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1. Introduction

The theory of CW complexes was invented by Whitehead in 1949 [14]. The
concept of CW complex structures on topological manifolds has been a great
development in the category of topological spaces [8]. It is a well known fact
that the topology of a manifold can be reconstructed from the commutative
C*-algebra of continuous functions on it [7, 10]. In other words commutative
C*-algebras play as the dual concept for topological manifolds. Away from
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commutativity, C*-algebras are still substitutes for noncommutative topologi-
cal manifolds and provide building blocks of noncommutative topology theory
[2, 4, 10]. In the category of noncommutative manifolds, noncommutative CW
complexes were introduced in [6, 13]. A great development in the theory of
noncommutative topology would be the study of noncommutative manifolds
(C*-algebras) which are endowed with a noncommutative CW complex struc-
ture.

In the study of CW complexes there exist two classical approaches. One
approach comes from differential topology and Morse theory [11]. The second
one is the dynamics point of view and the relation between dynamical properties
of a flow and the homological configuration of the CW complex. Our aim is to
develop the two approaches in the framework of noncommutative topology in
order to study noncommutative CW complexes:

Dynamics
Primitive Spectrum
−−−−−−−−−−−−→ NCCW Complexes

C*-Algebra
←−−−−−−− Diff. Topology

In this regard our first attempt was the development of the Morse theory ap-
proach in [12]. In the present paper we are developing the second approach. In
both approaches we apply techniques from combinatorial topology [3, 5] and
the primitive spectrum of C*-algebras [10] as basic tools.

The paper is organized as follows. In section 2 we review fundamental no-
tions in the theory of noncommutative CW complexes. We explain the role of
the primitive spectrum as a bridge between CW complexes and noncommuta-
tive CW complexes. Section 3 is devoted to a review from [12] on the basics of
modified Morse theory on noncommutative CW complexes. Discrete multival-
ued dynamical systems have been introduced in [1, 9]. In section 4 we develop
discrete multivalued dynamical systems on noncommutative CW complexes
and provide tools to relate a dynamical picture to the topology and geometry
of noncommutative CW complexes. We will see how the dynamical proper-
ties of the trajectories are related to the configuration of noncommutative CW
complexes. In this section, stable and unstable manifolds are introduced and
some of their properties are studied. An example will serve to illustrate our
dynamical construction. Section 5 is devoted to the explanation of this exam-
ple. In this section we study the noncommutative CW complex structure of
C(T 2): the algebra of continuous functions on the 2-dimensional torus. We as-
sociate a discrete multivalued dynamical system with it. We shall see how the
configuration of this noncommutative CW complex is explained by the stable
and unstable manifolds.

2. Noncommutative CW complexes

In this section we review basic definitions and results on the theory of non-
commutative CW complexes from [6, 13]. we explain the technique of the
primitive spectrum and its role as a link between CW complexes and noncom-
mutative CW complexes. Details on the structure of primitive spectrum can
be found in [7, 10, 12]. First we review the concept of CW complex structure
for a topological space from [8].
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A sequence

X0 ⊂ X1 ⊂ ... ⊂ Xn = X

is an n-dimensional CW complex structure for a compact topological space X ,
where X0 is a finite discrete space consisting of 0-cells, and for k = 1, ..., n each
k-skeleton Xk is obtained by attaching λk number of k-disks to Xk−1 via the
attaching maps

ϕk :
⋃

λk

Sk−1 → Xk−1.

In other words

(2.1) Xk =
Xk−1

⋃

(∪λk
Ik)

x ∼ ϕk(x)
:= Xk−1

⋃

ϕk

(∪λk
Ik)

where Ik := [0, 1]k and Sk−1 := ∂Ik. The quotient map is denoted by

ρ : Xk−1

⋃

(∪λk
Ik)→ Xk.

For a continuous map φ : X → Y between compact topological spaces X
and Y , the C*-morphism induced on their associated C*-algebra of functions
is denoted by C(φ) : C(Y ) → C(X) which is defined by C(φ)(g) := g ◦ φ for
g ∈ C(Y ).

Definition 2.1. Let A1, A2 and C be C*-algebras. A pull back for C via
morphisms α1 : A1 → C and α2 : A2 → C is the C*-subalgebra of A1 ⊕ A2

denoted by PB(C,α1, α2) defined by

PB(C,α1, α2) := {a1 ⊕ a2 ∈ A1 ⊕A2 : α1(a1) = α2(a2)}.

