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Abstract

In this paper, we present a new compositional bottom-up semantics
for the Timed Concurrent Constraint Language (tccp in short) which is
defined for the full language. In particular, is able to deal with the non-
monotonic characteristic of tccp, which constitutes a substantial addi-
tional technical difficulty w.r.t. other compositional denotational seman-
tics present in literature (which do not tackle the full language).

The semantics is proved to be (correct and) fully abstract w.r.t. the
full behavior of tccp, including infinite computations. This is particularly
important since tccp has been defined to model reactive systems and they
may not terminate with a purpose.

The overall of these features makes our proposal particularly suitable
as the basis for the definition of semantic-based program manipulation
tools (like analyzers, debuggers or verifiers), especially in the context of
reactive systems.
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1 Introduction

The concurrent constraint paradigm (ccp in short; [25]) is a simple but powerful
model for concurrent systems. It is different from other programming paradigms
mainly due to the notion of store-as-constraint that replaces the classical store-
as-valuation model. In this way, the languages from this paradigm can easily
deal with partial information: an underlying constraint system handles con-
straints on system variables.

Within the ccp family, [14] introduced the Timed Concurrent Constraint
Language (tccp in short) by adding to the original ccp model the notion of time
and the ability to capture the absence of information. With these features, it is
possible to specify—in a very natural way—behaviors typical of reactive systems
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such as timeouts or preemption actions. For instance, we can have more compact
and realistic models since we do not need to explicitly model error signals: the
absence of information from a given (sub)system can be enough to react to
an erroneous situation. Thanks to all its features, tccp is certainly the most
expressive dialect of the ccp family.

In the literature, much effort has been devoted to the development of ap-
propriate denotational semantics for languages in the ccp paradigm (e.g. [15,
12, 16]). Compositionality and full abstraction are two highly desirable proper-
ties for a semantics, since they are needed for many purposes. A fully abstract
model can be considered the semantics of a language [15].

In [12], the difficulties for handling nondeterminism and infinite behavior in
the ccp paradigm was investigated. The authors showed that the presence of
nondeterminism, local variables and synchronization require relatively complex
structures for the denotational model of (non timed) ccp languages. In most ccp
languages, nondeterminism is defined in terms of a global choice, which poses
even more difficulties than a local-choice model [16].

Successively, [22] showed that for timed concurrent constraint languages, the
presence of timing constructs which handle negative information in addition to
non-determinism and local variables significantly complicates the definition of
compositional and fully abstract semantics. Moreover, infinite behaviors (which
become natural in the timed extensions) are an additional nightmare [12].

Presumably because of all these mentioned difficulties, for all languages of
the ccp family, the proposals of compositional semantics in the literature have
been given by introducing (quite) severe restrictions on the languages. Essen-
tially, they all limit the use of negative information and non-determinism, that
are the distinguishing features that enhance the expressiveness of the paradigm
w.r.t. other traditional ones. For us, this is contradictory and certainly unsat-
isfactory. Thus, we strived to develop a semantics which is fully abstract for
the full tccp language. This is particularly important when one is interested in
applying the semantics to develop (semantics-based) fully automatic program
manipulation tools (like debuggers, verifiers and analyzers).

We have a long experience [9, 6, 8, 7, 1, 2, 4] in the development of semantics-
based program manipulation tools for declarative languages via the Abstract
Interpretation approach. Abstract Interpretation [11] is a theory of approxi-
mation of discrete systems that allows one to formally specify provably correct
approximation processes for the behavior of any computing system.

It is important to observe that both our direct experience and the not very
satisfactory results in [1, 18] showed that, besides the necessary requirement of
full abstraction and the straightforward usefulness of compositionality, there are
some other properties of the (concrete) semantics that are particularly relevant
for having an effective and efficient implementation which computes a precise-as-
possible (abstract) approximate semantics. We are confident that this statement
applies also to other semantic-based debugging or verification techniques not
based on abstract interpretation.

Let us point out these properties and discuss about their positive effects.

Goal-independent A semantics has a goal-independent definition when the
denotation of any compound (nested) expression is defined in terms of
the denotations of most general calls. For instance, the semantics of an
expression like e ∶= f(g(v1, v2), v3) is obtained by suitable semantics op-
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erators which, considering values v1, v2, v3 and the semantics of f(x, y)
and g(w, z), can reconstruct the proper semantics of e. Operational (top-
down) semantics are rarely defined in this way since it is more natural (and
easy) to give a (compositional) goal-dependent definition which produces
the effects of the current expression that has to be evaluated. When one
is interested in the results of the evaluation of a specific expression e, it
would make little sense to define a more complicated goal-independent se-
mantics formalization that first evaluates all most general expressions and
then tailors such evaluations on e to mimic the effects of a top-down goal-
dependent resolution mechanism. In the tailoring process, many parts of
the computed denotations will not be used and thus much computation
effort would be wasted.

However, when we are no longer focused on determining the actual evo-
lution of a specific expression but we are interested in determining the
properties of a program for all possible executions, things change radically.
In this case, we necessarily have to determine the semantic information
regarding all possible expressions, and then it is more economical to have
a goal-independent definition and compute just the semantics of most gen-
eral calls (and, when is needed, reconstruct from these the semantics of
specific instancies).

Condensed A semantics is condensed when denotations contain only the mini-
mal necessary number of semantic elements that are needed to characterize
the classes of semantically equivalent syntactic objects (or, in other words,
the minimal information needed to distinguish a syntactic object x from
the other syntactic objects that are not semantically equivalent to x).

This may not seem a useful property for a concrete semantics, which—in
general—would nevertheless contain infinite elements even when is con-
densed. However, this reduction could anyway frequently change some
infinite denotations into finite ones and—most important—all the ab-
stractions of a condensed concrete semantics will inherit this property by
construction. Hence, by having minimal (abstract) denotations, one ob-
tains by definition algorithms that compute just the minimal number of
(abstract) semantic elements. This is definitely a stunning advantage over
non condensed approaches which rarely can regain this efficiency in some
other way. One could argue that it would be possible to live with a sim-
pler non-condensed concrete semantics and then, for each abstraction of
interest, work on the specific case to find out its condensed representa-
tion. We find more economical (especially in the long run) to do the effort
once for the concrete semantics and then obtain, by construction, that all
abstractions are condensed (with no additional effort).

Bottom-up A bottom-up definition (in addition to the previous properties),
has also an immediate direct benefit for abstract computations. With a
bottom-up definition, at each iteration we have to collect the contributions
of all rules. For each rule we will use the join operation of the abstract
domain in parallel onto all components of the body of the rule. With a
top-down definition instead, we have to expand one component of the goal
expression at a time, necessarily using several subsequent applications of

3



the join operation (of the abstract domain) over all components, rather
than a unique simultaneous join of all the semantics of components. The
reduced use of the join of a bottom-up formulation has a twofold benefit.
On one side, it speeds up convergence of the abstract fixpoint computation.
On the other side, it considerably improves precision.

Thus—with the application to program manipulation tools in mind—we have
developed a new (small-step) compositional, bottom-up, goal-independent and
condensed semantics which is (correct and) fully abstract w.r.t. the small-step
behavior of full tccp. To obtain this semantics the idea is to enrich the classical
behavioral timed traces with information about the essential conditions that
the store must (or must not) satisfy in order to make the program proceed with
one or another execution branch. Thus, we associate conditions to the store of
each computation step and then we collect just the most general hypothetical
computations. Since conditions are constructed by using only the information in
the guards of a program, we obtain a condensed semantics which also deals with
non-monotonicity, because into denotations we have the minimal information
needed to exploit computations arising from absence of information.

Since tccp was originally defined to model reactive systems, which many
times include systems that do not terminate with a purpose, we have devel-
oped our semantics to distinguish among terminating, suspending and non-
terminating computations. This improves the original semantics for tccp de-
fined in [14] which identifies suspending and non-terminating computations. In
particular, terminating computations are those that reach a point in which no
agents are pending to be executed. Suspending computations are those that
reach a point in which there are some agents pending to be executed, but there
is not enough information in the store to entail the conditions that would make
them evolve. We think it is essential to distinguish these two kinds of computa-
tions since, conceptually, a suspended computation has not completely finished
its execution, and, in some cases, it could be a symptom of a system error.

To complete our proposal, we also define a big-step semantics (by abstraction
of our small-step semantics) which tackles also outputs of infinite computations.
We prove that its fragment for finite computations is (essentially) isomorphic
to the traditional big-step semantics of [14]. Moreover, we also formally prove
that it is not possible to have a correct input-output semantics which is defined
solely on the information provided by the input/output pairs.

Organization of the paper The rest of the paper is organized as follows.
Section 2 recalls the foundations of the tccp language. Section 3 introduces our
small-step denotational semantics for tccp. It also includes illustrative exam-
ples for the main concepts. Then, Section 4 introduces our big-step semantics
and formally relates it to the (original) one of [14]. Section 5 discusses about
applications. Finally, Sections 6 and 7 present related work and conclude.

To improve readability of the paper, the most technical results and the proofs
(of all results) can be found in Appendix A.

2 Preliminaries

The languages defined within the ccp paradigm (as extensions of the original
model of Saraswat in [28]) are parametric w.r.t. a cylindric constraint system.
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The constraint system handles the data information of the program in terms of
constraints.

2.1 Cylindric constraint systems

An elegant formalization of constraint systems, the cylindric constraint systems,
was introduced in [28], where a hiding operator is defined in terms of a general
notion of existential quantifier (to handle local variables). However in this work,
since we are dealing with tccp, we use the formalization of [14].

A cylindric constraint system is an algebraic structure C = ⟨C,⪯,⊗,⊕,ff , tt ,Var ,∃⟩,
where Var is a denumerable set of variables, such that:

1. (C, ⪯, ⊗, ⊕, ff , tt) is a complete algebraic lattice where ⊗ is the lub op-
erator, ⊕ is the glb operator, ff and tt are respectively the greatest and
least element of C.

2. For each x ∈ Var there exist a cylindric operator ∃x∶ C → C such that, for
any x, y ∈ Var and c, d ∈ C,

c ⊢ ∃x c c ⊢ d⇒ ∃x c ⊢ ∃x d

∃x(∃y c) = ∃y(∃x c) ∃x(c⊗ ∃x d) = ∃x c⊗ ∃x d

where ⊢, called entailment, is the inverse relation of ⪯.

In the sequel, we abuse of notation and, given C ⊆ C, write ∃xC for {∃x c ∣
c ∈ C}. We can find in the literature several examples of cylindric constraint
systems that are useful when modeling data structures, logic programs or other
specific domains [29, 12, 13, 3].

In the illustrative examples throughout the paper we will use, for the sake
of simplicity, the following classical cylindric constraint system L of linear dise-
qualities. The domain of constraints L is formed by taking equivalence classes,
modulo logical equivalence ⇔, of finite conjunctions of either linear disequal-
ities (strict and not) or equalities over Z and Var = {x, y, . . .} (e.g. x > 4,
y ≥ 10 ∧w < −3, . . . ). The entailment relation is implication ⇒ (thus, the order
of the lattice is ⇐). The lub is conjunction ∧ and ∃x is the operation which re-
moves (after information has been propagated within a constraint) all conjuncts
referring to variable x (e.g. ∃x(x = y ∧ x > 3) = y > 3). It can be easily verified
that L ∶= ⟨L,⇐,∧,∨, false, true,Var ,∃⟩ is a cylindric constraint system.

2.2 Timed Concurrent Constraint Programming

The tccp language, introduced in [14], is particularly suitable to specify con-
current reactive systems. In tccp, the computation progresses as the concurrent
and asynchronous activity of several agents that can (monotonically) accumu-
late information in a store or also query information from it. The notion of time
is introduced by defining a discrete and global clock1 and progresses depending
on agents that are executed as defined in the following.

Given a cylindric constraint system C = ⟨C,⪯,⊗,⊕,ff , tt ,Var ,∃⟩ and a set of
process symbols Π, the syntax of agents is given by the following grammar:

A ∶∶= skip ∣ tell(c) ∣ A ∥ A ∣ ∃xA ∣
n

∑
i=1

ask(ci) → A ∣ now c then A else A ∣ p(x1 , . . . , xm)

1Differently from other languages where time is explicitly introduced by defining new timing
agents.
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⟨tell(c), d⟩ → ⟨skip, c⊗ d⟩
d ≠ ff (R1)

⟨∑
n
i=1 ask(ci) → Ai, d⟩ → ⟨Aj , d⟩

j ∈ [1, n], d ⊢ cj , d ≠ ff (R2)

⟨A, d⟩ → ⟨A′, d′⟩

⟨now c then A else B, d⟩ → ⟨A′, d′⟩
d ⊢ c (R3)

⟨A, d⟩ /→

⟨now c then A else B, d⟩ → ⟨A, d⟩
d ⊢ c, d ≠ ff (R4)

⟨B, d⟩ → ⟨B′, d′⟩

⟨now c then A else B, d⟩ → ⟨B′, d′⟩
d ⊬ c (R5)

⟨B, d⟩ /→

⟨now c then A else B, d⟩ → ⟨B, d⟩
d ⊬ c (R6)

⟨A, d⟩ → ⟨A′, d′⟩ ⟨B, d⟩ → ⟨B′, c′⟩

⟨A ∥ B, d⟩ → ⟨A′ ∥ B′, d′ ⊗ c′⟩
(R7)

⟨A, d⟩ → ⟨A′, d′⟩ ⟨B, d⟩ /→

⟨A ∥ B, d⟩ → ⟨A′ ∥ B, d′⟩
(R8)

⟨A, l ⊗ ∃x d⟩ → ⟨B, l′⟩

⟨∃lxA, d⟩ → ⟨∃l′xB, d⊗ ∃x l′⟩
(R9)

⟨p(x⃗), d⟩ → ⟨A, d⟩
p(x⃗) ∶− A ∈D, d ≠ ff (R10)

Figure 1: The transition system for tccp.

where c, c1, . . . , cn are finite constraints in C; p is a symbol in Π of arity m
(denoted as p/m ∈ Π) and x,x1, . . . , xm ∈ Var .

A tccp program P is an object of the form D.A, where A is an agent, called
initial agent, and D is a set of process declarations of the form p(x⃗) ∶− A (for
some agent A), where x⃗ denotes a generic tuple of variables.

The following definition introduces the operational semantics of the lan-
guage. It is slightly different from the original one in [14]. In particular, we
have introduced conditions in specific rules (namely Rules R2, R4 and R10)
in order to detect when the store becomes ff . This modification is made to
follow the original philosophy of ccp computations defined in [29], where com-
putations that reach an inconsistent store are considered failure computations.
In [14], this check is not explicitly done. In our context, we are interested in
detecting when a computation reaches ff ; however, once ff is reached, no ac-
tion can modify the store (ff is the greatest element in the domain) and—after
that moment—all guards in the program agents are always entailed, thus the
computation from that instant has little interest. In particular, we do not want
to distinguish computations which end in ff from those which loop on store ff ,
contrarily to what [14] does.

