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Resumen 

Debido a la imparable aparición de dispositivos móviles multifunción junto con 

aplicaciones que requieren cada vez más un mayor ancho de banda en cualquier momento 

y en cualquier lugar, las futuras redes de acceso deberán ser capaces de proporcionar 

servicios tanto inalámbricos como cableados. Es por ello que una solución a seguir es el 

uso de sistemas de comunicaciones ópticas como medio de transporte de señales 

inalámbricas en enlaces de radio sobre fibra. Con ello, se converge a un dominio óptico 

reduciendo y aliviando el cuello de botella entre los estándares de acceso inalámbrico y 

cableado. 

 

En esta tesis, como parte de los objetivos establecidos en el proyecto europeo HELIOS 

en el que está enmarcada, se han investigado y desarrollado los bloques funcionales 

básicos necesarios para realizar un transceptor fotónico integrado trabajando en el rango 

de longitudes de onda milimétricas, y haciendo uso de los formatos de modulación más 

robustos y que mejor se adaptan al ámbito de aplicación considerado. 

 

El trabajo que se presenta en esta tesis se puede dividir básicamente en tres partes. La 

primera de ellas ofrece una descripción general de los beneficios del uso de la fotónica en 

silicio para el desarrollo de enlaces inalámbricos a velocidades de Gbps, así como el 

estado del arte de los transceptores desarrollados por los grupos de investigación más 

activos y punteros para satisfacer las necesidades de mercado, cada vez más exigentes. 

 

La segunda parte se centra en el estudio y desarrollo del transmisor integrado de onda 

milimétrica. Primero realizamos una breve introducción teórica tanto del funcionamiento 

de los dispositivos que forman parte del transmisor, como a los formatos de modulación 

existentes, centrando la atención en la modulación por desplazamiento de fase (PSK) que 

es la que se va a utilizar en el desarrollo de los dispositivos implicados, y más 

concretamente en la modulación (diferencial) de fase en cuadratura ((D)QPSK). También 

se presentan los bloques básicos que integran nuestro transmisor y se fijan las 

especificaciones que deben cumplir dichos bloques para conseguir una transmisión libre 

de errores. El transmisor está compuesto por un filtro/demultiplexor encargado de separar 

dos portadoras ópticas separadas una frecuencia de 60 GHz. Una de estas portadoras es 

modulada al pasar por un modulador DQPSK basado en una estructura de dos Mach-

Zehnders (MZs) anidados, para ser nuevamente combinada con la otra portadora óptica 
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que se ha mantenido intacta. Una vez combinadas, éstas son fotodetectadas para ser 

transmitidas inalámbricamente.  

En la tercera parte de esta tesis, se investiga el uso de un esquema de diversidad en 

polarización junto a un receptor DQPSK integrado para la demodulación de la señal 

recibida. El esquema de diversidad en polarización está formado básicamente por dos 

bloques: un separador de polarización con el objetivo de separar la luz a la entrada del 

chip en sus dos componentes ortogonales; y un rotador de polarización.  

 

En lo que se refiere al receptor DQPSK propiamente dicho, se ha investigado y 

optimizado cada uno de los bloques funcionales que lo componen. Éstos son básicamente 

un divisor de potencia termo-ópticamente sintonizable basado en un interferómetro MZ, 

en serie con un interferómetro MZ que introduce un retardo de duración de un bit en uno 

de sus brazos, para obtener una correcta demodulación diferencial. El siguiente bloque 

que forma parte de nuestro receptor DQPSK es un 2x4 acoplador de interferencia 

multimodal actuando como un híbrido de 90 grados, cuyas salidas van a parar a dos 

fotodetectores balanceados de germanio.  

 

Las contribuciones principales de esta tesis han sido: 

 

 Demostración de un filtro/demultiplexor con tres grados de sintonización con una 

relación de extinción superior a 25dB. 

 Demostración de un rotador con una longitud de tan sólo 25µm y CMOS 

compatible. 

 Demostración de un modulador DPSK a una velocidad máxima de 20 Gbit/s.  

 Demostración de un demodulador DQPSK a una velocidad máxima de 20 Gbit/s. 
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Resum 

Degut a la imparable aparició de dispositius mòbils multifunció junt amb aplicacions que 

requereixen cada vegada més una major amplària banda en qualsevol moment i en 

qualsevol lloc, les futures xarxes d’ accés deuran ser capaços de proporcionar servicis tant 

inalàmbrics com cablejats. És per açò que una solució a seguir és l’ ús de sistemes de 

comunicacions òptiques com mitjà de transport de senyals inalàmbriques en enllaços de 

ràdio sobre fibra. Amb açò, es convergeix a un domini òptic reduint i alleujant el coll de 

botella entre els estàndards d’ accés inalàmbric i cablejat. 

En aquesta tesi, com part dels objectius establerts en el projecte europeu HELIOS en el 

què està emmarcada, s’ han investigat i desenvolupat els blocs funcionals bàsics 

necessaris per realitzar un transceptor fotònic integrat treballant en el rang de longituds 

d’ ona milimètriques, i fent ús dels formats de modulació més robusts i que millor s’ 

adapten a l’ àmbit d’ aplicació considerat. 

El treball que es presenta en aquesta tesi es pot dividir bàsicament en tres parts. La primera 

d’ elles ofereix una descripció general dels beneficis de l’ ús de la fotònica en silici per al 

desenvolupament d’ enllaços inalàmbrics a velocitats de Gbps, així com l’ estat de l’ art 

dels transceptors desenvolupats pels grups d’ investigació més actius i capdavanters per 

a satisfer les necessitats de mercat, cada vegada més exigents. 

La segona part se centra en l’ estudi i desenvolupament del transmissor integrat d’ ona 

milimètrica. Primer realitzem una breu introducció teòrica tant del funcionament dels 

dispositius que formen part del transmissor, com els formats de modulació existents, 

centrant l’ atenció en la modulació per desplaçament de fase (PSK) que és la que s’ 

utilitzarà en el desenvolupament dels dispositius implicats, i més concretament en la 

modulació (diferencial) de fase en quadratura ((D)QPSK). També es presenten els blocs 

bàsics que integren el nostre transmissor i es fixen les especificacions que deuen complir 

eixos blocs per aconseguir una transmissió lliure d’ errades. El transmissor està compost 

per un filtre/demultiplexor encarregat de separar dos portadores òptiques separades una 

freqüència de 60 GHz. Una d’ aquestes portadores es modulada al passar per un 

modulador DQPSK basat en una estructura de dos Mach-Zehnders (MZs) niats, per a ser 
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novament combinada amb l’ altra portadora òptica que s’ ha mantingut intacta. Una 

vegada combinades, aquestes són fotodetectades per a ser transmeses inalàmbricament. 

En la tercera part d’ aquesta tesi, s’ investiga l’ ús d’ un esquema de diversitat en 

polarització junt a un receptor DQPSK integrat per a la demodulació del senyal rebut. L’ 

esquema de diversitat en polarització està format bàsicament per dos blocs: un separador 

de polarització amb l’ objectiu de separar la llum a l’ entrada del xip en els seus dos 

components ortogonals; i un rotador de polarització. 

Referent al receptor DQPSK pròpiament dit, s’ ha investigat i optimitzat cada un dels 

blocs funcionals que ho componen. Aquestos són bàsicament un divisor de potència 

termo-òpticament sintonitzable basat en un interferòmetre MZ, en sèrie amb un 

interferòmetre MZ que introdueix un retard de durada d’ un bit en un dels seus braços, 

per a obtenir una correcta demodulació diferencial. El següent bloc que forma part del 

nostre receptor DQPSK és un 2x4 acoblador d’ interferència multimodal actuant com un 

híbrid de 90 graus, les eixides del qual van a parar a dos fotodetectors balancejats de 

germani. 

Les contribucions principals d’ aquesta tesi han sigut: 

 Demostració d’ un filtre/demultiplexor amb tres graus de sintonització amb una 

relació d’ extinció superior a 25dB. 

 Demostració d’ un rotador amb una longitud de només 25µm i CMOS 

compatible. 

 Demostració d’ un modulador DPSK a una velocitat màxima de 20 Gbit/s. 

 Demostració d’ un demodulador DQPSK a una velocitat màxima de 20 Gbit/s. 
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Abstract 

Due to the relentless emergence of multifunction mobile devices with applications that 

require increasingly greater bandwidth at anytime and anywhere, future access networks 

must be capable of providing both wireless and wired services. The use of optical 

communications systems as transport medium of wireless signals over fiber radio links is 

a steady solution to be taken into account. This will make possible a convergence to an 

optical domain reducing and alleviating the bottleneck between wireless access standards 

and current wired access. 

In this thesis, as part of the objectives of the European project HELIOS in which it is 

framed, we have investigated and developed the basic functional blocks needed to achieve 

an integrated photonic transceiver working in the range of millimetre wavelengths, and 

using robust modulation formats that best fit the scope considered. 

The work presented in this thesis can be basically divided into three parts. The first one 

provides an overview of the benefits of using silicon photonics for the development of 

wireless links at rates of Gbps, and the state of the art of the transceivers reported by the 

most important research groups in order to meet the increasingly demanding needs’ 

market. 

The second part focuses on the study and development of millimetre-wave integrated 

transmitter. First we provide a brief theoretical introduction of the operation principles of 

the devices involved in the transmitter such as a modulation formats, focusing on the 

phase shift keying (PSK) which is the one that will be used, particularly the (differential) 

quadrature phase shift keying ((D) QPSK). We also present the building blocks involved 

in our transmitter and we set the specifications that must be met by these devices in order 

to achieve an error-free transmission. The transmitter includes a filter/demultiplexer 

which must separate two optical carriers 60 GHz separated. One of these optical carriers 

is modulated by passing through a DQPSK Mach-Zehnder-based modulator (MZM) by 

arranging two MZMs in a nested configuration. Using a combiner, the modulated optical 

signal and the un-modulated carrier are combined and photodetected to be transmitted 

wirelessly. 

In the third part of this thesis, we investigate the use of a polarization diversity scheme 

with an integrated DQPSK receiver for demodulating of the wireless signal. The 
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polarization diversity scheme basically consists of two blocks: a polarization splitter in 

order to separate the random polarization state of the incoming light into its two 

orthogonal components, and a polarization rotator. 

Regarding the DQPSK receiver itself, all the functional blocks that comprise it have been 

investigated and optimized. It basically includes a thermo-optically tunable MZ 

interferometer power splitter, in series with a MZ interferometer that introduces, in one 

of its arms, a delay of one bit length in order to obtain a correct differential demodulation. 

The next building block of our DQPSK receiver is a 2x4 multimode interference coupler 

acting as a 90 degree hybrid, whose outputs are connected to two balanced germanium 

photodetectors. 

The main contributions of this thesis are: 

• Demonstration of a filter/demultiplexer with three degrees of tuning and an 

extinction ratio greater than 25dB. 

• Demonstration of a polarization rotator with a length of only 25μm and CMOS 

compatible. 

• Demonstration of a DPSK modulator at a maximum rate of 20 Gbit/s. 

• Demonstration of a DQPSK demodulator to a maximum rate of 20 Gbit/s. 
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Chapter 1 

 

Introduction 

 

1.1. Silicon Photonics for Gbps Wireless 

Photonics, the science of generating, modulating, guiding, processing and detecting light, 

is a rapidly growing sector in the global economy, in which optical communications, 

optical storage, imaging, optical sensors or security are just a few examples. 

 

Even if photonics could add new functionalities to electronic components such as low 

propagation losses, high bandwidth, wavelength multiplexing and immunity to 

electromagnetic noise, the high cost of photonic components and their assembly is a major 

obstacle to their deployment in most of application fields. Like in micro-electronics, many 

applications can be realized in a much more compact and cost-effective way by 

integrating the required functionality in a single chip. 

 

As yet, the progress in photonic integration has been hampered by the huge variety in 

photonic devices and technologies, and the fact that the most integration technologies are 

specific for the application they have been developed for. As a result, the market for 

integrated photonics is too fragmented to justify the large investments for developing an 

integration technology to a level that really would really lead to substantial costs 

reduction, and in turn, to prevent a rapid growth of the applications. 

 

Silicon photonics, or Complementary Metal-Oxide-Semiconductor (CMOS) Photonics, 

is a way to tackle the problem by the development of a small number of generic 

integration technologies with a level of functionality that can address a broad range of 

applications. These technologies, which should be made accessible via foundries, can 

betake to markets that are sufficiently large to pay back the developments costs. 
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As in micro-electronics, the key for the success of integration in photonics is the 

realization of a broad range of optical functionalities with a reduced set of elementary 

components, and the development of a generic wafer-scale technology for integration. 

This generic technology will most likely not wipe away more specialized custom 

technologies but will create new opportunities for a much larger deployment of photonic 

integrated circuits (PICs). Because a single device will have an insignificant cost, 

designers should find the way to achieve the desired functions by using as many 

components as needed. Moreover, by co-integrating optics and electronics on the same 

chip, high performance, high functionality and highly integrated devices can be fabricated 

while maintaining the well-known and proven microelectronics fabrication process.  

 

Another advantage of CMOS photonics is that its success will move the emphasis from 

the component level to the architecture one, which would imply that industrial and 

Research, Technology and Development (RTD) efforts could be focused on new products 

or new functionalities rather than on the technology level. 

 

Proof of concept or functional demonstrations of many building blocks have been carried 

out in previous research projects. However, even though the obtained results were 

considered as a major breakthrough, major efforts are still being needed in order to 

improve the performance in terms of functionality, power or bandwidth. To go one step 

further, the European CMOS Photonics community has to demonstrate the integration of 

photonics with electronics and make available an integrated design and fabrication chain 

with generic and standard processes that could be transferred to foundries. 

 

This thesis is framed in the European project called HELIOS [HEL] (pHotonics 

ELectronics functional Integration on CMOS). The HELIOS consortium has developed 

innovative means to combine a photonic layer with a CMOS circuit, using 

microelectronics fabrication processes. HELIOS has gathered 19 partners among the 

major European CMOS Photonics and Electronics players and potential users. It has 

driven the European RTD in CMOS Photonics and has paved the way for industrial 

development [HEL]. 

 

The objectives of HELIOS have been the following: 

 Development of high performance generic building blocks that can be used for a 

broad range of applications such as wavelength-division multiplexing (WDM) 

sources by III-V/Si heterogeneous integration, fast modulators and detectors, 

passive circuits and packaging. 

 Building and optimization of the whole “food chain” in order to fabricate complex 

functional devices. 

 Demonstrating the power of this proposed “food chain” by realizing several 

complex PICs addressing different industrial needs, including a 40 Gbps 

modulator, a 10x10 Gbps transceiver, a photonic 10 Gbps wireless transmission 

and a mixed analog and digital transceiver module for multifunction antennas. 
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 Road mapping, dissemination and training to strengthen the European research 

and industry in this field and to raise awareness of new users about the interest of 

CMOS Photonics. 

 

One of the silicon-based technologies that is experiencing great development is the called 

Silicon On Insulator (SOI) one. This technology is basically characterized by the high 

refractive index contrast between the two materials, where the refractive indices of the 

silicon (core) and the oxide (cover) at an operating wavelength of 1550 nm are 3.45 and 

1.45, respectively. 

 

 However, one of the main issues depending on the final applications the relatively high 

birefringence, which is defined as the difference between the effective indices of the 

fundamental mode of a certain structure, for both TE and TM polarizations is defined as 

follows: 
TE TM

eff eff effn n n                                                          Eq. 1.1 

 

The variation of this parameter ( effn ) has several sources such as the intrinsic properties 

of the material itself [HUN84], the manufacturing process used in the fabrication of the 

waveguide [KAW90] or the asymmetry of the geometry of the waveguide itself [VAS91]. 

 

SOI waveguides are mostly asymmetric, and from electromagnetic theory [VAS91] it can 

deduced that birefringence increases with the asymmetry of the structure, as well as if the 

dimensions of the waveguides decreases. 

 

The figure below shows the fundamental mode of a rectangular SOI waveguide, with the 

dimensions that will be used in this thesis. As it can be seen, the TE mode is more confined 

than the TM one, indicated also by the values of the corresponding effective index. 

 
Figure 1.1: Aspect of the fundamental mode in a rectangular waveguide for the TE (left) and TM (right) 

polarization, and the values of the effective indices, resulting 0.57effn  . 
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Broadband wireless access (BWA) networks are key last-mile-access technologies. BWA 

facilitates the extension network’s coverage with relatively low deployment costs, faster 

revenue growth, and increased flexibility compared to common cabled infrastructure. On 

the other hand, wired local area networks (LAN) and fiber-to-the-home (FTTH) access 

networks are experiencing a remarkable capacity increase because the costs are 

decreasing due to higher market penetration, standardization, and the use of low-cost 

optical technologies. This increasing capacity of wired data transmission has pushed the 

development of wireless technologies capable of transmitting high data rate signals, 

which is only possible by using the millimeter wave (mmW) band.  

 

Specifically, the 60 GHz band has drawn a lot of interest because it presents one of the 

largest unlicensed bandwidths being allocated in history, 9 GHz (57-66 GHz) in Europe, 

and 7 GHz (57-64 GHz) in the US. However, transmission using this band is also 

associated with both advantages and disadvantages. 

 

 
Figure 1.2: Artistic projection of the various application scenario of a gigabit wireless link. 

 

 

High propagation loss due to oxygen absorption at this band make it unsuitable for long 

links and higher transmit power, but for it is suitable for short-range applications. 

Moreover, these frequencies lead not only to smaller sizes of RF components including 

antennas, but also they can be quite directional (coming with high antenna gain), which 

is highly desired.  
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Even so, the 60 GHz links capabilities with a mature electronics make them the natural 

choice for extending LANs between campus buildings, connecting enterprise sites into 

metro fiber backbones, and creating virtual fiber backbones and meshes whenever 

construction costs or delay make fiber installation unattractive. These links are also the 

technology of choice for providing truly independent redundancy for critical fiber 

connections in both private and public networks. 

 

Different application scenarios have been identified for the mmW wireless architecture. 

Figure 1.2 shows a schematic of several wireless applications. Some of the most 

interesting scenarios are LAN connections (buildings, urban areas, enterprise 

connectivity), disaster recovery, last mile coverage of FTTH, connectivity where a direct 

fiber link costs are too high or impossible such as over highways, rivers or nature 

obstacles, redundancy links, and in battle field for real-time monitoring. 

1.2. Photonic Transceiver for Optical Access Networks 

Phase modulated mmW signal generation has attracted very strong interest in the last 

years and recently a modulator concept based on delay modulation to generate phase shift 

keying (PSK) modulation wireless signals has been demonstrated [DOI00]. Another way 

of generating phase modulated wireless signals is using single side-band (SSB) 

modulation, where two optical carriers are required to generate the RF signal, but only 

one of the optical carriers is phase modulated. When such a SSB signal is photodetected, 

the optical phase modulation is converted into a mmW phase modulated signal. One way 

of doing this is by filtering one of the optical signals and passing it through an optical 

modulator and the recombined signal will be SSB in nature as shown in Figure 1.3.  