For any C*-algebra A, let

SnA := C(Sn → A), InA := C([0, 1]n → A), In0 A := C0((0, 1)
n → A),

where Sn is the n-dimensional unit sphere.

Definition 2.2. A 0-dimensional noncommutative CW complex is any finite
dimensional C*-algebra A0. Recursively an n-dimensional noncommutative
CW complex is any C*-algebra appearing in the following diagram

0 −−−−→ In0 Fn −−−−→ An
π

−−−−→ An−1 −−−−→ 0
∥

∥

∥





y

fn





y

ϕn

0 −−−−→ In0 Fn −−−−→ InFn
δ

−−−−→ Sn−1Fn −−−−→ 0

Where the rows are extensions, An−1 an (n− 1)-dimensional noncommutative
CW complex, Fn some finite (linear) dimensional C*-algebra of dimension λn, δ
the boundary restriction map, ϕn an arbitrary morphism (called the connecting
morphism), for which

An = PB(Sn−1Fn, δ, ϕn) := {(α, β) ∈ I
nFn ⊕An−1 : δ(α) = ϕn(β)},

and fn and π are respectively projections onto the first and second coordinates.
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With these notations {A0, ..., An} is called the noncommutative CW complex
decomposition of dimension n for A = An.

For each k = 0, 1, ..., n, Ak is called the k-th decomposition cell.

Let A be a unital C*-algebra. The primitive spectrum of A is the space of
kernels of irreducible *-representations of A. It is denoted by Prim(A). The
topology on this space is given by the closure operation as follows:

For any subset U ⊆ Prim(A), the closure of U is defined by

U := {I ∈ Prim(A) :
⋂

J∈U

J ⊂ I}

Obviously U ⊆ U . This operation defines a topology on Prim(A) (the hull-
kernel topology), making it into a T0-space [10].

Definition 2.3. A subset U ⊆ Prim(A) is called absorbing if it satisfies the
following condition:

I ∈ U, I ⊆ J ⇒ J ∈ U.

Remark 2.4. The closed subsets of Prim(A) are exactly its absorbing subsets.

In the special case, when M is a compact topological space, and A = C(M)
is the commutative unital C*-algebra of complex continuous functions on M ,
a homeomorphism between M and prim(A) is obtained in the following way.
For each x ∈M let

Ix := {f ∈ A : f(x) = 0};

Ix is a closed maximal ideal of A. It is in fact the kernel of the evaluation map

(ev)x :A −→ C

f 7−→ f(x).

Now
I :M → Prim(A)

defined by I(x) := Ix is the desired homeomorphism.
let

X0 ⊂ X1 ⊂ ... ⊂ Xn = X

be an n-dimensional CW complex structure for the compact space X . A cell
complex structure is induced on Prim(C(X)) by the following procedure:

Let Ak = C(Xk), k = 0, 1, ..., n. Set A = C(X) = C(Xn) = An. Consider
the homeomorphism I : X → Prim(C(X)). For each k-cell Ck in the k-skeleton
Xk, let

ICk
=

⋂

x∈Ck

Ix = {f ∈ A : f(x) = 0;x ∈ Ck},

for 0 ≤ k ≤ n . By considering the restriction of functions on X to Xk, ICk

will be an ideal in Ak.
In the above notations, the closed sets

Wi0,...,ik := {J ∈ Prim(Ak) : J ⊇ ICk
}

are corresponded to the ideals ICk
.
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In general we can have

Proposition 2.5 ([12]). Let X be an n-dimensional CW complex containing
cells of each dimension k = 0, ..., n. Then there exists a noncommutative CW
complex decomposition of dimension n for A = C(X).

Conversely if {A0, ..., An} be a noncommutative CW complex decomposition
for the C*-algebra A such that Ais (i = 0, .., n) are unital, Then there exists
an n-dimensional CW complex structure on Prim(A).