Definition 2.1 (Operational semantics of tccp) The operational semantics
of tccp is formally described by a transition system T = (Conf ,→). Configura-
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tions in Conf are pairs ⟨A, c⟩ representing the agent A to be executed in the
current global store c. As usually done, we assume that the tccp syntax is closed
under the usual structural equivalence relation where the parallelism operator is
associative and commutative, and agents A ∥ skip and A are equivalent.

The transition relation → ⊆ Conf × Conf is the least relation satisfying the
rules of Figure 1. Each transition step takes exactly one time-unit.

In the sequel →∗ denotes the reflexive and transitive closure of the relation
→.

As can be seen from the rules, the skip agent represents the successful termi-
nation of the computation. The tell(c) agent adds the constraint c to the store
and then stops. It takes one time-unit, thus the constraint c is visible to other
agents from the following time instant. The store is updated by means of the ⊗
operator of the constraint system.

The choice agent∑
n
i=1 ask(ci) → Ai consults the store and non-deterministically

executes (at the following time instant) one of the agents Ai whose correspond-
ing guard ci is entailed by the current store; otherwise, if no guard is entailed
by the store, the agent suspends.

The conditional agent now c then A else B behaves in the current time instant
like A (respectively B) if c is (respectively is not) entailed by the store. Note
that, because of the ability of tccp to handle partial information, d ⊬ c is not
equivalent to d ⊢ ¬c. Thus, the else branch is taken not only when the condition
is falsified, but also when there is not enough information to entail the condition.
This characteristic is known in the literature as the ability to process “negative
information” [26, 27].

A ∥ B models the parallel composition of A and B in terms of maximal
parallelism (in contrast to the interleaving approach of ccp), i.e., all the enabled
agents of A and B are executed at the same time.

The agent ∃xA makes variable x local to A. To this end, it uses the ∃
operator of the constraint system. More specifically, it behaves like A with x
considered local, i.e., the information on x provided by the external environment
is hided to A, and the information on x produced by A is hided to the external
world. In [14], an auxiliary construct ∃dx is used to explicitly show the store
local to A. In particular, in Rule R9, the store d in the agent ∃dxA represents
the store local to A. This auxiliary operator is linked to the hiding construct
by setting the initial local store to tt , thus ∃xA ∶= ∃ttxA.

Finally, the agent p(x⃗) takes from D a declaration of the form p(x⃗) ∶− A
and then executes A at the following time instant. For the sake of simplicity,
we assume that sets of declarations D are closed w.r.t. renaming of parameter
names, i.e., if p(x⃗) ∶− A ∈D then, for any y⃗ ∈ Var , also p(y⃗) ∶− A{x⃗/y⃗} ∈D.

3 Modeling the small-step operational behavior
of tccp

In this section, we introduce a new condensed, compositional, bottom-up de-
notational semantics which is (correct and) fully abstract w.r.t. the small-step
(operational) behavior of tccp. Note that (as mentioned in the introduction),
having a semantics which enjoys simultaneously all these (just mentioned) prop-
erties, besides the theoretical interest, it is also a matter of pragmatical relevance
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since they are the key factors for having an effective and efficient implementation
of semantics-based program manipulation tools.

In order to introduce such semantics, we need first to define some (technical)
notions. In the sequel, all definitions are parametric w.r.t. a cylindric constraint
system C = ⟨C,⪯,⊗,⊕,ff , tt ,Var ,∃⟩. We denote by AΠ

C the set of agents and
DΠ

C the set of sets of process declarations built on signature Π and constraint
system C. By ε we denote the empty sequence; by s1 ⋅ s2 the concatenation of
two sequences s1, s2. We also abuse notation and, given a set of sequences S,
by s1 ⋅ S we denote {s1 ⋅ s2 ∣ s2 ∈ S}.

Let us formalize first the notion of behavior of a set D of process declarations
in terms of the transition system described in Figure 1. It collects all the small-
step computations associated to D as the set of (all the prefixes of) the sequences
of computation steps (in terms of sequences of stores), for all possible initial
agents and stores.

Definition 3.1 Let D ∈ DΠ
C. Then the small-step (observable) behavior of D

is defined as:

BssJDK ∶= ⋃
∀c∈C,∀A∈AΠ

C

BssJD . AKc where

BssJD . AKc0 ∶= {c0 ⋅ c1 ⋅ . . . ⋅ cn ∣ ⟨A, c0⟩ → ⟨A1, c1⟩ → . . .→ ⟨An, cn⟩} ∪ {ε}

(where → is the transition relation given in Figure 1).
We call the sequences in BssJD.AKc behavioral timed traces or simply traces

(when clear from the context).
We denote by ≈ss the equivalence relation between process declarations in-

duced by Bss , namely for all D1 ,D2 ∈ DΠ
C, D1 ≈ss D2 ⇐⇒ BssJD1 K = BssJD2 K.

With this definition, we can formally state the requirement of full abstraction
for semantics S as S JD1 K = S JD2 K ⇐⇒ D1 ≈ss D2 .

To achieve a goal-independent semantics, a typical solution is to define deno-
tations by using only the most general traces (in our case those for the weakest
store) plus define a suitable semantic operator which can reconstruct the seman-
tics of any expression (in our case agent) from such most general denotations.
The wanted result can be achieved in this way only if the set of all traces for
each expression is itself condensing (borrowing the terminology program anal-
ysis [20, 21]), which in our case means that the set of all traces for an agent
A with initial store c can be reconstructed from the set of all traces of A with
initial store true. The problem in following this approach in the tccp case is
that Bss is not condensing, since not all behavioral timed traces can be retrieved
from the most general ones. This is due to the ask, now and hiding constructs.
For instance, consider the agent A ∶= now x = 3 then tell(z = 0) else tell(z = 1).
Given the initial store true, we obtain the trace true ⋅z = 1, while for the stronger
initial store x = 3 we obtain the trace x = 3 ⋅ (x = 3∧ z = 0), which is not compa-
rable to the former (since z = 0 ⇏ z = 1 and z = 1 ⇏ z = 0). Hence, the latter
trace cannot be obtained from the former trace, which has been generated for
the most general store. Indeed—in general—in tccp, given S ∶= BssJD .AKc (the
set of traces for an agent A with initial store c), if we compute BssJD .AKd with
a stronger initial store d (d ⊢ c), then some traces of S may disappear and,
what is more critical, new traces, which are not instances of the ones in S, can
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appear. In the community of the ccp paradigm [12, 27], this characteristic is
known as “non-monotonicity of the language”.

Because of tccp’s non-monotonicity, Bss is also not compositional. For in-
stance, consider the agents A1 ∶= tell(x = 1) and

A2 ∶= ask(true) → now (x = 1) then tell(y = 0) else tell(y = 1)

For each c, BssJ∅ . A1Kc = {c ⋅ (x = 1 ∧ c)}. Moreover, for each c that implies2

x = 1, BssJ∅ . A2Kc = {c ⋅ c ⋅ (y = 0 ∧ c)} while, when c⇏ (x = 1), BssJ∅ . A2Kc =
{c ⋅ c ⋅ (y = 1 ∧ c)}. Now, for the parallel composition of these agents A1 ∥ A2,
BssJ∅ . A1 ∥ A2Ktrue = {true ⋅ (x = 1) ⋅ (x = 1∧ y = 0)} which cannot be computed
by merging the traces of A1 and A2.

Thus, it does not come as a surprise that for all non-monotonic languages of
the ccp paradigm, the compositional semantics that have been written [29, 26,
12, 13, 16, 23, 18, 24, 17] are not defined for the full language, either because they
avoid the constructs that cause non-monotonicity or because they restrict their
use. Hence, the ability to handle non-monotonicity (and thus the full language
without any limitation) is certainly one of the strengths of our proposal.

The example above shows why, due to the non-monotonicity of tccp, in order
to obtain a compositional (and goal-independent) semantics for the full language
it is not possible to follow the traditional strategy and collect in the semantics
the traces associated to the weakest initial store. Actually, we have found the
solution to the problem of compositionality by trying to solve another (related)
problem. Since in a top-down (goal-dependent) approach the (initial) current
store is propagated, then the decisions regarding a conditional or choice agent
(where the computation evolves depending on the entailment of the guards in the
current store) can be taken immediately. However, if we want to define a fixpoint
semantics which builds the denotations bottom-up we have the problem that,
while we are building the fixpoint, we do not know the current store yet. Thus, it
is impossible to know which execution branch has to be taken in correspondence
of a program’s guard.

To solve both problems our proposal is to enrich behavioral timed traces
with information about the essential conditions that the store must (or must
not) satisfy in order to make the program proceed with one or another execution
branch. Thus, we associate conditions to the store of each computation step
and then we collect (only) the most general hypothetical computations. These
conditions are constructed by using the information in the guards of the ask
and now constructs of a program.

We will formally show that this indeed solves both the problem of construct-
ing bottom-up the semantics and of having a compositional and condensed se-
mantics coping with non-monotonicity.

3.1 The semantic domain

Let us start by introducing the notion of condition, that is the base to build our
denotations. Intuitively, we need “positive conditions” for branches related to
the entailment of guards and “negative conditions” for non-entailment, i.e., for
the branches where the current store does not entail the associated condition.

2We recall that in this exemplification cylindric constraint system, the entailment is logical
implication.
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Definition 3.2 (Conditions) A condition η, over Cylindric Constraint Sys-
tem C, is a pair η = (η+, η−) where

• η+ ∈ C is called positive condition, and
• η− ∈ ℘(C) is called negative condition.

A condition is valid when η+ ≠ ff , tt ∉ η− and ∀c ∈ η−. η+ ⊬ c. We denote ΛC

the set of all conditions and ∆C the subset of valid ones.
The conjunction of two conditions η1 = (η+1 , η

−
1 ) and η2 = (η+2 , η

−
2 ) is defined

(by abuse of notation) as η1⊗η2 ∶= (η+1 ⊗η
+
2 , η

−
1 ∪η

−
2 ). Two conditions are called

incompatible if their conjunction is not valid.
A store c ∈ C is consistent with η, written c ≫ η, if η+ ⊗ c ≠ ff and ∀h ∈

η−. c ⊬ h. Moreover, we say that c satisfies η, written c ⊫ η, when c ⊢ η+ and
∀h ∈ η−. c ⊬ h.

We extend the ∃x operator to conditions as ∃x(η
+, η−) ∶= (∃x η

+,∃x η
−).

Due to the partial nature of the constraint system, for negative conditions we
cannot use the glb (disjunction) ⊕n

i=1 ci instead of set {c1, . . . , cn} since we can
have a store c such that c ⊢ ⊕n

i=1 ci while ∀i. c ⊬ ci. For instance, we can have
two guards x > 2 and x ≤ 2 and it may happen that the current store does not
satisfy any of them, but their glb x > 2⊕x ≤ 2 (which is true) is entailed by any
store.

Clearly, if a store—different from ff —satisfies a condition, then it is also
consistent with that condition. If two conditions are incompatible, then there
exists no constraint c ∈ C ∖ {ff } that entails simultaneously both conditions.

Now we are ready to enrich with conditions the notion of trace.

Definition 3.3 (Conditional state) A conditional state, over Cylindric Con-
straint System C, is one of the following constructs.

Conditional store A pair η ↣ c, for each η ∈ ΛC and c ∈ C.

Stuttering The construct stutt(C), for each finite C ⊆ C ∖ {tt}.

End-of-process The construct ⊠.

In a conditional store t = η ↣ c, the constraint c is the store of t.
We say that η ↣ c is valid if η is valid.
We extend ∃x to conditional states as ∃x ((η

+, η−) ↣ c) ∶= ∃x(η
+, η−) ↣ ∃x c,

∃x stutt(C) ∶= stutt(∃xC) and ∃x ⊠ ∶= ⊠.

The conditional store η ↣ c is used to represent a hypothetical computation
step where η is the condition that the current store must satisfy in order to
make the computation proceed. Moreover, c represents the information that is
added by an agent to the global store up to the current time instant.

The stuttering stutt(C) is needed to model the suspension of the computa-
tion due to an ask construct, i.e., it represents the fact that there is no guard in
C (the guards of a choice agent) entailed by the current store.

Definition 3.4 (Conditional trace) A conditional trace (over Cylindric Con-
straint System C) is a (possibly infinite) sequence t1⋯tn⋯ of valid conditional
states (over C)—where ⊠ can be used only as a terminator—that respects the
following properties:
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Monotonicity For each ti = ηi ↣ ci and tj = ηj ↣ cj such that j ≥ i, cj ⊢ ci.
Consistency For each ti = ηi ↣ ci and ti+1 either of the form (η+i+1, η

−
i+1) ↣ ci+1

or stutt(η−i+1), we have that ∀c− ∈ η−i+1. ci ⊬ c
−.

We denote by CTC the set of all conditional traces, or simply CT when clear
from the context.

The limit store of a (finite or infinite) trace s is the lub of the stores (of the
conditional states) of s.

A finite conditional trace that is ended with ⊠ as well as an infinite con-
ditional trace is said, respectively, failed or (finitely) successful depending on
whether its limit store c is ff or not. Such c is called computed result.

Each conditional trace models a hypothetical tccp computation where, for
each time instant, we have a conditional state where each condition represents
the information that the global store has to satisfy in order to proceed to the
next time instant.

The Monotonicity property is needed since in tccp, as well as in ccp but not
in all its extensions, each store in a computation entails the previous ones. Note
that because of this, for any finite conditional trace t1, . . . , tn whose sequence
of stores (of the conditional stores) is c1, . . . , cm (m ≤ n), the limit store ⊗mi=1ci
is just the last store cm.

The Consistency property affirms that the store of a given conditional store
cannot be in contradiction with the condition associated to the successive con-
ditional state.

Example 3.5
It is easy to verify that the sequence r1 ∶= (true,∅) ↣ y = 0 ⋅ (x > 2,∅) ↣ y =
0 ∧ z = 3 ⋅ ⊠ is a conditional trace. The first component of the trace states that
in the first time instant the store y = 0 is computed in any case (the condition
(true,∅) is always satisfied). The second component requires the constraint
x > 2 to be satisfied by the (global) store in order to proceed by adding to the
next state the information z = 3.

Instead, the sequence r2 ∶= (true,∅) ↣ x = 0 ⋅ (x = 0,∅) ↣ tt ⋅ ⊠ is not a
conditional trace since the Monotonicity property does not hold because tt ⊬
x = 0. Also r3 ∶= (true,∅) ↣ x = 0 ⋅stutt({x ≥ 0}) ⋅⊠ is not a conditional trace: it
does not satisfy the Consistency property since x = 0 implies the (only) negative
condition in the successive conditional state (x ≥ 0).