Several experimental demonstrations have been reported on the use of this technique 

[OZE01, WIB05] using common optical components like fibre Bragg's gratings and 

optical modulators like a Mach-Zehnder modulator (MZM). For phase modulation, the 

use of common components require that the two optical signals have phase and 

polarization correlation prior to photo-detection. This can be very difficult to implement 

since the optical carriers travel different paths, and for multi-level phase modulation the 

requirements on phase correlation increases. 

Photonic integration of the optical modulator with the filters can provide the required 

phase and polarization control since the path lengths can be accurately controlled and the 

devices can be designed to maintain polarization. Optical devices are mostly made using 

III-V semiconductors, but recently silicon based optical devices has attracted a lot of 

interest for both digital and analogue applications [LIA05a, LIP06, PIN08, BRI12, 

MAN10]. The main advantage of silicon photonics technology is the possibility of 

monolithic integration of photonics and electronics using cost-effective CMOS 

technology [PIN08].  
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Figure 1.3: Illustration of a millimetre wave transmitter. 

Optical modulators, photo-detectors, filters, and other optical components using Si have 

been demonstrated for FTTH networks aimed at reducing the cost [ZHA10a]. The 

wireless link consists of two wireless optical units, a transmitter and a receiver. The 

transmitter has an input and output fiber connections, as well as two RF connectors. The 

elementary components are fiber couplers, a tunable filter, a modulator (DQPSK-MZM) 

consisting of two 5 Gbps MZMs, and monitoring photodetectors. The second chip, the 

receiver, is connected to an optical fiber to receive the 10 Gbps DQPSK signal. The 

demodulator includes fiber couplers, Mach-Zehnder delay interferometer (MZDI), and 

balanced photodetectors (BPDs). The output of the two BPDs is the two original 5 Gbps 

RF signals. 

PICs assembling a number of functional elements had been attracting large attention for 

both telecommunications and data-communications equipment providers. There are 

actually two main directions taken in the integration: i) monolithic integration on InP 

substrate, and ii) hybrid integration involving III-V for light emission and silicon for all 

the other functions. The first one leaded by Infinera company targets metropolitan and 

long-haul telecommunication applications. This approach allows the achievement of very 

good performances but at the expense of sophisticated III-V processing. The other 

approach is represented by a number of companies such as Luxtera and Intel, which is a 

low cost approach, and its target is more focused for optical interconnects for data 

communications of much shorter distance. This approach uses CMOS compatible process 

and hence, is suitable for mass production. 

Regarding the monolithic approach, Infinera developed and published a transmitter- 

receiver for Nx10 Gbps and Nx40 Gbps [WEL07]. The figure below (Figure 1.4(a)) 

shows a schematic of the transmitter PIC device. Each channel has a laser and an 

electroabsorption (EA) modulator for encoding the data onto the laser output. Depending 

on the modulator design, data rates from 10 Gbps to 40 Gbps can be supported.  
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The encoded optical signal is amplified by an integrated semiconductor optical amplifier 

(SOA). Each channel also has a power monitoring photodiode.  

Figure 1.4(b) shows the architecture corresponding to the receiver PIC with a wide optical 

bandwidth SOA integrated at the PIC’s input. 

 

Figure 1.4: Infinera’s 10 and 40-channel transmitter and receiver integrating SOAs. 

The input channels are then demultiplexed using an arrayed waveguide grating (AWG) 

router. Once the channels are demultiplexed, they pass through an array of high speed 

waveguide photodetectors. At Optical Fiber Conference (OFC) 2010, an InP PIC receiver 

for 10 channels, 45.6 Gbps per channel, polarization multiplexed DQPSK system was 

presented [NAG11]. This circuit incorporates a polarization beam splitter, AWG for 

wavelength demultiplexing, 900 hybrids and balanced PDs. 

On the other side, photonic integration in silicon has been mainly Luxtera and Intel. On 

2007, Luxtera demonstrated a fully integrated, four channel, DWDM transceiver using 

interleaver optical multiplexers/demultiplexers achieving an aggregate data rate of 40 

Gb/s over a single fiber at a bit error ratio (BER) <10-12 [NAR07].  

In 2008, the first ever demonstration of a fully integrated and programmable 40 Gb/s 

optical data communication system on a single SOI chip [DOB08] was reported. The die, 

shown in the figure below, includes high speed MZI modulators, low-loss waveguides, 

high efficiency grating couplers, tunable WDM multiplexers and demultiplexers, and 

monolithically integrated Ge-PIN waveguide photodetectors. The electronic receiver 

circuitry also includes high-speed transimpedance amplifiers and limiting amplifiers. 

On September 2012, and based on the same technology platform, Luxtera reported 

[DOB12] a 4x28Gb/s transceiver module, which introduced several optimizations to 

reduce the transmitter footprint, with very good performance. 
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Figure 1.5: (a) Luxtera’s photograph of CMOS 4x10Gb/s WDM die (b) on flexible circuit and fiber-array. 

(c) Luxtera integrations scheme for transceiver 4x10Gb/s 

 

As commented previously, Intel shares the PICs assembling approach with Luxtera, and 

is actively engaged in the development of these PICs for optical interconnects. On July 

2010, Intel announced an integrated silicon photonic transmitter using hybrid silicon 

lasers that is capable of sending data at 50Gb/s across an optical fiber to an integrated 

silicon photonic receiver chip which converts the optical data back into electrical [INT].  

In order to achieve 50Gb/s, 4 wavelengths (1351, 1331, 1311 and 1291 nm) were used, 

each carrying 12.5Gb/s modulated signal through a silicon modulator. A multiplexer is 

then used to combine the optical channels and launch them into a fiber via an on-chip 

fiber coupler. On the receiver chip, optical signals received and separated by a 4 channel 

demultiplexer, are then directed into four integrated germanium photodetectors. Figure 

1.6 shows two photographs of the 50Gb/s Intel’s transmitter and receiver modules.  

In January 2013, Intel and Facebook began a collaboration on a new disaggregated, rack-

scale server architecture based on the technology commented above [INT13]. 
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Figure 1.6: Picture of Intel’s 50 Gb/s transmitter and receiver. The transmitter includes hybrid IIIV/SOI 

lasers using wafer bonding and a wavelength multiplexer, the receiver includes a wavelength 

demultiplexer and Ge/Si photodetectors [INT]. 

Kotura, which will be acquired by Mellanox Technologies in the second half of 2013 

[KOT13], is another actor in transceivers fabrication. The figure below shows a schematic 

a SEM images of a 4x25Gb/s transmitter and receiver. One of the two chips is the silicon 

transmitter which houses the platform for the four lasers combined as a four-channel 

array. Each is an external cavity laser where part of the cavity is within the InP device 

and the rest in the silicon photonics waveguide. The gain chips are flip-chipped onto the 

silicon. The transmitter also includes a grating that sets each laser's wavelength, four 

modulators, and a WDM multiplexer to combine the four wavelengths before 

transmission on the fibre. The receiver chip uses a four-channel demultiplexer with each 

channel fed to a Ge-PD. Two chips are used as it is easier to package each as a transmitter 

optical sub-assembly (TOSA) or receiver optical sub-assembly (ROSA).  According to 

Kotura’s forecasts, the 100Gbps Quad Small Form-factor Pluggable (QSFP) will be 

generally available in 2014. 

 

Figure 1.7: Kotura's 4x25Gb/s transmitter and receiver chips [KOT]. 

Another player in this scene is Oracle Labs. A fully integrated silicon photonic transceiver 

was demonstrated on June 2012 [BUC12] in SOI process using photonic microring 
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resonator-based modulators, operating at data rates of 25Gb/s with a BER of 10-12. Figure 

1.8 shows a microphotograph of the reported 25Gb/s optical transceiver.  

 

Figure 1.8: (Left) Chip microphotograph of the 25 Gb/s optical transceiver. At the bottom, waveguide 

couplers are shown on the same silicon wafer. Two millimetres between the couplers and the active 

circuits is omitted. (Right) an infrared image of the chip shows light leakage from silicon photonic 

waveguide and absorption in ring modulator [BUC12]. 

One of the most recent news which has appeared less than two months ago and 

demonstrates the present interest in developing optical transceivers is [CIS] concerning 

Cisco and its CPAK 100G silicon photonics-based optical transceiver after the acquisition 

of the CMOS silicon photonics developer Lightwire in the third quarter of 2012 [LIG].

 

1.3. Outline and Objectives of the thesis 

The demand for optical links at high volume, with low cost, low power and high 

reliability, is becoming increasingly evident as electrical interconnects struggle to cope 

with the demands of even short  range connectivity at speeds beyond 10 Gbps. By taking 

advantage of the vast investments made by the semiconductor industry, silicon photonics 

allows high-volume, high yield and low-cost manufacturing of complex photonic 

integrated circuits. The emergence of mobile devices such as multifunction mobile 

phones and tablets accompanied with near-future bandwidth insensitive applications 

(such as Ultra High Definition TV data/3D Internet and Hi-Vision, and interactive 3D 

video applications, among others) has become one of the drivers for demanding wireless 
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data capacity on the scale of the 10 Gbps. Both optical and wireless networks have 

significant strengths and noticeable weaknesses. While photonic technologies provide 

much higher bandwidth and support long transmission links, they require costly hard 

lines. Conversely, wireless technologies are not suitable for sending large amounts of 

information to many users with high quality of service. Therefore, it is highly desirable 

that the future wireless link will possess the same capacity with the optical fibers to realize 

the seamless hybrid fiber-wireless access over the last mile, in order to optimally serve 

end users conveniently and cost effectively through a hybrid solution integrating both 

optical and wireless technologies. 

The aim of this thesis is to provide a demonstrator of a photonic transmitter and its 

corresponding transparent polarization receiver, in the millimetre wave frequency range, 

by making use of a spectral efficient and robust modulation format. The building blocks 

concerning the transmitter and the receiver are depicted in the figure below. 

 

Figure 1.9: Block diagram of the photonic integrated (Up) transmitter (Down) receiver circuits. 

The main functional devices to be developed in this thesis are listed below: 

 Optical demultiplexer/filter with high extinction ratio (ER) for both ports 

(ER≥25dB) and low insertion losses (IL≤3dB). 

 Optical phase modulator with error free behaviour at 10 Gbit/s bit-rate, at less. 

 Optical phase shifter to achieve a full π-phase adjustability. 

 Tunable Mach-Zehnder power splitter and Mach-Zehnder Delay Interferometer, 

with propagation losses lower than 5dB. 

 Balanced Photodetectors with a responsivity higher than 0.8 A/W and a dark 

current near to 10 nA. 

 In addition, a polarization diversity scheme is also studied. Its polarization splitter 

must present an ER above 20 dB for both ports, and IL<3dB. The polarization 

rotator must present a polarization conversion efficiency lower than -1 dB. 
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 The introductory chapter was aimed at giving a general description of the benefits of 

using silicon photonics for Gbps wireless and a state of the art of transceivers developed 

in the last years in order to meet the increasingly demanding needs’ market. Chapter 2 

contains an introduction to the PSK modulation formats as well as the key building blocks 

involved in the mmW transmitter and the imposed requirements for each device. The 

work performed in this thesis related with polarization management and DQPSK receiver 

is described and experimentally demonstrated in Chapter 3. Chapter 4 concludes the 

thesis giving the most interesting obtained results and an outlook into future. 
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Chapter 2 

 

Transmitter 

 

2.1. Introduction 

The aim of this chapter is the design, simulation, fabrication and characterization of the 

key building blocks involved in the DQPSK millimetre wave photonic transmitter 

depicted in the figure below: 

 
Figure 2.1: Schematic of the integrated millimetre wave transmitter. 

 

These building blocks are: 

• Waveguide coupler: A coupling structure for coupling in the light from the laser 

and out coupling the modulated signal to be transmitted, based on a grating 

coupler for TE polarization [ROE08]. 

• DEMUX: The demultiplexer is needed to separate two neighbouring 

wavelengths with a high extinction ratio. This is discussed in section 2.4. 
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• 3dB splitter: The device includes 3dB splitter for routing the signal through the 

chip. 

• DQPSK MZM: Two DPSK modulators will modulate the electric 10 Gbit/s 

signal onto the optical carrier. Each modulator has a 5 Gbit/s data stream input. 

The DPSK modulator is discussed in section 2.4. 

• 90º phase shifter: The phase shifter is needed to shift one of the DPSK modulated 

signal / 2  to achieve a DQPSK phase constellation. This is discussed in section 

2.3.

 

2.2. Phase-Shift-Keying 

For designing digital optical communication links [IBR07], a wide variety of modulation 

formats can be chosen. The electric field of the optical carrier can be expressed as: 

   ˆ i t
E t e Ae

  
                                                     Eq. 2.1 

Four properties of this optical signal can be modulated: A is the amplitude of the optical 

field,  is the optical phase,   is the optical angular frequency, and ê  is the polarization 

vector of the laser [WIN06, BIG04]. Each of these parameters can be modulated by an 

electrical binary baseband signal  q t : 

   i b

i

q t I q t iT




                                          Eq. 2.2 

with the i th information coefficient [0,1]I  and the baseband pulse shape  q t delayed 

by multiples of the bit period bT . Depending on which parameter of the laser is 

modulated, the modulation is mainly differentiated as: amplitude shift keying (ASK) 

[DAI05, HOD02], frequency shift keying (FSK) [IDL04, SAK05], phase shift keying 

(PSK) [GNA03, BOS04, KIM04, GNA05], or polarization shift keying (PolSK) [EDI01, 

SID02]. 

Figure 2.2 shows an electrical binary data stream “101101” used to modulate these four 

parameters of an optical carrier signal, resulting in the generation of the standard optical 

digital modulation formats previously presented. 

Up to a few years ago, technological difficulties in cost-effective manufacturing devices 

suitable for high speeds restricted functionalities to the most basic needs, by using 

intensity modulations of the light emitted by a laser, and detecting it using a simple 

symbol-by-symbol fixed-threshold. As a result, deployed lightwave systems almost 

exclusively used on-off keying intensity modulation at the transmitter and square-law 

photodetection at the receiver; neither coherent demodulation, nor electronic equalization 

techniques, nor forward error correction (FEC) has been used in the majority of the 

already installed systems.  
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Figure 2.2: The four types of waveform keying with binary coding. 

At the turn of the millennium, this situation started to change significantly in such a way 

that today, advances in high-speed electronics and optoelectronics are not only used to 

further push per-channel data rates, but also to increase the sophistication of hardware. 

At 10 Gbit/s data rates, electronic signal processing ranging from simple feed-forward 

equalizer (FFE) structures all the way to maximum likelihood sequence estimation 

(MLSEs) is available today [NIE05, CAS04, FÄB04], and FEC has become a standard 

feature of 10 Gbit/s and 40 Gbit/s commercial optical communication systems [MIZ03]. 

Controlled signal predistortion at the transmitter is starting to become possible at 10 

Gbit/s [McG05], and coherent detection, allowing electronic signal processing to make 

use of the optical phase information, is experiencing renewed interest [GNA05a, TSU05].  

At the same time, systems start to no longer rely exclusively on phase insensitive binary 

modulation of the optical intensity (OOK), but other modulation formats, such as binary 

or multilevel phase modulation or partial response formats are being taken into account.  

Regarding the physical quantity used to convey digital information, and at the number of 

symbols used to represent the binary transmit data, the figure below shows a classification 

of optical modulation formats, where auxiliary modulation features such as pulsed 

modulation or chirp are also considered. 
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Figure 2.3: Classification of intensity and phase modulation formats for optical communications 

nowadays [WIN06]. 

It must be noted that this classification does not require a phase-modulated optical field 

to be constant-envelope, nor an intensity modulated field to have constant phase. It is the 

physical quantity used to convey data information that drives the classification. To give 

some examples: DPSK is a phase-modulated format, regardless of whether it is 

transmitted constant-envelope or by means of phase modulated optical pulses in the form 

of RZ-DPSK. On the other hand, CSRZ is an intensity-modulated format, regardless of 

the fact that the optical field’s phase is additionally modulated in order to beneficially 

influence the spectrum.  

While intensity and phase data modulation formats have been widely used in high-speed 

optical communications, encoding information onto the polarization of light (Pol-SK) has 

received comparatively little attention [JAC94, BET92, SID02]. This can primarily be 

attributed to the need for active polarization management at the receiver, necessitated by 

random polarization changes in optical fiber [LEP00]. However, in recent works, Pol-SK 

is being considered in order to increase spectral efficiency, either by transmitting two 

different signals at the same wavelength but in two orthogonal polarizations, or by 

transmitting adjacent WDM channels in alternating polarizations to reduce coherent 

WDM crosstalk or nonlinear interactions between the channels [ALF09, SLE11, 

DOE12b]. Moreover, in the next chapter, a polarization diversity scheme that may be 

used to implement a polarization division multiplexing is described. 

In the early days, PSK did not receive much interest due to its demodulator’s complexity. 

Instead, differential binary PSK (DBPSK, or simply DPSK) has received more interests 

[HO05]. Since the beginning of optical telecommunications, the most simple modulation 

format, OOK, has been employed in optical links. With the increases in bit rates, number 

of optical channels in Dense Wavelength Division Multiplexing (DWDM) configuration, 

and the augmentation of power in each channel, new modulation formats have been 

studied in the last years. Today, in order to increase the quality of optical links, tendency 

is to modify the modulation scheme used to encode information in light signals. 

Particularly, the DPSK format presents an increased tolerance to non-linear effects in 

optical fibers, justifying the interest for using this format in optical communications links.  

In DPSK, the data are first encoded differentially as the differential encoder shown in 

Figure 2.4. The encoded data are then modulated onto optical carrier using a phase 

modulator (PM) or Mach-Zehnder modulator (MZM), which externally changes the 

optical phase from its original phase to a relative   phase shift. In response to the driving 
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baseband signal [HO05], MZM is preferable to PM due to better chromatic dispersion 

tolerance.  

 

Figure 2.4: Principle of DPSK modulation generation using a MZM. 

DPSK encodes information on the binary phase change between adjacent bits: a 1-bit is 

encoded onto a   phase change, whereas a 0-bit is represented by the absence of a phase 

change. Like OOK, DPSK can be implemented in RZ and NRZ format (see Figure 2.3). 

The main advantage from using DPSK instead of OOK comes from a 3-dB receiver 

sensitivity improvement [JAC94], which can be intuitively understood from Figure 2.5, 

showing that the symbol spacing for DPSK is increased by 2 compared to OOK for 

fixed average optical power [GNA05b].  

 

Figure 2.5: Symbol diagrams, normalized to unity average optical power, for a) OOK modulation (dashed 

lines represent examples of transitions between symbols for chirped formats). b) DPSK modulation 

(dashed double-arrows represent different phase modulator implementation). c) DQPSK modulation 

[WIN06]. 