Example 2.6. LetX0 = {0, 1} andX1 = [0, 1] be the zero and the one skeleton
for a CW complex structure of [0,1]. Then we have A0 = C(X0) ≃ C⊕ C and
A = A1 = C(X1). The 0-ideals I0 and I1 and their corresponding 0-chains W0

and W1 are as follow:

I0 = {f ∈ A0 : f(0) = 0} ≃ C, I1 = {f ∈ A0 : f(1) = 0} ≃ C,

W0 = {J ∈ Prim(A0) : J ⊇ I0} = {I0},W1 = {J ∈ Prim(A0) : J ⊇ I1} = {I1}.

Corresponding to the 1-chain C1 = [0, 1], the only 1-ideal is

I =
⋂

x∈C1

Ix = {f ∈ A : f(x) = 0;x ∈ [0, 1]} = {0},

with the corresponding 1-chain

WI = {J ∈ Prim(A) : J ⊇ I} = Prim(A) ≃ [0, 1].

Proposition (2.5) can be extended to an arbitrary unital C*-algebra.
Let A be an arbitrary unital C*-algebra. To each I ∈ Prim(A), there

corresponds an absorbing set

WI := {J ∈ Prim(A) : J ⊇ I},

and an open set

OI := {J ∈ Prim(A) : J ⊆ I},

containing I.
We have the following equivalent statements:

I ⊆ J ⇔ OI ⊆ OJ ⇔WI ⊇WJ

In [12] we have seen how Prim(A) is made into a finite lattice with vertices
I0, ..., In.

Let

Ji0,...,ik := Ii0 ∩ ... ∩ Iik ,

where 1 ≤ i0, ..., ik ≤ n, 1 ≤ k ≤ n.Set

Wi0,...,ik := {J ∈ Prim(A) : J ⊇ Ji0,...,ik}.

As we have seen in [12], these are the k-chain closed subsets of Prim(A) having
the following property

If Ji0,...,ik = 0 for some 1 ≤ i0, ..., ik ≤ n, 1 ≤ k ≤ n, then Wi0,...,ik =
Prim(A). Also for each pair of indices (i0, ..., it) , σ(i0, ..., it+m),

Wi0,...,it ⊆Wσ(i0,...,it+m)
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where σ is a permutation on t+m+ 1 elements and 1 ≤ i0, ..., it+m ≤ n.
In the case of Prim(C(X)) when X has a CW complex structure, the k-

chains are the closed sets

Wi0,...,ik = {J ∈ Prim(Ak) : J ⊇ ICk
}

corresponding to the k-ideals ICk
[12].

3. Basics of Modified Morse Theory on C*-Algebras

The first step towards understanding the geometry of noncommutative CW
complexes was the idea of modified Morse theory on C*-algebras that we have
done in [12]. In this section we review some of the results.

For a unital C*-algebra A let

Σ = {Wi1,...,ik}1≤i1,...,ik≤n,1≤k≤n

be the set of all k-chains (k = 1, ..., n) in Prim(A), and

Γ = {Ii1,...,ik}1≤i1,...,ik≤n,1≤k≤n

be the absorbing set of all k-ideals corresponding to the k-chains of Σ for
k = 1, ..., n.

We recall the following definitions from [12].

Definition 3.1. Let f : Σ → R be a function. The k-chain Wk = Wi1,...,ik is
called a critical chain of order k for f , if for each (k+1)-chainWk+1 containing
Wk and for each (k − 1)-chain Wk−1 contained in Wk, we have

f(Wk−1) ≤ f(Wk) ≤ f(Wk+1).

The corresponding ideal Ik to Wk is called the critical ideal of order k.

Definition 3.2. Let f has a critical chain of order k. We say f is an acceptable
Morse function, if it has a critical chain of order i, for all i ≤ k.

Definition 3.3. A function f : Σ→ R is called a modified Morse function on
the C*-algebra A, if for each k-chainWk in Σ, there is at most one (k+1)-chain
Wk+1 containing Wk and at most one (k-1)-chain Wk−1 contained in Wk, such
that

f(Wk+1) ≤ f(Wk) ≤ f(Wk−1).

Definition 3.4. If A, B are two C*-algebras, two morphisms α, β : A → B

are homotopic, written α ∼ β,if there exists a family {Ht}t∈[0,1] of morphisms
Ht : A→ B such that for each a ∈ A the map t 7→ Ht(a) is a norm continuous
path in B with H0 = α and H1 = β.The C*-algebras A and B are said to have
the same homotopy type, if there exists morphisms ϕ : A→ B and ψ : B → A

such that ϕ ◦ ψ ∼ idB and ψ ◦ ϕ ∼ idA. In this case the morphisms ϕ and ψ
are called homotopy equivalence.

