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Background: Antiarrhythmic drugs are the first-line treatment for atrial fibrillation (AF),
but their effect is highly dependent on the characteristics of the patient. Moreover,
anatomical variability, and specifically atrial size, have also a strong influence on
AF recurrence.

Objective: We performed a proof-of-concept study using artificial intelligence (AI)
that enabled us to identify proarrhythmic profiles based on pattern identification from
in silico simulations.

Methods: A population of models consisting of 127 electrophysiological profiles with
a variation of nine electrophysiological variables (GNa, INaK , GK1, GCaL, GKur, IKCa,
[Na]ext, and [K]ext and diffusion) was simulated using the Koivumaki atrial model on
square planes corresponding to a normal (16 cm2) and dilated (22.5 cm2) atrium. The
simple pore channel equation was used for drug implementation including three drugs
(isoproterenol, flecainide, and verapamil). We analyzed the effect of every ionic channel
combination to evaluate arrhythmia induction. A Random Forest algorithm was trained
using the population of models and AF inducibility as input and output, respectively. The
algorithm was trained with 80% of the data (N = 832) and 20% of the data was used for
testing with a k-fold cross-validation (k = 5).

Results: We found two electrophysiological patterns derived from the AI algorithm
that was associated with proarrhythmic behavior in most of the profiles, where GK1

was identified as the most important current for classifying the proarrhythmicity of a
given profile. Additionally, we found different effects of the drugs depending on the
electrophysiological profile and a higher tendency of the dilated tissue to fibrillate (Small
tissue: 80 profiles vs Dilated tissue: 87 profiles).

Conclusion: Artificial intelligence algorithms appear as a novel tool for
electrophysiological pattern identification and analysis of the effect of antiarrhythmic
drugs on a heterogeneous population of patients with AF.
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INTRODUCTION

The first-line treatment for atrial fibrillation (AF) is
antiarrhythmic drugs, although undesirable proarrhythmic
effects have been identified in some cases. The response
to these drugs is highly dependent on the specific baseline
electrophysiological characteristics of the patient. In this
framework, safety pharmacology has emerged as a new field in
cardiac arrhythmias with the aim of identifying the drug hazard
(Kraushaar et al., 2012; Mirams et al., 2012; Davies et al., 2019) by
detecting the probability of triggering an arrhythmia. Different
tests have been designed with the objective of determining the
proarrhythmicity of a given compound (Falk, 1989; Crumb et al.,
2016; Passini et al., 2017).

Consequently, variability is an important factor to be studied
and analyzed to understand its dependency between the specific
characteristics of the patient and the effect of the drug. In
this scenario, several studies have included and incorporated
variability in mathematical approaches by means of a population
of models (Britton et al., 2013; Liberos et al., 2016; Muszkiewicz
et al., 2016; Bai et al., 2021) to account for the electrophysiological
heterogeneity presented in a real population of patients. Other
approaches have also been implemented in more recent studies
such as the CiPA initiative, which combines in vitro, in silico
and clinical data to build a platform that can be used for
testing new drugs and their potential harmful effects (Sager,
2014) in ventricular myocyte models. In addition, studies have
also explored electrophysiological variability to identify potential
currents involved in AF triggering and maintenance (Ellinwood
et al., 2017; Bai et al., 2020). However, these approaches usually
focus at the unicellular level or present low variability at an
electrophysiological level in the field of AF.

Anatomical complexity has also been incorporated including
in silico studies using two-dimensional (2D) and three-
dimensional (3D) structures rather than unicellular approaches
to evaluate the proarrhythmicity of anatomical structures (Varela
et al., 2016). Within this framework, several studies have
identified specific currents or biomarkers that can explain or
characterize the proarrhythmicity of a compound. New scenarios
considered at this stage the use of sophisticated statistical
methods that can, not only identify isolated biomarkers but
groups or clusters that better react to a specific treatment.
Although the use of a population of models for the evaluation
of proarrhythmicity usually presents a broad representation of
the electrophysiological characteristics of these patients, other
variables that highly influence the arrhythmia induction and
maintenance should be explored. For example, other factors
aside from ionic remodeling that can affect AF maintenance
can be found in the literature such as the size of the atria,
which has been previously identified as an increased probability
of triggering an arrhythmia for bigger or dilated tissues.
With all these considerations, a new dimension is included
in the simulations, introducing anatomical variability into the
important factors underlying arrhythmia maintenance (Nattel
et al., 2008; Qureshi et al., 2014).