This increased symbol distance makes DPSK accept a 2 larger standard deviation of the 

optical field noise than OOK for equal bit error rate (BER), which translates into a 3-dB 

reduction in optical signal to noise ratio (OSNR). An optical DPSK transmitter is shown 
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in Figure 2.4, where the data signal is first differentially encoded in order to avoid error 

propagation that may occur by differential decoding at the receiver [GIT92]. 

To perform optical phase modulation, one can either, as commented above, use a straight-

line phase modulator (PM) or an MZM.  

 

Figure 2.6: Phase modulation can either be achieved using an MZM or by means of a straight-line PM, 

resulting in different intensity and phase waveforms. 

The difference between the two phase modulation schemes is indicated by the dashed 

double-arrows in Figure 2.5(b): a PM modulates the phase along the unit circle in the 

complex plane, leaving constant the intensity of the phase-modulated light. This is 

visualized in Figure 2.6, where the left refers to a PM’s intensity and phase waveforms. 

However, since the optical phase directly follows the electrical drive signal, the speed of 

phase transitions is limited by the combined bandwidth of driver amplifier and phase 

modulator, and any overshoot or ringing in the drive waveform manifests itself in phase 

distortions. An MZM, symmetrically driven around zero transmission, modulates along 

the real axis through the origin of the complex optical field plane [see Figure 2.5(b)], 

which always produces exact   phase jumps at the expense of residual optical intensity 

dips at the locations of phase transitions (see MZM waveforms in Figure 2.6). Since exact 

phase modulation is more important for DPSK than a constant optical intensity, practical 

DPSK transmitters are most implemented using an MZM as a phase modulator 

[GNA05b].  

DQPSK is a true multilevel modulation format (more than one bit per symbol) that has 

received appreciable attention in optical communications so far [GRI02a, Gri02B, 

OHM04a, KIM03, TOK04, OHM04b, CAV04, YOS05]. It transmits the four phase shifts 

{π/4; 3π/4; -π/4; -3π/4} at a symbol rate of half the aggregate bitrate. As in the case of 

DPSK, a DQPSK transmitter is most conveniently implemented by two nested MZMs 

operating as phase modulators. Figure 2.7 shows the corresponding transmitter setup 

[GRI02b, GRI01], consisting of a continuously operating laser source, a splitter to divide 

the light into two paths of equal intensity, two MZMs operating as phase modulators, an 

optical / 2  phase shifter in one of the paths, and a combiner to produce a single output 

signal. The symbol constellations of the upper and lower paths as well as at the modulator 

output are also shown, together with the symbol transitions. 
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Figure 2.7: Structure of a DQPSK transmitter. Two MZMs are used as phase modulators, and the two 

separately modulated fields are combined with a 2 phase shift. Constellations and eye diagrams are 

also shown. 

Figure 2.8 shows optical spectra and intensity eye diagrams for NRZ-DPSK and NRZ-

DQPSK, respectively. Note that the shape of the DQPSK optical spectrum is identical to 

that of DPSK, but the DQPSK spectrum is compressed in frequency by a factor of two 

due to the halved symbol rate for transmission at fixed bitrate. The compressed spectrum 

is beneficial for achieving high spectral efficiencies in WDM systems [KRA03, GRI02a], 

as well as for increased tolerance to chromatic dispersion [GRI02a, WAN04]; the longer 

symbol duration compared to binary modulation formats makes DQPSK more robust to 

polarization-mode dispersion. 

 

Figure 2.8: Optical spectra and optical intensity eye diagrams for (Left) NRZ-DPSK and (Right) NRZ-

DQPSK [WIN06]. 

2.3. Transmitter Description 

The essential element of any photonic transmitter is the modulator. Although many 

successful demonstrations of amplitude based silicon modulators [SHA08, MIL09] have 

been reported, phase based encoding modulation has been required due to the 

exponentially increasing bandwidth requirements. Maximization of the signal to noise 
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ratio, minimization of nonlinear effects and maximization of channel efficiency are some 

additional reasons that make phase modulation preferable over amplitude modulation.  

 

In our case, for the photonic generation of a phase modulated millimetre-wave radio 

signal, two coherent optical signals separated by a frequency of 60 GHz are generated 

and injected into the chip, shown in Figure 2.1. These optical carriers are separated using 

an optical filter/demultiplexer which can be based on different technologies such as MZI, 

arrayed waveguide grating (AWG), ring resonator, and so on. One of the optical carriers 

is phase modulated in a DQPSK format using a dual-parallel MZM. Then, the modulated 

and un-modulated optical carriers are combined and photodetected in order to be wireless 

transmitted by the antenna.  

 

In QPSK wireless systems, good spectral efficiency is obtained by sending more than one 

bit of information per hertz of bandwidth. The higher order modulation schemes that 

achieve more than two states require that the characteristics of the channel to be taken 

into account. The dominant characteristic of the wireless channel are deep fades resulting 

from destructive interference of multiple reflections. Fades can be viewed as deep 

amplitude modulation and so it is difficult to transfer information in the amplitude of a 

carrier. Consequently phase modulation schemes falling in the class of M-ary phase shift 

keying (MPSK) are most appropriate in the mobile context. In mobile environments there 

are just a few modulation formats that have been found acceptable. These all fall in the 

class of either frequency shift keying (FSK)-like schemes or QPSK. Moreover, and taking 

into account the intensity waveforms, depicted in Figure 2.6, of the PM and MZM, it 

becomes clear that MZM should be used for a wireless transmission. 

 

In order to have an error-free DQPSK transmission, a Q -factor of about 15.6 dB must be 

reached as it can be seen from Figure 2.9 by using the equation shown inset, where erfc 

denotes the complementary error function:                                    

 
Figure 2.9: Q-factor of the signal as function of the bit error rate (BER), for QPSK modulation. Dashed 

line indicates BER=10-9, corresponding to a Q-factor of 15.6 dB. 
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Different system simulations were carried out in order to set the extinction ratio target of 

the optical filter to ensure the required Q -factor. As it can be seen in the figure below, a 

value of 29 dB in the filter rejection ratio is needed for achieving a Q -factor of 15.6 dB. 

 

 
Figure 2.10: Dependence of the transmitter optical filter and the Q-factor of the signal.  

 

Moreover, some simulations were done to set the extinction ratio needed for our system. 

From the figure below, it is important to notice that the un-modulated port is much more 

sensible to crosstalk errors than the modulated port, so a higher extinction ratio in the 

deviated port is needed for a good Q -factor. 

 

 
Figure 2.11: Q-factor with respect to the ER achieved in the modulated port (DQPSK Arm) for different 

values of ER in the un-modulated port (△-blue, ○-red and □-black line). 
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In order to cope with fabrication errors and other noise issues, active tuning using 

microheaters exploiting the thermo-optic effect, will be integrated in the demultiplexer 

design. From the obtained results shown in the figure above and after a careful selection, 

the established transmitter targets are: 

 

_ 25modulated portER dB , _ 30un modulated portER dB   

 

Regarding the electro-optic modulator, two DSPK modulators will be included in a nested 

configuration for DQPSK modulation. This DQPSK generation working in a push-pull 

configuration using a dual-electrode configuration [DOE12b], with two arms driven by 

differential data, requires only half of the drive voltages if compared with the single-

electrode configuration, and allows the elimination of the frequency chirp in a broad 

spectral range [OGA12]. 

Then, two DPSK modulator structures, which are identical, will form a DQPSK 

modulator by arranging them in a nested configuration [GNA05], where one of the two 

modulators has an extra phase shift of 90º to achieve the DQPSK constellation. 

The motivation of the aforementioned push-pull configuration can be clearly seen if the 

fields in each of the two arms of an unbalanced MZI is analysed. In an ideal case with 

infinite extinction ratio, the fields in the two arms are expressed as: 

12
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22
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                                                     Eq. 2.3 

where 1V  and 2V  are the voltage applied to arm 1 and arm 2 of the Mach-Zehnder, 

respectively. When adding the two fields using a 3-dB splitter, the sum adds up as 

expressed in Eq. 2.4: 

 1 2

2

i V V i V Vi tA
e e e                                            Eq. 2.4 

For a single arm driven MZM, the phase and amplitude variation can be calculated by 

setting 0t   and let 1V  be a constant also equal to 0 , and then vary 2V  from 0  to 2V . 

Since we are interested in a phase modulation, it is important to show the behaviour of 

the MZM over the full 2V  shift. For uniform amplitude ( 1A  ), the amplitude and phase 

variation of the MZM can be written as: 
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                   Eq. 2.5 

with the phase and module of the amplitude as plotted in Figure 2.12. 

 

It can be clearly observed in the figure below that the phase varies linearly from 2 to

2 , with zero amplitude at the singularity point. This instant jump of the phase comes 

from the change in sign of the cosine function of the amplitude. Anyhow, since the phase 

is equal at the two points corresponding to maximum amplitude, a single arm MZM 

cannot be used as a DSPK modulator. 
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Figure 2.12: Phase (black dashed) and module of the amplitude (blue solid) dependence of a single-arm-

driven MZM as function of applied voltage to arm2, normalized byV . 

 

The linear change of the phase with respect to the applied voltage can be eliminated by a 

push-pull configuration, where only the instant phase shift at zero amplitude is 

maintained. This can be demonstrated by setting 1 0 0 2V V V V   , where 0V  is the bias 

point. Incorporating this voltage dependency and setting 0V V , 0t   and 1A  , the 

MZM equation can be now written as: 
 2 2
2

2 2 21 1 1
2cos cos

2 2 2

V V V
i i

V V i V V V V
e e e

V V



 

 
  

 

 


 

     
      

   
       Eq. 2.6 

It is clearly seen that the expression only shows amplitude dependence and no phase 

variation. However, the field oscillates from positives to negatives values providing the 

necessary   phase shift for DPSK modulation. 

 

Figure 2.13 shows a graphical representation of the phase and the module of the amplitude 

variation of Eq. 2.6. As expected, the push-pull configuration only needs V  driving 

voltage to range from one amplitude maximum to the next one due to the two electrodes 

set-up. The graph also provides a clearer view of how the minimization of the chirp is 

achieved since there is no linear change in the phase. It must be commented that in a more 

realistic case, we will not experience an instantaneous phase shift due to the limited 

extinction ratio.  
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Figure 2.13: Phase (black dashed) and amplitude module (blue solid) variation of a MZM in push-pull 

configuration. 

 

The next element, the 90º phase shifter, is incorporated in the DQPSK MZM and will be 

realized using a delay line. The length of this delay line depends on the guided mode in 

the waveguide. Figure 2.14 shows an example of a strip waveguide of silicon, surrounded 

by silica, with an estimated effective phase propagation index of about 2.4effn  . This 

waveguide presents a delay coefficient of 0.56deg/ nm , meaning that a full 90º phase 

shift will be achieved in a 161 nm delay line. 

 

Figure 2.14: SOI waveguide with an estimated effn of 2.38. (Left) SEM image and (Right) a mode profile 

calculation. 

 

In order to cope with fabrication errors and environmental temperature dependency, a 

control element has to be included, and the selected implementation is by incorporating 

micro-heaters. This heating element can be implemented by a thin metallic wired 

positioned in close proximity to the dielectric waveguide [SHE08]. The higher resistance 
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of the wire will heat up the surrounding material and modify the dielectric index of the 

waveguide. 

 

As commented in Chapter 1, this work is framed in the European project HELIOS [HEL], 

and the obtained performance requirements for each building block are described in the 

following table. 

 

TABLE 2-1 

BUILDING BLOCKS AND HELIOS PERFORMANCE REQUIREMENTS FOR MILLIMETRE 

WAVE TRANSMITTER 

Device Description Performance 

Requirements 

 

 

 

Demultiplexer/Filter 

 

 

Device needed in order to 

separate two optical carriers 

separated 60 GHz at 1550 

nm with high extinction 

ratio. 

 

ERmodulated_port≥25dB 

 

ERun-modulated_port≥30dB  

 

IL≤3dB  

 

 

 

 

DPSK MZM 

Two DPSK modulators will 

be included in a nested 

Mach Zehnder for DQPSK 

modulation, and will 

modulate the electrical 10 

Gbit/s signal onto the 

optical carrier. Each 

modulator has a 5 Gbit/s 

data stream input. 

 

 

ER as high as possible 

 

Push-pull configuration 

 

 

90º Phase Shifter 

The phase shifter will be 

implemented as an active 

delay line with a micro-

heater control element, in 

order to shift one of the 

DPSK modulated signal π/2 

to achieve a DQPSK phase 

constellation 

 

Active DC tuning to 

achieve a full π-phase 

adjustability. 
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2.4. Optical Filter/Demultiplexer 

Ring resonators are one of the most suitable and versatile structures to achieve very 

compact filters with high performance. Microring filters have been extensively analysed 

to implement multiplexers/demultiplexers for multiple channel transmission in 

wavelength division multiplexing (WDM) systems and on chip optical interconnects 

[XIA07a, XIA07b, ZHE10]. Here in HELIOS, a microring demultiplexer filter is 

especially developed as a building block to be part of a photonic millimetre wireless 

transmitter. The performance requirements, as shown in Table 2-1 are: 

 Insertion losses below 3 dB 

 Extinction ratios of 25 dB and 30 dB for the modulated and un-modulated ports, 

respectively. 

 

First, a brief theoretical introduction to ring resonators and key parameters will be 

presented in the next subsection.  

2.4.1. Design and fabrication 

The basic configuration, which consists of unidirectional coupling between a ring 

resonator (resonant at a wavelength λi) with radius R and a waveguide, is shown in Figure 

2.15, based on [YAR02, RAB07]. 

 

Figure 2.15: Design parameters for a ring resonator. 

 

Figure 2.16: Model of a single ring resonator with one waveguide. 
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Defining that a single unidirectional mode of the resonator is excited, the coupling is 

lossless, single polarization is considered, and taking into account that the different kinds 

of losses in the ring resonator are incorporated in the attenuation constant, the interaction 

can be described by the matrix relation: 

1 1

* *

2 2

t i

t i

E Et

E t E





    
    

    
                                       Eq. 2.7 

The complex mode amplitudes E  are normalized, so that their squared magnitude 

corresponds to the modal power. The coupler parameters t  and   depend on the specific 

coupling mechanism used. The ∗ denotes the conjugated complex value of t  and  , 

respectively. The matrix is symmetric because the networks under consideration are 

reciprocal. Therefore: 

2 2 1t                                                    Eq. 2.8 

In order to simplify the model, 1iE  is chosen to be equal to 1. Then the round trip in the 

ring is given by: 

2 2

j

i tE e E                                                Eq. 2.9 

where   is the loss coefficient of the ring (zero loss:   = 1) and L c  , being L  the 

length of the ring which is given by 2L R ,  where R is the radius of the ring measured 

from the center of the ring to the center of the waveguide, c the phase velocity of the ring 

mode ( 0 effc c n ) and the fixed angular frequency 0k c   , 0c  refers to the vacuum 

speed of light. The vacuum wavenumber k  is related to the wavelength   through:

2k   . Using the vacuum wavenumber, the effective refractive index effn  can be 

introduced easily into the ring coupling relations by: 

2 eff

eff

n
k n







                                            Eq. 2.10 

where   is the propagation constant. This leads to 

20
2 2

2 4
eff

eff eff

n Rkc LL R
k n R n

c c

 
  

 

 
                     Eq. 2.11 

From Eq. 2.7 and Eq. 2.9 we obtain: 
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                                                      Eq. 2.12 
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                                                      Eq. 2.13 



Transmitter 

28 
 

*

2 *1
t j

E
t e 
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





                                               Eq. 2.14 

This leads to the transmission power 1tP  in the output waveguide, which is: 

 

 

22
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2 cos
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                          Eq. 2.15 

where  exp tt t j , t representing the coupling losses and t  the phase of the coupler. 

The circulating power 2iP  in the ring is given by: 

 
 

22

2

2 2 22

1

1 2 cos
i i

t

t
P E

t t



   


 

  
                             Eq. 2.16 

On resonance,   2t m    , where m  is an integer, we obtain that: 
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                                                Eq. 2.17 

and 

 
 
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
 


                                    Eq. 2.16 

A special case happens when t   in Eq. 2.17, when the internal losses are equal to the 

coupling losses, so the transmitted power equals zero, which is known in literature as 

critical coupling, due to destructive interference. By using the above equations, the 

behaviour of a basic ring resonator filter configuration consisting of only one waveguide 

and one ring can be taken. This model can be extended to suit the requirement of various 

types of ring resonator configurations. 

Ring resonator filters can be described by some figures of merit which will be explained 

in the next paragraphs. The first figure is free spectral range (FSR), which represents the 

distance between resonance peaks. By using the propagation constant from Eq. 2.10, 

neglecting the wavelength dependency of the effective refractive index, a simple 

approximation can be obtained for the FSR  

effn
k

  

   


    

 
                                            Eq. 2.19 

which leads to the FSR=Δλ expressed in Eq. 2.20, which is the difference between the 

vacuum wavelengths corresponding to two resonant conditions. 
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     
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                              Eq. 2.20 

Note that the equation above is for the resonant condition next to a resonance found for 

the used propagation constant. If the wavelength dependence of the effective index is not 

neglected, we will obtain a modified version of Eq. 2.19: 

  g

k
n



 


 


                                               Eq. 2.21 

where gn  is the group refractive index, which is defined as: 

eff

g eff

n
n n 




 


                                                   Eq. 2.22 

The group refractive index can be used instead of the effective index in order to obtain 

accurate values when avoiding approximation is important, which is the case of silicon. 

The modified FSR   is then given by: 

2

g

FSR
n L


                                              Eq. 2.23 

The next parameter of importance is the resonance width which is defined as the full 

width at half maximum (FWHM) or 3 dB bandwidth (2δλ) of the resonance lineshape. 

Using Eq. 2.11 and Eq. 2.19 and using the real part of the series expansion of the Euler 

formula, after some operations, we obtain that: 

2 21
2

g

t

Ln t







                                                   Eq. 2.24 

The expression which is commonly used can be obtained by assuming critical coupling 

is: 

2 2

2
g

k
FWHM

Ln





                                        Eq. 2.25 

The finesse F  of the ring resonator filter, which is defined as the ratio of the FSR and 

the width of a resonance for a specific wavelength (FWHM) is another parameter which 

can now be directly calculated from the parameters defined previously is: 

2 22 1

FSR t
F

FWHM t k

 





  


                            Eq. 2.26 
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A parameter which is closely related to the finesse is the quality factor Q  of a resonator, 

which is a measure of the sharpness of the resonance. It is defined as the ratio of the 

operation wavelength and the resonance width: 

21

g gn L n Lt
Q F

t




  
  


                               Eq. 2.27 

One key figure of merit of resonators is their bandwidth, which is inversely proportional 

to the quality factor Q  defined in Eq. 2.27. While a narrow bandwidth (high Q ) is suitable 

for enhancing light–matter interactions such as lasing [REI06] and sensing [ARM06], a 

wide bandwidth (low Q ), on the other hand, allows for optical signals of a broader 

spectrum and higher speed [LEE06] and is more tolerant to variations in the environment. 