Definition 3.5. Let A and B be unital C*-algebras. We say A is of pseudo-
homotopy type as B if C(Prim(A)) and B have the same homotopy type.
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Remark 3.6. In the case of unital commutative C*-algebras, by the GNS con-
struction [7], C(Prim(A)) = A, . So the notions of pseudo-homotopy type and
the same homotopy type are equivalent.

Theorem 3.7. If f is an acceptable modified Morse function on A, then
Prim(A) is homotopy equivalent to a CW complex with exactly one cell of
dimension p for each critical chain of order p. Consequently every unital C*-
algebra A with an acceptable modified Morse function f on it, is of pseudo-
homotopy type as a noncommutative CW complex having a k-th decomposition
cell for each critical chain of order k.

4. Dynamical systems on noncommutative CW complexes

In this section we develop tools to relate a dynamical picture to the topology
and geometry of noncommutative CW complexes. We will see how the dynam-
ical properties of the trajectories are related to the homological configuration
of noncommutative CW complexes.

Definition 4.1. Let X,Y be topological spaces, P(Y ) be the power set of Y
(the set of all subsets of Y ) and F : X → P(Y ) be a mapping.

• The mapping F is called open hemi-continuous at x ∈ X , if for each
open subset B ⊆ Y such that F (x) ⊆ B, there exists an open set
U ⊆ X containing x such that

F (U) :=
⋃

{F (x) : x ∈ U} ⊆ B.

• The mapping F is called closed hemi-continuous at x ∈ X , if for each
closed subset B ⊆ Y such that F (x) ⊆ B, there exists a closed set
K ⊆ X containing x such that

F (K) :=
⋃

{F (x) : x ∈ K} ⊆ B.

• The mapping F is with compact value if for all x ∈ X , F (x) ⊆ Y is a
compact subset.

Definition 4.2. Let X be a topological space and P(X) be the power set of
X . A mapping ϕ : X × Z→ P(X) is a discrete multivalued dynamical system
on X if the following conditions satisfy:

• For each n ∈ Z the mapping Fn : X → P(X) defined by Fn(x) :=
ϕ(x, n), for all x ∈ X , is closed hemi-continuous for n ∈ Z+ and is
open hemi-continuous for n ∈ Z−.
• The mapping F1 is with compact value.
• For all x ∈ X , ϕ(x, 0) = {x}.
• For all n,m ∈ Z with nm ≥ 0 and for all x ∈ X , ϕ(ϕ(x, n),m) =
ϕ(x, n +m).
• For all x, y ∈ X , x ∈ ϕ(y,−1)⇔ y ∈ ϕ(x, 1).
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Remark 4.3. With the above notations if we let (ϕ(x, 1)) := F (x), then it
follows that for all x ∈ X and n ≥ 1,

ϕ(x, n) = Fn(x),

where
Fn(x) = F (Fn−1(x)) :=

⋃

{F (z) : z ∈ Fn−1(x)}

is defined inductively. So F : X → X is called the generator of the discrete
multivalued dynamical system.

Let A be a unital C*-algebra and let Prim(A) be the topological space
associated with it as in the construction of the previous sections. Define two
mappings

F,G : Prim(A)→ P(Prim(A))

F (I) =WI = {J ∈ Prim(A) : J ⊇ I}

G(I) = OI = {J ∈ Prim(A) : J ⊆ I}

.

Lemma 4.4. For all I, J ∈ prim(A) we have J ∈ OI ⇔ I ∈WJ .

Proof. We have
J ∈ OI ⇔ J ⊆ I ⇔ I ∈ WJ .

�

For the mappings F,G defined above we have

Proposition 4.5. The mapping F is closed hemi-continuous and the mapping
G is open hemi-continuous.

Proof. Let I ∈ Prim(A), W ⊆ Prim(A) be closed and F (I) = WI ⊆ W.

We show that there exists a closed subset K ⊆ Prim(A) with I ∈ K and
F (K) ⊆W. Set K :=WI . Then we have

F (WI) =
⋃

{F (J) : J ∈ WI} =
⋃

{F (J) : J ⊇ I} ⊆WI ⊆W.

