebra of B1(X, ) is also a closed sub-lattice of B1(X, ).

Proof. Let A be a closed sub-algebra of B;(X,u). To show that A is a sub-
lattice, it is sufficient to show that if f € A then |f| € A. Let € > 0 be any
arbitrary real number. Since |t| is a continuous function of real variable ¢,
by Weierstrass approximation theorem, there exists a polynomial p’ with the
property that |[t| —p'(t)| < § for every ¢ on the closed interval [—|| f|], || f||]. Set
p(t) = p'(t) — p'(0), then p is a polynomial with O as its constant term which
has the property that ||t| — p(t)| < € for every t in [—||f||, || f]|]]. Since A is an
algebra, p(f) € A. Also ||f(z)| — p(f(x))] < € for every x in X. This implies
that || f| — p(f)| < e. Since A is a closed sub-algebra and the fact that |f| is
approximated by the function p(f) in A , we have |f| € A. O

Now we can easily prove the following theorem by adopting the proof of
Stone Weierstrass theorem.

Theorem 6.8. Let X be a By (X, p)-compact space and let A be a closed sub-
algebra of B1(X, ), which separates points and contains a non-zero constant
function. Then A = B1(X, ).

Proof. Tf X has only one point, then By (X, 1) contains only constant functions.
Since A contains a non-zero constant function and it is an algebra, it contains
all constant functions and thus A = By (X, ). We may assume that X has more
than one point. Let x,y be two distinct points of X and a, b two real numbers.
Since A separates points, there exists g € A such that g(x) # ¢g(y). Now we
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define f by f(z) = a22)=0l) | j9(2)-9@) Then f e A and f(x) =a, f(y) =b.

9(z)—g(v) 9(y)—g(=
Then by Lemmas 6.6 and 6.7, we have A = By (X, u). a
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