However, and despite the complexity included in all these
studies, the identification of new biomarkers or patterns is still

challenging and present low accuracy metrics. Our hypothesis
was that artificial intelligence (AI) could extract patterns or
clusters from in silico simulations that can help to better predict
the effect and risk of antiarrhythmic therapies.

In this study, a population of models with AF, including
electrophysiological and anatomical variability, was used to study
the effect of different drugs on the arrhythmia behavior and was
then analyzed by means of AI algorithms. Our research was
built on previous studies using a population of models (Liberos
et al., 2016) showing the importance of specific currents on the
drug effect. In addition, previous studies have identified one
ionic current or a combination of them (Pandit et al., 2005;
Dobrev et al., 2011; Jiang et al., 2017) but none of them have
implemented an algorithm that specifies the threshold for each
variable of the ionic profile. Our algorithm was developed as
a proof of concept of AI applied to the population of models
guiding the identification of the effect of drug therapy on a
heterogeneous population.

MATERIALS AND METHODS

Electrophysiological Variation:
Description of the Population of Models
To obtain data for the population of models, samples from
the right atrial appendages from 149 patients diagnosed
with chronic AF in which antiarrhythmic medication was
interrupted before the study were available (Wettwer et al., 2013;
Sánchez et al., 2014).

Briefly, patch-clamp was performed in all the samples
obtaining the values for different currents. A total of six
biomarkers were used to quantify variability in action potentials
(AP) including AP duration at 20, 50, and 90% of repolarization
(APD20, APD50, and APD90, respectively), AP amplitude
(APA), resting membrane potential (RMP), and AP plateau
potential at 20% of APD20 (V20). The maximum and minimum
values of these biomarkers at a pacing frequency of 1 Hz are
presented in Supplementary Table 1.

To build the computational population of human AF models,
different combinations of ionic currents were generated from
the experimental data described earlier. In further detail, Latin
Hypercubic Sampling (LHS) (McKay et al., 1979) and the
baseline AF model developed by Koivumaki et al. were used
for its generation.

A total of nine parameters were varied from –50 to +100%
of their original value: fast sodium (Na+) ionic conductance
(gNa), sodium-potassium ion (Na+–K+) pump (INaK), inward
rectified K+ current (gK1), L-type calcium ionic conductance
(gCaL), ultrarapid outward ionic conductance (gKur), Ca2+-
dependent K+ current (IKCa), and Na+ and K+ extracellular
concentration and the diffusion coefficient of the reaction-
diffusion equation (Supplementary Figure 2). LHS produced
500 different combinations of these nine parameters from the
initial 149 patients. Simulations for these 500 profiles were
calculated on planes of 8× 256 nodes to evaluate the AP metrics.
The models were simulated by pacing at 1 Hz (using a 3 ms
stimulus duration, twice diastolic threshold amplitude). The APs
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of three cells along the plane (cells 500, 620, and 748) were
analyzed following a train of 15 periodic stimuli, and the last 5
periodic stimuli were considered in order to ensure a steady-state.
Only the models that fitted into the experimental constraints
(Supplementary Table 1) were considered representative human
electrophysiological models for the final population, resulting in
127 final profiles (Simon et al., 2017).

Chronic Atrial Fibrillation
Electrophysiological Cellular Model
Different atrial models have been described at a unicellular level
to characterize the electrophysiological response. In this study, we
implemented the Koivumaki model with Skibsbye modifications
(Skibsbye et al., 2016) that included a reformulation in
sodium current to characterize sodium channel inactivation,
adjusted transient outward potassium current and L-type
Ca+ current, and included the small conductance calcium-
activated potassium current (IKCA). In addition, the model used
for simulations included AF remodeling, achieved by modifying
the following ionic currents: L-type Ca2+ (ICaL) decreased by
55%, transient outward current (Ito) decreased by 62%, rapid
delayed rectifier potassium channel (IKur) decreased by 38%,
inward-rectifier potassium channel (IK1) increased by 62%,
Na/Ca exchange current (INCX) increased by 50%, expression
of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA)
decreased by 16%, phospholamban to SERCA increased by 18%
and sarcopilin to SERCA decreased by 40% as described in
Koivumaki et al. (2014). This model was used for both the
calibration of the population of models previously described and
the rest of the experiments in the study.

Anatomical Characterization:
Monodomain Equation and Tissue Size
Simulations were performed on 2D planes mimicking a sheet
of cardiac tissue. Two different tissue sizes were implemented
for this study: one square plane corresponding to a normal
atrium (16 cm2, 400 × 400 nodes) and another square plane
corresponding to a dilated atrium (20.25 cm2, 450 × 450 nodes)
(Kou et al., 2014).