Since for J ⊇ I, we have WJ ⊆WI .

Now let I ∈ Prim(A), O ⊆ Prim(A) be open and G(I) = OI ⊆ O. We
show that there exists a open subset U ⊆ Prim(A) with I ∈ U and G(U) ⊆ O.
Set U := OI . Then we have

G(OI) =
⋃

{G(J) : J ∈ OI} =
⋃

{G(J) : J ⊆ I} ⊆ OI ⊆ O.

Since for J ⊆ I, we have OJ ⊆ OI . �

In the following we will see how the above mappings F,G generate a discrete
multivalued dynamical system on Prim(A).

Let ϕ : Prim(A) × Z+ → P(Prim(A)) be defined in the following way:
For all I ∈ Prim(A), set ϕ(I, 1) := F (I) = WI . For n ∈ Z+, define ϕ(I, n)

inductively by

ϕ(I, n) := Fn(I) = F (Fn−1(I)) =
⋃

{F (In−1) : In−1 ∈ F
n−1(I)}
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=
⋃

In−1⊇In−2

...
⋃

I1⊇I

F (In−1)

=
⋃

In−1⊇...⊇I1⊇I

F (In−1).

The mapping ϕ has the following property:

Lemma 4.6. For all I ∈ Prim(A) and all n,m ∈ Z+, we have

ϕ(I, n+m) = ϕ(ϕ(I, n),m).

Proof. We have ϕ(I, n+m) = Fn+m(I). On the other hand

ϕ(ϕ(I, n),m) =
⋃

{ϕ(J,m) : J ∈ ϕ(I, n)}

=
⋃

{Fm(J) : J ∈ Fn(I)} = Fm(Fn(I)) = Fm+n(I).

�

In the same way let ψ : Prim(A) × Z− → P(Prim(A)) be defined in the
following way:

For all I ∈ Prim(A), set ψ(I,−1) := G(I) = OI . For n ∈ Z+, define
ψ(I,−n) inductively by

ψ(I,−n) := Gn(I) = G(Gn−1(I)) =
⋃

{G(In−1) : In−1 ∈ G
n−1(I)}

=
⋃

In−1⊆In−2

...
⋃

I1⊆I

G(In−1)

=
⋃

In−1⊆...⊆I1⊆I

G(In−1).

The mapping ψ has the following property:

Lemma 4.7. For all I ∈ Prim(A) and all n,m ∈ Z+, we have

ψ(I,−n−m) = ψ(ψ(I,−n),−m).

Proof. We have ψ(I,−n−m) = Gn+m(I). On the other hand

ψ(ψ(I,−n),−m) =
⋃

{ψ(J,−m) : J ∈ ψ(I,−n)}

=
⋃

{Gm(J) : J ∈ Gn(I)} = Gm(Gn(I)) = Gm+n(I)

. �

Proposition 4.8. Let F,G, ϕ, ψ be as before. Let

Θ : Prim(A) × Z→ P(Prim(A))

be defined by

Θ(I, n) = ϕ(I, n) = Fn(I); Θ(I,−n) = ψ(I,−n) = Gn(I); Θ(I, 0) = {I}

for all I ∈ Prim(A), n ∈ Z+. Then Θ defines a discrete multivalued dynamical
system on Prim(A) with generators F,G.
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Proof. We have to check the properties of definition (4.2) for Θ. First of all for
each I ∈ Prim(A), Θ(I, 1) is compact. Moreover from proposition (4.5), the
hemi-continuity property satisfies for Θ. Also
• For all I ∈ Prim(A), we have Θ(I, 0) = {I}.
• For all n,m ∈ Z with nm ≥ 0 it follows from lemmas (4.6) and (4.7),

Θ(I, n+m) = Θ(Θ(I, n),m).

And eventually from the lemma (4.4), for all I, J ∈ Prim(A) we have

J ∈ Θ(I, 1) = F (I) =WI ⇔ I ∈ Θ(J,−1) = G(I) = OI .

�

Remark 4.9. With the notations of the previous proposition, if for each W ⊆
Prim(A) we define F−1(W ) := {J ∈ Prim(A) : F (J) ⊆ W}, then the proof
of the above proposition shows that G = F−1. For this reason sometimes we
refer to F as the only generator of the system.