Note that finite conditional traces not ending in ⊠ are partial traces that
can still evolve and thus they are always a prefix of a longer conditional trace.

Definition 3.6 (Semantic domain) A set R ⊆ CT is closed by prefix if for
each r ∈ R, all the prefixes p of r (denoted as p ≤pref r) are also in R.

We denote the domain of non-empty sets of conditional traces that are closed
by prefix as P (i.e., P ∶= {R ⊆ CT ∣R ≠ ∅, r ∈ R⇒ ∀p ≤pref r. p ∈ R}).

We order elements in P by set inclusion ⊆.

It is worth noting that (P, ⊆, ⋃, ⋂, CT, {ε}) is a complete lattice.
This conceptual representation is pretty simple, especially to understand

the lattice structure, considered the fact that we admit infinite traces. How-
ever, each prefix-closed set contains a lot of redundant traces, which are quite
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inconvenient for technical definitions. Thus, we will use an equivalent rep-
resentation obtained by considering the crown of prefix-closed sets. Namely,
given P ∈ P, we remove all the prefixes of a trace in the set with the function
maximal(P ) ∶= {r ∈ P ∣ ∄p ∈ P ∖ {r}. r ≤pref p}. Let M ∶= maximal(CT),
M ∶= {maximal(P ) ∣P ∈ P} and call maximal conditional trace sets the elements
of M. The inverse of map maximal is, for each M ∈M,

prefix(M) ∶= {p ∈ CT ∣p ≤pref r, r ∈M} (3.1)

The order of M is induced from the one in P as M1 ⊑ M2 ⇐⇒ prefix(M1) ⊆
prefix(M2) which is equivalent to say that M1 ⊑ M2 ⇐⇒ ∀r1 ∈ M1 ∃r2 ∈
M2. r1 ≤pref r2. We define the lub ⊔ and the glb ⊓ of M analogously. It is

straightforward to prove that (P, ⊆) −−−−−−−−−−→Ð→←←Ð−−−−−−−−−−
maximal

prefix
(M, ⊑) is an order-preserving

isomorphism, so (M, ⊑, ⊔, ⊓, M, {ε}) is also a complete lattice.
Although this second representation is very convenient for technical def-

initions, it is not very suited for examples. For instance, different maximal
traces have frequently (significant) common prefixes; hence, some parts have
to be written many times and, more important, it can be difficult to visualize
the repetition (obfuscating the comprehension). Thus, in our examples we will
use another equivalent representation in terms of prefix trees. Namely, we will
use trees with (non root) nodes labeled with conditional states. Given P ∈ P,
tree(P ) builds the prefix tree of P , obtained by combining all the sequences
that have a prefix in common in the same path. Let T ∶= {tree(P ) ∣P ∈ P}. The
inverse of tree is the function path ∶T → P which returns the set of all possible
paths starting from the root. Let ⊴ be the order on T induced by the order on
P, i.e., T1 ⊴ T2 ⇐⇒ path(T1) ⊆ path(T2). We define the lub and glb of T in

a similar way. It is straightforward to prove that (P, ⊆) −−−−−−→Ð→←←Ð−−−−−−
tree

path
(T, ⊴) is an

order-preserving isomorphism, so also (T, ⊴) is a complete lattice. In the sequel
we will use the representation which is most convenient in each case.

3.2 Fixpoint Denotations of Programs

The technical core of our semantics definition is the agent semantics evaluation
function (Definition 3.15, page 16) which, given an agent A and an interpre-
tation I (for the process symbols of A), builds the maximal conditional traces
associated to A. To define it, we need first to introduce some auxiliary semantic
functions.

Definition 3.7 (Propagation Operator) Let r ∈ M and c ∈ C. We define
the propagation of c in r, written r↓c, by structural induction as ⊠↓c = ⊠, ε↓c = ε
and

((η+, η−) ↣ d ⋅ r′)↓c =

⎧⎪⎪
⎨
⎪⎪⎩

(η+ ⊗ c, η−) ↣ d⊗ c ⋅ (r′↓c) if c≫ (η+, η−), d⊗ c ≠ ff

(η+ ⊗ c, η−) ↣ ff ⋅ ⊠ if c≫ (η+, η−), d⊗ c = ff

(stutt(η−) ⋅ r′)↓c = stutt(η−) ⋅ (r′↓c) if ∀c− ∈ η−. c ⊬ c−

We abuse notation and denote by R↓c the point-wise extension of ↓c to sets of
conditional traces: R↓c ∶= {r↓c ∣ r ∈ R and r↓c is defined}.
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This operator is used in the definition of the semantics of constructs that add
new information to traces. By definition, the propagation operator ↓ is a partial
function M×C→M that instantiates a conditional trace with a given constraint
and checks the consistency of the new information with the conditional states in
the trace. This information needs to be propagated also to the successive (i.e.,
future) conditional states in order to maintain the monotonicity of the store.

Example 3.8
Given the conditional trace r ∶= (true,∅) ↣ x > 10 ⋅ (true,∅) ↣ x > 20 ⋅ ⊠,
the propagation of y > 2 in r (r↓y>2) is (y > 2,∅) ↣ x > 10 ∧ y > 2 ⋅ (y > 2,
∅) ↣ x > 20 ∧ y > 2 ⋅ ⊠.

For r′ ∶= (true,{y > 0}) ↣ true ⋅ ⊠ the propagation r′↓y>2 is not defined since
y > 2 É (true,{y > 0}).

Finally, given the conditional trace r′′ ∶= (true,∅) ↣ y < 0⋅⊠, the propagation
r′′↓y>2 produces the conditional trace (y > 2,∅) ↣ false ⋅⊠ since y > 2 ≫ (true,∅)
and y < 0 ∧ y > 2 = false.

Note that the consecutive propagation of two constraints (r↓c)↓c′ is equiva-
lent to r↓(c⊗c′) (as stated formally in Lemma A.2).

The following parallel composition auxiliary operator is used in the definition
of the semantics of the parallel construct. Intuitively, this operator combines
(with maximal parallelism) the information coming from two conditional traces.
It checks the satisfiability of the conditions and the consistency of the resulting
stores.

Definition 3.9 (Parallel composition) The parallel composition partial op-
erator ∥̄∶M×M→M is the commutative closure of the following partial opera-
tion defined by structural induction as: r ∥̄ ε ∶= r, r ∥̄ ⊠ ∶= r and

(stutt(η−1 ) ⋅ r
′
1) ∥̄ (stutt(η−2 ) ⋅ r

′
2) ∶= stutt(η−1 ∪ η

−
2 ) ⋅ (r

′
1 ∥̄ r

′
2)

Moreover, if η1 ⊗ η2 is valid, then

(η1 ↣ c1 ⋅ r
′
1) ∥̄ (η2 ↣ c2 ⋅ r

′
2) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

η1 ⊗ η2 ↣ c1 ⊗ c2 ⋅ ((r
′
1↓c2) ∥̄ (r′2↓c1)) if c1 ⊗ c2 ≠ ff

η1 ⊗ η2 ↣ ff ⋅ ⊠ if c1 ⊗ c2 = ff ,

Finally, if ∀c− ∈ η−2 . η
+
1 ⊬ c

−, then

((η+1 , η
−
1 ) ↣ c1 ⋅ r

′
1) ∥̄ (stutt(η−2 ) ⋅ r

′
2) ∶= (η+1 , η

−
1 ∪ η

−
2 ) ↣ c1 ⋅ (r

′
1 ∥̄ (r′2↓c1))

Clearly, by definition, ∥̄ is commutative. Moreover, because of ⊗ associativity,
∥̄ is also associative. It is worth noting that, if the propagated constraint is in
contradiction with a condition into a trace r then the parallel composition is
not defined on that r.

Example 3.10
Consider r1 ∶= (true,∅) ↣ y > 2 ⋅ (y > 2,∅) ↣ y > 2 ⋅ ⊠ and r2 ∶= (z = 1,
∅) ↣ z = 1 ⋅ ⊠. Since r1 and r2 do not share variables, the compatibility checks
always succeed and then r1 ∥̄ r2 = (z = 1,∅) ↣ y > 2 ∧ z = 1 ⋅ (y > 2 ∧ z = 1,
∅) ↣ y > 2 ∧ z = 1 ⋅ ⊠.

Consider now r3 ∶= stutt({y > 0}) ⋅ (y > 0,∅) ↣ y > 0 ∧ z = 3 ⋅ ⊠. Traces r1

and r3 share the variable y and it can be seen that the information regarding
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y in the two traces is consistent, thus r1 ∥̄ r3 = (true,{y > 0}) ↣ y > 2 ⋅ (y > 2,
∅) ↣ y > 2 ∧ z = 3 ⋅ ⊠.

Finally, consider r4 ∶= (true,∅) ↣ true ⋅ (true,{y > 0}) ↣ true ⋅ ⊠. This trace,
in the second time instant, requires that the constraint y > 0 cannot be entailed
by the current store. However, the trace r1 states, at the same time instant,
that y > 2. This is the reason because r1 ∥̄ r4 is not defined.

Note that ↓ distributes over ∥̄, in the sense that (r1 ∥̄ r2)↓c = (r1↓c) ∥̄ (r2↓c)
(as stated formally in Lemma A.3).

The last auxiliary operator that we need is the hiding operator ∃̄∶Var ×
M →M which, intuitively, hides the information regarding a given variable in
a conditional trace.

Definition 3.11 (Hiding operator) Given r ∈ M and x ∈ V, we define the
hiding of x in r, written ∃̄x r, by structural induction as ∃̄x ε ∶= ε, ∃̄x ⊠ ∶= ⊠,

∃̄x ((η
+, η−) ↣ c ⋅ r′) ∶= ∃x ((η

+, η−) ↣ c) ⋅ ∃̄x r
′

∃̄x ( stutt(η−) ⋅ r′) ∶= ∃x stutt(η−) ⋅ ∃̄x r
′

We distinguish two special classes of conditional traces.

Definition 3.12 (Self-sufficient and x-self-sufficient conditional trace)
A maximal trace r ∈ M is said to be self-sufficient if the first condition is (tt ,∅)
and, for each ti = ηi ↣ ci and ti+1 = ηi+1 ↣ ci+1, ci ⊫ ηi+1 (each store satisfies
the successive condition).

Moreover, r is self-sufficient w.r.t. x ∈ V (x-self-sufficient) if ∃̄Var∖{x} r is
self-sufficient.

Definition 3.12 is stronger than Definition 3.4 since the latter does not require
satisfiability but just consistency of the store w.r.t. conditions. Informally, this
new definition demands that for self-sufficient conditional traces, no additional
information (from other agents) is needed in order to complete the computation.
In an x-self-sufficient conditional trace the same happens but only considering
information about variable x.

Example 3.13
The conditional trace r1 of Example 3.5 is not self-sufficient since y = 0⊯ x > 2.

Now consider a variation where we add the information x = 4 to the stores,
namely r2 ∶= (true,∅) ↣ y = 0 ∧ x = 4 ⋅ (x > 2,∅) ↣ y = 0 ∧ z = 3 ∧ x = 4 ⋅ ⊠. It
is easy to see that r2 is a self-sufficient conditional trace, essentially because we
add enough information in the first store to satisfy the second condition, i.e.,
y = 0 ∧ x = 4⊫ (x > 2,∅).

Moreover, r2 is also x-self-sufficient since ∃̄Var∖{x} r2 = (true,∅) ↣ x = 4⋅(x >
2,∅) ↣ x = 4 ⋅ ⊠, which is a self-sufficient trace.

3.2.1 Interpretations

Now we introduce the notion of interpretation, which is used to give meaning to
process calls by associating to each process symbol a set of (maximal) conditional
traces “modulo variance”.
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Definition 3.14 (Interpretations) Let PCΠ ∶= {p(x⃗) ∣ p ∈ Π, x⃗ are distinct
variables} (or simply PC when clear from the context).

Two functions I, J ∶PC → M are variants, denoted by I ≅ J , if for each
π ∈ PC there exists a variable renaming ρ such that (I(π))ρ = J(πρ).

An interpretation is a function I ∶PC →M modulo variance3.
The semantic domain IΠ (or simply I when clear from the context) is the

set of all interpretations ordered by the pointwise extension of ⊑ (which by an
abuse of notation we also denote by ⊑).

The partial order on I formalizes the evolution of the computation process.
(I, ⊑) is a complete lattice and its least upper bound and greatest lower bound
are the pointwise extension of ⊔ and ⊓, respectively. In the sequel we abuse the
notations of M for I as well. The bottom element is �I ∶= λπ. {ε}.

Essentially, we define the semantics of each predicate in Π over formal pa-
rameters whose names are actually irrelevant. It is important to note that
PCΠ (modulo variance) has the same cardinality of Π (and is thus finite) and
therefore each interpretation is a finite collection (of possibly infinite elements).
Hence, in the sequel, we explicitly write interpretations by cases, like

I ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

π1 ↦ T1
⋮
πn ↦ Tn

representing
I(π1) ∶= T1

⋮

I(πn) ∶= Tn

In the following, any I ∈ I is implicitly considered as an arbitrary function
PC →M obtained by choosing an arbitrary representative of the elements of I
generated by ≅. Actually, all the operators that we use on IΠ are also indepen-
dent of the choice of the representative. Therefore, we can define any operator
on I in terms of its counterpart defined on functions PC →M.

Moreover, we also implicitly assume that the application of an interpre-
tation I to a process call π, denoted by I(π), is the application I(π) of
any representative I of I which is defined exactly on π. For example, if
I = (λp(x, y).{(true,∅) ↣ x = y})/≅ then I(p(u, v)) = {(true,∅) ↣ u = v}.

3.2.2 Semantics Evaluation Function of Agents

We are finally ready to define the evaluation function of an agent A w.r.t.
an interpretation I , which computes the set of (maximal) conditional traces
associated to the agent A. It is important to note that the computation does
not depend on an initial store. Instead, the weakest (most general) condition
for each agent is (computed and) accumulated in the conditional traces.

Definition 3.15 (Semantics Evaluation Function for Agents) Given A ∈
AΠ

C and I ∈ IΠ, we define the semantics evaluation AJAKI ∈ M by structural
induction as follows.