To connect the cells within the plane, the monodomain
reaction-diffusion equation was implemented, assuming that
tissue behaves as a functional syncytium where membrane
voltage is propagated smoothly (Clayton and Panfilov, 2008):

∂Vm

∂t
= ∇ · (D∇Vm)−

Iion + Iapplied
Cm

where the ∇ corresponds to the gradient operator and D a
diffusion coefficient with units distance2 time−1. By using this
monodomain simplification, the tissue is considered to have an
unlimited extracellular medium, so the extracellular resistivity
can be neglected. The extracellular medium is isopotential
and equal to zero for simplicity. Consequently, the membrane
potential is the same as the intracellular potential. Planes were
fully connected as shown in Figure 1, not including structures
such as the pulmonary veins. The value of the diffusion constant,
referred to as D in the above equation, was varied among

the different profiles as part of the variability included in the
population of models.

Mathematical Modeling of the Drug
Both antiarrhythmic and proarrhythmic drugs were evaluated
in the electrophysiological population of models in order
to characterize the effect according to tissue size and ionic
currents. Three different drugs were studied presenting different
mechanisms and effects, namely, verapamil, flecainide, and
isoproterenol. Briefly, verapamil is an antiarrhythmic drug that
acts as a calcium blocker, flecainide is an antiarrhythmic drug that
acts as a sodium blocker and isoproterenol is a proarrhythmic
agent (β receptor agonist) that increases intracellular calcium.
All three drugs are currently used in clinical practice and their
effect, although established as proarrhythmic or antiarrhythmic,
can vary from patient to patient (Bassett et al., 1997). A simple
pore channel equation was used for drug implementation at the
computational level including three channels for each drug that
was modeled according to experimental IC50 values to calculate
the block of the channel (Dempsey et al., 2014). The model used
is described as follows:

Gi = G0 ×
1

1+ [Di]
IC50

where the G0 represents the initial conductance of the channel
for each of the profiles in the population of modes, [Di]
corresponds to the concentration of the drug and IC50 is the
concentration of the drug that reduces by 50% the channel
current. For verapamil and flecainide, values from Crumb et al.
(2016) were implemented. Isoproterenol was modeled to increase
the permeability of the calcium current as stated in Vescovo
et al. (1989). The numerical values for each modeled drug can
be observed in Table 2, including the concentration at which the
drug was modeled.

Simulation Protocols
Simulations were performed implementing differential equations
computed with a time step of 1 microsecond for the Euler
method using in-house software written in C++ with CUDA
parallelization and solved with a NVIDIA TESLA C2057 GPU,
NVIDIA Corporation, Santa Clara, CA, United States. Rush
Larsen method was developed for cell models as it offers stability
to the problem by calculating the exact solution for the gating
variables. Since all the equations governing the gating variables
have a similar structure, the method uses the following expression
to solve them:

wj+1
i = eai(v)h

(
wj
i +

bi (V)

a (V)

)
−

bi (V)

a (V)

Consequently, all equations for gating variables were solved
by the previous expression whereas the rest of the equations were
solved by the forward Euler Method.

Planes were simulated for a total of three impulses (S1) at
1 Hz followed by a fourth one (S2) for arrhythmia initiation. S2
was induced in the cells of the inferior left section of the plane,
producing reentry in part of the models. For a given combination
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FIGURE 1 | Overall methodology description including (1) population of models calibration as described in Simon et al. (2017) in which samples from 149 patients
were obtained to evaluate 500 different ionic combinations that resulted in a final pool of 127 electrophysiological profiles that composed the population of models
(section “Electrophysiological Variation: Description of the Population of Models”); (2) brief description of the Koivumaki electrophysiological model used and the
mathematical modeling of the drug as described (section “ Chronic Atrial Fibrillation Electrophysiological Cellular Model”); (3) connection between different cells for
plane simulations and tissue size used for each of the 2D planes used (sections “Anatomical Characterization: Monodomain Equation and Tissue Size” and
“Mathematical Modeling of the Drug”); (4) S1–S2 arrhythmia induction protocol simulation and pharmacological compounds simulated during the experiments
(section “Simulation Protocols”); (5) Artificial intelligence algorithm training (80% of data) and testing division (20% of data) for the identification of proarrhythmic
profiles (section “Random Forest Algorithm for Atrial Fibrillation Maintenance Prediction”).
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of ionic channels in the population of models, arrhythmia was
induced when >1 complete rotational activity followed the S1–
S2 induction protocol. In addition, rotor tracking was studied for
two specific profiles that will be discussed in the “Result” section.
The methodology for rotor tracking has already been described in
previous publications of the group (Rodrigo et al., 2014). Briefly,
phase maps of the simulations were calculated by using the
Hilbert transform from which singularity points were calculated.
A singularity point (SP) was defined as the point in a phase map
that is surrounded by phases from 0 to 2π. Only those singularity
points that were present for the duration of at least 1 full rotation
were considered, as described in Rodrigo et al. (2014). Rotor track
was defined as the connection between SPs across spherical layers
at a given time. Only filaments that completed at least 1 rotation
on the outermost surface were considered.