Definition 4.10. Let A be a unital C*-algebra, Θ : Prim(A)×Z→ P(Prim(A))
be a discrete multivalued dynamical system with generator F , k,m ∈ Z+ and
[−k,m] be an interval in Z containing 0 ∈ Z. Let {Ii}−k≤i≤m be a sequence in
Prim(A) such that

∀ − k ≤ i ≤ m ; Ii+1 ∈ F (Ii).

Define a map α : [−k,m] → Prim(A) by α(i) = Ii, for all −k ≤ i ≤ m.

obviously α(i + 1) ∈ F (α(i)).
With these notations α is called a solution for F and the sequence {Ii}−k≤i≤m

is called a trajectory for F passing through α(0) = I0.

With these notations:

Proposition 4.11. If α : [−k,m] → Prim(A) is a solution for F , then for
each i ∈ [−k,m], α(i) ∈ F i(α(0)).

Proof. We prove the statement by induction on k,m. The induction is in two
parts: positive and negative parts of the interval.

For k = 0,m = 1, we have α(1) ∈ F (α(0)). Now suppose α(i) ∈ F i(α(0)),
for 0 ≤ i ≤ m. We show that α(m+ 1) ∈ Fm+1(α(0)). We have

Fm+1(α(0)) = F (Fm(α(0))) =
⋃

{F (J) : J ∈ Fm(α(0))}.

Set J = α(m). Then F (α(m)) ⊆ Fm+1(α(0)). On the other hand we have
α(m + 1) ∈ F (α(m)). So α(m + 1) ∈ Fm+1(α(0)). So the induction on the
positive part is completed.

Now we go through the second part of the induction. The proof of this part is
the same as the first part with a minor difference. We just have to note that for
k = −1,m = 0, we have α(0) ∈ F (α(−1)) = Wα(−1). Consequently α(−1) ∈

Oα(0), which means α(−1) ∈ G(α(0)) = F−1(α(0)). Now if α(i) ∈ F i(α(0)),

for −k ≤ i ≤ −1. We can easily see that α(−k − 1) ∈ F−k−1(α(0)). �
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In what follows Θ : Prim(A) × Z → P(Prim(A)) is a discrete multivalued
dynamical system on Prim(A) with generator F .

Definition 4.12. Let α be a solution for F and {Ii}−k≤i≤m be a trajectory
for F passing through α(0) = I0. The ideal I0 is called a fixed point for F if
there exist W ⊆ Prim(A) such that for all n, Fn(I0) = W . Consequently for
all n, α(n) ∈ W .

Definition 4.13. The unstable manifolds of F at point I ∈ Prim(A) is defined
by

Wu(I, F ) =
⋃

n≥1

Fn(I).

In the same way the stable manifold of F at I is defined by

W s(I, F ) =
⋃

n≥1

F−n(I) =
⋃

n≥1

Gn(I).

Proposition 4.14. Let I, J ∈ Prim(A) and Wu(I, F )
⋂

W s(J, F ) 6= ∅. Then
there exists a trajectory {Li}0≤i≤m for F from I to J , i.e. L0 = I, Lm = J .

Proof. Let L ∈ Wu(I, F )
⋂

W s(J, F ). Then L ∈ Wu(I, F ) =
⋃

n≥1 F
n(I). So

there exists n0 ≥ 1 such that

L ∈ Fn0(I) = Fn0−1(F (I)) =
⋃

{Fn0−1(D) : D ∈ F (I)}

So there exists L1 ∈ F (I) such that

L ∈ Fn0−1(L1) = Fn0−2(F (L1)) =
⋃

{Fn0−2(D) : D ∈ F (L1)}

So there exists L2 ∈ F (L1) with L ∈ Fn0−2(L2). Continuing in this process
we obtain a sequence {L1, ..., Ln0

} with the property that Li+1 ∈ F (Li) and
L ∈ Fn0−i(Li) for all 1 ≤ i ≤ n0 − 1.

Now the sequence {L0, L1, ..., Ln0
} with L0 = I, Ln0

= L is a trajectory for
F from I to L.

On the other hand we have L ∈ W s(J, F ) =
⋃

n≥1 F
−n(J) =

⋃

n≥1G
n(J).