Several applications require resonators with a tunable bandwidth or Q . One example is a 

reconfigurable channel selector for wavelength division multiplexing systems where the 

bandwidth of an add–drop filter can be tuned to accommodate one or several channels 

within one resonance and switch them simultaneously [PAW96]. The bandwidth of a 

resonator is determined by its intrinsic loss and coupling with the input and/or output 

ports.  

Previously, the simplest ring resonator configuration was presented (see Figure 2.15). 

Now, an add–drop microring configuration is considered and shown in Figure 2.17(a). 

We will assume that the round-trip intrinsic power loss is ( 1)   and that the power 

coupling with the input and output waveguides is  and   respectively. After each round 

trip the optical power circulating in the ring is reduced [KOO06] by: 

   1 1 1G                                                     Eq. 2.28 

The FWHM bandwidth can be then written as: 

2

0 1
ln

2 gn L G






 
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 
                                                  Eq. 2.29 

where 0  and gn are the resonant wavelength and group index, respectively, 2L R is 

the physical length of the ring, and ln the natural logarithm. Any tuning of the loss or 

coupling will result in a change in the bandwidth [YAO07]. However, a high extinction 

ratio can only be obtained when critical coupling occurs, i.e., when    , in which 

case individual tuning leads to a degraded extinction ratio, but if  and are changed 

accordingly so that      remains valid, tunability of the bandwidth will be feasible 

while a high extinction ratio is maintained. The coupling of the resonator with the input 

and/or output ports can be changed dynamically with tunable interferometric couplers 

[POP07] as shown in Figure 2.17(b).  
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Figure 2.17: Schematic of an add–drop microring resonator with (a) straight couplers and (b) 

interferometric couplers 

 

From Figure 2.17(b), we assume that the power coupling at each point is 0  and that the 

transmission and phase of the interferometric and ring arms are xt , rt  (close to 1) and x

, r , respectively. Then, the effective coupling from the waveguide to the ring can be 

described by Eq. 2.30: 

    0 01 2 cosx r x r x rt t t t                                    Eq. 2.30 

From the equation above, we can see that if the relative phase  x r      experiments 

a change (by thermo-optical effect, for example) from 0 to π, the effective coupling will 

range between 0 and  0 04 1    [CHE07]. 

The resonances in this structure, contrary to resonances in standard ring resonators, 

exhibit distinctively different bandwidths and extinction ratios that are oscillating with 

wavelength. These oscillations originate from the wavelength dependence of   since: 

2 ( )eff x rn L L




  
                                                 Eq. 2.31 

where effn  is the effective index and xL , rL  are the physical lengths of the two interfering 

arms.  Regarding the phase/wavelength tuning, the refractive index in the ring resonator 

can be modified by using the thermo-optic effect or by electro-optical effect. So, by tuning 

the refractive index of the silicon and hence the effective index of the mode, a single 

wavelength can be switched between the output ports. A shift of the effective index, effn

, causes a shift of the resonance wavelength [NAW06] as depicted in Figure 2.18 and it 

is given by the equation below: 

0

eff

g

n

n
 


                                                          Eq. 2.32 
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Figure 2.18: Shift of the resonant wavelength due to a shift of the effective index. 

As described in the previous section, the chip will route two signals separated 60 GHz, 

equalling 0.48nm@λ=1550nm, through the different building blocks. The two 

wavelengths must be separated in the demultiplexer, and the splitting of the deviated and 

modulated signal is crucial because a very good isolation of the signal is needed in order 

to achieve error-free transmission. Therefore a ring resonator add-drop filter was selected 

for this building block. In order to cope with heat, fabrication errors and other noise 

issues, various micro-heaters were included in the design of our filter. By using a set of 

specific microheaters, the ER as well as the Q-value and selectivity can be controlled. 

Two configurations were considered in this study. The first one is shown in Figure 

2.19(a), which is based on a double coupled through and single coupled drop RR. Using 

this double coupling structure for the through coupling, it is possible to control the ER of 

the through port. Consequently, the drop port response will also change according to the 

changes in the through port. By tuning the coupling, a maximized ER in the through port 

can be achieved when the coupling coefficient is exactly identical to the losses in the ring, 

and therefore, this configuration will allows us to actively modify the ER in order to 

achieve the set specification. 

The phase of the ring resonator is also tuned using a microheater located exactly on top 

of the ring waveguide. In order to avoid any change of the coupling coefficients to the 

ring, the micro-heater is only present outside the coupling regions of the ring as it can be 

seen in Figure 2.19(b). 

 Since the coupling to the drop port is fixed in this first configuration, we will not be able 

to control the Q -value of the filter when tuned, and therefore its bandwidth. 
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Figure 2.19: (a) Add-drop filter using a single tuned ring resonator where only the coupling through port 

is tuned as well as the phase. The red striped layer corresponds to the microheater metallization, the black 

striped corresponds to the pads and the blue to the optical waveguides. (b) A close-up of the single-tuned 

RR filter. 

In order to also control the Q -value and ER of the drop port, for a correct 60 GHz 

separation, a second configuration has been included in the study. As seen in Figure 2.20, 

the coupling coefficient of both the through and drop port can be controlled. 

 

Figure 2.20: (a) Add-drop filter using a double tuned ring resonator where both through and drop are 

tuned, as well as the phase. The red striped layer corresponds to the microheater metallization, the black 

striped corresponds to the pads and the blue to the optical waveguides. (b) A close-up of the double-tuned 

ring resonator filter. 

By using transfer matrix formalism [POO04], the spectral response of the whole structure 

of the double-tuned ring resonator configuration has been modelled. Figure 2.21(Left) 

shows the effect of tuning the input coupling   with the heater corresponding to the 

through coupling. The output coupling   (drop coupling) is maintained constant. The 

device used here has 255.71xL m , and the resonance measured is at a wavelength close 

to 1550.4nm  . Starting from the “overcoupled” condition (I) where the extinction ratio 

is of about 40 dB, the coupling first rises to a maximum (II) and then gradually moves 



Transmitter 

34 
 

across the “critical coupling” level (III), reaching a the maximum ER achievable until the 

minimum (IV), where the resonance is almost switched off. Then, the coupling crosses 

the critical coupling level again (V) presenting again the maximum ER value, and rises 

to an “overcoupled” condition. Figure 2.21 (Right) shows the corresponding spectra. It 

can be seen that the resonance can be completely switched off and on between state (IV) 

and state (V). 

 

Figure 2.21: (Left) Tuning of  with heater power: the dashed line marks the critical coupling level; (I), 

(II), (III), (IV) and (V) mark the states of initial, maximal, critical, minimal and critical coupling, 

respectively. (Right) Corresponding through (solid lines) and drop (dotted lines) ports spectra. 
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As commented before, by tuning both coupling coefficients, the bandwidth can be varied 

while maintaining a high extinction ratio. Moreover, in order to tune the resonance into 

the narrowest bandwidth and maximum extinction ratio, the heating power applied to the 

heaters must satisfy the conditions that the output coupling is minimum (   ) and the 

extinction ratio is maximum (  ). As shown in Figure 2.22, by applying different 

heating powers to each heater (heaters 1 and 2 in Figure 2.23), bandwidth is tuned while 

the extinction ratio remains at a high value. 

 

 

Figure 2.22: Tuning both coupling coefficients in order to achieve a tunable bandwidth while maintain a 

high extinction ratio. (Up) Through (Down) Drop ports spectra. The dotted line corresponds to -3dB 

transmission.  
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As it can be seen from the figure above, there is a trade-off between the bandwidth and 

the insertion losses in the drop port, since as the bandwidth becomes more selective, the 

insertion losses increase. 

2.4.2. Characterization and Performance 

Regarding the fabrication process, which was carried out at Laboratory of Electronics, 

Technology and Instrumentation (LETI) facilities, on SOITEC optical SOI with 220 nm 

Si on 2 µm BOX, the process starts with the deposition of 100nm High Temperature 

Oxide (HTO) on top of the silicon layer. The gratings and the waveguide arms are first 

patterned, followed by RIE silica etching with C4F8, which defines a hardmask. The 

silicon is then partially etched (65 nm) with HBr and controlled by ellipsometry in order 

to define precisely the grating teeth depth. In the second lithography step, the gratings are 

protected by the resist and the remaining hardmask serves for the waveguides in a self-

alignment process. Then a full silicon etch down to the box completes the waveguide 

fabrication. A 400 nm thick SiO2 was deposited and a deposition and etching of 100nm 

of Ti/TiN defined the heaters.  Then after deposition of 500 nm of SiO2 and two-step 

openings, the electrodes were defined by Ti/TiN/AlCu metal stack deposition and Cl2 

etching. Figures 2.23(a) and (b) depict a schematic and a SEM image of the fabricated 

device, respectively. 

 

Figure 2.23: (a) Schematic and (b) SEM image of the fabricated device. Heaters 1, 2 and 3 are used for 

tuning the coupling coefficient for through port, drop port, and wavelength, respectively. 

For the chip characterization at Nanophotonics Technology Center’s (NTC) laboratories, 

a continuous-wave light was generated by a tunable external cavity laser (ECL) with a 

resolution of picometers. Measurements were performed with a single mode fiber tilted 

under an angle of 13 degrees relative to the surface normal of the grating. The input 

polarization state was firstly set by adjusting an external polarization controller and 

monitoring the output power measured in a reference straight waveguide. The light was 

coupled to the chip through the grating coupler using manual nano-positioners. For the 

tunable device characterization, individual DC probes were connected to the chip using 

manual micro-positioners, as shown in Figure 2.24. 
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Figure 2.24: Image of the setup used to characterize the tunable DEMUX, using DC probes 

As commented in the previous section, two optical carriers separated 60 GHz at the 

demultiplexer input have to be filtered by centring one of them at a ring resonance, so 

each one of them can be processed independently from the other one, with a minimum 

extinction ratio of 25 dB and 30 dB for the through and drop ports respectively. 

For a complete control of the filter, three microheaters are included for controlling the 

central wavelength (heater 3 in Figure 2.23(b)), the extinction ratio (heater 1 in Figure 

2.23(b)), and the Q -value/bandwidth (heater 2 in Figure 2.23(b)).  

Figure 2.25 shows different transmission curves for the through port, corresponding to 

different applied voltages over the microheater located above the ring resonator (heater 3 

in Figure 2.23(b)). The figure clearly demonstrates the ability to tune the central 

wavelength of the demultiplexer. A 40 GHz detuning is achieved by applying a total of 

5V. The filtered showed here corresponds to the double tuned RR configuration as shown 

in Figure 2.20(a), however the same result is achieved for the single tuned RR. 

Theoretically, the extinction ratio of the resonance should not be affected, only the central 

wavelength, but this slight change of the ER is due to the closeness of the heater to the 

coupling regions (see Figure 2.19(b) and Figure 2.20(b)). When the heater is active the 

heat does not only dissipate down towards the ring resonator, but also sideways toward 

the coupling regions. This can be avoided by either increase the closest distance to these 

sensitive regions and by making trenches on both sides of the waveguide, creating an air 

isolation ditch. 

Once the control of the central wavelength of the demultiplexer is demonstrated, the next 

step is to tune the extinction ratio by using the thermo-optic effect in the heater 

corresponding to the through port coupling (heater 1 in Figure 2.23(b)). 
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Figure 2.25: The control of the wavelength shift of the demultiplexer filter. The 5 graphs correspond to 

different applied voltage to the heater; from left to right, 0V (△-green), 3V (□-purple), 4V (◊-pink), 5V 

(○-cyan) and 6V ( -black) respectively. 

To achieve a maximized ER the coupling coefficient should be equal to the losses in the 

ring (  ). Figure 2.26 and Figure 2.27 show the transmission spectra measured at the 

through and drop output ports, respectively.  

 

Figure 2.26: The transmission spectra for the through port of the demultiplexer when modifying the 

through coupling coefficient by applying different voltages to the heater. 
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It is clearly shown in Figure 2.26 how the extinction ratio can be increased from a few 

dBs to close to 20 dBs by applying 8V to the micro-heater, agreeing with the expected 

behaviour from simulations. For the drop port shown in Figure 2.27 the extinction ratio 

is in this case also increased to reach more than 30 dBs. However, insertion losses are 

around 10 dB higher than in the through port. The extra insertion loss for the drop port is 

due to mainly the coupling losses. Moreover, the measured bandwidth is also tuned due 

to the closeness of the heaters, and as commented previously, by creating an air isolation 

ditch, this can be avoided. 

 

Figure 2.27: The transmission spectra for the drop port of the demultiplexer when modifying the coupling 

coefficient to the through waveguide by applying different voltages to the heater. 

 

Once the tunability of extinction ratio is demonstrated by modifying the through coupling 

coefficient while maintaining constant the drop coupling coefficient, by using the 

doubled-tuned ring resonator, shown in Figure 2.20, the extinction ratio and the quality 

factor (bandwidth) of both the through and drop ports will be tuned simultaneously, in 

order to achieve the target specifications indicated in Table 2-1.  

Figure 2.28 shows how, for two wavelengths separated 60 GHz, without no tuning 

mechanism, specifications are not accomplished for the drop port (ER=10.43 dB), but for 

the through port, the ER presents an almost valid value (20.5 dB) for the target 

specification (25 dB). By applying 7V and 4V to the drop and through micro-heaters 

respectively, the through port still presenting a value close to the specifications although 

the increase in ER is not significant (ER=21.3 dB), but the drop port ER increases in 

17.48 dB, reaching 27.91 dB and almost satisfying the specifications (30 dB). Insertion 

loss in the drop port is also improved with respect to the no tuning response, and taking 

into account that the input/output grating couplers show a coupling loss of about 6 dB, 
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the actual insertion loss in the drop port is close to the target specification, reaching a 

value of about 3.75 dB. 

 

 

Figure 2.28: (Up) Drop (dashed line) and through curves without any tuning mechanism. (Down) Tuned 

drop (dashed line) and through curves, where the specification values are almost achieved. 

 

2.5. DQPSK Modulator  

2.5.1. State Of The Art 

Silicon modulators based on microring structures have been proposed to achieve phase 

modulation [ZHA08, INT11]. Experimental demonstrations of 5 Gbit/s error-free 

differential PSK (DPSK) modulation [PAD11] and 20 Gbit/s QPSK modulation, but 

without successful error-free demonstration, have been recently reported [DON12c].  
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Ring based modulators have unique features in terms of small footprint and low drive 

voltage. However, the optical bandwidth or range of useful wavelengths for modulation 

is much lower than compared to conventional Mach-Zehnder modulators (MZM) that in 

turn implies that the modulator performance is more sensitive to fabrication tolerances. 

Thus, some tuning mechanism, which is usually based on the thermo-optic-effect 

[DON12c] becomes mandatory increasing power consumption and complexity of the 

transmitter.  

Very recently, the first works dealing with phase modulation in silicon MZM have also 

been reported. A silicon based dual-drive nested MZM for QPSK modulation was firstly 

demonstrated at 20 Gbit/s [OGA12]. However, a poor system constellation was achieved 

due to the low extinction ratio and unbalanced output optical power at the MZMs. A 

higher modulation speed, 50 Gbit/s QPSK, has also been demonstrated by using a single-

drive nested MZM but no error-free modulation was achieved [DON12a]. However, in 

the last months, many research groups have been working in the design and fabrication 

of silicon MZMs for PSK as described in [OGA12] and an experimental realization of 50 

Gbit/s QPSK and 112 Gbit/s DP-QPSK modulation were reported in [DON12a] and 

[DON12b], respectively. 

Some of the latest works in this field were presented in the last Optical Fiber 

Communication Conference and Exposition and National Fiber Optic Engineers 

Conference (OFC/NFOEC) held in San Francisco, California, March 2013. 20 Gb/s NRZ 

DPSK using a silicon- based MZM, with drive signals of 8V peak-to-peak amplitude, was 

demonstrated [GOI13a]. From the same research group, a 44.6 Gbit/s DQPSK and 50-to-

64 Gbit/s QPSK modulation demonstration using low loss nested Silicon MZM with 

fiber-to-fiber loss of 10dB were presented [GOI13b]. Error-free transmission is claimed, 

but using forward error correction (FEC). Moreover, an error floor can be seen in the 

presented results, as shown in Figure 2.29(a). Figure 2.29(b) shows the measured BER as 

function of the optical signal to noise ratio presented in [DON13], where 56 Gbit/s QPSK 

modulation was generated by using silicon microring based modulators with thermal 

control elements. 

 

Figure 2.29: BER as function of the optical signal to noise ratio (a) 44.6Gb/s MZM-DQPSK presented in 

[GOI13b]. (b) 56-Gb/s microring-QPSK [DON13] 
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Another work presented in the last OFC/NFOEC, but more focused for long-haul optical 

communication networks is [MIL13], where a transmission up to 2427km SSMF using a 

silicon photonic modulator in a coherent optical polarization multiplexed 112 Gbit/s 

QPSK (DP-QPSK) system. Their implementation is based on a metal-oxide-

semiconductor (MOS) capacitor. The amount of voltage difference across the Silicon 

Insulator Silicon CAPacitor (SISCAP) structure determines the charge accumulation and, 

through the free carrier effect, this determines the amount of phase modulation. The 

SISCAP structure is used for each arm of each MZM. The high charge density being 

centred in the active region of the optical mode enables highly efficient modulation, 

resulting in a VπLπ of less than 2V∙mm. 

2.5.2. Design, fabrication and characterization 

A high-speed DPSK modulation using a silicon push-pull operated dual-drive MZM 

based on carrier depletion has been demonstrated [AAM13a], validating the potential to 

achieve higher order modulation formats, such as, DQPSK, by arranging the presented 

MZM in a nested configuration, as already described in Section 2.2. 

The GDS design and fabricated MZM at LETI’s facilities is shown in Figure 2.30(a) and 

(b) respectively. Multimode interference couplers (MMI) were used as input/output 3 dB 

couplers. The silicon waveguide core has a height of 220 nm, a width of 450 nm, and a 

slab thickness of 100 nm, as illustrated in Figure 2.30(c). Optical phase modulation is 

achieved by depleting the majority carriers from a reverse biased p-n junction [THO12] 

with doping concentrations of 1.6∙1017 cm-3 in the p-type region and 8∙1017 cm-3 in the n-

type region. 

 

Figure 2.30: DPSK modulator. (a) GDS design, (b) optical photograph of fabricated device and (c) cross-

section of the pn junction. 
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The travelling-wave electrodes are formed by depositing a compound AlCu layer on top 

of highly doped p+ and n+ regions with concentrations of 1∙1020 cm-3. A dual-drive 

electrode configuration was chosen for push-pull operation, which allows producing the 

required π-phase shift for DPSK modulation when the phase shifters are biased at zero 

amplitude and driven by digital data signals with opposite polarity and a peak-to-peak 

voltage of Vπ. The two electrodes have the same length to avoid a delay between the non-

inverted and inverted digital data signals.  

 

Figure 2.31: Normalized transmission spectra of the MZM with different bias voltages. 