Random Forest Algorithm for Atrial
Fibrillation Maintenance Prediction
A total of 1,016 simulations were computed in this study
corresponding to all different combinations of the population
of models (127 profiles) simulated in different tissue sizes (two
tissue sizes) and four different conditions (baseline conditions,
two antiarrhythmic drugs, and one proarrhythmic drug), creating
a database with different ionic conductance combinations
and tissue size.

Random Forest, which is a decision algorithm consisting of
a multitude of decision trees at training time, was implemented
to output two possible outcomes: induced or non-inducible AF.
This algorithm was trained including the eight variables of the
population of models as an input and the presence of AF form
simulations as an output to evaluate patterns that may lead to
AF maintenance. The algorithm was trained with 80% of the data
(N = 832) and 20% of the data was used for testing with a 5k-fold
cross-validation.

RESULTS

Atrial Fibrillation Induction on the
Population of Models
From the complete population consisting of 127 different
electrophysiological profiles, 80 profiles maintained the reentrant
activity at baseline conditions in the normal tissue size and 87
in the dilated atrium. Complete quantification of the profiles
maintaining reentry can be observed in Table 1, including the
effect of the three simulated drugs. As shown, dilated tissue
increased the number of profiles maintaining reentry in all cases,
independently of the presence and type of drug.

The analysis of the simulations resulted in the identification
of profiles that responded differently to the arrhythmia induction
under the effect of the drug, as can be observed in arrhythmia
induction Figure 2. Non-inducibility of the arrhythmia was
observed in the majority of the profiles when the antiarrhythmic
compounds, verapamil, and flecainide were used. However, in
some of the profiles that did not induce the arrhythmia at
baseline, the addition of one of those drugs induced rotational

TABLE 1 | Profiles maintaining rotational activity for different drug and tissue sizes.

Atrial fibrillation Sinus rhythm

Small Basal 80 (63.00%) 47 (37.00%)

Flecainide 37 (29.13%) 90 (70.87%)

Verapamil 37 (29.13%) 90 (70.87%)

Isoproterenol 88 (69.29%) 39 (30.71%)

Dilated Basal 87 (68.50%) 40 (31.50%)

Flecainide 63 (49.61%) 64 (50.39%)

Verapamil 64 (50.39%) 63 (49.61%)

Isoproterenol 94 (74.02%) 33 (25.98%)

For each tissue size and basal/drug condition, the table specifies the number of
profiles with AF inducibility. The percentage of the profiles with reentry is specified
in parenthesis for every 127 profiles simulated in each case.

TABLE 2 | Parameters for modeling the drug effect include drug concentration,
IC50 for the three specific channels modeled.

Drug concentration (mM) Nav1.5-peak hERG Cav1.2

Flecainide 2.0 e-04 6.7 0.7 20

Verapamil 5.0 e-04 1.0 0.7 0.1

Isoproterenol 8.0 e-02 – – 20*

*Corresponds to EC50.

activity (Figure 2B). Specifically, the addition of flecainide gave
rise to non-inducibility of the arrhythmia in 51 profiles and
induced AF in seven profiles that were non-inducible at baseline.
For verapamil, 53 and 8 profiles were non-inducible and induced
the arrhythmia, respectively, in normal tissue size samples.
Interestingly, all the profiles that showed proarrhythmic and
antiarrhythmic effects in the flecainide scenario presented the
same behavior in the verapamil scenario. Although verapamil
and flecainide showed similar results, the overall action potential
morphology was significantly different for the same profile under
the effect of these drugs, as it can be observed in Figures 3, 4,
where the curvature of the action potential is modified due to
the effect of the drug at the ionic level. Isoproterenol showed a
proarrhythmic effect increasing the number of AF maintaining
profiles in eight cases.