AJskipKI ∶= {⊠} (3.2)

AJtell(c)KI ∶= {(tt ,∅) ↣ c ⋅ ⊠} (3.3)

AJA ∥ BKI ∶= ⊔{rA ∥̄ rB ∣ rA ∈ AJAKI , rB ∈ AJBKI} (3.4)

AJ∃xAKI ∶= ⊔{ ∃̄x r ∣ r ∈ AJAKI , r is x-self-sufficient} (3.5)

3i.e., a family of elements of M indexed by PC modulo variance.
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AJp(x⃗)KI ∶= (tt ,∅) ↣ tt ⋅ I(p(x⃗))4 (3.6)

AJ
n

∑
i=1

ask(ci) → AiKI ∶= lfpM λR. (stutt({c1, . . . , cn}) ⋅R ⊔

⊔{(ci,∅) ↣ ci ⋅ (r↓ci) ∣1 ≤ i ≤ n, r ∈ AJAiKI}) (3.7)

AJnow c then A else BKI ∶=
{(c,∅) ↣ c ⋅ ⊠ ∣ ⊠ ∈ AJAKI} ⊔ (3.8a)

⊔{(η+ ⊗ c, η−) ↣ d⊗ c ⋅ (r↓c) ∣ (η+, η−) ↣ d ⋅ r ∈ AJAKI ,
d⊗ c ≠ ff , ∀c− ∈ η−. η+ ⊗ c ⊬ c−} ⊔ (3.8b)

⊔{(η+ ⊗ c, η−) ↣ ff ⋅ ⊠ ∣ (η+, η−) ↣ d ⋅ r ∈ AJAKI ,
d⊗ c = ff , ∀c− ∈ η−. η+ ⊗ c ⊬ c−} ⊔ (3.8c)

⊔{(c, η−) ↣ c ⋅ (r↓c) ∣ stutt(η−) ⋅ r ∈ AJAKI , ∀c− ∈ η−. c ⊬ c−} ⊔ (3.8d)

⊔{(tt ,{c}) ↣ tt ⋅ ⊠ ∣ ⊠ ∈ AJBKI} ⊔ (3.8e)

⊔{(η+, η− ∪ {c}) ↣ d ⋅ r ∣ (η+, η−) ↣ d ⋅ r ∈ AJBKI , η+ ⊬ c} ⊔ (3.8f)

⊔{(tt , η− ∪ {c}) ↣ tt ⋅ r ∣ stutt(η−) ⋅ r ∈ AJBKI} (3.8g)

By lfp(F ) we denote the least fixed point of any monotonic function F ∶ L → L,
over some lattice L.

We now explain in detail each case of the definition.

(3.2) The semantics of the skip agent contains just the trace composed of the
end-of-process construct that marks the end of the computation.

(3.3) For the tell(c) agent we have condition (tt ,∅) since c must be added to
the store in any case (in the next time instant). Next, the computation
terminates (with the end-of-process symbol ⊠).

(3.4) The semantics for the parallel composition of two agents is defined in
terms of the auxiliary operator ∥̄, explained in Definition 3.9.

(3.5) The hiding construct must hide the information about x from all traces
that cannot be altered by the presence of external information about x,
thus the hiding operation is applied just to x-self-sufficient conditional
traces (Definition 3.12), that are those for which no additional information
about variable x is needed (from other agents) in order to complete the
computation.

(3.6) The semantics of process call p(x⃗) simply delays by one time instant the
traces for p(x⃗) in interpretation I by prefixing them with (tt ,∅) ↣ tt .

(3.7) The semantics for the non-deterministic choice collects, for each guard ci,
a conditional trace of the form (ci,∅) ↣ ci ⋅(r↓ci). This trace requires that
ci has to be satisfied by the current store (positive part of the condition in
the first state). Then, the constraint ci is propagated to the trace r (the
continuation of the computation, which belongs to the semantics of Ai).

4Recall that by s1 ⋅ S we denote {s1 ⋅ s2 ∣ s2 ∈ S}.
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Furthermore, we collect the stuttering traces, which correspond to the
case when the computation suspends. Traces representing this situation
are of the form stutt({c1, . . . , cn}) ⋅ r where r is, recursively, an element of
the semantics of the choice agent.

(3.8) The definition for the conditional agent now c then A else B is in principle
similar to the previous case. However, since the now construct must be
instantaneous, in order to correctly model the timing of the agent we have
seven cases depending on the possible forms of the first conditional state
of the semantics of A (respectively B), on the value of the resulting store
(ff or not) and on the fact that the guard c is satisfied or not in the current
time instant.

(3.8a)–(3.8d) represent the case in which the guard c is satisfied by the
current store. In this case, the agent now must behave instantaneously as
A. For this reason, we distinguish four different cases corresponding to the
possible form of conditional traces associated to A. In particular, (3.8a)
corresponds to the case when the computation of A ends, thus also the
computation of the conditional agent must end. In (3.8b), the information
added (in one step) by A is compatible with the condition and with the rest
of the computation and, moreover, does not produce ff when merged—
by using ⊗—with the current store d. (3.8c) stops the conditional trace
since the information produced by A added to the current store produces
the inconsistent store ff . Finally, (3.8d) corresponds to the case when A
suspends.

(3.8e)–(3.8g) consider the cases when c is not entailed by the current store.
In this situation, the agent now must behave instantaneously as B, and
the definition follows the same reasoning as for (3.8a), (3.8b) and (3.8d).
The main difference is that, instead of adding c to the positive condition
in the first conditional state, we add {c} to the negative condition.

In the sequel, we use a standard notation for the iterates of the computation
of the least fixpoint of a monotonic function F ∶ L → L, over lattice L whose
bottom is � and lub is ⊔. Namely, F ↑k denotes, for each k ∈ N, F k(�) and F ↑ω
denotes ⊔{F k(�) ∣k ∈ N}. Recall that, for a continuos F , lfp(F ) = F ↑ω.

Example 3.16
Let us evaluate the semantics for the tccp agent A1 ∶= A2 ∥ A3 where

A2 ∶= tell(y = 2) ∥ tell(x = y)

A3 ∶= ask(true) → now (x = 0) then tell(z > 0) else A4

A4 ∶= ask(y ≥ 0) → tell(z ≤ 0)

Since there are no process calls, the interpretation I is irrelevant for the result.
We start by computing the semantics for A4, i.e., AJA4KI = lfpM(F ) where

F (R) ∶= {r} ⊔ stutt({y ≥ 0}) ⋅R and

r ∶= (y ≥ 0,∅) ↣ y ≥ 0 ⋅ (y ≥ 0,∅) ↣ y ≥ 0 ∧ z ≤ 0 ⋅ ⊠

The iterates of F are:

F ↑1 = F ({ε}) = {r, stutt({y ≥ 0})}
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(y ≥ 0,∅) ↣ y ≥ 0

(y ≥ 0,∅) ↣ y ≥ 0 ∧ z ≤ 0

stutt({y ≥ 0})

⊠

(y ≥ 0,∅) ↣ y ≥ 0

(y ≥ 0,∅) ↣ y ≥ 0 ∧ z ≤ 0

stutt({y ≥ 0})

⊠

Figure 2: Tree representation of AJA4KI of Example 3.16.

(y ≥ 0,∅) ↣ y ≥ 0

(y ≥ 0,∅) ↣ y ≥ 0 ∧ z ≤ 0

stutt({y ≥ 0})

⊠

Figure 3: Graph representation of AJA4KI of Example 3.16.

F ↑2 = F (F ↑1) = {r, stutt({y ≥ 0}) ⋅ r, stutt({y ≥ 0}) ⋅ stutt({y ≥ 0})}

⋮

lfpM(F ) = {( stutt({y ≥ 0}))
n
⋅ r ∣n ∈ N} ⊔ {stutt({y ≥ 0}) ⋯ stutt({y ≥ 0}) ⋯}

Figure 2 graphically represents AJA4KI , which consists of a trace for the case in
which the guard is satisfied, and a set of traces for the case in which it suspends.
As it can be observed, the tree in Figure 2 consists of an infinite replication of the
same pattern. We can depict such infinite trees as finite graphs, as in Figure 3.
The back-loop arc is just a graphical shortcut which represents the (infinite)
tree that is obtained by unrolling the loop. It is important to note that nodes
reached by a path of length 2 (via the back-loop arc) have to be considered as
a single arc, thus corresponding just to a one time instant delay.

With the semantics of A4, we compute AJA3KI = {r1, r2} ∪R where

r1 ∶= (true,∅) ↣ true ⋅ (x = 0,∅) ↣ x = 0 ∧ z > 0 ⋅ ⊠

r2 ∶= (true,∅) ↣ true ⋅ (y ≥ 0,{x = 0}) ↣ y ≥ 0 ⋅ (y ≥ 0,∅) ↣ y ≥ 0 ∧ z ≤ 0 ⋅ ⊠

R ∶= (true,∅) ↣ true ⋅ (true,{y ≥ 0, x = 0}) ↣ true ⋅ AJA4KI

All the traces of AJA3KI start with the conditional store (true,∅) ↣ true cor-
responding to the ask agent with guard true. The trace r1 corresponds to the
case when (in the current time instant) the guard x = 0 is satisfied; the trace
r2 corresponds to x = 0 not satisfied and y ≥ 0 satisfied; while we have R when
none is satisfied and A4 is executed.

Now we can compute the semantics for A1 by parallel composition of AJA3KI
with AJA2KI = {(true,∅) ↣ (y = 2 ∧ x = y) ⋅ ⊠}. The combination of the trace
r1 in AJA3KI with the trace in AJA2KI does not produce contributes since
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the constraint y = 2, when propagated to the second component of r1, is in
contradiction with the positive part of the condition (y = 2∧x = y∧x = 0 ≡ false).
Indeed, (true,∅) ↣ (y = 2∧x = y)⋅((x = 0,∅) ↣ x = 0∧z > 0⋅⊠)↓(y=2∧x=y) = (true,
∅) ↣ (y = 2 ∧ x = y) ⋅ (false,∅) ↣ false ⋅ ⊠ is not a trace since (false,∅) is not a
valid condition.

The combination of the set of traces R (corresponding to the suspension of
the agent A4) and the tell(y = 2) agent also produces no trace. Definition 3.15
prescribes to compute (true,∅) ↣ y = 2 ∧ x = y ⋅ ⊔{((true,{y ≥ 0, x = 0}) ↣
true ⋅ r′)↓(y=2∧x=y) ∣ r′ ∈ AJA4KI}, which is empty, since y = 2 ∧ x = y É
(true,{y ≥ 0, x = 0}) because y = 2 ∧ x = y ⇒ y ≥ 0. These traces would
correspond to the suspension of the agent A4, and this can happen only when
y ≥ 0 is not satisfied, but the first component of the parallel agent tells y = 2
(thus y ≥ 0 is satisfied). Therefore, only the combination of the trace r2 in
AJA3KI and the trace of AJA2KI produces a trace. Namely

AJA1KI ={(true,∅) ↣ (y = 2 ∧ x = y) ⋅ (y = 2 ∧ x = y,{x = 0}) ↣ (y = 2 ∧ x = y)⋅

(y = 2 ∧ x = y,∅) ↣ (y = 2 ∧ x = y ∧ z ≤ 0) ⋅ ⊠}

Due to the partial nature of the constraint system, the combination of the
hiding operator with non-determinism can make the language behavior non-
monotonic. As already mentioned, this is the reason because for all non-
monotonic languages of the ccp paradigm, the compositional semantics that
have been written either avoid non-monotonic constructs or restrict their use.
Let us show now that we are able to handle the following example, which is an
adaptation to tccp of the one used in [13, 23] to illustrate the non-monotonicity
problem.

Example 3.17
Consider the non-monotonic agent

A ∶= ask(x = 1) → tell(true) + ask(true) → tell(y = 2).

It is easy to see that for the initial store true just the second branch can be
taken, whereas for the (greater) initial store x = 1, the two branches can be
executed.

Since there are no process calls, for any interpretation I , AJAKI = {r1, r2},
where

r1 ∶= (x = 1,∅) ↣ x = 1 ⋅ (x = 1,∅) ↣ x = 1 ⋅ ⊠

r2 ∶= (true,∅) ↣ true ⋅ (true,∅) ↣ y = 2 ⋅ ⊠

We have two possible traces depending on whether the initial store is strong
enough to entail x = 1 or not.

[13, 23] show that within their semantics they do not collect all possible
evaluations for agent A′ ∶= tell(x = 1) ∥ ∃xA. On the contrary, in our case, since

∃̄Var∖{x} r1 = (x = 1,∅) ↣ x = 1 ⋅ (x = 1,∅) ↣ x = 1 ⋅ ⊠

∃̄Var∖{x} r2 = (true,∅) ↣ true ⋅ (true,∅) ↣ true ⋅ ⊠

only r2 is x-self-sufficient and, by Definition 3.15,

AJ∃xAKI ={(true,∅) ↣ true ⋅ (true,∅) ↣ y = 2 ⋅ ⊠}.
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By composing we have

AJA′KI = {(true,∅) ↣ x = 1 ⋅ (x = 1,∅) ↣ y = 2 ∧ x = 1 ⋅ ⊠}.

It is easy to see that the information on the variable x added by the tell agent
does not affect the internal execution of the agent A, as expected.

There are some technical decisions that ensure the correctness of the defined
semantics. One can note that in the definition of the propagation operator
(Definition 3.7), the propagated information is added not only to the store of
the state, but also to the (positive part of the) condition. This means that the
positive part of the conditions in a trace contains not only the information that
had to be satisfied up to that computation step, but also the constraints that
have been added during computation in the previous time instants. From the
computations in the examples above, it may seem that the propagation of the
accumulated information in the conditions of the states could be redundant.
However, it is necessary in order to have full abstraction w.r.t. the behavior,
otherwise we would distinguish agents whose behavior is actually the same, as
shown in the following example.

Example 3.18
Consider the following two (very similar) agents:

A1 ∶= ask(x > 2) → tell(y = 1) A2 ∶= ask(x > 4) → tell(y = 1)

We have similar but different semantics. Namely,

AJA1KI = {( stutt({x > 2}))
n
⋅ r1 ∣n ∈ N} ⊔ {stutt({x > 2}) ⋯ stutt({x > 2}) ⋯}

r1 = (x > 2,∅) ↣ true ⋅ (x > 2,∅) ↣ y = 1 ⋅ ⊠

AJA2KI = {( stutt({x > 4}))
n
⋅ r2 ∣n ∈ N} ⊔ {stutt({x > 4}) ⋯ stutt({x > 4}) ⋯}

r2 = (x > 4,∅) ↣ true ⋅ (x > 4,∅) ↣ y = 1 ⋅ ⊠

However, consider now the following two agents, which embed A1 and A2 in the
same context:

A′
1 ∶= tell(x = 7) ∥ ask(true) → A1 A′

2 ∶= tell(x = 7) ∥ ask(true) → A2

Then, the two traces corresponding to the satisfaction of the guards are, respec-
tively:

r3 = (true,∅) ↣ x = 7 ⋅ r1↓(x=7) r4 = (true,∅) ↣ x = 7 ⋅ r2↓(x=7)

Since the propagated constraint is stronger than the guards in both the agents,
the resulting compositions are the same. In fact, thanks to the accumulation of
the store in the condition, we do not distinguish them:

r1↓(x=7) = r2↓(x=7) = (true,∅) ↣ x = 7⋅(x = 7,∅) ↣ x = 7⋅(x = 7,∅) ↣ x = 7∧y = 1⋅⊠

If the constraint x = 7 were not added to the condition, but only to the store
of the state, then we would have two different conditional traces for these two
agents.
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(x > 2,∅) ↣ x > 2 ∧ y < 0

⊠

(true,{x > 2}) ↣ true

I(q(x, y))

Figure 4: Tree representation for AJAKI of Example 3.20.