First, at the NTC’s facilities, the transmission spectra of the MZM were obtained for 

different applied voltages. Figure 2.31 shows the spectra normalized to a reference 

waveguide. The insertion loss of our DPSK modulator, including phase shifter and MMI 

losses, is about 10 dB and the free spectral range (FSR) is 3 nm. Different voltages 

between 0V and 12V were applied to the MZM. The extinction ratios under these DC 

conditions were close to 30 dB. At 12V the curve was shifted exactly one half FSR, as it 

can be seen in Figure 2.33, marking our Vπ value and giving rise to a Vπ∙L product about 

3.6 V∙cm. Compared to previous works on silicon MZM for PSK modulation, the Vπ is 

only slightly higher than the 10V reported in [DON12a] but in contrast the modulation 

length is reduced down to 3 mm, half of the length reported in [OGA12, DON12a], thus 

significantly reducing the device footprint. Insertion losses are around 5dB higher but 

they could be reduced via a better optimization of the separation between the high doping 

regions and the optical waveguide while minimizing the impact on the modulator 

performance. 

The next step is to characterize the DPSK modulation using the measurement setup shown 

in Figure 2.32. The input light emitted by an external cavity laser (ECL) is coupled from 

a standard single mode fiber to the chip via grating couplers. The polarization was 

optimized and set to a TE polarization using a polarization controller (PC). Before being 

launched onto the chip, the optical signal was amplified by an erbium-doped fiber 

amplifier (EDFA), and filtered by a 3nm wide tunable optical filter. Digital data signals 

were generated from a pseudorandom binary sequence pattern generator with a pattern 
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length of 27-1, delivered by a bit pattern generator (BPG) connected to an external clock. 

The signals were appropriately decorrelated and aligned before being fed to the electrodes 

with 8 V peak-to-peak voltage. A double RF signal probe with GSGSG configuration was 

used to drive the MZM, while another double RF signal probe with 50 Ω terminators was 

applied at the electrode output (see Figure 2.30(a) and (b)). A reverse DC bias was applied 

to the phase shifters for operation in carrier depletion. Separate DC sources were used to 

adjust the bias level of the phase shifters independently using bias-tees. The optical 

modulated DPSK signal was once again amplified after coupling out of the chip, and 

filtered before being visualized in a digital communication analyzer (DCA) for capturing 

the modulated eye. 

 
 Figure 2.32: Schematic of the experimental set-up for evaluating the performance of the DPSK 

modulator. 

In order to measure the bit error rate (BER), the optical DPSK modulated signal was 

passed through an external demodulation circuit, as depicted in Figure 2.32. The 

demodulation is based on a polarization delay interferometer [CHO05]. Using a PC, the 

polarization of the modulated signal is transformed into a linear polarized wave with the 

same intensity in the TE and the TM axes. The linear signal is then launched into a 

differential group delay (DGD). The DGD is a birrefrigent crystal that introduces a fixed 

differential group delay between the TE and TM polarization axes. In our demodulation 

circuit, the DGD has been used such it introduces a fixed delay between the TE and TM 

components that is equal or higher than 1 bit period of the modulated signal. Finally, the 

output signal is again adjusted in polarization with another PC and combined with a 

polarization beam splitter (PBS). In this way, the linear polarization is rotated 45o, so the 

same fraction of the TE and the delayed TM intensities match one of the polarization axis 

of the PBS. Hence, a combination of the signal with a 1 bit delayed signal is achieved. 

The demodulated signal is then simultaneously fed to the DCA and BER analyzer, as 

depicted in Figure 2.32. 
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Figure 2.33: Images of some of the equipment used for the experimental characterization of the DPSK 

modulator. 

 

 
Figure 2.34: modulated DPSK eye diagram for (a) 5 Gbit/s (b) 10 Gbit/s (c) 15 Gbit/s and (d) 20 Gbit/s. 

 

The measured eye diagrams of the modulated DPSK signal for four different bit rates are 

shown in Figure 2.34. The noise is mainly due to the limitation in the drive voltage which 



Transmitter 

46 
 

is not high enough to achieve Vπ in each phase shifter of the MZM (the driver only offers 

66.6% of the required Vπ). However, clear demodulated eye diagrams, as depicted in 

Figure 2.35, were obtained for 5 Gbit/s and 10 Gbit/s by using the fixed DGD (τ~90 ps) 

and for 15 Gbit/s using a variable DGD, despite being unstable for BER measurements. 

Figure 2.35(a) and (b) shows the alternate-mark inversion (AMI) and Duobinary (DB) 

demodulated eye diagrams for the 5 Gbit/s modulation, while Figure 2.35(c) and (d) 

shows the AMI demodulated eye diagram for the 10 Gbit/s and 15 Gbit/s modulation bit 

rates, respectively. As it shown in these figures, very open eye diagrams were measured 

confirming the correct DPSK modulation for the measured bit rates. 

 
Figure 2.35: DPSK demodulated (a) AMI and (b) DB eye diagrams for 5 Gbit/s. AMI demodulated 

eye diagrams for (c) 10 Gbit/s and (d) 15 Gbit/s. 

 

The performance of the silicon DPSK modulator was further evaluated by measuring the 

BER but only at the two lower bit rates because of the limitation in the delay introduced 

by the fixed DGD since, unfortunately, the delay introduced by the DGD was too long 

for correctly demodulating the DPSK signal above 10 Gbit/s and therefore it was not 

possible to measure the BER for higher speeds. 

 

As shown in Figure 2.36, error-free DPSK modulation, for 5 Gbit/s (○-blue curve) and 

10 Gbit/s (◊-red curve), is obtained. Furthermore, no error floor is observed in the results 

showing that inter-symbol interference (ISI) is not produced in the modulation due to 

carrier latency effects. Moreover, it must be commented that our modulator would most 

likely be good enough to achieve an error-free modulation at 20 Gbit/s and maybe even 

higher. When comparing the modulated eye diagram for 10 Gbit/s and 20 Gbit/s the noise 

level is about the same. Furthermore, it can be clearly seen that the transitions, in the 20 

Gbit/s eye diagram, between the different states do not overlap which confirms that ISI 

would not occur when the right demodulation stage is used and thus the high speed 
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operation of the DPSK modulator. 

 

 

 
Figure 2.36: BER versus received power for 5Gbit/s (○-blue curve) and 10Gbit/s (◊-red curve) DPSK 

demodulation. 

In summary, we have successfully demonstrated error-free DPSK modulation at 5 Gbit/s 

and 10 Gbit/s using a dual-drive silicon MZM. Furthermore, we have also shown the 

feasibility of the proposed MZM for 15 Gbit/s and 20 Gbit/s DPSK modulation. Finally, 

a fully integrated silicon transceiver could be implemented by combining the proposed 

MZM with an integrated silicon DPSK receiver [AAM12], which will be described in the 

next chapter. 
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Chapter 3 

 

Receiver 

 

3.1. Introduction 

The DQPSK polarization insensitive receiver is formed by different building blocks that 

will described in the next lines. 

First of all, it must be commented that coherent and incoherent detection methods enable 

high spectral efficiency modulation formats with electronic compensation of linear and 

nonlinear impairments. Regarding hardware complexity, coherent receivers require a 

local oscillator, which can make integration of the complete receiver difficult and 

expensive. This is especially the case when high-order modulation formats are used, 

which require low-linewidth lasers such as external cavity laser (ECL). ECLs are also not 

preferable when cost-efficiency is of primary concern, such as in access networks. In the 

other hand, differential modulation formats are less sensitive to laser phase noise 

[KIK10]; the differential beating in the receiver cancels out part of the phase noise, as it 

does not change so much over a symbol period. Incoherent receivers are also simpler in 

terms of digital signal processing (DSP), as already mentioned, as they do not require 

frequency and carrier and phase recovery. 

As a technological platform, SOI presents a low-cost and compact solution for mass-

production of highly integrated photonic devices and has shown good potential for 

implementing various formats of DPSK demodulation. The small bending radius of about 

5 microns, alongside the monolithic integration of germanium photodetectors (Ge-PD) 

by using CMOS compatible process makes this technology very attractive for low-cost 
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differential receivers, specifically in access networks at lower data speeds, such as 5 

Gbit/s or 10 Gbit/s. In order to deal with problems such as polarization dependent loss 

and polarization dependent frequency, the TE and TM polarization can be completely 

separated and processed individually using the diversity scheme shown in Figure 3.1. 

Different approaches have been proposed for differential silicon receivers, mainly based 

on the use of standard Mach-Zehnder delay interferometer (MZDI) [KRO11, FAR12, 

DOE12] or using microring resonators [XU12, DIN11]. While the ring resonator 

approach allows a very compact implementation, optimal performance usually requires a 

tuning mechanism [CHE07], increasing the complexity and power consumption of the 

receiver. Accordingly, the MZDI design seems to be the most suitable to be used in more 

complete systems [DOE12, SUZ12]. 

As commented previously, the proposed DQPSK receiver is polarization insensitive. The 

transparent polarization behaviour is given by a polarization diversity scheme [BAR07], 

in order to deal with some problems such as polarization dependent loss and polarization 

dependent frequency, so the transversal electric (TE) and the transversal magnetic (TM) 

polarizations are completely separated and processed individually. The first key building 

of the polarization diversity scheme is the polarization splitter to separate the random 

polarization coming from the input fiber. Once the two polarizations are separated, the 

TM component has to be rotated to achieve the TE one by the use of a polarization rotator. 

The proposed DQPSK receiver, in addition to the polarization diversity scheme, will also 

include a thermo-optically tunable MZI power splitter, in series with a MZDI, a compact 

2x4 multimode interference coupler (MMI) acting as 90 degree hybrid and two balanced 

germanium photodetectors (Ge-PDs).  

The principle of operation of a differential demodulator using a MZDI is to superpose 

two adjacent bits using a delay-line (DL) and the intensity of the superposed signal can 

be directly photodetected, converting the differential bit transition into an intensity 

variation of the signal. In order to maximize the sensitivity of the receiver, the output of 

the MZDI has to be balanced; but due to the losses in the DL, behaviour may result in 

unbalanced one. That is one of the reasons of introducing a tunable MZI switch in cascade 

with the demodulation circuit, so propagation losses can be compensated by actively 

tuning the power at the MZDI input, resulting in an increase in the extinction ratio of the 

MZDI. An alternative implementation based on two variable optical attenuators (VOAs) 

coupled to each waveguide of the MZDI has been proposed to balance the output power 

in a MZDI based receiver [SUZ12]. However, VOAs will introduce extra losses in 

addition to higher power consumption, if compared with our approach. To overcome the 

drawback of compactness when using a MZDI instead of microring resonator 

implementation, we will use compact spirals to implement the DL, so the footprint will 

be drastically reduced, and thereby the size of the receiver will be minimized to just a few 

times larger than a ring resonator based design.  

The standard implementation of a DQPSK receiver with two parallel MZDI is to couple 

each MZDI to a 180 degree hybrid. According with the approach of minimizing our chip 

area, as well as the number of active controls needed for tuning, we will use a 2x4MMI 
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acting as a 90 degree hybrid, which inputs will be coupled to the MZDI outputs. 

Moreover, in this work, a zero bias balanced detection is used, so the complexity and the 

size of the receiver will be scaled down, once again, by excluding the need of a decoupling 

capacitor. A Ge-PD in pinpin configuration will be used, so additional wire bonding or 

metal connections are suppressed. Only few works have demonstrated zero bias Ge 

detectors selectively grown at the end of silicon waveguides [VIV12] or in surface 

illuminated configuration [JUT05]. 

As commented in previous chapters, this work is in the framework of the European project 

HELIOS [HEL]. The goal of this chapter is the development of a photonic DQPSK 

receiver at 10 Gbit/s, and the performance requirements for each of its building block are 

described in the following table. 

TABLE 3-1 

BUILDING BLOCKS AND HELIOS PERFORMANCE REQUIREMENTS FOR DQPSK 

RECEIVER 

Device Description Performance 

Requirements 

 

Polarization Splitter  

Device responsible for the 

separation of the input 

polarization into its two 

orthogonal components. 

ER>20dB for both output 

ports. 

 

IL<3dB 

 

Polarization Rotator   

Device which function is to 

rotate the input polarization 

state into the orthogonal 

one. 

 

PCE>-1dB 

 

 

1-bit Delay Line (DL) 

Building block of the 

MZDI. The delay depends 

on the frequency of the 

signal. For 5 GHz signal, a 

200ps DL is needed, 

corresponding to 18mm in 

SOI single mode 

waveguide technology 

 

 

Loss<5dB 

 

Balanced 

Photodetectors (BPD) 

Balanced detection is used. 

The output of the two BPD 

is the two original RF 

signals. 

Responsivity R>0.8A/W 

Dark current 

Idark≈10nA 
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3.2. Polarization Diversity Scheme 

3.2.1. Introduction 

As already described in Chapter 1 Silicon on Insulator (SOI) is being consolidated as the 

most promising technology to develop photonic devices for telecom applications with a 

very large scale of integration (VLSI) at a low cost [JAL06]. Besides its compatibility 

with Complementary Metal Oxide Semiconductor (CMOS) microelectronic tools, the 

high refractive index contrast between the core (𝑛𝑆𝑖 ≈ 3.45) and cover (𝑛𝑆𝑖𝑂2 ≈ 1.45) 

materials in SOI wafer layers results in a high light confinement in the core of optical 

structures. This confinement is key to the development of compact devices of reduced 

dimensions, and can thereby reduce the dimensions of integrated circuits, which is 

important since it is the basis to large-scale chip fabrication. Despite the fact that these 

structures exhibit unique characteristics that would present a radical advancement in 

technology today, the polarization control in such devices is in most cases complex, 

because of its inherent sensitivity to polarization [PAV04]. For this reason, the 

polarization sensitivity is a major problem in microphotonics, since the state of 

polarization changes randomly in the optical fibers, which involves an external control of 

the polarization in integrated photonic devices necessary to connect them to the outside 

world. 

Regarding the 0th order mode effective indices for each polarization (𝑛𝑒𝑓𝑓,𝑇𝐸 ≈

2.7,𝑛𝑒𝑓𝑓,𝑇𝑀 ≈ 1.6), rectangular singlemode SOI waveguides have a very strong 

birefringence, and the mode strong confinement in the core occurs for Transverse Electric 

(TE) modes. For this reason, photonic devices are usually designed to operate with the 

TE polarization. As a result, integrated polarization diversity schemes have to be 

implemented when using rectangular SOI strip waveguides in order to avoid external 

polarization control and to make sure the waveguide is mostly guiding TE polarization 

[BAR07]. A schematic of a polarization diversity scheme is depicted in figure 3.1. 

 

 

Figure 3.1: Polarization diversity scheme. 
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As shown in the figure above, an arbitrary input polarization state coming from a fiber is 

split into orthogonally polarized components by a polarization splitter, so the TE and TM 

polarizations are completely separated and processed individually. These two 

components travel in separated arms, until the TM component reaches the polarization 

rotator, and is converted in a TE one to have the same polarization state at the input of 

the photonic structure, which is a DQPSK receiver in our case. 

3.2.2. Polarization Splitter 

The polarization state of light is, without doubt of great importance in 

telecommunications networks since many components of such networks are highly 

polarization dependent, and also because the polarization modal dispersion (PMD) can 

significantly degrade an optical fiber transmission. Hence, polarization splitters are one 

of the key elements in integrated optical circuits for routing and signal processing. A 

variety of polarization splitters has been reported to separate the random polarization 

coming from the input fiber, some based on directional couplers , such as [XIA08, TU10, 

WAN13], using Mach-Zehnder interferometers (MZIs) [LIA05b, DAI11a], photonic 

crystal (PhC) structures [SHI07] or multimode interference (MMI) structures [KAT09, 

YAN09]. The polarization splitter proposed by [XIA08] is based on a directional coupler 

in horizontal multiple-slotted waveguide structures. Despite the fact that the fabrication 

process steps increase, the device presents a large coupling length of about 238 µm. The 

simulations and results presented in [DAI11a] show that, if ridge waveguides are used, 

either MZI based polarization splitter and directional coupler based polarization splitter 

result in very long devices. The polarization splitter presented in [LAI05] confirms the 

theoretical study commented before, demonstrating that for a fabricated MZI acting as 

polarization splitter using rib waveguides, just the MZI arms are 6 mm long, a part of the 

MMIs needed at the input and output of the MZI, whose lengths are of about 2 mm. 

[KAT09] proposed a silicon slot waveguide polarization splitter using a MMI structure 

and presented theoretical and simulated studies, where the optimum polarization splitter 

length was shorter than 50 µm with an extinction ratio (ER) near to 13 dB, too small if 

compared with our ER target, as happens with the experimental demonstration of the 

polarization splitter based on MMI structure presented in [YAN09], where a compact 

device is achieved (𝐿 = 8.8 µ𝑚) but with ERs below 20dB, or a recent and compact 

polarization splitter based on an asymmetrical bent DC [WAN13] but that only achieves 

an ER of about 10dB. 

The selected structure for our polarization splitter is a MMI based one since these 

structures are very compact, with a large optical bandwidth and high tolerances for 

fabrication deviations. The operation of a MMI device is relatively simple. The key 

component is a multimode waveguide that supports several modes (typically ≥3). Its 

operating principle is the self-image principle and can be stated as follows: self-imaging 

is a property of multimode waveguides by which an input field profile is reproduced in 

single or multiple images at periodic intervals along the propagation direction of the 
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guide, as shown in figure 3.2. For simplicity, only the formation of single and two-fold 

self-images is shown. 

 

Figure 3.2: Self-image formation along a multimode waveguide showing single and two-fold images. 

In the case of general interference, the formation of the self-images (single and multiple) 

along the multimode waveguide is given by: 

(3 )
p

L L
N


                                            

(Eq. 3.1) 

where p≥ 0 and N≥ 1 are integers with no common divisor [SOL95]. Here N is related to 

the number of self-images and p denotes the periodic nature of the imaging along the 

multimode waveguide for each set of N images. In this case, 𝐿𝜋is defined as the beat 

length between the two lowest order modes 
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

 
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                                             (Eq. 3.2) 

where 𝛽0 and 𝛽1are the propagation constants of the two lowest order modes.  

As commented before, a MMI based polarization splitter was studied, but the obtained 

results did not achieve the required ER target. Consequently, a second design using a MM 

structure was carried out, but with the important restriction that only the two first modes 

will be supported by the multimode waveguide, for each polarization. This restriction was 

achieved by setting the width of the multimode waveguide as twice of the width of the 

input waveguides, as shown in figure 3.3. 
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Figure 3.3: Proposed SOI polarization splitter. 

It can be observed that the design contains three sections: the input and the output 

sections, formed by two single-mode SOI waveguides placed together so that there is no 

gap between them, and a central section, which we will refer to by TMI (Two-Mode 

Interference). This case presented here is a particular case of an MMI since we control 

that interference will occur only between two modes in the TMI section. 