Antagonistic Effects Were Observed for
the Same Drug Among the Population of
Models
Antagonistic effects of both antiarrhythmic and proarrhythmic
drugs were observed on the population of models. Figure 3
presents a specific ionic profile simulated for all four conditions
(basal and three drugs) in which reentry was maintained over
time in the basal scenario. When the simulation was repeated
under the effect of verapamil or flecainide, the arrhythmia was
not induced. With the addition of isoproterenol, the arrhythmia
was, not only induced but rotational activity presented a higher
activation frequency.

For another specific profile shown in Figure 4, antagonistic
effects were observed as follows: for a profile in which arrhythmia
was not induced under basal conditions, verapamil and flecainide
showed a proarrhythmic effect, meaning that the arrhythmia
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FIGURE 2 | (A) Distribution of the population of models with induced and non-inducible atrial fibrillation (AF) for the normal tissue (top) and the dilated tissue
(bottom). The red color shows the proportion of the models with inducible AF during simulation and the green color shows the proportion of the models with
non-inducible AF. (B) Distribution of the population of models for the normal size tissue under the 4 studied conditions (no drug, flecainide, verapamil, and
isoproterenol) with the proportion of inducible AF (red), non-inducible AF (green) in each of the cases. Terminated AF (yellow) corresponds to the profiles that, due to
the electrophysiological changes induced by the drug, the reentry was not inducible.

was induced, while isoproterenol did not induce the reentry for
the complete simulation. Furthermore, for these aforementioned
profiles, rotor tracking shows the lower area and higher
complexity of the simulations in which the arrhythmia was
maintained over time, exhibiting the stability of the reentry.
Flecainide and verapamil terminated AF for the majority of the
profiles in which AF was maintained under basal conditions,
whereas isoproterenol has induced AF in new profiles which
were not inducible in basal conditions. Interestingly, a small
proportion of models presented AF induction under the effect of
verapamil and flecainide (Figure 2B) despite the absence of AF
induction at baseline.

Machine Learning Algorithms Help
Understand and Predict the Effect of the
Ionic Channel
We generated a final database of 1,016 simulations that
included the basal and drug administration state for both tissue
sizes. Therefore, these data represented: (1) the variables of
the population of models, (2) the electrophysiologic change
conferred by the drug administration; (3) the changes between
normal and dilated tissue size. Then, the database was processed
in order to train and calibrate a decision algorithm for drug effect
prediction. As a result, the Random Forest algorithm, shown
in Figure 5, was obtained. The algorithm had in total seven
different consecutive layers, shown in Figure 5A that cluster
similar profiles together for prediction of AF induction based
on the conductance values in the form of a sunburst diagram.
In this diagram, each level is represented by a concentric circle
containing one or more variables from the population of models,
where each level presents threshold values for decision making.
To evaluate a specific profile, the decision algorithm starts the
clustering process from the most inner circle, that corresponds
to the GK1 variable. For each variable, a threshold value has been
defined that has to be compared with the value of the variable for
the specific profile that is being evaluated. Specific values for each
threshold can be consulted in the Supplementary Figure 1. For
example, in the case of GK1, this value corresponded to 9.12%. If
the value of the profile is higher than 9.12%, the next level to be

considered will correspond to the right part of the diagram and
the next variable (High GK1) to continue the characterization,
corresponding to the diffusion variable. In contrast, if the value
of the profile is lower than 9.12% for GK1, the next level to
be considered will correspond to the left part of the diagram
and the next variable, identified as K0. This process should be
completed until the last layer or circle of the diagram, finding
the path or cluster to which a given profile belongs. Figure 5B
shows the paths or clusters that have been identified as inducible
AF by the algorithm.

Interestingly, if the paths of clusters from the diagram are
analyzed, it can be observed that one of the main contributions
that lead to AF inducibility is the combination of profiles with
high conductance of the inward rectifier K+ channel (K1), low
diffusion, high concentration of extracellular potassium, high
conductance for the sodium channel and low conductance of the
ultra-rapidly activating delayed rectifier current (IKur). Another
combination that led to AF was low conductance value for IK1,
low concentration of extracellular potassium, high conductance
for the sodium-potassium pump, high conductance for the slow
calcium channel, high conductance for the calcium-potassium
pump, and high conductance for the INa channel.