(x > 2,∅) ↣ x > 2 ∧ y < 0

⊠ (true,{x > 2}) ↣ true

Figure 5: Graph representation of the fixpoint F JDK(q(x, y)) of Example 3.20.

3.2.3 Fixpoint Denotations of Process Declarations

Now we can finally define the semantics for a set of process declarations D.

Definition 3.19 (Fixpoint semantics) Given D ∈ DΠ
C, we define DJDK∶ I →

I, for each p ∈ Π, as

DJDKI (p(x⃗)) ∶= ⊔{AJAKI ∣p(x⃗) ∶− A ∈D}.

The fixpoint denotation of D is F JDK ∶= lfp(DJDK) = DJDK↑ω.
We denote with ≈F the equivalence relation on DΠ

C induced by F . Namely,
D1 ≈F D2 ⇐⇒ F JD1 K = F JD2 K.

The semantics of a tccp program D . A is PJD . AK ∶= AJAKF JDK .

F JDK is well defined sinceDJDK is continuous (as stated formally in Lemma A.5).
Let us show how the semantics for a set of process declarations is computed

by means of some examples.

Example 3.20
Let D ∶= {q(x , y) ∶− A} where

A ∶= now (x > 2) then tell(y < 0) else q(x, y).

First we need to compute, for each I ∈ I, the evaluation of the body of the
process declaration. Namely,

AJAKI ={r̄} ⊔ {(true,{x > 2}) ↣ true ⋅ s ∣ s ∈ I(q(x, y))}

where r̄ ∶= (x > 2,∅) ↣ x > 2 ∧ y < 0 ⋅ ⊠. Intuitively, the trace r̄ corresponds to
the then branch of the conditional agent, whereas the else branch is represented
by a set of traces, one for each trace in the interpretation of the process call.
AJAKI is graphically represented in Figure 4.

The iterates of DJDK are

DJDK↑1 = {q(x, y) ↦ {r̄, (true,{x > 2}) ↣ true}
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(x = 4,∅) ↣ x = 4 stutt({x = 4})

(x = 4,∅) ↣ x = 4

I(p(x))↓x=4

Figure 6: Graph representation for AJAKI of Example 3.21.

(x = 4,∅) ↣ x = 4 stutt({x = 4})

(x = 4,∅) ↣ x = 4

(x = 4,∅) ↣ x = 4

Figure 7: Graph representation of the fixpoint F JDK(p(x)) for the Exam-
ple 3.21.

DJDK↑2 = {
q(x, y) ↦ {r̄, (true,{x > 2}) ↣ true ⋅ r̄,

(true,{x > 2}) ↣ true ⋅ (true,{x > 2}) ↣ true}

⋮

DJDK↑ω = {
q(x, y) ↦ {((true,{x > 2}) ↣ true)

n
⋅ r̄ ∣n ∈ N}

⊔{(true,{x > 2}) ↣ true ⋯ (true,{x > 2}) ↣ true ⋯}

The limit F JDK(q(x, y)) = (DJDK↑ω)(q(x, y)) is graphically represented in Fig-
ure 5.

Example 3.21
Let D ∶= {p(x) ∶− A} where A ∶= ask(x = 4) → p(x). First we need to compute,
for each I ∈ I, the evaluation of the body of the process declaration. Namely,

AJAKI ={( stutt({x = 4}))
n
⋅ r̄ ⋅ s ∣n ∈ N, s ∈ I(p(x))} ⊔

{stutt({x = 4}) ⋯ stutt({x = 4}) ⋯}

where r̄ ∶= (x = 4,∅) ↣ x = 4 ⋅ (x = 4,∅) ↣ x = 4. It is worth noticing that the
second conditional state of r̄ corresponds to the delay that is introduced each
time that a process call is run. AJAKI is graphically represented in Figure 6.

The iterates of DJDK are

DJDK↑1 = {
p(x) ↦ {(stutt({x = 4}))n ⋅ r̄ ∣n ∈ N} ⊔

{stutt({x = 4}) ⋯ stutt({x = 4}) ⋯}
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(y > x,∅) ↣ y > x

(y ≤ x,∅) ↣ y ≤ x
stutt({y > x, y ≤ x})

⊠

(y > x,∅) ↣ y > x

I(p(x + 1))↓y>x

Figure 8: Graph representation for AJAKI in Example 3.22.

DJDK↑2 = {
p(x) ↦ {(stutt({x = 4}))n ⋅ r̄ ⋅ r̄ ∣n ∈ N} ⊔

{stutt({x = 4}) ⋯ stutt({x = 4}) ⋯}

⋮

F JDK = {
p(x) ↦ {(stutt({x = 4}))n ⋅ r̄ ⋯ r̄ ⋯ ∣n ∈ N} ⊔

{stutt({x = 4}) ⋯ stutt({x = 4}) ⋯}

F JDK(p(x)) is graphically represented in Figure 7. Note that the application
of the propagation operator to the previous iterates removes all the stutter-
ing sequences, and this is the reason because just the first stuttering sequence
remains.

Example 3.22
Let D ∶= {p(x , y) ∶− A} where

A ∶= ask(y > x) → p(x + 1, y) + ask(y ≤ x) → skip

As usually done in the tccp community, we assume that we can use expressions
of the form x + 1 directly in the arguments of a process call. We can simulate
this behavior by writing ∃x′ (tell(x′ = x + 1) ∥ p(x′, y)) instead of p(x+1, y) (but
introducing a delay of one time unit). We have

AJAKI = {(y > x,∅) ↣ y > x ⋅ (y > x,∅) ↣ y > x ⋅ r↓y>x ∣ r ∈ I(p(x + 1, y))} ⊔

{(y ≤ x,∅) ↣ y ≤ x ⋅ ⊠} ⊔

{(stutt({y > x, y ≤ x}))n ⋅ (y > x,∅) ↣ y > x⋅

(y > x,∅) ↣ y > x ⋅ r↓y>x ∣ n ∈ N, r ∈ I(p(x + 1, y))} ⊔

{(stutt({y > x, y ≤ x}))n ⋅ (y ≤ x,∅) ↣ y ≤ x ⋅ ⊠ ∣ n ∈ N} ⊔

{stutt({y > x, y ≤ x}) ⋯ stutt({y > x, y ≤ x}) ⋯}

which is graphically shown in Figure 8. For this agent, we have three branches,
one for each condition of the choice and one corresponding to the stuttering
possibility.
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(y > x,∅) ↣ y > x

(y ≤ x,∅) ↣ y ≤ x

stutt({y > x, y ≤ x})

⊠(y > x,∅) ↣ y > x

Figure 9: Graph representation of DJDK↑1(p(x, y)) in Example 3.22.

(y > x,∅) ↣ y > x (y ≤ x,∅) ↣ y ≤ x

⊠

stutt({y > x, y ≤ x})

(y > x,∅) ↣ y > x

(y = x + 1,∅) ↣ y = x + 1(y > x + 1,∅) ↣ y > x + 1

(y > x + 1,∅) ↣ y > x + 1
⊠

Figure 10: Graph representation of DJDK↑2(p(x, y)) in Example 3.22.

The first iteration of DJDK is

DJDK↑1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(x, y) ↦ {(y > x,∅) ↣ y > x ⋅ (y > x,∅) ↣ y > x} ⊔
{(y ≤ x,∅) ↣ y ≤ x ⋅ ⊠} ⊔
{(stutt({y > x, y ≤ x}))n ⋅ (y > x,∅) ↣ y > x⋅

(y > x,∅) ↣ y > x ∣ n ∈ N} ⊔
{(stutt({y > x, y ≤ x}))n ⋅ (y ≤ x,∅) ↣ y ≤ x ⋅ ⊠ ∣ n ∈ N} ⊔
{stutt({y > x, y ≤ x}) ⋯ stutt({y > x, y ≤ x}) ⋯}

which is graphically represented in Figure 9. Figure 10 represents the second
iteration DJDK↑2(p(x, y)), whereas Figure 11 is the graphical representation of
F JDK(p(x, y)). By looking at the semantics, it can be observed that the process
stops in one time instant when y ≤ x and in 1+2(y−x) time instants otherwise.

Example 3.23
Consider the following process declaration, presented in [19], which models a
subsystem of a microwave controller. The underlying constraint system is the
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(y > x,∅) ↣ y > x (y ≤ x,∅) ↣ y ≤ x

⊠

stutt({y > x, y ≤ x})

(y > x,∅) ↣ y > x

(y = x + 1,∅) ↣ y = x + 1(y > x + 1,∅) ↣ y > x + 1

(y > x + 1,∅) ↣ y > x + 1

(y = x + 2,∅) ↣ y = x + 2(y > x + 2,∅) ↣ y > x + 2

⊠

⊠

Figure 11: Graph representation of F JDK(p(x, y)) in Example 3.22.

(well-known) Herbrand constraint system [12].

microwave(Door , Button, Error) ∶− ∃D ∃B ∃E

( tell(Error = [ ∣ E]) ∥ tell(Door = [ ∣D]) ∥ tell(Button = [ ∣ B])

∥ now(Door = [open ∣D] ∧Button = [on ∣ B])

then (∃E1 tell(E = [1 ∣ E1]) ∥ ∃B1 tell(B = [off ∣ B1]))

else ∃E1 tell(E = [0 ∣ E1])

∥ microwave(D ,B ,E))

This process declaration detects if the door is open while the microwave is turned
on. In that case, it forces that in the next time instant the microwave is turned-
off and it emits an error signal (value 1); otherwise, the agent emits a signal of
no error (value 0). Due to the monotonicity of the store, streams are used to
model imperative-style variables [14]. In the example, the streams Error , Door
and Button store the values that the simulated modifiable variables get along
the computation. The first three tell agents link the future values of the streams
with the future streams E, D and B. Then, when it is detected a possible risk
(characterized by the guard of the now agent), the microwave is turned off and
an error signal is emitted (by the then branch of the conditional agent). The
final recursive call restarts the same control at the next time instant.

The fixpoint semantics F(microwave(D ,B ,E)) is graphically represented in
Figure 12, where:

riskk ∶= ∃D ∃B(Door = [open ∣ . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

∣D] ∧Button = [on ∣ off ∣ on ∣ . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−1 times

∣ B])

stateb1...bn ∶= ∃E1 ∃D ∃B1(Error = [ ∣ b1 ∣ . . . ∣ bn ∣ E1] ∧Door = [ ∣D]∧

Button = [ ∣ on ∣ off ∣ . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Σn

i=1bi times

∣B1])
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(risk1,∅) ↣ state1

(true,{risk1}) ↣ state0

(risk2,∅) ↣ state01

(true,{risk2}) ↣ state00

(risk2,∅) ↣ state11

(risk1,{risk2}) ↣ state10

Figure 12: Tree representation of F JDK(microwave(D,B,E)) in Example 3.23.

We have coded the indices of stores in the conditional states with a binary
number in order to make the figure more readable. It is worth noticing that
the stores labeled with stateb where the last digit of b is 1 correspond to states
where an error is emitted.

All the conditional sequences in the semantics of this process are infinite
sequences. This is consistent with the fact that we are modeling a process that
is intended to be active forever (checking whether the risky situation holds). It
is worth noticing that this kind of processes can be handled only if the semantics
is able to capture infinite computations, which is one of the main features of
our proposal.

3.2.4 Full abstraction of F semantics

This subsection is dedicated to formally prove that our semantics F is (correct
and) fully abstract w.r.t. the small-step operational behavior. To formally link
hypothetical computations with real ones, we first need to define an auxiliary
operator which, taken an initial store c, instantiates the hypothetical states of a
conditional trace r producing the corresponding (real) behavioral timed trace.
Intuitively, this operator works by consistently adding to each conditional state
the information given by the initial store c, discarding those sequences which
falsify conditions.

Definition 3.24 (Instantiation operator) The instantiation operator ⇓∶M×
C→ C∗ is a partial function defined by structural induction as: ε⇓c ∶= ε; other-
wise r⇓ff ∶= ff ; otherwise ⊠⇓c ∶= c, otherwise

(stutt(η−) ⋅ r′)⇓c ∶= c if ∀c− ∈ η−. c ⊬ c−

(η ↣ d ⋅ r′)⇓c ∶= c ⋅ (r
′⇓c⊗d) if c⊫ η and (c⊗ d) ≠ ff

We abuse notation by denoting with R⇓c the extension of ⇓c to M: R⇓c ∶=
{r⇓c ∣ r ∈ R and r⇓c is defined}.

The instantiation operator is consistent w.r.t. the propagation operator (Def-
inition 3.7), in the sense that, for any c′ that entails c, r⇓c = (r↓c′)⇓c (as stated
formally in Lemma A.6). Moreover, the instantiation operator ⇓ “distributes”
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over the parallel composition operator ∥̄ (Definition 3.9) (as stated formally in
Lemma A.8).

The key result to prove correctness of F w.r.t. ≈ss is the following theorem
which shows that the small-step behavior of a program P can be determined by
instantiation of the semantics PJP K.

Theorem 3.25 For each program P and each c ∈ C, prefix(PJP K⇓c) = BssJP Kc.

The following theorem is the key result to prove full abstraction of F w.r.t. ≈ss .

Theorem 3.26 Let P1, P2 be two programs. Then PJP1K = PJP2K if and only
if BssJP1K = BssJP2K.

Proposition 3.27 Let D1, D2 ∈ DΠ
C. Then D1 ≈F D2 if and only if ∀A ∈

AΠ
C.PJD1 . AK = PJD2 . AK.

Correctness and full abstraction is a direct consequence of Theorems 3.25 and 3.26
and Proposition 3.27.

Corollary 3.28 (Correctness and full abstraction of F ) Let D1, D2 ∈ DΠ
C.

Then D1 ≈ss D2 if and only if D1 ≈F D2.

4 Big-step semantics

A small-step behavior contains all the details of the computation. However
typically only some parts of the execution are considered relevant. So frequently
is better to reason only about a specific abstraction of the small-step behavior,
instead of dealing with all execution details. In the literature, many authors (like
[14]) call observables all the abstractions of the small-step behavior of a specific
program5 (including the small-step behavior itself as the degenerate identity
abstraction). Moreover, they typically use this same name for the collection of
all observables of a set of declarations.

Many other authors use the term observable property (or simply observable)
for an abstraction function φ which, when applied to the set of traces of a pro-
gram, delivers the observations of interest. Then the observation, or observable
behavior, of program P is just the application of φ to the traces of P .