A linearly polarized input light at port 1 (decomposed in TE and TM polarizations) with 

power 𝑃1 propagates through the input single-mode waveguide to the TMI section of the 

splitter. Then, it excites the 0𝑡ℎ and 1𝑠𝑡 higher order modes of the corresponding 

polarization at the input plane of the TMI section. Output power in ports 3 and 4 due to 

two mode interference may be expressed as: 
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where L is the total TMI section length and Lc is the fundamental coupling length for each 

polarization component (𝐿𝑐
𝑇𝐸 = 𝜆0 (2 ∙ ∆𝑛𝑒𝑓𝑓

𝑇𝐸 )⁄  , 𝐿𝑐
𝑇𝑀 = 𝜆0 (2 ∙ ∆𝑛𝑒𝑓𝑓

𝑇𝑀 )⁄  , being 𝜆0 the 

vacuum wavelength, and ∆𝑛𝑒𝑓𝑓the effective index difference of 0𝑡ℎ  and 1𝑠𝑡 higher order 

modes of each polarization). Considering the equation below, 

TMIL m (m 1)TM TE

c cL L                                        (Eq. 3.4) 

being m an integer, the polarization splitter will be in a bar state if m is an odd number, 

and in a cross state when m is an even integer, for TE input polarization. So by choosing 

the optimum LTMI , bar/cross state of the device will split the polarization properly. 

For SOI wafers with 220 nm thick Si layer and a 900 nm wide TMI waveguide section, 

we first calculated Lc for TE and TM polarizations at 𝜆 = 1550 𝑛𝑚. We obtained Lc
TE =

1.93 µm, and Lc
TM = 2.25 µm using a full-vectorial mode solver for calculating all 
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effective indices involved. With these values, we obtained that Lc
TM Lc

TE⁄ = 1.166 = 7 6⁄ , 

which corresponds to m=6, and thus, the optimal TMI section length is LTMI = 13.5 𝜇𝑚.  

Figure 3.4 depicts the theoretical normalized output power at ports 3 and 4 as a function 

of LTMI for both TE and TM polarizations at the operating wavelength of  𝜆 = 1550 𝑛𝑚. 

 

 

Figure 3.4: Theoretical normalized output power at a) port 3 and b) port 4 for TE and TM polarizations as 

a function of LTMI for  𝜆 = 1550 𝑛𝑚 

It can be seen that if we choose a 13.5 µm long TMI section, polarization is splitted as 

expected. The figure above also illustrates the value of Lc for each polarization according 

to simulation results. The figure below shows a simulation capture using the 3D-finite-

difference-time-domain method (3D-FDTD), which verifies that with the selected length, 

LTMI = 13.5 𝜇𝑚, the separation of the two polarizations is achieved. Moreover, we can 

also observe 7 images for TE polarization (7 ∙ Lc
TE) and 6 images for TM polarization 

(6 ∙ Lc
TM) within the TMI section, according to the teoretical equation described by Eq. 

3.4. 
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Figure 3.5: 3D-FDTD simulation capture for an input (Left) TE, and (Right) TM, polarization. 

Once the theoretical studies and simulations are done, the fabrication of the device is 

carried out. Polarization splitters with different TMI section lengths with the same aspect 

than depicted in Figure 3.3 were fabricated. Curved waveguides of 10 µm radius were 

used as waveguide ports of the splitter.  

The fabrication process of the polarization splitter was carried out at Nanophotonics 

Technology Center’s (NTC) facilities by using e-beam lithography over Hydrogen 

SilsesQuioxane (HSQ) negative resist. The electron dose was adjusted for achieving the 

optimized dimensions. After developing the sample, the patterned resist was employed as 

a mask in the following fabrication step consisting of a dry etching by using an Inductive 

Coupled Plasma (ICP) system. Figure 3.6 depicts scanning electron microscope (SEM) 

images of the fabricated devices (Figure. 3.6 (a)) as well as a detailed top view of the 

coupling section of the splitter (Figure. 3.6 (b)).  

 

Figure 3.6: SEM images of a) fabricated polarization splitter and b) detail of the coupling section. 

For the experimental characterization of the fabricated devices, the setup shown in figure 

3.7 was used. The different components of the setup of Figure 3.7 are illustrated in the 

following block diagram depicted in Figure 3.8. 
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Figure 3.7: (a) Image of the whole experimental set-up used for the polarization splitter characterization. 

(b) Fiber coming from laser to input PC. (c) Translation stages and microscope. (d) Input lensed fiber, 

sample and objective lens. (e) Output polarized lens, power splitter lens, photodetector and IR camera. 

 

Figure 3.8: Block diagram of the setup for polarization splitter experimental measurements. 

As excitation source, a broadband laser (SANTEC TSL-210F) was used. After the laser, 

a polarization controller (PC) was placed. Because the device under study has to separate 

the two polarizations, we must control the polarization of the light incident upon it in 

order to check its correct performance. After the polarizer, the light is injected into the 

chip with the selected polarization, through a lensed fiber. With the output polarizer lens, 

the polarization to be measured can be selected, being in a horizontal position for 

measuring the TE polarization and in a vertical position for the TM one. Next we have 

placed a lens that splits the received light to a power meter (Q2140 ANDO) and to an 

infrared camera (IR camera in Figure. 3.8), which were connected to a computer by a 

GPIB bus, in order to visualize the light spot (see Figure 3.9 (a)) and measure the received 

power at the same time. The 3-axes translation stages are connected to a piezoelectric 
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controller, which is depicted in Figure 3.9 (b) so a finer adjustment in alignment process 

between the fiber, the sample and the objective lens may be done. 

 

Figure 3.9: (a) Light spot captured by the infrared camera after proper alignment between the fiber, 

sample and objective lens. (b) Piezoelectric controller. 

Once the alignment between the fiber, sample and objective lens was done, we proceeded 

to characterize the polarization splitter performance, taking into account that the losses 

introduced by the setup are of about 8 dB. As commented before, polarization splitter 

with different TMI section length were fabricated, and measured. The figure below, 

Figure 3.10, shows the theoretical normalized output powers and the measured ER of the 

eight fabricated devices, for both TE and TM polarizations, at 𝜆 = 1550 𝑛𝑚. 

As it can be seen, the splitter that provides the best performance in terms of ER is 

the13.5μm-long, with a measured insertion loss ranging between 2 and 3 dB. Figure 

3.11(a) illustrates the experimental measurements, corresponding to the selected 

polarization splitter, of the output power at port 3(bar port), while Figure 3.11(b) shows 

the power measurements corresponding to the output port 4 (cross port), both containing 

TE and TM polarization graphs. 

As depicted in Figure 3.10 and in Figure 3.11, for the bar port, we measured an ER of 

20.1 dB, while the obtained ER for the cross port was about 22.15 dB, for the operating 

wavelength 𝜆 = 1550 𝑛𝑚. The measured values have the same trend as expected from 

theoretical and simulated results. Furthermore, as shown in Figure 3.11, measured ER 

remains almost constant in a wavelength bandwidth of about 40 nm. 
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Figure 3.10: Normalized output power and theoretical and experimental extinction ratio for fabricated 

devices, for (a) bar and (b) cross ports. 

 

Figure 3.11: Measured output power spectrum at a) bar and b) cross ports. 
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3.2.3. Polarization Rotator 

Several approaches have been proposed to rotate the polarization in silicon waveguides. 

Mode evolution based rotation has been demonstrated by twisting the waveguide using 

two asymmetric layers oppositely tapered [ZHA10b]. However in this case the input and 

output silicon waveguides have different thicknesses imposing a serious restriction when 

integrated in a more complex device. Alternatively, an asymmetrical directional coupler 

has been demonstrated which only requires one lithography and etching step [LIU11a] 

and that can also be used for splitting the polarization [DAI11b, LIU11b]. However, 

longer lengths are required and the vertical symmetry of the coupler must also be broken 

by using a different top-cladding material from that of the buffer layer which again would 

impose restrictions for its integration. In this way, the use of different materials on top of 

single silicon waveguides have also been demonstrated for achieving polarization rotation  

[FUK08,CHE11].  

A pure silicon solution without the need of extra materials can be achieved by breaking 

the symmetry of the waveguide cross section. Hence, the propagation modes are 

hybridized allowing power to be transferred periodically between the two desired 

polarization states. Initially, angled waveguides were demonstrated but requiring 

complicated fabrication processes [BRO06]. Therefore, a simple two-step etching to build 

a stair-like cross section was proposed which in addition shortened the rotation length 

[WAN08]. Multiple subwavelength trenches [VEL12] or adding a polycrystalline silicon 

overlay [VER12] have been proposed and demonstrated to minimize the rotation lengths 

but once more at the expense of increasing the number of fabrication steps.  

The proposed polarization rotator, designed especially to be compatible with standard 

SOI wafers with 220 nm thick silicon layer and its associated standard grating couplers 

for efficient coupling to external optical fibers [TAI02], consists of a straight asymmetric 

structure shallow etched in a strip waveguide configuration as depicted in Figure 3.12.  

 

Figure 3.12: Proposed polarization rotator structure 
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The chosen parameters are ℎ = 220 𝑛𝑚 (silicon thickness in standard SOI wafers), etch 

depth, 𝑒𝑑 = 70 𝑛𝑚, and fill factor, 𝑓𝑓, of 25%. The etch depth was chosen to facilitate 

the integration of the polarization rotator in devices that use conventional gratings to 

couple light from an external optical fiber [TAI02]. 

An asymmetric waveguide structure allows the generation of two fundamental 

polarization modes that are sufficiently hybrid. To possess the polarization conversion 

behaviour, the asymmetric waveguide must have two modes with almost the same 

intensity distributions, and their optical axes are perpendicular to each other. 

A symmetric-asymmetric waveguide interface allows the excitation of two hybrid modes 

𝑆1 and 𝑆2 with their principal axes tilted by 45 degrees, as shown in the figure below 

(Figure 3.13(a)). 

 

Figure 3.13: (a) Optical axes rotation after propagating along Lc. (b) simulated excitation of hybrid modes 

as a function of the waveguide width of the proposed polarization rotator, at the symmetric-asymmetric 

interface. 

In order to achieve total polarization conversion, these hybrid modes must be excited 

equally. When an input polarization propagates along the polarization rotator during 𝐿𝑐, 

one of the optical axes suffers a rotation of 180 degrees, resulting in the orthogonal 

polarization at the output of the polarization rotator section, as depicted in Figure 3.13(a). 

This condition is satisfied for a waveguide width of around 𝑤 = 220 𝑛𝑚, as shown in 

Figure 3.13(b). 

The polarization rotators are usually characterized by measuring the TE to TM 

transmission, normalized with the reference measurements of the grating couplers. The 

TE to TM coupling efficiency, which is the key characteristic of the proposed device, has 

to be maximized for optimum performance. Therefore, the polarization conversion 
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efficiency (PCE), which is a measure of the extinction ratio at the output port, has been 

defined as: 

10( ) 10log TE TM

TE TE TE TM

T
PCE dB

T T



 

 
  

 
                           (Eq. 3.5) 

where 𝑇𝑇𝐸−𝑇𝑀is the power coupled to TM polarization when the input polarization is TE 

while 𝑇𝑇𝐸−𝑇𝐸 is the power of the undesired non-rotated TE polarization for the same case. 

Once all the parameters of our polarization rotator are defined, simulations and analysis 

were carried out by using a fully vectorial and bi-directional optical propagation tool 

based on eigenmode expansion [PHO12] in order to obtain 𝐿𝑐 so PCE is maximized. 

Figure 3.14 shows the PCE as a function of the rotator length 𝐿𝑐, where it can be 

concluded that for the optimal theoretical length value (~ 23 𝜇𝑚), the PCE is almost 

perfect. 

 

Figure 3.14: Polarization conversion efficiency (PCE) as a function of the polarization rotator length for 

the optimum waveguide width of 220 𝑛𝑚. 

The robustness of the proposed device was also studied by scanning the critical parameter 

space of the polarization rotator where the length 𝐿𝑐 is kept constant. The cross in the 

robustness figure indicates the zero penalization in the PCE, because it is the optimal 

obtained from simulations value. In Figure 3.15 the PCE penalty is plotted versus the fill 

factor 𝑓𝑓 and etch depth 𝑒𝑑 deviations. The fill-factor, and therefore the mask alignment 

deviation, -0.6 dB PCE tolerance is +18 nm and -20 nm. For a -0.6 dB PCE penalty, the 

etch depth may vary ±18 nm. Note that the etch depth is fixed in our case by means of a 

SiO2 etch stop layer, as it will be explained in the next paragraph, which will improve the 

overall robustness of our component.  
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Figure 3.15: Polarization rotator robustness investigation as a function of the fill factor and etch depth. 

The contour lines are the PCE penalties with respect to the highest PCE of the device. 

 

The complete CMOS fabrication process was carried out at Laboratory of Electronics, 

Technology and Instrumentation (LETI) facilities by using 193nm deep UV lithography. 

It starts with 100nm high temperature oxide (HTO) on top of a SOITEC wafer consisting 

of a 220nm thick silicon epilayer on top of a 2 µm thick buried oxide (BOX). The gratings 

and the waveguide arms are first patterned, followed by reactive ion etching (RIE) silica 

with C4F8, which defines a hardmask. The silicon is then partially etched with HBr and 

controlled by ellipsometry in order to define precisely the grating teeth and the 

polarization rotator etch depth. In the second lithography step, the gratings and the 

polarization rotator are protected by the resist and the remaining hardmask serves for the 

waveguides in a self-alignment process. Then a full silicon etch down to the buffer silica 

layer completes the waveguide fabrication. Finally, a top silica cladding was deposited 

achieving around 1µm thickness. 

Figure 3.16(a) shows a schematic of the whole polarization diversity structure used to 

characterize the fabricated polarization rotator, with SEM images of the different parts of 

the circuit. As it can be seen, the first element is a TE focusing grating coupler with a 

period of 630 nm and a coupling efficiency of around -5 dB. Figure 3.16(b) shows a SEM 

image of the TE focusing grating. The next structure the TE polarized light propagates 

along is the polarization rotator, with the parameters previously designed. A top SEM 

image of the fabricated rotator is depicted in Figure 3.16(c). At this point, the TE and TM 

modes are separated by a 13µm-length directional coupler, shown in Figure 3.16(d), with 

a gap of 300 nm, acting as a polarization splitter with a measured extinction ratio above 

25 dB. Once the two polarizations are separated, the TE and TM modes travel along the 

splitter output arms, to be recollected by the output fiber, through the TE and TM output 

grating couplers, respectively. The TM output grating, with a period of 1µm, is depicted 

in Figure 3.16(e), and has a coupling efficiency of around -6 dB. 
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Figure 3.16: (a) Schematic of the whole polarization diversity structure used to characterize the 

polarization rotator. SEM images of (b) TE input focusing grating coupler, (c) polarization rotator, (d) 

polarization splitter and (e) TM output grating coupler. 

Polarization rotators with different lengths were fabricated and characterized using the 

setup illustrated in Figure 3.17. 

 

Figure 3.17: Block diagram of the setup for polarization rotator experimental measurements. 

Measurements were performed with a single mode fiber tilted under an angle of 13 

degrees relative to the surface normal of the grating. The input polarization state was 

firstly set by adjusting an external polarization controller and monitoring the output power 

measured in a reference straight waveguide. The efficiency of the rotator was thus 
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measured by comparing the TE and TM polarization powers after coupling a TE 

polarization to the circuit, without any residual TM polarization due to the filtering effect 

produced by the input grating coupler, then passing through the rotator and finally using 

the polarization splitter to separate the rotated TM mode from the undesired non-rotated 

TE one. 

The figure below, Figure 3.18, shows the normalized measured spectra of the polarization 

diversity structure shown in Figure 3.16 at the two outputs, namely TTE-TM and TTE-TE, for 

three different lengths of the polarization rotator. The normalization was carried out 

taking into account the input and output gratings as well as the polarization splitter. As it 

can be seen, the insertion loss is ranging from -1 dB to -2.5 dB for the different 

characterized devices.   

 
Figure 3.18: Normalized measured spectra as a function of wavelength of polarization rotators with three 

different lengths. 

 
Figure 3.19: Polarization conversion efficiency as a function of wavelength for the different lengths of the 

polarization rotators. 
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Figure 3.19 shows the PCE as a function of the wavelength, again for the three different 

rotator lengths. As the rotator length moves away from the optimal one, the TE-TE 

coupling efficiency increases, as plotted in Figure 3.18 (dashed lines), whereas the change 

in the TE-TM coupling (solid lines) is much lower, according with the theoretical 

behaviour. The measured PCE is above -0.85 dB over a wavelength range of 30 nm, and 

it is achieved for the polarization rotator which length is 25 µm. When results shown in 

Figure 3.14 and Figure 3.19 are compared, it can be seen that there is a very good 

agreement between the simulated and measured variation of the PCE with the rotator 

length. Small discrepancies are mainly originated due to deviations between the target 

and fabricated parameters of the rotator. However, it should be pointed out that the rotator 

parameters may change in the range of a few tens of nanometers without decreasing the 

PCE in more than 0.6 dB as shown in the robustness study carried out by simulations and 

depicted in Figure 3.15. Therefore, it can be stated that the robustness of the proposed 

polarization rotator device meets CMOS fabrication tolerances based on 193nm deep UV 

lithography. 

 

3.3. DQPSK Receiver 

3.3.1. Introduction 

An ever growing amount of access network bandwidth is required by end users, and the 

deployment of passive optical networks, operating up to 10 Gbit/s has already begun to 

address this demand. Even higher bit rates will be required in the future, with network 

operators preferring solutions based on reusing the existing infrastructure and 

components developed for legacy links. Advanced modulation formats can enable the 

further scaling of the bit rates while keeping the legacy 10 GHz devices [EFF11]. As 

commented previously, DPSK offers several advantages over an OOK modulation 

format, namely higher nonlinearity tolerance, 3-dB receiver sensitivity improvement 

when used with balanced detection and the possibility to operate at lower symbol rates 

for a given bit rate using DQPSK [GNA05b]. In the differential encoded DPSK, the 

information is encoded in the phase transition and can be demodulated using a passive 

delay-interferometer, without the need of the LO and the DSP, making differential 

detection advantageous for low cost links. 

For multilevel receiver implementations, three different technologies are usually used, 

such as free-space optics, fiber optics and photonic integrated circuits (PICs). Due to the 

possibilities that PICs offer, as potential cost and size reduction as well as improved 

manufacturability and testability, this option is preferable [DOE10a] over others. 

Moreover, PICs can be developed either in monolithic technologies, such as InP or Si, or 

in planar lightwave circuit (PLC)-based technologies with hybrid integration [KRO11]. 

Both coherent [DOE10b] and differential [DOE08] receivers have been demonstrated in 

InP, being one of the main advantage of InP receivers is that high-speed photodiodes and 

light sources (important for coherent receivers) are feasible in this material. However, 
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silicon technology presents key advantages that make it preferable in our case: Si 

waveguides exhibit lower losses than InP, it can be used with large wafers, with a 

diameter of 200 mm or even more [DOE11] containing more devices and hence, reducing 

cost almost linearly to the area size. In general, silicon photonics enable re-use of existing 

infrastructure and research from electronic integration, together with sophisticated 

metrology and process control [PAR11]. Moreover, to provide high-speed and high-

performance detection elements, Ge photodiodes can be heterogeneously integrated on 

the Si wafer, as it will be explained in this section. From the aforementioned properties, 

silicon can be used to implement low-cost and high-performance multilevel receivers. 