Figure 6 shows an example of how the change in conductance
of specific channels can affect the final path or cluster to which a
specific profile belongs, altering the final outcome of the decision
tree algorithm. In this figure, specific pathways of the decision
tree are exemplified in each of the panels, highlighting how the
change due to the addition of the drug affects specific levels
that, depending on the final permeability of the channel, may be
fundamental for the induction and maintenance of the rotational
activity. Panels A, C highlight changes in calcium channel
conductance, that can be affected by the addition of verapamil
or isoproterenol, as both drugs were modeled to respectively,
decrease or increase the permeability of this channel. Specifically,
Panel A exemplifies how the increase in the permeability of
the calcium channel, by the addition of isoproterenol, has a
proarrhythmic effect. Conversely, a profile that presents high
conductance of the calcium channel can be reduced by adding
verapamil and changing to a state of non-inducibility of AF.
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FIGURE 3 | Specific profile from the population of models showing: (A) Inducible AF after stimulation protocol. (B) Inducible AF due to effect of isoproterenol,
showing an increase on the activation dynamics. (C) Antiarrhythmic effect of verapamil and (D) Antiarrhythmic effect of flecainide. As an example, rotor meandering
is shown in panels (A,B), exemplifying the effect of isoproterenol in arrhythmia stabilization.

Panel C shows another example in which the decrease of calcium
permeability results in AF inducibility and the increase of calcium
permeability increases the probability of AF non-inducibility.

Examples for flecainide, which affects sodium channel
permeability, are shown in Panels B, D. Specifically, Panel B

shows an antiarrhythmic effect of the addition of flecainide,
by blocking sodium channels. Panel D shows a level of
the decision tree algorithm at which, by changing sodium
channel permeability, the probability of AF non-inducibility
increases. Thus, the probability of inducing AF will be higher
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FIGURE 4 | Specific profile from the population of models showing: (A) No AF induction using the stimulation protocol described. (B) Induction but not maintenance
of AF when the simulation was repeated under the effect of isoproterenol. (C) Induction and maintenance of AF under the effect of verapamil, and (D) induction and
maintenance under the effect of flecainide. As an example, rotor meandering is shown in panels (B–D) exemplifying the effect of the drugs in arrhythmia stabilization.
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FIGURE 5 | (A) Decision tree algorithm of the change in conductances based on the population of models with the information of the examples presented in
Figures 1, 2. The decision tree starts from the center of the circle and continues in an outward trend including all the variables described in the population of
models. Specific paths of the decision algorithm led to induced AF, which is shown in red (inducible AF) in panel (B).

for those profiles with lower sodium permeability, showing a
proarrhythmic effect of the drug.

DISCUSSION

In this study, we present a new algorithm that identified
and clustered the combination of channel conductivities that
promoted arrhythmia initiation. The algorithm was calibrated
with in silico data obtained from 2D simulations in two different
size planes simulated on a population of models under the effect
of three different drug effects (isoproterenol, verapamil, and
flecainide) resulting in 1,016 different simulations. The main
result of the study was the following: first, we proved, in a
population of the simulation environment of the models, that
dilated tissues are more prone to induce AF and that the effect
of a given drug can differ from one profile to another depending
on the specific expression of the currents. Finally, we also proved
that all this information can be used to train a machine-learning
algorithm to predict the AF inducibility of the tissue.

Variability on Atrial Fibrillation
Simulations: Ionic and Tissue Size
Variation
The population of models has been widely used in the cardiac
electrophysiology field for safety pharmacology, providing new

platforms for the assessment of proarrhythmic effects of
drugs (Passini et al., 2017; Kügler, 2020). In this study, we
have analyzed how variations of the electrophysiological and
anatomical characteristics can affect AF inducibility at the 2D
level. Electrophysiological variability was introduced by using a
population of models varying different ionic conductances and
extracellular ionic concentrations on a cellular model of chronic
AF human atria cardiomyocyte and the anatomical variability
was implemented by using models with two different tissue sizes.

This study revealed that simulated dilated atria presented
more profiles maintaining reentry, therefore confirming the
hypothesis that larger tissues are more prone to fibrillate, an effect
that has already been shown at the clinical level (Zou et al., 2005;
Qureshi et al., 2014).