So there exists m ≥ 1 such that

L ∈ Gm(J) = Gm−1(G(J)) =
⋃

{Gm−1(D) : D ∈ G(J)}

So there exists Dm−1 ∈ G(J) such that

L ∈ Gm−1(Dm−1) = Gm−2(G(Dm−1)) =
⋃

{Gm−2(D) : D ∈ G(Dm−1)}

So there exists Dm−2 ∈ G(Dm−1) with L ∈ G
m−2(Dm−2). Continuing in this

process we obtain a sequence {D1, ..., Dm−1} with the property that Dm−i ∈
G(Dm−i+1), for all 2 ≤ i ≤ m − 1 and L ∈ Gm−i(Dm−i), for 1 ≤ i ≤ m − 1.
This means that Dm−i+1 ∈ F (Dm−i), for all 2 ≤ i ≤ m − 1. Set Dm = J .
From Dm−1 ∈ G(J), it follows that J ∈ F (Dm−1).

Now the sequence {D0, D1, ..., Dm−1, Dm} with D0 = L,Dm = J is a tra-
jectory for F from L to J . If we rename Di = Ln0+i, for 0 ≤ i ≤ m, then the
sequence {L0, L1, ..., Ln0+m} is a trajectory for F from I to J . �
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In the next section we go through an example to have a better understanding
of the constructions of this section.

5. Dynamical system on C(T 2)

In [12] we explained how the CW complex structure for a compact topolog-
ical space X induces a noncommutative CW complex structure on the algebra
C(X) of continuous functions on X . In this part we apply the techniques of the
previous section to introduce a discrete multivalued dynamical system on the
noncommutative CW complex structure of C(T 2): the algebra of continuous
functions on the 2-dimensional torus. We compute the stable and nonstable
manifolds and explain the geometry of the noncommutative CW complex by
its stable and unstable manifolds.

Consider the following CW complex structure for the torus T 2.
X0 = {0} is the one point set, X1 = {α, β}, where α, β are closed curves

homeomorphic images of the circle S1, starting at point 0 and X2 = T 2.
The noncommutative CW complex decomposition on C(T 2) is induced as:

A0 = C(X0), A1 = C(X1), A = A2 = C(T 2). To each x ∈ X there corresponds
an ideal Ix ∈ Prim(C(X)) defined by

Ix := {f ∈ C(X) : f(x) = 0}.

We can partition Prim(A) into three classes of ideals:
There is only one 0-ideal defined by I0 := {f ∈ A : f(0) = 0}.
There are two 1-ideals defined by

Iα := {f ∈ A : f(x) = 0;x ∈ α} =
⋂

x∈α

Ix,

Iβ := {f ∈ A : f(x) = 0;x ∈ β} =
⋂

x∈β

Ix.

There is one 2-ideal defined by I := {f ∈ A : f(x) = 0;x ∈ T 2} = {0}.
Obviously I ⊆ Iα, Iβ ⊆ I0. We have

W0 = {J ∈ Prim(A) : J ⊇ I0} = {I0}

WI = {J ∈ Prim(A) : J ⊇ I} = {I0, Iα, Iβ , I}

Wα = {J ∈ Prim(A) : J ⊇ Iα} = {I0, Iα}

Wβ = {J ∈ Prim(A) : J ⊇ Iβ} = {I0, Iβ}

And W0 ⊆Wα,Wβ ⊆WI .
On the other hand we have

O0 = {J ∈ Prim(A) : J ⊆ I0} = {I0, Iα, Iβ , I}

OI = {J ∈ Prim(A) : J ⊆ I} = {I}

Oα = {J ∈ Prim(A) : J ⊆ Iα} = {I, Iα}

Oβ = {J ∈ Prim(A) : J ⊆ Iβ} = {I, Iβ}

And OI ⊆ Oα, Oβ ⊆ O0.
Now we start our computations.
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• The ideal I0: We have Θ(I0, 1) = F (I0) =W0 = {I0}. Also

Θ(I0, 2) = F 2(I0) = F (F (I0)) = F (W0) =
⋃

{F (J) : J ∈W0} = F (I0) = {I0}.

Continuing with this process, we see that for each n ≥ 1 we have

Θ(I0, n) = Fn(I0) = {I0} =W0.