We prefer to use the latter nomenclature and, in the sequel, we call observable
behavior of a program Q w.r.t. observable φ (or simply φ-observable behavior of
Q) the image φ(BssJQK) and we denote it by BφJQK.

The observable property which is usually considered in papers dealing with
semantics of ccp languages (e.g. see [15]) is the one that collects the input/output
pairs of terminating computations, including deadlocked ones. Indeed, using
the (original version of the) transition system of Definition 2.1, [14] defines the
notion of input-output observable behavior as Oio(A) ∶= {⟨c0, cn⟩ ∣ ⟨A0, c0⟩ →

∗

⟨An, cn⟩ /→}. In this definition, there is an implicit reference to a set of declara-
tions D. Since in the sequel we need to state some formal results for two (differ-
ent) sets of declarations simultaneously, we use the explicit notation OioJD .AK
instead of Oio(A).

5Notice that a tccp program is the syntactic correspondent of a (program’s) expression of a
generic language, while a tccp set of declarations is the syntactic correspondent of a program.
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As we already mentioned, in tccp also infinite computations must be con-
sidered, for example when we are modeling reactive systems. However, we
nevertheless want to be able to distinguish if an input-output pair refers to a
finite or infinite computation. Thus, we use input-output pairs with associated
termination mode of the form ⟨c0, mode(cn)⟩, where c0 ∈ C is the input store of
the computation, cn ∈ C is the output store (which is the lub of the stores of the
computation) and mode is either fin or inf for finite or infinite computations,
respectively.

Definition 4.1 Given c, c′ ∈ C such that c′ ⊢ c, an input-output pair with
termination mode is either ⟨c, fin(c′)⟩ or ⟨c, inf (c′)⟩.

We denote by IO the set of input-output pairs with termination mode and
by IO the domain ℘(IO), ordered by set inclusion.

Clearly, (IO, ⊆, ⋃, ⋂, IO, ∅) is a complete lattice.

Definition 4.2 (Input-output behavior of programs) The input-output ob-
servable is defined as

io(T ) ∶={⟨c0, fin(cn)⟩ ∣ c0⋯cn ∈ T} ∪ {⟨c0, inf (⊗i≥0ci)⟩ ∣ c0⋯cn⋯ ∈ T}.

For each D ∈ DΠ
C and A ∈ AΠ

C, the induced input-output behavior BioJD . AK
is defined as io(BssJD .AK). We denote by ≈io the equivalence relation between
process declarations induced by Bio, namely D1 ≈io D2 ⇐⇒ ∀A ∈ AΠ

C. B
ioJD1 .

AK = BioJD2 . AK.
We denote by πF the projection which selects just the pairs whose mode is

fin and by IOF we denote πF (IO). Moreover, we denote by Bio
F JD.AK the finite

fragment of BioJD . AK i.e., πF (BioJD . AK).

Note that, by Definitions 3.1 and 4.2,

BioJD . A0K ={⟨c0, fin(cn)⟩ ∣ c0 ∈ C, ⟨A0, c0⟩ →
∗ ⟨An, cn⟩ /→} ∪

{⟨c0, inf (⊗i≥0ci)⟩ ∣ c0 ∈ C, ⟨A0, c0⟩ → ⋯ → ⟨Ai, ci⟩ → ⋯}

In the sequel, we define an abstract interpretation ([11]) of the small-step
semantics PJD.AK (Definition 3.19) which gives BioJD.AK. Then we prove that
the finite fragment of this abstraction (i.e., Bio

F JD .AK) is essentially isomorphic
to OioJD . AK. Actually, there is a negligible difference between Bio

F JD . AK
and OioJD . AK due to the change we made in the definition of the small-step
operational semantics. We will state the formal result in Subsection 4.2.

To define the semantics modeling the input-output observable as suggested
by the abstract interpretation approach, we proceed as described in the fol-
lowing. We assume familiarity with basic results of abstract interpretation.
However, this familiarity is needed only to be confident about the soundness of
the results that we obtain by standard results of abstract interpretation theory.
To understand the definitions it is sufficient to know that, given two complete
lattices (C, ⊑) and (A, ≤), a Galois Insertion of (A, ≤) into (C, ⊑)—denoted by

(C, ⊑) −−−−→Ð→←−−−−−
α

γ
(A, ≤)—is a pair of maps α ∶ C → A and γ ∶ A → C that satisfy

certain properties (see [11]). (C, ⊑) and (A, ≤) are the concrete and abstract
domains, while α and γ are the abstraction and concretization maps.

First, we formalize program properties of interest (in this particular case the

input-output behavior) as a Galois Insertion (M, ⊑) −−−−→Ð→←−−−−−
α

γ
(IO, ⊆) and then
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we lift it over interpretations I −−−−→Ð→←−−−−−
α̇

γ̇
[PC → IO] by function composition as

α̇(f) = α ○f . The best correct (optimal) abstract version of the semantics DJDK
is simply obtained as DαJDK ∶= α̇ ○ DJDK ○ γ̇. Abstract interpretation theory
assures that FαJDK ∶= lfp(DαJDK) is the best correct approximation of F JDK.
Correct because α(F JDK) ⊆ FαJDK and best because it is the minimum (w.r.t.
⊆) of all correct approximations.

4.1 Input-output semantics with infinite outcomes

Now we formally define the Galois Insertion which abstracts conditional traces
to input-output pairs with termination mode. In the sequel, we denote by
last(s) the partial function that, for a non-empty finite sequence s, gives its last
element and is otherwise undefined.

Definition 4.3 (Input-Output abstraction) Given any M ∈M, we define

αio(M) ∶= {⟨c0, fin(cn)⟩ ∣ c0 ∈ C, r ∈M, last(r⇓c0) = cn} ∪

{⟨c0, inf (⊗i≥0ci)⟩ ∣ c0 ∈ C, r ∈M, r⇓c0 = c0 . . . ci . . .}

(4.1)

γio(P ) ∶= ⊔{r ∈ M ∣ ⟨c0, fin(cn)⟩ ∈ P, last(r⇓c0) = cn} ⊔

⊔{r ∈ M ∣ ⟨c0, inf (c)⟩ ∈ P, r⇓c0 = c0 . . . ci . . . , c = ⊗i≥0ci}

(4.2)

We abuse notation and denote with the same symbols the lifting to interpreta-
tions, i.e., αio(I) ∶= αio ○I , γio(I

α) ∶= γio ○I
α.

(M, ⊑, ⊔, ⊓, M, {ε}) −−−−−→Ð→←−−−−−−−
αio

γio

(IO, ⊆, ⋃, ⋂, IO, ∅) is a Galois insertion (as stated

formally in Lemma A.9).
The input-output behavior of a program is indeed obtainable by abstraction

of its (concrete) semantics.

Proposition 4.4 Let D ∈ DΠ
C and A ∈ AΠ

C. Then, αio(PJD . AK) = BioJD . AK.

Now (as anticipated), following the (classical) abstract interpretation ap-
proach, we define the optimal abstract version of D as Dio ∶= αio ○ D ○ γio ,6

and thus the best (possible) correct approximation w.r.t. αio of the semantic
function F is the least fixpoint of Dio , i.e., F ioJDK ∶= lfp(DioJDK). Unfortu-
nately, F ioJDK turns out to be very imprecise, mainly because the information
contained in the input-output pairs is not enough to keep the synchronization
between parallel processes. Indeed, the declarations equivalence induced by F io

is not correct w.r.t. ≈io (Definition 4.2), since we can have two programs with
the same F io that have different Bio , as shown by the following example.

Example 4.5
Consider the two sets of declarations D1 ∶= {d1, d2} and D2 ∶= {d1, d3} where

d1 ∶= p(x , y) ∶− q(x) ∥ ask(true) → now x = 2 then tell(y = 0) else tell(y = 1)

d2 ∶= q(x) ∶− tell(x = 2)

d3 ∶= q(x) ∶− ask(true) → tell(x = 2)

6Although possible, a direct (expanded) definition of Dio is not relevant for our present
purposes.
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Clearly, D2 differs from D1 just because of the delay in adding the constraint
x = 2 to the store. This difference shows up in the input-output behavior of
p(x , y). Indeed,

αio(PJD1 . p(x, y)K) = {⟨c, fin(c ∧ x = 2 ∧ y = 0)⟩ ∣ c ∈ L}

αio(PJD2 . p(x, y)K) = {⟨c, fin(c ∧ y = 0)⟩ ∣ c ∈ L, c⇒ x = 2} ∪

{⟨c, fin(c ∧ x = 2 ∧ y = 1)⟩ ∣ c ∈ L, c⇏ x = 2}

and then (by Proposition 4.4) D1 /≈io D2 . However, the abstract fixpoint se-
mantics F io does not distinguish D1 from D2 . Indeed,

F ioJD1K = F ioJD2K =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

q(x) ↦ {⟨c, fin(c ∧ x = 2)⟩ ∣ c ∈ L}

p(x, y) ↦ {⟨c, fin(c ∧ y = 0)⟩ ∣ c ∈ L, c⇒ x = 2}} ∪

{⟨c, fin(c ∧ x = 2 ∧ y = 1)⟩ ∣ c ∈ L, c⇏ x = 2}

Given that F io is the best possible approximation, this also formally proves
that it is not possible to have a correct input-output semantics defined solely
on the information provided by the input/output pairs (some more information
in denotations is necessarily needed to be correct).

This also formally justifies (a posteriori) why [14] defined Oio(A) as a filter
of a more concrete semantics instead of using a direct definition.

4.2 Modeling the input-output semantics of [14]

In this section, we formally show that the original input-output semantics of
tccp OioJD . AK (defined in [14]) is essentially isomorphic to Bio

F JD . AK (the
finite fragment of the semantics introduced in the previous section).

Theorem 4.6 Let P1 and P2 be two tccp programs such that no trace in PJP1K ⊔ PJP2K
is a failed conditional trace. Then, OioJP1K = OioJP2K if and only if Bio

F JP1K =
Bio

F JP2K.

This theorem does not hold for any pair of tccp programs. When none of the
programs reaches store ff (along some execution path), we actually have the
same input-output pairs (except for the tag fin). However, when the store ff is
reached during a computation, this is no longer necessarily true, as shown by
the following example. This explains why we qualify as “essentially isomorphic”
the relation between OioJD . AK and Bio

F JD . AK.

Example 4.7
Let P1 ∶= D . loop and P2 ∶= D . tell(false), where D ∶= {loop ∶− tell(false) ∥
loop}. We have that Bio

F JP1K = Bio
F JP2K = {⟨c, fin(false)⟩} while OioJP1K = ∅ ≠

OioJP2K = {⟨c, false⟩}.

The difference is due to the change we made in the definition of the small-step
operational semantics. More specifically, in the operational semantics that we
use (Definition 2.1), when the store ff is reached, we cannot have further tran-
sitions. We devised → in this way to be conform with the original rationale of
the ccp paradigm. As a consequence, when a sequence computes ff , it is con-
sidered as a failed computation with output ff . In contrast, in the operational
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semantics of [14], the transition relation → does not consider the ff store as a
special case and then it is possible to execute an agent on the ff store.

Note that, if one is interested, it is straightforward to modify Definition 4.3
to compute exactly OioJP K.

To conclude, it is interesting to note that Bio
F JP K can be equivalently ob-

tained by first appropriately filtering the conditional traces and then applying
the abstraction αio . Formally, given M ∈ M, let πM

F (M) ∶= {r ∈ M ∣ r ends

with ⊠ or it contains a stuttering} and let MF ∶= πM
F (M). Note that this do-

main contains only traces such that the application of the ⇓ operator produces
only finite sequences of stores. It is straightforward to prove that the following
diagram commutes

(IO, ⊆) (IOF , ⊆)

(M, ⊑) (MF , ⊑)
πM

F

πF
α

io

α
io

5 Application of our semantics

In [10] we have used (a preliminary version of) our semantics to develop an
Abstract Diagnosis framework for tccp (following the approach for Logic Pro-
gramming of [9, 6]). Since we could use a condensed semantics, we were able
to formulate an efficacious parametric debugging methodology for tccp based
on approximating the DJDK operator by means of an abstract DαJDK operator
obtained by abstract interpretation.

We showed that, given the intended abstract specification Sα of the seman-
tics of a set of declarations D, we can determine all the rules which are wrong
w.r.t. Sα by a single application of DαJDK to Sα. Thus, for suitable abstract
domains, we obtain an effective static check which is able to identify the exact
sources of errors.

There are some good features of this application that show up because of the
properties of the concrete semantics we have proposed in this paper. Namely,

• it can be used with partial specifications,

• it can be used with partial sets of declarations.

Obviously, one cannot detect errors in rules involving processes which have
not been specified; but for the rules that involve only processes that have a
specification, the check can be made, even if the whole set of declarations has
not been written yet. To the best of our knowledge, this is the only method for
debugging that can work with incomplete programs.

Comparing our approach to other abstract diagnosis approaches for the ccp
paradigm, thanks to our semantics, we have some advantages too. [18] proposes
a first approach to the declarative debugging of a language of the ccp family
(utcc), which (like in the case of [10]) is also based on the abstract diagnosis
approach of [9]. However, that work does not cover the particular extra difficulty
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of non-monotonicity, common to (most of) the other timed concurrent constraint
languages. We have already justified through the paper why we consider
essential to model also that aspect of concurrent constraint programs. We recall
that this ability is crucial in order to model specific behaviors of reactive systems,
such as timeouts or preemption actions. This is also the main reason why our
abstract (and concrete) semantics are significantly different from [18] and from
formalizations for other declarative languages.

Moreover, the abstract diagnosis instance on the depth(k) domain presented
in [18] is not effective, unless one considers a finite constraint system (situation
that limits enormously the applicability of the proposal). The reason is due to
the fact that the underlying semantics is not condensed and then, in general,
even if abstract denotations contain only traces that are bounded in length,
they need to maintain an infinite number of traces, one for each possible ini-
tial constraint. By applying the same abstraction technique on our condensed
semantics, one obtains instead finite denotations.

One would argue that it is theoretically possible to find a suitable trans-
formation of the depth(k) proposal of [18] to make it effective, but in the end
this would boil down to regain the condensation at the abstract semantics level.
However, given the equality between depth(k) traces and the initial part of con-
crete traces, essentially this would be the same of giving a condensed version of
the concrete semantics.

Recently, we have also developed another abstraction of our semantics over
a domain of formulas expressed in an extension with constraints of a linear tem-
poral logic (csLTL). In that work, we provide an alternative automatic decision
method to check whether a given property specified in csLTL is valid w.r.t. a
tccp program. Most of the classical automatic program verification approaches
are based on browsing the structure of some form of model (which represents the
behavior of the program) to check if a given specification is valid. This implies
that a subset of the model has to be built, and sometimes the needed fragment
is quite huge. This is known as the state explosion problem. Our proposal, un-
like other automatic program verification techniques does not require to build a
model at all. The compact definition of the semantics evaluation functions over
csLTL that we have obtained is due to the formulation of our concrete semantics
definition.