Drug Effect on the Population of Models
The population of models was not only evaluated at basal
conditions but also under the effect of three different
cardiovascular drugs: flecainide, verapamil, and isoproterenol.
Overall pharmacological effects of the implemented drugs
matched their clinical characteristics, mainly exhibiting
antiarrhythmic effects in the case of flecainide and verapamil
(Klein et al., 1979; Echt and Ruskin, 2020). It is interesting to
point out that, in the case of dilated tissue experiments, the
proportion of non-inducible AF in simulations with flecainide
or verapamil was lower than for the smaller tissue size profiles.
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FIGURE 6 | Examples of change in channel conductivity that lead to a change in induced/non-inducible AF. (A) Level at which increase of calcium channel
conductance permeability results in maintenance of AF, an example of the proarrhythmicity of isoproterenol. (B) Level at which decrease of sodium conductance
results in AF non-inducibility, an example of antiarrhythmic effect of flecainide. (C) Level at which increase or decrease of calcium channel permeability results in AF
induction, an example of verapamil being antiarrhythmic and isoproterenol having a proarrhythmic effect. (D) Level at which increase of sodium permeability
increases the probability of AF inducibility.

Furthermore, whereas flecainide and verapamil exhibited mainly
an antiarrhythmic effect, isoproterenol exhibited a proarrhythmic
effect (Oral et al., 2008). However, some antagonistic effects were
observed as exhibited in Figures 3, 4, following the same
behavior observed at a clinical level where undesirable effects of
antiarrhythmic compounds have been identified in a minority
of patients (Nogales Asensio et al., 2007). This confirms our
hypothesis that the effect of the drug can be different depending
on the specific expression of the ionic currents. Antagonistic
effects of antiarrhythmic drugs have previously been studied
(Donnelly, 2004) stating the need of identifying the different
factors that can lead to this response such as genetics or drug
dynamics, which are not considered in this study. However,
none of these approaches analyzed the effects on a population of
models of the atria.

Furthermore, we observed that the profiles that changed
its behavior when adding a drug were similar in the case
of the antiarrhythmic drugs simulated in this study. This
suggests that specific groups with similar characteristics have
analogous responses.

Artificial Intelligence Algorithms for
Arrhythmia Maintenance Prediction
As the number of simulations reached a significant number of
samples with an increasing information volume, AI algorithms
were applied to reveal patterns in the data. AI application
in clinical environments is exponentially increasing and
leading toward new diagnostic and treatment techniques
(Feeny et al., 2020; Sánchez de la Nava et al., 2021). This
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trend has also been implemented in the electrophysiology
field (Muffoletto et al., 2021; Siontis and Friedman, 2021),
in which the use of algorithms has been used for detecting
or evaluating proarrhythmicity (Shao et al., 2018; Halfar
et al., 2021), classifying different rhythms (Wasserlauf et al.,
2019) or automatizing tasks as segmentation (Yang et al.,
2017). Moreover, its use in safety pharmacology could
be applied to analyze all the data produced by in silico
simulations. Particularly, the Random Forest algorithm
grouped similar profiles with the same outcome, therefore
implementing an AI-driven algorithm able to predict,
based on the ionic combinations of each profile, the
probability of AF inducibility with excellent predictive values
(Sánchez de la Nava et al., 2021).

Data interpretability in the AI field has been demonstrated
to be important, especially in the clinical field, where the
understanding of the patterns found by algorithms is usually
described as a black-box that does not allow to evaluate the
biomarker identification and the decision outcome (Nicholson
Price, 2018). In this case, the methodology used allowed us to
analyze high amounts of data and to understand the clinical
implications of the characteristics of each cluster. For example,
the first variable that initiated the classification on the Random
Forest algorithm was found to be the inward rectifier K+ channel
that at the clinical level has a crucial role in controlling the
frequency and stability of rotors responsible for AF (Pandit et al.,
2005). Moreover, up-regulation of IK1 increased the ability to
sustain faster and longer-lasting reentry, predisposing to the
development of tachyarrhythmias (Noujaim et al., 2007).

Thus, the identification of this current as the first of
the algorithm denotes the importance in the arrhythmia
induction and maintenance mechanisms, as overexpression
of this repolarization current has been associated with rotor
acceleration as a consequence of a reduction in the action
potential duration (Atienza et al., 2006; Pandit et al., 2011). The
identification of this variable by the algorithm shows that the
patterns are explainable and represent clinical scenarios that can
be found in a real-life AF population.