We have
Θ(I0,−1) = G(I0) = O0 = {I0, Iα, Iβ , I}

Θ(I0,−2) = G2(I0) = G(G(I0)) =
⋃

{G(J) : J ∈ G(I0)}

=
⋃

{G(J) : J = I0, Iα, Iβ , I} = G(Io)
⋃

G(Iα)
⋃

G(Iβ)
⋃

G(I)

= O0 = {I0, Iα, Iβ , I}

In the same way we see that for all n ≥ 1,

Θ(I0,−n) = F−n(I0) = Gn(I0) = {I0, Iα, Iβ , I} = O0

• The ideal Iα: We have Θ(Iα, 1) = F (Iα) =Wα = {I0, Iα}. Also

Θ(Iα, 2) = F 2(Iα) = F (F (Iα)) = F (Wα) =
⋃

{F (J) : J ∈ Wα}

=
⋃

{F (J) : J = I0, Iα} = F (I0)
⋃

F (Iα) =Wα.

Continuing with this process, we see that for each n ≥ 1 we have

Θ(Iα, n) = Fn(Iα) =Wα.

For the negative part We have

Θ(Iα,−1) = G(Iα) = Oα = {Iα, I}

Θ(Iα,−2) = G2(Iα) = G(G(Iα)) =
⋃

{G(J) : J ∈ G(Iα)}

=
⋃

{G(J) : J = Iα, I} = G(Iα)
⋃

G(I)

= Oα = {Iα, I}

In the same way we see that for all n ≥ 1,

Θ(Iα,−n) = F−n(Iα) = Gn(Iα) = Oα = {Iα, I}

• The ideal Iβ : For this ideal as in the case of Iα we can see that for all n ∈ Z+,

Θ(Iβ , n) = Fn(Iβ) = {Iβ , I0}

Θ(Iβ ,−n) = F−n(Iβ) = {Iβ , I}

• The ideal I: We have Θ(I, 1) = F (I) =WI = {I0, Iα, Iβ , I}. Also

Θ(I, 2) = F 2(I) = F (F (I)) = F (WI) =
⋃

{F (J) : J ∈WI}

= F (I0)
⋃

F (Iα)
⋃

F (Iβ)
⋃

F (I) = {I0, Iα, Iβ , I}.

Continuing with this process, we see that for each n ≥ 1 we have

Θ(I, n) = Fn(I) =WI = {I0, Iα, Iβ , I}

We have
Θ(I,−1) = G(I) = OI = {I}
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Θ(I,−2) = G2(I) = G(G(I)) =
⋃

{G(J) : J ∈ G(I)} = G(I) = {I}

In the same way we see that for all n ≥ 1,

Θ(I,−n) = F−n(I) = Gn(I) = {I} = OI

Now we explain the trajectories of the system and find the fixed points and
observe the behavior of the stable and unstable manifolds at the fixed points.

First we consider the sequence {I, Iα, I0}. For this sequence we have

Iα ∈ F (I), I0 ∈ F (Iα)

Therefore the sequence defines a trajectory for the system. Now if we define a
curve σ : [0, 2] ⊆ Z→ Prim(A) by

σ(0) = I, σ(1) = Iα, σ(2) = I0

then we have σ(n) ∈ F (σ(n − 1)) and σ(n) ∈ Fn(σ(0)) for n = 1, 2. On the
other hand Fn(σ(0)) = Fn(I) = WI . So I is a fixed point for this trajectory.
The unstable and stable manifolds would be

Wu(I, F ) =
⋃

n=1,2

Fn(I) =WI = {I0, Iα, Iβ , I}.

W s(I, F ) =
⋃

n≥1

F−n(I) =
⋃

n=1,2

Gn(I) = OI = {I}.

From the above calculations we can conclude that the whole Prim(A) is un-
stable and the ideal I corresponded to the critical chain WI of the modified
discrete function on prim(A) is stable, we refer to [12] for details on critical
chains. This critical chain corresponds to the maximum point of the Morse
height function on T 2. Since the compact torus T 2 is homeomorphic to the
space Prim(A) [7], this is a natural conclusion comparing to the unstability of
torus.

We have another beautiful interpretation:

Wu(I0, F ) =
⋃

n

Fn(I0) =W0 = {I0}.

W s(I0, F ) =
⋃

n≥1

F−n(I0) =
⋃

n≥1

Gn(I0) = O0 = {I0, Iα, Iβ , I}.

Which means that the stable and unstable manifolds are interchanged along
suitable trajectories.
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