As mentioned in the previous section, coherent receivers, which have been researched 

extensively in modern optical communication systems ([ALF09], [SLE11]), need a LO 

as a means to provide an absolute phase reference for the received signal. 

In a MZDI-based DPSK receiver has been targeted in which the differential phase 

modulation is normally converted into amplitude modulation. The MZDI demodulates 

the differential phase between each data bit and its successor, which implements the 

differential decoding of DPSK modulation, by splitting up the signal in two copies, 

delaying one copy over a single bit period ∆𝑇 in [s] and finally recombining both arms to 

create optical interference, as depicted in the figure below. 

 

 
Figure 3.20: Schematic of a MZDI structure. 

 

The transfer function of the MZDI is defined through: 

 

   ( ) ( ) expu t r t j r t T     
                              

Eq. 3.6 

where ( )u t is the constructive and destructive component, respectively. ( )r t is the input 

signal and 
 

the phase difference between both interferometer arms. The phase 

difference is ideally 0 .     When T is the delay in the interferometer arm, the 

constructive and destructive output ports exhibits a periodic notch response with a 3-dB 

bandwidth of 1/(2 T ) and a free spectral range of 1/ T . In the optical spectrum of the 

destructive output signal, the carrier frequency is suppressed, resulting in an AMI signal, 

while the signal at the constructive port is a DB one. Both the constructive and destructive 

output ports of a MZDI carry the full information of the DPSK signal. Therefore, 

detecting either only the constructive or destructive output is sufficient, and this is known 

as single-ended detection. But in order to obtain the 3-dB improvement in the receiver 
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sensitivity over OOK modulation, both MZDI output ports must to be detected 

simultaneously, and this is known as balanced detection. 

 

3.3.2. DPSK Demodulator 

In order to compensate the propagation loss in the delay line, a MZI switch in cascade 

with the demodulation circuit is proposed to cope with unbalanced powers between the 

arms of the MZDI that would decrease the extinction ratio and hence degrade the receiver 

sensitivity. By using this scheme a significant increase in the ER of the MZDI can be 

achieved from either a passive receiver, by tuning the wavelength and so achieving zero 

power consumption, or a low-power receiver by using a microheater. Furthermore, the 

footprint is reduced by using compact spirals and so minimizes the size of the receiver to 

just a few times larger than a ring resonator based implementation.  

Recently, an alternative implementation based on two variable optical attenuators 

(VOAs) coupled to the input of each waveguide of the MZDI has also been proposed to 

balance the output power in a MZDI based receiver [SUZ12]. However, the overall 

insertion loss will suffer using this implementation since extra loss is introduced by the 

VOAs in the circuit. A power consumption of the VOAs as high as 17mW is also reported. 

 

Figure 3.21: Schematic of the proposed DPSK demodulator. From left to right in the figure: Two input 

TE grating couplers with waveguide tapers, 2x2 unbalanced MZI switch, MZDI with a 10 GHz DL, a 2x1 

MMI, taper, and an output grating coupler. 

 

The schematic of the proposed DPSK demodulator, as a proof of concept, is depicted in 

Figure 3.21. A thermo-optically tunable asymmetric MZI switch is placed in series with 

the 10 Gbit/s MZDI DPSK demodulator. The 10 Gbit/s 1-bit DL is of the order of about 

1 cm. There are two identical inputs to the circuit and at the output of the MZDI a 2x1 

MMI is used. To take advantage of balanced detection this MMI should be replaced by a 

2x2 one. Anyhow, in our test-setup we are not using balanced detection, but single 

detection, and hence the second output is obsolete. SOI strip waveguides with a size of 
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220x450nm and surrounded by a SiO2 cladding are considered. Hence, the proposed 

device is optimized for TE polarization and TE gratings are used to inject/extract the light. 

The asymmetric MZI switch has a length of approximately 500 µm in the shorter arm and 

a path difference of 50 µm between both arms. The microheaters have approximately the 

same length and width than the optical waveguides in the MZI arms and follow the same 

spiral shape shown in Figure 3.21. 

Figure 3.22 shows the simulated spectral response of the DPSK demodulator using the 

transfer matrix method [POO04]. In the simulation the 1-bit DL was set to fit a 10G 

symbol rate being waveguide propagation loss of 6 dB/cm. Propagation loss is higher 

than state-of-the art values, however it better fits the actual fabricated waveguide used 

here in the characterized device. DPSK demodulation can be carried out at the minimum 

in the transmission spectrum, given rise to an AMI modulation format, or at the maximum 

transmittance, given rise to a DB modulation format. To prove the increase in 

performance we will use the AMI modulation format at a minimum transmission, 

however DB modulation could be used in an identical manner. In both cases, the ER 

between minimum and maximum transmission should be maximized to enhance the 

sensitivity of the receiver. To achieve this it is important that the output power in the arms 

of the MZDI, or in other words the amplitudes of the two adjacent bits, are identical so 

they completely cancel each other out maximizing the ER. 

 

 

Figure 3.22: Simulated spectral response at the MZDI inputs (green-dotted, red-dashed) and at the 

demodulator output (blue-solid), taking into account 6 dB/cm propagation losses. 

To reflect the behaviour of the MZI switch for increasing the ER, Figure 3.22 includes 

the input power to each arm of the MZDI; the green dotted curve is the power at the input 

of the DL arm of the MZDI and the red dashed curve for the opposite arm. The two curves 

cross at 3dB, which corresponds to the standard 50:50 splitting ratio. It is clear from the 

figure that the ER at 50:50 is not the optimized value, but closer to 65:35, in order to 

compensate for the propagation losses in the DL. The simulation predicts an increase in 

ER from around 13 dB at 50:50 to more than 30 dB at maximized performance. It should 
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be pointed out that supposing state-of-the art propagation losses [DUM04], the 

theoretically maximum ER will still be limited to 16 dB for a standard 50:50 splitting 

ratio and therefore the proposed technique will also be required to enhance the receiver 

sensitivity. The impact will be lower for DPSK receivers designed for a higher bit rate 

because the DL will have a shorter length and thus losses will be lower. For instance, for 

40 Gbit/s operation, the theoretically maximum ER will be around 28 dB supposing state-

of-the art propagation losses. However, even in this case, a fine tuning of the splitting 

ratio would be useful for compensating potential undesired variations in the fabrication 

process that could degrade the ER.  

On the other hand, the 50 µm path difference in the MZI switch results in a free spectral 

range (FSR) ~160 times larger than the FSR of the MZDI, which means that between two 

minima of the MZI switch, there will be around 160 minima of the MZDI. Two of these 

set of minima would show the maximized ER, as shown in Figure 3.22, and thus increased 

sensitivity of the receiver without requiring any active tuning on the chip. For enhanced 

performance it is important to use a good ratio between these two FSRs. A too high ratio, 

i.e. a shorter path difference in the MZI switch, would not achieve the resolution between 

local minima needed to achieve a global optimum minimum, and a too low ratio, i.e. a 

longer path difference in the MZI switch, could possibly result in no optimized resonance 

within the operational bandwidth of the receiver.  

The DPSK receiver was fabricated at the NTC’s facilities, on SOI wafer with silicon core 

thickness of 220 nm and buried oxide (BOX) of 2 µm, and covered by a 1 µm-thick silica 

overcladding. The fabrication process was carried out by using electron beam lithography 

and dry etching by using inductively coupled plasma (ICP) system. Plasma enhanced 

chemical vapour deposition (PECVD) was also used, to grow the overcladding silica 

layer. Figure 3.23 shows images of the fabricated MZI switch and delay-line structure.   

 

Figure 3.23: Optical photo of the MZI-MZDI structure. Below the left and right inset show a SEM image 

of the MZI with and MZDI spirals, respectively. 
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Continuous-wave light was generated, using the setup shown in Figure 3.17, by an 

external cavity laser and was first swept over the full operational wavelength bandwidth, 

from 1545 nm to 1565 nm. Figure 3.24(a) shows the obtained experimental spectrum, 

including zoom on the optimized performances in Figure 3.24(b) around 1555.5 nm. The 

experimental spectrum is in good agreement with the simulation result in Figure 3.22. 

Maximized performance is achieved at approximately 65:35 splitting ratio, as predicted 

by simulation, resulting in 28 dB ER marked as R2 in Figure 3.24(b). The 50:50 splitting 

ratio is estimated to about 11dB. The expected 16 dB resonance, if propagation losses 

would be reduced to state-of-the art values, is marked with R1. To estimate the increase 

in the receiver sensitivity, the performance at R1 will be compared with R2.  

 

 

Figure 3.24: Measured spectral response at the DPSK demodulator. (a) Transmission spectrum of the full 

experimental wavelength band. The arrows mark the different states of the MZI switch at the input of the 

MZDI. (b) A zoom with 1pm resolution on the wavelength range where resonances have higher ER. Two 

resonances are marked in the figure: R1 for 16 dB ER and R2 with optimized 28 dB ER. 

As already stated, instead of varying the wavelength, by including microheaters on the 

MZI switch, the ER of any resonance could be tuned by means of the thermo-optic effect. 

Figure 3.25 shows the ER variation for the resonance at 50:50 splitting ratio with different 

electrical power applied to the micro-heater on the MZI switch. Inset shows an optical 

photo of the metal micro heaters on-top of the MZI switch. Heaters and contact pads were 

sequentially patterned with lithography (PMMA resist), evaporation, and lift-off 

processes and consist of 115 nm thick Titanium. The heater follows the same pattern as 

the waveguides with a width of 500 nm.  

The result shown in Figure 3.25 demonstrates how the ER is increased from around 11 

dB at 0 mW to above 25 dB ER at 3 mW tuning power. The efficiency could further be 

increased by isolating the heater and etching trenches around the structure to avoid heat 

dissipation [WAT08]. If using both arms of the MZI switch, the phase can be both 

increased and decreased so to maximize any resonance the tuning power is equal or less 

than a phase shift of π, here corresponding to less than 5 mW.  
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Figure 3.25: ER variation for different powers applied to the micro-heater on the MZI switch. The inset 

shows an optical image of the microheaters on top of the MZI switch. 

For system measurements, the two resonances marked in Figure 3.24(b) were selected; 

R2 with maximized performance of 28 dB ER of the MZDI at 1555.80 nm, and R1 with 

non-optimized performance of 16 dB at 1555.19 nm. 

 

Figure 3.26: Experimental set-up used for the BER measurements. 

Figure 3.26 shows the experimental DPSK demodulation setup. To test the demodulation 

circuit, an optical data stream was generated using an X-cut Lithium Niobate modulator 

biased at minimum with 2Vπ driving voltage. The bits were generated from a 

pseudorandom binary sequence pattern generator (PRBS) with a pattern length of 231-1 

at 10 Gbit/s bit-rate, delivered by a bit pattern generator (SHF BPG 44E) connected to an 

external clock. At the output of the chip, the demodulated signal was photo-detected by a 

Digital Communication Analyzer (Infinium DCA-J 86100C), and simultaneously 

examined on a bit error rate analyzer (SHF EA 44). The total measured insertion-loss of 
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the chip is 21 dB; 7 dB losses at each grating coupler and 7 dB propagation losses 

including about 2 dB losses from the MMIs. 

 

 

Figure 3.27: System measurements at 10 Gbps of the DPSK demodulator. (a) BER measurements for the 

two studied resonances, R1 (red) and R2 (blue), marked in Figure 3.24. (b-c) The corresponding eye 

diagrams for R1 and R2 respectively. 
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Figures 3.27(b) and 3.27(c) show the eye-diagrams of the two demodulated signals. It is 

clear that the eye is more open for the optimized resonance R2 than for R1, being the 

measured ER significantly improved from 7 dB to 14 dB. Finally, in order to estimate the 

increase in sensitivity of the receiver, the BER was also measured for the two resonances. 

Error-free operation was achieved, and the measured bit-error-rate curves are plotted in 

Figure 3.27(a). The two curves are almost parallel and an increase in sensitivity of about 

2.3 dB is measured at a BER of 10-9. 

These obtained results show a proof of concept how to maximize the sensitivity of low 

bitrates low-cost differential MZDI receivers with minimum power consumption, with an 

energy efficient approach and minimizing the foot-print of the receiver, in order to 

overcome the limitation of the ER of the unbalanced MZDI produced by DL propagation 

losses by using an unbalanced thermo-optically tunable MZI switch in series with the 

MZDI. 

3.3.3. DQPSK Demodulator with Balanced Detection 

Once the DPSK demodulator has been demonstrated, the next step is to go further by 

demodulating a DQPSK signal and its detection by using two integrated and balanced 

photodetectors. The incoherent or differential detection scheme can recover two-

dimensional modulation formats with no absolute phase reference, since it is provided by 

the received signal itself, delayed by one symbol period, by beating it with the incoming 

signal. This means that the information that is available in the receiver is only the phase 

difference between two consecutive symbols, implying that the transmitted symbol itself 

will not be recovered in the receiver; therefore the transmitted data must be encoded in 

the phase difference between the symbols. The two most widely used implementations of 

differential receivers are based on a 90º hybrid with a 3 dB splitter and a DL to create the 

delayed signal, or on two asymmetric MZDIs. In order to achieve a minimum footprint 

of the device, the selected option is to use the 90º hybrid for the DQPSK receiver 

implementation, as depicted in Figure 3.28.  

 

Figure 3.28: Schematic of a differential receiver with balanced detection 

In general, the outputs of the hybrid as a function of the input signals  aE t  and  bE t

can be expressed as described in Eq. 3.7: 
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implemented, the currents from the second and the fourth photodiodes are subtracted from 

the currents of the first and the third, respectively. This can be done on the photonic chip 

itself, e.g. by connecting every two photodiodes in series, so one balanced pair detects the 

imaginary part of the signal (Q) while the other detects the real part (I). Furthermore, 

since the phase difference between pairs of ports (1-4, 2-3) is always 180°, balanced 

detection is used to eliminate the DC component. The output powers will be: 
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Regarding the relations shown in Figure 3.28,       ( )Sj t
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From Eq. 3.9, it can be seen that there is no frequency offset. That means that there is no 

need for frequency and carrier phase estimation in the receiver. Essentially, the phase 

difference between the symbols is translated to amplitude information, which can be 

directly used for data decoding. This simplicity is the main reason that differential 

modulation formats were the first to be exploited in the race towards increased spectral 

efficiency [GRI02a]. 

A complete integrated differential DQPSK receiver on SOI, including Ge-balanced 

photodetectors (Ge-BPD) [AAM13b] was developed. Integrated differential receivers 

based on 90º hybrids in Si have been presented in the literature [DOE10c, SUZ12]. The 

advantage of this design is that it uses zero-biased photodiodes, so no decoupling 

capacitor is required, enabling compact devices. Moreover, the MMI-based 90º hybrid 

reduces the footprint of the device and ensures very good phase properties [HAL11]. 
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The schematic of the proposed receiver is depicted in Figure 3.29. A thermo-optically 

tunable MZI power splitter is placed in series with a MZDI and a 2x4 MMI acting as 90º 

hybrid. At the output, the in-phase and quadrature signals are detected using two BPDs 

in pinpin configuration. In the following paragraphs the implementation and optimization 

of each of these elements is described. 

 

Figure 3.29: DQPSK differential receiver. (a) GDS design and (b) optical photograph of fabricated 

device. The receiver is assembled using 5 components, from left to right in the figure: curved grating 

coupler, MZI tunable power splitter, DLI, 90º hybrid and two balanced PDs. 

The proposed device was fabricated on top of a 200-mm SOI wafer with silicon core 

thickness of 220 nm and buried oxide of 2 µm. To couple light from the input fiber to the 

receiver, and in order to minimize the size of the chip, curved gratings [VAN07] were 

used, showing a coupling loss of about 6 dB. The next elements are a tunable MZI power 

splitter in series with a MZDI, as described in the previous section. Compact spirals were 

used in order to minimize the size of the structure. Besides the 10 Gbit/s DQPSK receiver 

demonstration, which is the goal of this section, 20 Gbit/s and 40 Gbit/s DQPSK receivers 

were also considered in order to test higher speed capabilities.  

A waveguide length of 14mm and 7mm was chosen for 10 Gbit/s and 20 Gbit/s operation 

respectively, introducing ~2.3dB and ~1.16dB propagation losses, respectively, taking 

into account that the index group value is 4.3, the measured propagation losses are about 

1.66dB/cm, and that the delays are 200ps and 100ps, respectively. The MZDI outputs 

were coupled to the 2x4 MMI inputs. This MMI, with an insertion loss of about 6.5 dB, 

acted as a 90º hybrid [HAL11] instead of the standard implementation of a DQPSK 

receiver with two parallel MZDI coupled to a 180º hybrid, in accordance with the 
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intention of minimizing the chip area, as well as the number of active controls needed for 

tuning. In order to have a 3dB increase in the sensitivity of the receiver and minimize 

power consumption, zero bias balanced detection was used based on a Ge photodetector 

pair (Ge-BPD) in lateral pinpin configuration. Hence, the photodetected signal is directly 

extracted from one single central pad avoiding additional wire bonding or metal 

connections. The 10µm-length Ge-BPD was selectively grown at the end of silicon 

waveguides, and it is comparable to the ones used in [VIV12].  

The fabrication process, performed at LETI’s facilities, carried out on SOITEC optical 

SOI with 220 nm Si on 2 μm BOX, starts with the deposition of 100 nm high temperature 

oxide on top of the silicon layer. The gratings and the waveguide arms are first patterned, 

followed by RIE silica etching with C4F8, which defines a hardmask. The silicon is then 

partially etched (65 nm) with HBr and controlled by ellipsometry in order to define 

precisely the grating teeth depth. In the second lithography step, the gratings are protected 

by the resist and the remaining hardmask serves for the waveguides in a self-alignment 

process. Then a full silicon etch down to the box completes the waveguide fabrication. 

We then defined cavities for the selective epitaxial growth of Germanium. This is 

achieved by deposition of a silica layer which is etched at the end of waveguides. In order 

to achieve direct coupling, the silicon part of the cavities is etched down to 50 nm on top 

of the BOX. Germanium was then selectivity grown in the cavities and CMP used to 

adjust the thickness around 300 nm. The doped regions (N and P) of the lateral Ge 

photodetector are defined sequentially by ion implantation of phosphorus and boron. A 

400 nm thick SiO2 was deposited and a deposition and etching of 100nm of Ti/TiN 

defined the heaters. Then after deposition of 500nm of SiO2 and two-step openings, the 

electrodes were defined by Ti/TiN/AlCu metal stack deposition and Cl2 etching. 

