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The Editorial on the Research Topic

Doubled Haploidy in Model and Recalcitrant Species

Doubled haploid (DH) technology is a powerful tool in plant breeding to reduce the time and costs
needed to produce pure lines, the cornerstone of hybrid seed production. This biotechnological
alternative to classic methods allows for a reduction of the typical 7–8 inbreeding generations
needed to fix a hybrid genotype to only one in vitro generation. It is therefore much faster and
cheaper, being the principal advantage of DH technology in plant breeding, but not the only.
Indeed, DHs are also useful for genetic mapping of complex qualitative traits, for linkage studies
and estimation of recombination fractions, to unmask recessive mutants, to avoid transgenic
hemizygotes, or for reverse breeding, among others (Forster et al., 2007; Dunwell, 2010; Dwivedi
et al., 2015). These are some of the advantages that make DH technology one of the most exciting
fields of present and future plant biotechnology.

At present, there are several ways to produce haploids and eventually DHs (after a process
of chromosome doubling), involving both female and male gametophytes. From the female
gametophyte, haploids may be produced by uniparental genome elimination and by induction
of gynogenesis. Uniparental genome elimination is typically achieved by crossing two sexually
incompatible species, in some intraspecific crosses when one genitor carries specific mutation(s),
or through genetic manipulation of CENH3, a centromeric variant of the H3 histone (Ravi and
Chan, 2010, 2013; Karimi-Ashtiyani et al., 2015). Gynogenesis is a route through which unfertilized
ovules, ovaries or even entire flowers are cultured in vitro to induce the development of a haploid
embryo, generally from the egg cell (Bohanec, 2009). From the male gametophyte, haploids
may be obtained through androgenesis (Seguí-Simarro, 2010). The most common and useful
androgenic pathway is microspore/pollen embryogenesis, through which microspores/pollen are
reprogrammed toward embryogenesis. Discovered more than 40 years ago (Guha andMaheshwari,
1964), this process has become of great practical importance for the agronomic industry due
to its convenience for producing DH lines much faster, cheaper, and in more species than the
other methods above mentioned (Forster et al., 2007; Dunwell, 2010). This is why when possible,
microspore embryogenesis is the method of choice to produce DHs.

For all these methods, there are species where they are most efficient. This is why these
species are used as experimental models to study basic aspects of the process. This is the
case of onion for gynogenesis, and of barley and rapeseed for microspore embryogenesis
in monocots and dicots, respectively. This Research Topic includes examples of research
focused on different aspects of gynogenesis and microspore embryogenesis in these species.
For example, Fayos et al. compare the performance of different onion germplasms under
different experimental conditions to induce gynogenesis, regenerate gynogenic plants, and
promote chromosome doubling. As to microspore embryogenesis, several articles use barley to
study it. Daghma et al. develop a time-lapse imaging system to track the first embryogenic
divisions, finding that most embryogenic structures come from symmetrically divided vacuolated
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microspores, with very few coming from asymmetric divisions.
Lippmann et al. develop a micro-culture system whereby
they demonstrate that co-cultivated wheat pistils release a
low molecular weight signal that increases considerably the
production of embryogenic structures. They postulate that
the use of cut pistils as sources of this feeder substance might
be extended to other species. Solís et al. use 5-azacytidine,
a non-methylable base analog, to study the effects of DNA
hypomethylation during microspore embryogenesis. They
find that hypomethylation promotes the developmental switch
toward proliferation, but prevents further differentiation into
true embryos, both in barley and rapeseed. Also in rapeseed,
the use of the most advanced sample preservation techniques
allowed for the discovery of new processes associated to the
embryogenic switch. In Parra-Vega et al., and Parra-Vega et al.,
the authors report the occurrence of plastolysomes (autophagic
plastids) that engulf and digest cytoplasm regions, being finally
released to the apoplast. They also describe the parallel formation
of a callosic layer beneath the microspore intine, and the de
novo formation of abnormal cell walls with altered callose
and cellulose composition. All these events appear to have a
dramatic impact in the developmental fate of the embryogenic
microspore, including genome duplication by nuclear
fusion.

However, not all the species respond well enough to DH
technology. Indeed, many of them are still considered as
recalcitrant to these treatments, including many of the most
important crops worldwide. Despite the work of many groups,
little is still known about how to overcome recalcitrancy. This
is why it is also important to shed light on the particularities
of recalcitrant species and the special conditions they need
to be induced. In this Research Topic, Castillo et al. show

that preconditioning or coculture with ovaries increases the
efficiency of DH production and chromosome doubling in
different bread wheat cultivars, being the increases higher
in those most recalcitrant. Interestingly, these results are in
line with those from Lippmann et al. about the role of the
female parts in helping the development of microspore-derived
embryos in an in vitro environment, devoid of the complex
crosstalk between embryo, endosperm and seed tissues that
takes place during zygotic embryogenesis. In this crosstalk,
hormones play a key role. This is why Żur et al. present a
review focused on the current knowledge of hormonal regulation
during microspore embryogenesis. Besides the role described
for the principal hormones, either when they act endogenously
or when applied exogenously, this review presents new and
interesting notions about their involvement in this process.
A remarkable example of the application of this kind of
knowledge is the study brought by Chiancone et al., which
achieves an important milestone inducing for the first time
the development of microspore-derived embryos in different
cultivars of Citrus, a very recalcitrant fruit crop, through the
use of meta-topolin, a plant hormone rarely use in microspore
embryogenesis.

Together, the papers of this Research Topic show some
relevant advances in the understanding of the processes that

lead to the formation of DH plants, and in their application to
improve its performance in recalcitrant genotypes.
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