This variable was followed by a succession of combinations
resulting in several clusters with similar profiles associated with
AF inducibility. Interestingly, from the overall implementation
of the AI algorithm, two patterns were identified showing an
increase in AF inducibility related to changes in extra and
intracellular potassium levels and allowed clinical interpretability
of the results that facilitate the understanding of the patterns
found by the algorithm. A first cluster was found showing
increased expression and concentration of potassium ions, which
can be directly related to hyperkalemia. Another different pattern
observed in a group with different profiles presented low values
of both ionic expression and ionic concentration of potassium,
which can be directly related to hypokalemic conditions (Guo
et al., 2009). At the clinical level, these two conditions have
been associated with the induction and triggering of different
arrhythmias (Pandit et al., 2011; Skogestad and Aronsen, 2018;
Rivera-Juárez et al., 2019; Rakisheva et al., 2020). More in detail,
studies have shown that hypokalemia is an independent predictor
of developing AF (Krijthe et al., 2013) and that specific cases of AF

patients have been identified in whom hyperkalemia could induce
malignant arrhythmias (Yan et al., 2018).

From the two main identified pathways that led to sustained
AF reentry, the first cluster was associated with increased
IK1, decreased diffusion, decreased extracellular potassium, and
overexpression of sodium channels (Figure 5). The identified
decreased diffusion can be directly related to lower conduction
velocity, which has already been reported as a trigger for re-
entrant foci and arrhythmia induction (King et al., 2013). Beyond
the key role of INa determining excitability (Bezzina et al.,
2001), the identification of this first cluster confirms the strong
interaction between the molecular correlates of INa and IK1
as part of a common macro-molecular complex, where resting
membrane potential hyperpolarization indirectly affect rotor
frequency by modifying INa availability (Milstein et al., 2012;
Ponce-Balbuena et al., 2018).

In the second cluster, both the ionic concentration
of potassium and decreased potassium conductivity and
extracellular concentration were combined with increased
calcium dynamics (Current 1 and Current 2). These currents
have a major role during the plateau phase of the action potential
and its overexpression contributes to faster repolarization
rates, shortening the action potential duration and increasing
the risk of early afterdepolarizations which can give rise to
the initiation of rotors and fibrillation (Cerrone et al., 2007;
Nattel and Dobrev, 2012).

Limitations
Results presented in this manuscript were based on a population
of models of 149 subjects and further samples and variation
ranges should be included to explore a wider population. Besides,
simulations on the planes do not reflect all proarrhythmic areas
present in 3D structures such as pulmonary veins or information
including fiber orientation. The use of two different plane sizes
did show that the arrhythmia inducibility was higher in bigger
tissues but the simplicity of the model presenting constrained
borders restricts the overall interpretability of the results, as the
real atria contain highly complex structures that play important
roles in the initiation and maintenance of AF. In addition,
arrhythmia maintenance was considered for planes maintaining
rotational activity for more than one cycle, but further analysis
should be conducted to evaluate if self-termination occurred
in a part of the profiles. Moreover, fibrotic tissue is a relevant
condition that predisposes to AF and should be included in future
studies and, if possible, the variables that conform to the AI
algorithm should be transferable to the clinical practice using
metrics such as conduction velocity or rotor dynamic biomarkers.
In addition, machine learning algorithms will perform better and
will show more robustness with a higher number of samples and
different concentrations of each of the drugs. Finally, a greater
number of drugs could be simulated in order to enlarge the field
of application in which the algorithm can be used.

Clinical Implications
The identification of specific groups or ionic characteristics that
present proarrhythmic effects can be critical in the understanding
of new tools for future pharmacological development. At the
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clinical level, this type of analysis can help to personalize the
pharmacological treatments for each of the patients, therefore
avoiding possible adverse effects. This study presents, as a result,
a new trained algorithm that includes both anatomical and
electrophysiological data to evaluate arrhythmia inducibility that
is presented as a proof of concept for drug effect evaluation
in AF, identifying similar results when compared to the
clinic where dilated atria and specific cases of adverse drug
effects (Bassett et al., 1997). However, this study includes the
implementation of the algorithm based on parameters that
are currently difficult to obtain, therefore limiting its current
application at the clinical level. New biomarkers describing the
ionic characteristics at the patient level should be obtained in
order to apply this algorithm.

CONCLUSION

Safety pharmacology has evolved including in silico studies
that predict and classify drugs attending to the risk of causing
arrhythmias. In this study, we presented a population of models
approach in which arrhythmia induction was evaluated by
modifications in tissue size and drug administration. A higher
probability of induction was observed in larger tissue and,
interestingly, antagonistic effects were observed for some of the
profiles, showing that for a minority of cases, the drugs may
present adverse or non-desired effects. In conclusion, we present
an AI algorithm as a novel tool for pattern identification and
analysis of the effect of antiarrhythmic drugs on a heterogeneous
population of patients with AF.
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