 

Figure 3.30: The simulated output of the receiver. The two curves represent how the in-phase and 

quadrature detected current from the two diodes varies with the differential phase. The four different two-

bits states are marked as dotted lines at -135, -45, 45, and +135 degrees, corresponding to [-1 -1], [+1 -1], 

[+1 +1],and [-1 +1], respectively 
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Before performing the experimental measurements, we simulated the spectral response 

of the MZDI and the two balanced photodiodes using the transfer matrix method 

[POO04], as depicted in Figure 3.30. On the x-axis is the differential phase with respect 

to the two adjacent bits. The two curves are shifted exactly 90 degrees with respect to 

each other in order to obtain the four different states on the DQPSK modulation format. 

The states are marked in the figure as dotted vertical lines at the four different orthogonal 

phases at, -135, -45, +45, and +135 degrees.  

The responsivity is measured at 1 A/W at 1550 nm using 0 to -2V bias. Figure 3.31(a) 

shows the measured Dark and Light current of a single PD. For 0V bias, which will be 

the operation bias in our system, the Dark current is below 0.1 nA. 

 

Figure 3.31: (a) The Dark (solid blue) and Light (dashed red) current measured for the fabricated photo 

diodes. (b) Output current as a function of wavelength for the 10 Gbit/s (solid lines) and 20 Gbit/s (dashed 

lines) bit rate receiver. The blue and the red lines correspond to the in-phase (I) and quadrature (Q) 

outputs, respectively. 

For an input power of -3 dBm, the transmission spectra of the two BPDs were measured, 

for both receivers. As it can be seen in Figure 3.31(b), the spectra have excellent 

agreement with the expected behaviour for a DQPSK receiver shown in Figure 3.30. For 

both receivers, the two outputs are perfectly 90 degree phase shifted with respect to each 

other confirming the correct behaviour of the 90º hybrid. The performance, in terms of 

responsivity, of our Ge-BPDs is quite better than those presented in [KRO11, FAR12, 

XU12]. On the other hand, the total optical excess loss of our proposed device is around 

15.8 dB and 14.65 dB for the 10 Gbit/s and 20 Gbit/s respectively, values of the same 

order as those presented in [DOE12]. 

The setup used to test the high speed behaviour of the receiver is shown in Figure 3.32. 

A DQPSK signal was generated using a commercial single-drive Lithium Niobate nested 

MZ modulator, biased at minimum transmission and driven by the outputs of the pulse 

pattern generator (PPG), appropriately decorrelated, aligned and amplified at 2Vπ. The 

bits were generated from a PRBS with a pattern length of 213-1, which was the longest 

sequence that could be used to create a custom pattern sequence. This custom sequence 

was used to allow for the insertion of a preamble that facilitated the discovery of the start 

of the sequence of the detected data. The generated DQPSK signal passes through a VOA, 

which is the reference point for the received power, and is then amplified by an erbium 
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doped fiber amplifier (EDFA). At the output of the chip, the electrical signals were 

extracted directly from the photodiodes using RF probes in a GSGSG configuration, and 

were transferred to two amplifiers, and then were sampled by the digital phosphor 

oscilloscope (DPO) for further processing off-line. Two post-processing algorithms were 

introduced, which are the I/Q imbalance compensation and the symbol phase estimation 

for rotation compensation [SOT13]. 

 

Figure 3.32:  (a) Experimental setup for characterizing the DQPSK receiver. POL CON indicates 

polarization controller. (b) Photograph of a part of the set-up used to generate and measure the DQPSK 

demodulated signal. 

The DQPSK transmitted eyes at 10 and 20 Gbit/s are shown in Figure 3.33, as well as the 

reference constellation obtained by using a discrete receiver described in [SOT12]. 

 

Figure 3.33: 10 Gbit/s and 20 Gbit/s transmitted DQPSK eyes, and reference constellation measured by a 

discrete receiver (20 Gbit/s). 
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For the 10 Gbit/s integrated receiver, well opened eye-diagrams and remarkably good 

constellation diagrams were obtained, as shown in Figure 3.34 for a received power of -

19dBm. It must be commented that in long haul networks, the parameter of interest lies 

in the relation between the BER and the optical signal to noise ratio, due to the fact that 

the signal is usually degraded by noise introduced by a large number of amplifiers. 

However, in an access network, the figure of merit is the sensitivity as a function of 

received power, as there is no degradation due to amplification stages and the receiver 

sensitivity limits the possible splitting ratio and reach of the system [QIA11, JEN07].  

In this point, a key parameter as the error vector magnitude (EVM) for performance 

measurements must be defined. The EVM metric, which is a standard in wireless and 

wireline communications, describes the effective distance of the received complex 

symbol from its ideal position in the constellation diagram.  

EVM is defined as the root mean square of the error of every received symbol, normalized 

over the average power of all the symbols in the constellation [SCH12]. EVM is 

calculated by the following formula: 
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where ,r tI , ,r tQ are the in-phase and quadrature components of the 
tht received symbol, 

and mI , mQ are the in-phase and quadrature components for the ideal 
thm symbol in the 

constellation. The denominator in Equation 3.10 is the average power of all the symbols 

of the DQPSK constellation, which normalizes the error metric. 

The EVM as a function of the received power was measured and the experimental results 

are summarized in Table 3-2.  

 

Figure 3.34: (a) DQPSK eye diagram and (b) symbol constellation at 10Gbit/s for a received power of -

19dBm. 
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As the quality of the received signal was quite good so that no significant amount of errors 

were recorded in the captured length of the data, which was 100k symbols, the measured 

EVM of the signal was used to estimate the BER by using the following equation taken 

from [SHA06] and experimentally demonstrated in [SCH12]: 

2

2 2

2 2
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3log 2

log 1 log
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Eq.3.11 

 

where L  is the number of signal levels per quadrature, M  is the order of the modulation 

and Q  indicates the Q function. For QPSK modulation, L  is 2 and M  is 4.  

TABLE 3-2 

EVM AND BER, FOR THE 10 GBIT/S DIFFERENTIAL RECEIVER. 

Received Power (dBm) Measured EVM (%) Estimated BER 

-23 24.27 1.9x10-5 

-22 22.39 4x10-6 

-21 14.76 6.2x10-12 

-20 13.08 10-14 

-19 12.5 10-15 

 

 

Figure 3.35: (a) DQPSK eye diagram and (b) symbol constellation at 20 Gbit/s for a received power of -

12dBm. 
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Examining the results shown in the table above, an error floor value of around 12.5% and 

10-15 were obtained for the EVM and BER respectively.  

For the 20 Gbit/s DQPSK receiver, opened eyes and good constellation diagram were 

also measured, as shown in Figure 3.35 for a received power of -12 dBm. Comparing the 

obtained constellation diagram with the reference one shown in Figure 3.33, it can be 

seen that some additional noise appears in the symbols of the constellations. Nevertheless, 

the EVM of the obtained constellation was measured to be 19.57% and the corresponding 

BER was estimated, by using Eq. 3.11, in 1.7∙10-7, as shown in Table 3-3. It must be taken 

into account that typically, advanced modulation formats operate with Forward-Error 

Correction (FEC), and our BER values, without FEC, are below the 10-3 reference, which 

is the FEC limit for 10G-Ethernet Passive Optical Network (EPON) standard [ITU987, 

BET10]. 

TABLE 3-3 

EVM and BER, for the 20 Gbit/s differential receiver. 

Received Power (dBm) Measured EVM (%) Estimated BER 

-14 25.66 6x10-5 

-13 19.68 1.9x10-7 

-12 19.57 1.7x10-7 

 

A 40 Gbit/s DQPSK receiver was also measured at the NTC’s laboratories. It must be 

commented that in these laboratories, balanced detection was not used but single-ended 

detection, and for both photodetectors (I, Q) clean eyes opening were obtained and are 

shown in Figure 3.36. Unfortunately, when these chips were brought to TU/e facilities to 

be characterized by using balanced detection in order to obtain the DQPSK constellations, 

the RF pads were damaged during the experiment. 

 

Figure 3.36: DQPSK eye diagram (a) In-phase and (b) Quadrature component at 40 Gbit/s. 
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At this point, we have demonstrated a minimum footprint differential receiver for DQPSK 

transmission with zero biased detection for access networks has been demonstrated at 10 

and 20 Gbit/s. Each building block of the receiver was optimized for high performance 

and maximum compactness. The results indicate the potential of integrated silicon 

receivers to become key building blocks for future passive optical access networks based 

on advanced modulation formats. The future work would be the integration of the receiver 

with transimpendance amplifiers would improve its sensitivity and so higher-order 

modulation formats could be supported due to the low EVM values achieved. For 

instance, for an EVM of 12.5%, translated into BER for D8PSK, results into a BER lower 

than 10-5 [SCH12]. 
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Chapter 4 

 

Conclusions and Future Outlook 

Future access networks need to provide broadband services using wired and wireless 

approaches. Passive optical network is promising for providing wired services while 

radio-over-fiber is an important technique for providing wireless services in the optical 

domain. Wireless access network play very important role in our daily lives by providing 

flexible network connections to users anytime and anywhere. Gigabit capacity wireless 

links are evolving at a very rapid pace and wireless links matching capacities of optical 

communication links are extensively investigated in order to bridge the existing bottle 

neck between the wired and wireless communication systems. 

In this work, different application scenarios have been identified for the mmW wireless 

architecture, and the main functional building blocks involved in the 10 Gbps wireless 

transmission have been studied and experimentally demonstrated.  

Regarding the transmitter chip, a tunable ring resonator based demultiplexer and a DPSK 

MZM had been designed, fabricated and characterized, demonstrating high performance 

for both devices. A successful demonstration of an error-free DPSK modulation at 5 

Gbit/s and 10 Gbit/s using a dual-drive silicon MZM was reached. Furthermore, we have 

also shown the feasibility of the proposed MZM for 15 Gbit/s and 20 Gbit/s DPSK 

modulation and the obtained results validate the potential to achieve higher order 

modulation formats, such as QPSK, by arranging the MZM in a nested configuration.  

On the receiver side, a DQPSK device in addition to a polarization diversity scheme have 

been presented. The transparent polarization behaviour is given by a polarization diversity 

scheme, where the main blocks are a polarization splitter and polarization rotator in order 

to separate the random orthogonal incoming polarizations and rotate the TM one. This 

scheme can be also used to duplicate the capacity system by introducing polarization 

multiplexing. The performance of the polarization splitter and rotator satisfy the 

requirements targets imposed in the HELIOS project.  
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The DQPSK receiver included a thermo-optically tunable MZI power splitter, a MZDI, a 

90 degree hybrid based on a multimode interference coupler and two balanced germanium 

photodetectors. Each building block of the receiver was optimized for high performance 

and maximum compactness and a minimum footprint differential receiver for DQPSK 

transmission with zero biased detection for access networks has been demonstrated at 10 

Gbit/s and 20 Gbit/s. Well opened eye-diagrams and symbol constellations were obtained 

with error vector magnitude values as low as 12.5% and 19.57 % at 10 Gbit/s and 20 

Gbit/s, respectively. The obtained results indicate the potential of integrated silicon 

receivers to become key building blocks for future passive optical access networks based 

on advanced modulation formats. 

As future work, the packaging and testing of the integrated photonic DQPSK transmitter 

and receiver with integrated transimpedance amplifiers on a printed circuit board would 

improve its sensitivity and so higher-order modulation formats could be supported due to 

the low EVM values achieved. For instance, for an EVM of 12.5%, translated into BER 

for D8PSK, results into a BER lower than 10-5 [SHC12]. Scaling the MZM’s bit rate to 

even higher bit rates, and demonstrating DQPSK modulation are the next steps to be 

carried out, before packaging and testing the integrated transceiver. The figure below 

shows how our transmitter once it had been packaged. 

 

Figure 4.1: Photograph of the packaged transmitter. 
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Appendix A 

A. Development process of photonic structures 

A complete development process of any photonic structure can be divided generally in 

basic four steps: design (including modelling, simulation and analysis), mask generation, 

fabrication and characterization. At this point, a broad terms description of each step will 

be carried out. 

 

1. Design  

When light propagation in optical integrated waveguides is referred to, two physical 

approaches which are presented in such mechanism must be considered: on one hand the 

ray optics approach or geometrical optics, which enables light propagation along an 

optical waveguide by total internal reflection [REE04] (in silicon this mechanism is 

highly effective due to the high index contrast effect); and on the other hand, the 

electromagnetic approach (by means of Maxwell’s equations), which allows to derive the 

guided modes and the field patterns. Maxwell’s equations enable to make a rigorous study 

of the mode profiles propagating along the considered waveguide.  

 First, the designer must try to model the performance of the device under study. The 

modeling of photonic structures may not always be carried out in an analytic way, 

especially when one deals with high index contrast structures with non-uniform refractive 

index profiles all over the propagation length. In that case, the device under study must 

be simulated to analyze its performance.  
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Figure A-1: (Left) BeamPROP simulation of the fundamental mode in a silicon waveguide of 220nm 

height and 450nm width for TE polarization, (Right) FullWAVE simulation multimode interference 

waveguide. 

 

Several techniques exist to perform these simulations. Among them, some of those that 

have been employed to simulate the behaviour of our photonic structures are: the finite 

time difference domain (FDTD) method, which consists in discretizing Maxwell’s 

equations via finite differences, the plane wave expansion (PWE) method, which, in 

contrast with FDTD, computes the electromagnetic field as a superposition of planes 

waves, which are straightforward solutions of Maxwell’s equations in an uniform medium 

or beam propagation method (BPM) used for some structures which are uniform in the 

propagation direction. The simulation tools used in the Nanophotonics Technology 

Center to carry out the above mentioned methods are, respectively: FullWAVE, 

BandSOLVE and BeamPROP from RSOFTTM [RSO00]. Figure A-1 depicts two 

simulation examples. 

2. Mask generation 

Once the designer is in possession of appropriate design parameters derived from the 

modelling and simulation process, he/she must carry out the mask design. When 

generating the mask layout, the designer should consider the specific lithography process 

limitations, essentially given by the wavelength of the illuminating radiation.  Usually, a 

set of photonic structures are designed varying the parameters in a wide range. Moreover, 

each several repetitions of the same mask are positioned at different locations on the wafer 

since the deep-uv (used for lithography) incident dose, and therefore the waveguide width 

(as the resist is more exposed) depends on positioning on the wafer.  



 

89 
 

In the Nanophotonics Technology Center, Raith150 lithography software it is used 

[RAI150]. This tool generates the GDS final file of the mask which, finally is sent to the 

fabrication foundry. The figure below shows an example of a GDS file.  

 
Figure A-2: Final GDSs mask layers of the some of the fabricated devices characterized in this thesis. 

 

3. Fabrication 

 

Today’s trend in silicon photonics is demonstrating that any new device design may be 

mass produced in CMOS foundries. Such entities consist of advanced nanofabrication 

tools and highly experienced engineers. Working in a controlled environment gives the 

designer the opportunity to be aware of the reality of fabrication constraints and 

capabilities.  

The complexity of active silicon devices requires numerous demanding fabrication steps, 

which must be handled cautiously to prevent time and money consuming errors. For the 

abovementioned reasons, a CMOS foundry provides a suitable platform to realize 

complex active silicon devices such. In Europe, the foundry model relies on ePIXfab 

[EPI] within the FP7 framework, which organizes wafer-scale fabrication services of 

silicon photonic integrated circuits. It consists of two institutions: CEA-LETI [MIN], 

IMEC [IME] and IHP [IHP], with similar standard fabrication capabilities summarized 

below. Design rules and guidelines are provided in the technology paper standard of both 

CEA-LETI and IMEC [EPI]. In addition to passive technology, ePIXfab offers ion 

implantation services to realize silicon active devices based on the plasma dispersion 

effect. The most common impurities used to dope silicon are boron and phosphorus, 

which are respectively situated in the III column and V column of the periodic table. 

Finally, silicide and metallization are also available processes to form low loss contacting 

electrodes. 
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Specifically, the fabrication of all silicon-based modulators involved in this thesis was 

carried out at CEA-LETI on 8 inches wafer, with 193 nm deep-UV lithographic process.  

 
Figure A-3: (Left) Photograph of an 8-in SOI wafer with hundreds of photonic components and circuits 

and (Right) picture of a single silicon chip fabricated in CEA-LETI consisting of 26 electro-optical 

modulators. 

 
 

4. Characterization 

The main task of this thesis is centered at this step of the process. The characterization in 

the laboratory of all electro-optic silicon-based modulators developed and presented 

along the thesis has been carried out entirely at the NTC facilities. Several types on 

characterization have been performed: passive, RF, high speed, small signal. All of them 

are deeply explained in each section, as well as, the characterization set-up and the 

equipment used and obviously the obtained results.  
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FSK Frequency Shift Keying 

FSR Free Spectral Range 

FTTH Fiber-To-The-Home 

FWHM Full Width at Half Maximum 

Gbps Giga Bit Per Second 

GDS Graphic Database System 

Ge-PD Germanium Photo-Detector 

GPIB General Purpose Interface Bus 

HELIOS pHotonics ELectronics functional Integration on CMOS 

HSQ Hydrogen SilsesQuioxane 

HTO High Temperature Oxide 

ICP Inductive Coupled Plasma 

IL Insertion Loss 

IR InfraRed 

LAN Local Area Networks 

LO Local Oscillator 

MLSE Maximum Likelihood Sequence Estimation 

MMI Multimode Interference 

mmW millimeter wave 

MZ Mach-Zehnder 

MZDI Mach-Zehnder Delay Interferometer 
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MZI Mach-Zehnder Interferometer 

MZM Mach-Zehnder Modulator 

NRZ Non Return to Zero 

NTC Nanophotonics Technology Center 

OFC/NFOEC Optical Fiber Communication Conference and Exposition and National Fiber 

Optic Engineers Conference 

OOK On-Off Keying 

OSNR Optical Signal to Noise Ratio 

PBS Polarization Beam Splitter 

PC Polarization controller 

PCE Polarization Conversion Efficiency 

PECVD Plasma-Enhanced Chemical Vapour Deposition 

PhC Photonic Crystal 

PIC Photonic Integrated Circuits 

PLC Planar Lightwave Circuit 

PM Phase Modulator 

PMD Polarization Mode Dispersion 

PolSK Polarization Shift Keying 

PR Polarization Rotator 

PRBS Pseudo-Random Binary Sequence 

PSK Phase Shift Keying 

QSFP Quad Small Form-factor Pluggable 

RIE Reactive Ion Etching 

ROSA Receiver Optical Sub-Assembly 

RR Ring Resonator 

RTD Research, Technology and Development 

RZ Returno to Zero 
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SEM Scanning Electron Microscope 

SOA Semiconductor Optical Amplifier 

SOI Silicon-On-Insulator 

SSB Single Side-Band 

TE Transversal Electric 

TM Transversal Magnetic 

TMI Two-Mode Interference 

TOSA Transmitter Optical Sub-Assembly 

UV UltraViolet 

VLSI Very Large Scale of Integration 

VOA Variable Optical Attenuator 

WDM Wavelength-Division Multiplexing 
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