6 Related Work

As we have said in the introduction, for timed concurrent constraint languages,
the presence of

• non-determinism,
• local variables and
• timing constructs which are able to handle negative information

significantly complicates the definition of a fully abstract compositional seman-
tics. In this section, we briefly show the impact of these difficulties when defin-
ing appropriate denotational semantics for other (timed) concurrent constraint
languages. Most of the defined semantics are inspired in that of ccp, and char-
acterize the finite input-output or strongest postcondition observable behaviors.
The strongest postcondition observable collects the pairs of input-output stores
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such that the program does not produce additional information, i.e., the input
coincides with the output.

Soon in [12], the difficulties for handling nondeterminism and infinite behav-
ior in the ccp paradigm was investigated. The authors showed that the presence
of nondeterminism and synchronization requires relatively complex structures
for the denotational model of (non timed) ccp languages. Moreover, infinite be-
haviors (which become natural in the timed extensions) are an additional night-
mare. Traditionally, solutions to these difficulties have been based on the intro-
duction of restrictions on the language. In [29] are given the basic ideas for the
definition of appropriate semantics for ccp languages and—more specifically—
is given a model based on observing the resting points of (finite) ccp processes.
The defined semantics is fully abstract for the determinate fragment of ccp (i.e.,
choice agents have always a single branch). For (finite) nondeterminate pro-
cesses that are monotonic in nature, a fully abstract semantics is given basing
on the observation of ask/tell interactions. In [16], a simple denotational se-
mantics fully abstract w.r.t. the upward-closed observable behavior is defined
for confluent ccp, which is the subclass of ccp programs whose observable be-
havior does not depend on the chosen (non-deterministic) branch. They also
define a correct semantics characterizing the input-output relation of (finite)
processes for the restricted-choice ccp, which is a confluent sublanguage of ccp
(syntactically restricted to choice agents where either all the branches have the
same guard or the guards are all mutually exclusive). As the basis for a method
to prove (partial) correctness of ccp programs, in [13] a denotational semantics
which characterizes the strongest postcondition is given. The semantics is fully
abstract for confluent ccp. It is also shown that the strongest postcondition
semantics is not compositional w.r.t. the hiding agent.

The introduction of time in the ccp paradigm raises even more difficulties,
in all different timed languages that have been proposed. Based on the deter-
ministic fragment of ccp, in [26] the authors defined the tcc language and its
semantics which is fully abstract just for hiding free processes. This restriction
allows one to avoid the problem of non-monotonic behaviors. As we have shown
in Example 3.17, due to the partial nature of the constraint system, the com-
bination of the hiding operator with non-determinism can make the language
behavior non-monotonic [12, 23].

The ntcc language extends tcc with non-determinism [22] and, inspired by
the elegant model for ccp based on closure operators of [29], a denotational
semantics for the strongest postcondition is defined. The semantics is fully
abstract for locally-independent processes, i.e., processes in which the non-
monotonic agents do not contain bounded variables (i.e., local variables via
the hiding construct). More recently, [18] proposed a denotational semantics of
the fragment of ntcc that excludes the non-monotonic construct unless.

The Default tcc language [27] is an extension of tcc that makes use of default
values in order to model strong preemption. It adds to tcc language a limited
form of negative information handling, with a construct that has to be used
under so called stable assumptions for the negative information in order to
avoid chaotic behaviors (notion borrowed from reactive languages like Esterel
[5]). This aids to overcome the problem of the non-monotonic behavior since, in
some sense, defaults force to have the Monotonicity property of Definition 3.4.
The proposed compositional semantics is fully abstract for agents which satisfy
stable assumptions. Their denotational model associates a condition to the
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computation which plays a similar role to the first positive condition of our
conditional traces (but we can allot more behaviors thanks to the others positive
and negative conditions along the trace). The Default tcc language however has
a limited expressive power compared w.r.t. tccp since it is deterministic and
does not have process calls (and is thus not Turing complete).

The most recent dialect of timed ccp we know, the utcc language, was in-
troduced in [24] as an extension of tcc for modeling mobility (communication of
private names, typically used in security protocols or mobile systems). In [17],
a denotational model for utcc processes based on a simple domain is defined
for data-flow analysis. This semantics is fully abstract only for the monotonic
fragment of the language. For the same language, [24] defines a denotational
semantics characterizing the input-output behavior of processes. This semantics
is fully abstract for the monotonic fragment of utcc and is based on temporal
formulas.

Thus—to conclude—to our knowledge ours is the only proposal which de-
fines a fully abstract semantics for a full dialect of timed ccp with “negative”
constructs (having so a non-monotonic behavior), except the one of default tcc.
However, tccp is non-deterministic and turing complete whereas default tcc is
deterministic and not turing complete.

7 Conclusions

In this work, we have presented a small-step semantics that is fully abstract
w.r.t. the tccp language behavior and that is suitable to be used as the basis of
semantics-based program manipulation techniques such as abstract diagnosis.
The task of defining a compositional fully-abstract semantics for the language
has shown to be difficult due to the non-monotonic nature of the language, which
is a characteristic shared with other concurrent languages of the ccp family.

To our knowledge, this is the first fully abstract compositional denotational
semantics for a non-deterministic language in the ccp family that covers the
whole language (including the non-monotonic behavior).

We have also defined a big-step semantics for tccp as an abstraction of the
small-step one. This semantics collects the limit stores of (finite and infinite)
computations. We have proven that its fragment for finite computations is
precise enough to recover the original input-output semantics of the language
[14]. Moreover, we also have proven that it is not possible to have a correct
input-output semantics which is defined solely on the information provided by
the input/output pairs.

As future work, we plan to investigate further on applications of our seman-
tics to obtain novel analysis and verification methods. Moreover, we plan to
adapt the ideas presented here to define appropriate fully-abstract semantics
for other concurrent languages of the ccp family, such as ntcc, utcc and tcc.
Thanks to this we will be able to straightforwardly adapt the abstract diag-
nosis methodology to such languages. These adaptations of the semantics are
not immediate, since these languages have significant differences w.r.t. tccp, but
(given the richness of tccp w.r.t. the other languages) we are confident that the
required effort will be reasonable.
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I. Niemelä, editors, Logic Programming, 23rd International Conference,
ICLP 2007, Proceedings, volume 4670 of Lecture Notes in Computer Sci-
ence, pages 271–285. Springer-Verlag, 2007.

[19] M. Falaschi and A. Villanueva. Automatic verification of timed concurrent
constraint programs. Theory and Practice of Logic Programming, 6(3):265–
300, 2006.

[20] D. Jacobs and A. Langen. Static Analysis of Logic Programs for Indepen-
dent AND Parallelism. Journal of Logic Programming, 13(2 & 3):291–314,
1992.

[21] K. Marriott and H. Søndergaard. Precise and Efficient Groundness Analysis
for Logic Programs. ACM Letters on Programming Languages and Systems,
2(1–4):181–196, 1993.

[22] M. Nielsen, C. Palamidessi, and F. D. Valencia. On the Expressive Power of
Temporal Concurrent Constraint Programming Languages. In Proceedings
of the 4th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, pages 156–167, New York, NY, USA,
2002. ACM Press.

[23] M. Nielsen, C. Palamidessi, and F. D. Valencia. Temporal Concurrent Con-
straint Programming: Denotation, Logic and Applications. Nordic Journal
of Computing, 9(1):145–188, 2002.

[24] C. Olarte and F. D. Valencia. Universal concurrent constraint programing:
symbolic semantics and applications to security. In R. Wainwright and
H. Haddad, editors, Proceedings of the 2008 ACM Symposium on Applied
Computing (SAC08), pages 145–150. ACM, 2008.

36



[25] V. A. Saraswat. Concurrent Constraint Programming. The MIT Press,
Cambridge, Mass., 1993.

[26] V. A. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of Timed Con-
current Constraint Programming. In Proceedings of the Ninth Annual IEEE
Symposium on Logic in Computer Science, pages 71–80. IEEE Computer
Press, 1994.

[27] V. A. Saraswat, R. Jagadeesan, and V. Gupta. Timed Default Concur-
rent Constraint Programming. Journal on Symbolic Computation, 11:1–42,
1999.

[28] V. A. Saraswat and M. Rinard. Concurrent constraint programming. In
POPL ’90: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 232–245, New York, NY,
USA, 1990. ACM.

[29] V. A. Saraswat, M. Rinard, and P. Panangaden. The Semantic Foundations
of Concurrent Constraint Programming. In Proceedings of the 18th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 333–352, New York, NY, USA, 1991. ACM.

A Appendix

In the sequel, to avoid a proliferation of parenthesis, we assume that ↓c and ⇓c
have priority over ⋅ and ∥̄.

A.1 Proofs of Section 3

By construction, we can see that the conditional traces computed by A always
satisfy that the store in a given time instant entails the positive condition.
Formally,

Property A.1 Let A ∈ AΠ
C, I ∈ IΠ and r ∈ AJAKI . For each conditional tuple

(η+, η−) ↣ a occurring in r, a ⊢ η+.

Proof.
This property is directly verified by (3.7) and (3.8) of Definition 3.15: when a
guard is added to the positive condition, it is also added to the correspondent
store, and propagated to the subsequent trace.

There exists a relation between the propagation operator ↓ and the lub ⊗ of
the constraint system: the consecutive propagation of two constraints (r↓c)↓c′

is equivalent to r↓(c⊗c′).

Lemma A.2 Let c, c′ ∈ C and r ∈ M such that (r↓c′)↓c is defined. Then r↓(c⊗c′)
is defined and (r↓c′)↓c = r↓(c⊗c′).

Proof.
We proceed by structural induction on r.

r = ε and r = ⊠ Straightforward.
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r = (η+, η−) ↣ d ⋅ r′ By hypothesis, (r↓c′)↓c is defined, thus, c ≫ (η+ ⊗ c′, η−)
and (r′↓c′)↓c is defined. It follows directly that c ⊗ c′ ≫ (η+, η−) and, by
inductive hypothesis, (r′↓c⊗c′) is defined. Thus, (r↓c⊗c′) is defined too.

(r↓c′)↓c =(((η
+, η−) ↣ d ⋅ r′)↓c′)↓c

[ by Definition 3.7 ]

=((c′ ⊗ η+, η−) ↣ c′ ⊗ d ⋅ r′↓c′)↓c

[ by Definition 3.7 ]

=(c⊗ c′ ⊗ η+, η−) ↣ c⊗ c′ ⊗ d ⋅ (r′↓c′)↓c

[ by Inductive Hypothesis ]

=(c⊗ c′ ⊗ η+, η−) ↣ c⊗ c′ ⊗ d ⋅ r′↓c⊗c′

[ by Definition 3.7 ]

=r↓c⊗c′

r = stutt(η−) ⋅ r′ By hypothesis, (r↓c′)↓c is defined, thus, for all c− ∈ η−, c ⊬ c−

and c′ ⊬ c−. Furthermore, (r′↓c′)↓c is defined as well. It follows directly
that for all c− ∈ η−, c ⊗ c′ ⊬ c− and, by inductive hypothesis, (r′↓c⊗c′) is
defined. Thus, (r↓c⊗c′) is defined too.

(r↓c′)↓c =((stutt(η−) ⋅ r′)↓c′)↓c

[ by Definition 3.7 ]

=(stutt(η−) ⋅ r′↓c′)↓c

[ by Definition 3.7 ]

= stutt(η−) ⋅ (r′↓c′)↓c

[ by Inductive Hypothesis ]

= stutt(η−) ⋅ r′↓c⊗c′

[ by Definition 3.7 ]

=r↓c⊗c′

There exists a relation between the parallel composition and the operator of
propagation as stated by the following lemma.

Lemma A.3 Let r1, r2 ∈ M and c ∈ C such that r1↓c ∥̄ r2↓c is defined. Then
(r1 ∥̄ r2)↓c is defined and r1↓c ∥̄ r2↓c = (r1 ∥̄ r2)↓c.

Proof.
We proceed by structural induction on r1. Note that, since r1↓c ∥̄ r2↓c is

defined, it follows that r1↓c and r2↓c are defined as well.

r1 = ε (or r1 = ⊠) and any r2 The statement follows directly from Defini-
tions 3.7 and 3.9.

r1 = (η
+

1, η
−

1) ↣ d1 ⋅ r
′

1 and r2 = (η
+

2, η
−

2) ↣ d2 ⋅ r
′

2 Since r1↓c and r2↓c are de-
fined, it follows that c is consistent with both η1 = (η+1 , η

−
1 ) and η2 =

(η+2 , η
−
2 ), and thus, with η1 ⊗ η2. We have to distinguish two cases.
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c⊗ d1 ≠ ff and c⊗ d2 ≠ ff By inductive hypothesis, (r′1 ∥̄ r
′
2)↓c is de-

fined and, since c≫ η1 ⊗ η2, (r1 ∥̄ r2)↓c is defined as well.

r1↓c ∥̄ r2↓c =((η
+
1 , η

−
1 ) ↣ d1 ⋅ r

′
1)↓c ∥̄ ((η+2 , η

−
2 ) ↣ d2 ⋅ r

′
2)↓c

[ by Definition 3.7 ]

=((η+1 ⊗ c, η
−
1 ) ↣ d1 ⊗ c ⋅ r

′
1↓c) ∥̄ ((η+2 ⊗ c, η

−
2 ) ↣ d2 ⊗ c ⋅ r

′
2↓c)

[ by Definition 3.9 ]

=(η+1 ⊗ η
+
2 ⊗ c, η

−
1 ∪ η

−
2 ) ↣ d1 ⊗ d2 ⊗ c ⋅ (r

′
1↓c ∥̄ r

′
2↓c)

[ by Inductive Hypothesis ]

=(η+1 ⊗ η
+
2 ⊗ c, η

−
1 ∪ η

−
2 ) ↣ d1 ⊗ d2 ⊗ c ⋅ (r

′
1 ∥̄ r

′
2)↓c

[ by Definition 3.7 ]

=(r1 ∥̄ r2)↓c

c⊗ d1 = ff or c⊗ d2 = ff In this case, r1↓c ∥̄ r2↓c reaches the store ff in
one step, as also occurs when we compute (r1 ∥̄ r2)↓c:

r1↓c ∥̄ r2↓c =((η
+
1 , η

−
1 ) ↣ d1 ⋅ r

′
1)↓c ∥̄ ((η+2 , η

−
2 ) ↣ d2 ⋅ r

′
2)↓c

[ by Definition 3.7 and Definition 3.9 ]

=(η+1 ⊗ η
+
2 ⊗ c, η

−
1 ∪ η

−
2 ) ↣ ff ⋅ ⊠

[ by Definition 3.7 and Definition 3.9 ]

=(r1 ∥̄ r2)↓c

r1 = (η
+

1, η
−

1) ↣ d1 ⋅ r
′

1 and r2 = stutt(η−2) ⋅ r
′

2 Since r1↓c and r2↓c are defined,
we have that c≫ η1 and c ⊬ c− for all c− ∈ η−2 . Therefore, c≫ (η+1 , η

−
1 ∪η

−
2 ).

By inductive hypothesis, (r′1 ∥̄ r
′
2)↓c is defined, thus also (r1 ∥̄ r2)↓c is de-

fined.

r1↓c ∥̄ r2↓c =((η
+
1 , η

−
1 ) ↣ d1 ⋅ r

′
1)↓c ∥̄ (stutt(η−2 ) ⋅ r

′
2)↓c

[ by Definition 3.7 ]

=((η+1 ⊗ c, η
−
1 ) ↣ d1 ⊗ c ⋅ r

′
1↓c) ∥̄ (stutt(η−2 ) ⋅ r

′
2↓c)

[ by Definition 3.9 ]

=(η+1 ⊗ c, η
−
1 ∪ η

−
2 ) ↣ d1 ⊗ c ⋅ (r

′
1↓c ∥̄ r

′
2↓c)

[ by Inductive Hypothesis ]

=(η+1 ⊗ c, η
−
1 ∪ η

−
2 ) ↣ d1 ⊗ c ⋅ (r

′
1 ∥̄ r

′
2)↓c

[ by Definition 3.7 ]

=(r1 ∥̄ r2)↓c

r1 = stutt(η−1) ⋅ r
′

1 and r2 = stutt(η−2) ⋅ r
′

2 Since r1↓c and r2↓c are defined, we
have that c does not entail any constraint in η−1 ∪ η

−
2 . By inductive hy-

pothesis, (r′1 ∥̄ r
′
2)↓c is defined, thus, we can conclude that also (r1 ∥̄ r2)↓c

is defined.

r1↓c ∥̄ r2↓c =(stutt(η−1 ) ⋅ r
′
1)↓c ∥̄ (stutt(η−2 ) ⋅ r

′
2)↓c

[ by Definition 3.7 ]
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=(stutt(η−1 ) ⋅ r
′
1↓c) ∥̄ (stutt(η−2 ) ⋅ r

′
2↓c)

[ by Definition 3.9 ]

= stutt(η−1 ∪ η
−
2 ) ⋅ (r

′
1↓c ∥̄ r

′
2↓c)

[ by Inductive Hypothesis ]

= stutt(η−1 ∪ η
−
2 ) ⋅ (r

′
1 ∥̄ r

′
2)↓c

[ by Definition 3.7 ]

=(r1 ∥̄ r2)↓c

An important technical result states that the evaluation function for agents
A is closed under context embedding. A context C[ ] consists in a tccp agent
with a hole, which means that C[A] represents the result of replacing the hole
in C[ ] with the agent A.

Lemma A.4 Let A1,A2 ∈ AΠ
C and I ∈ I. Then AJA1KI = AJA2KI if and only

if, for all context C[ ], AJC[A1]KI = AJC[A2]KI .

Proof.
⇐ Directly holds.

⇒ This implication follows from Definition 3.15. The evaluation function A
is defined by composition of the semantics of its subagents. In particular,
the semantics of both, C[A1] and C[A2], is computed from the semantics
of A1 and A2, respectively. Since A1 and A2 are equivalent, then also the
semantics of C[A1] and C[A2] coincide.

Lemma A.5 For each A ∈ AΠ
C and each D ∈ DΠ

C, AJAK and DJDK are contin-
uos.

Proof.
Consider A ∈ AΠ

C and D ∈ DΠ
C. To prove the continuity of AJAK, we have

to verify two properties: monotonicity and finitarity. The continuity of DJDK
follows directly from the continuity of AJAK and from Definition 3.19.

Monotonicity. It is sufficient to show that for each I1,I2 ∈ I and and for each
A ∈ AΠ

C, I1 ⊑ I2 ⇒AJAKI1
⊑ AJAKI2

. Observe that the only case in which
A depends on the interpretation is the case of the process call.

By definition of ⊑, I1(p(x⃗)) ⊑ I2(p(x⃗)), thus:

AJp(x⃗)KI1
= ⊔{(tt ,∅) ↣ tt ⋅ r ∣ r ∈ I1(p(x⃗))}

⊑ ⊔{(tt ,∅) ↣ tt ⋅ r ∣ r ∈ I2(p(x⃗))} = AJp(x⃗)KI2

Finitarity. Again, it is sufficient to consider the evaluation function A for the
case of the process call. AJAKI depends on a finitary subset of I , in par-
ticular on the subset regarding p(x⃗) which is a finitary set of conditional
traces closed by prefix.

Lemma A.6 Let r ∈ M and c, c′ ∈ C such that c ⊢ c′ and r⇓c is defined. Then
(r↓c′)⇓c is defined and r⇓c = (r↓c′)⇓c.
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Proof.
By hypothesis, r⇓c is defined, thus c is compatible with all the conditions oc-
curring in r. Since c ⊢ c′, it is easy to notice that also c′ is compatible with all
the conditions occurring in r, thus r↓c′ is defined. Then, (r↓c′)⇓c is defined as
well. If c = ff , by Definition 3.24, r⇓ff = ff = (r↓c′)⇓ff . Otherwise, if c ≠ ff , we
proceed by induction on the structure of r.

r = ε and r = ⊠ The statement follows directly from Definitions 3.7 and 3.24.

r = (η+, η−) ↣ d ⋅ r′ We distinguish three sub-cases.

d⊗ c ≠ ff Since c ⊢ c′, it follows that d⊗ c′ ≠ ff , thus:

(r↓c′)⇓c = (((η+, η−) ↣ d ⋅ r′)↓c′)⇓c

[ by Definition 3.7 ]

= ((η+ ⊗ c′, η−) ↣ d⊗ c′ ⋅ r′↓c′)⇓c

[ by Definition 3.24 ]

= c ⋅ (r′↓c′)⇓c⊗d⊗c′

[ by Inductive Hypothesis ]

= c ⋅ r′⇓c⊗d⊗c′

[ since c ⊢ c′ ]

= c ⋅ r′⇓c⊗d

By Definition 3.24, r⇓c = ((η+, η−) ↣ d ⋅ r′)⇓c = c ⋅ r
′⇓c⊗d, thus r⇓c =

(r↓c′)⇓c.

d⊗ c = ff and d⊗ c′ ≠ ff We have that:

(r↓c′)⇓c = ((η+, η−) ↣ d ⋅ r′↓c′)⇓c

[ by Definition 3.7 ]

= ((η+ ⊗ c′, η−) ↣ d⊗ c′ ⋅ r′↓c′)⇓c

[ by Definition 3.24 ]

= c ⋅ ff

By Definition 3.24, r⇓c = ((η+, η−) ↣ d ⋅ r′)⇓c = c ⋅ ff , thus r⇓c =
(r↓c′)⇓c.

d⊗ c′ = ff Since c ⊢ c′, it follows that d⊗ c = ff , thus:

(r↓c′)⇓c = (((η+, η−) ↣ d ⋅ r′)↓c′)⇓c

[ by Definition 3.7 ]

= ((η+ ⊗ c′, η−) ↣ ff ⋅ ⊠)⇓c

[ by Definition 3.24 ]

= c ⋅ ff

By Definition 3.24, it follows that r⇓c = c ⋅ ff = (r↓c′)⇓c.

r = stutt(η−) ⋅ r′ By Definition 3.24, it follows that:

(r↓c′)⇓c = ((stutt(η−) ⋅ r′)↓c′)⇓c

[ by Definition 3.7 ]
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= (stutt(η−) ⋅ r′↓c′)⇓c

[ by Definition 3.24 ]

= c

By Definition 3.24, r⇓c = (stutt(η−) ⋅ r′)⇓c = c, thus r⇓c = (r↓c′)⇓c.

In order to formulate the following Lemma A.8, we need to introduce the
counterpart of ∥̄ on behavioral timed traces.

Definition A.7 Let s, s1, s2 ∈ C∗. ∥̆∶C∗ × C∗ → C∗ is defined by structural
induction as:

s ∥̆ ε ∶= s ε ∥̆ s ∶= s (A.1a)

(c1 ⋅ s1) ∥̆ (c2 ⋅ s2) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

(c1 ⊗ c2) ⋅ (c2 ⊗ s1 ∥̆ c1 ⊗ s2) if c1 ⊗ c2 ≠ ff

ff if c1 ⊗ c2 = ff
(A.1b)

where, by abusing notation, c⊗ (c1⋯cn) denotes (c⊗ c1)⋯(c⊗ cn).

We extend this operator to sets of behavioral timed traces as S1 ∥̆ S2 =

{s1 ∥̆ s2 ∣ s1 ∈ S1 and s2 ∈ S2}.

Lemma A.8 Let c ∈ C; A1,A2 ∈ AΠ
C; I ∈ I; r1 ∈ AJA1KI and r2 ∈ AJA2KI

such that r1 ∥̄ r2, r1⇓c and r2⇓c are defined. Then, (r1 ∥̄ r2)⇓c is defined and

r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.

Proof.
Since both r1⇓c and r2⇓c are defined, c satisfies all the conditions in r1 and
r2. It is easy to notice from Definition 3.9 that c satisfies also the conditions of
r1 ∥̄ r2, thus, (r1 ∥̄ r2)⇓c is defined as well.

We proceed to prove that r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c by induction on the struc-
ture of r1.

r1 = ε and any r2 By Definition 3.9, (r1 ∥̄ r2)⇓c = (ε ∥̄ r2)⇓c = r2⇓c. By Def-

inition 3.24 and by Equation (A.1a), we obtain: r1⇓c ∥̆ r2⇓c = ε ∥̆ r2⇓c =

r2⇓c. Thus, r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.

r1 = ⊠ and any r2 ≠ ε By Definition 3.9, (r1 ∥̄ r2)⇓c = (⊠ ∥̄ r2)⇓c = r2⇓c. By

Definition 3.24 and by Equation (A.1b), r1⇓c ∥̆ r2⇓c = c ∥̆ r2⇓c = r2⇓c, since

r2 ≠ ε. Thus, r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.

r1 = η1 ↣ d1 ⋅ r
′

1 and r2 = η2 ↣ d2 ⋅ r
′

2

d1 ⊗ d2 ≠ ff

(r1 ∥̄ r2)⇓c = ((η1 ↣ d1 ⋅ r
′
1) ∥̄ (η2 ↣ d2 ⋅ r

′
2))⇓c

[ by Definition 3.9 ]

= (η1 ⊗ η2 ↣ d1 ⊗ d2 ⋅ (r
′
1↓d2 ∥̄ r

′
2↓d1))⇓c

[ by Definition 3.24 ]

= c ⋅ (r′1↓d2 ∥̄ r
′
2↓d1)⇓c⊗d1⊗d2

[ by Inductive Hypothesis ]
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= c ⋅ ((r′1↓d2)⇓c⊗d1⊗d2 ∥̆ (r′2↓d1)⇓c⊗d1⊗d2)

[ by Lemma A.6 ]

= c ⋅ (r′1⇓c⊗d1⊗d2 ∥̆ r
′
2⇓c⊗d1⊗d2)

[ d1 (resp. d2) is entailed by the stores in r′1 (resp. r′2) ]

= c ⋅ (r′1⇓c⊗d1
∥̆ r′2⇓c⊗d2

)

[ by Equation (A.1b) ]

= (c ⋅ r′1⇓c⊗d1) ∥̆ (c ⋅ r′2⇓c⊗d2)

By Definition 3.24, r1⇓c ∥̆ r2⇓c = (c ⋅ r′1⇓c⊗d1) ∥̆ (c ⋅ r′2⇓c⊗d2); there-

fore, we conclude r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.

d1 ⊗ d2 = ff

(r1 ∥̄ r2)⇓c = ((η1 ↣ d1 ⋅ r
′
1) ∥̄ (η2 ↣ d2 ⋅ r

′
2))⇓c

[ by Definition 3.9 ]

= (η1 ⊗ η2 ↣ ff ⋅ ⊠)⇓c

[ by Definition 3.24 ]

= c ⋅ ff

By Definition 3.24 and by Equation (A.1b), r1⇓c ∥̆ r2⇓c = c ⋅ ff , thus

r1⇓c ∥̆ r2⇓c = (r1 ∥̄ r2)⇓c.

r1 = η1 ↣ d1 ⋅ r
′

1 and r2 = stutt(η−2) ⋅ r
′

2

(r1 ∥̄ r2)⇓c = ((η1 ↣ d1 ⋅ r
′
1) ∥̄ (stutt(η−2 ) ⋅ r

′
2))⇓c

[ by Definition 3.9 ]

= ((η+1 , η
−
1 ∪ η

−
2 ) ↣ d1 ⋅ (r

′
1 ∥̄ r

′
2↓d1))⇓c

[ by Definition 3.24 ]

= c ⋅ (r′1 ∥̄ r
′
2↓d1

)⇓c⊗d1

[ by Inductive Hypothesis ]

= c ⋅ (r′1⇓c⊗d1 ∥̆ (r′2↓d1)⇓c⊗d1)

[ by Lemma A.6 ]

= c ⋅ (r′1⇓c⊗d1 ∥̆ r
′
2⇓c⊗d1)

[ by Equation (A.1b) ]

= (c ⋅ r′1⇓c⊗d1) ∥̆ (c ⋅ r′2⇓c)

By Definition 3.24, r1⇓c ∥̆ r2⇓c = (c ⋅ r′1⇓c⊗d1) ∥̆ (c ⋅ r′2⇓c), thus r1⇓c ∥̆ r2⇓c =
(r1 ∥̄ r2)⇓c.

r1 = stutt(η−1) ⋅ r
′

1 and r2 = stutt(η−2) ⋅ r
′

2

(r1 ∥̄ r2)⇓c = ((stutt(η−1 ) ⋅ r
′
1) ∥̄ (stutt(η−2 ) ⋅ r

′
2))⇓c

[ by Definition 3.9 ]

= (stutt(η−1 ∪ η
−
2 ) ⋅ (r

′
1 ∥̄ r

′
2))⇓c

[ by Definition 3.24 ]
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= c ⋅ (r′1 ∥̄ r
′
2)⇓c

[ by Inductive Hypothesis ]

= c ⋅ (r′1⇓c ∥̆ r
′
2⇓c)

[ by Equation (A.1b) ]

= (c ⋅ r′1⇓c) ∥̆ (c ⋅ r′2⇓c)

By Definition 3.24, r1⇓c ∥̆ r2⇓c = (c ⋅ r′1⇓c) ∥̆ (c ⋅ r′2⇓c), thus r1⇓c ∥̆ r2⇓c =
(r1 ∥̄ r2)⇓c.

Proof of Theorem 3.25.
Let d ∈ C and P = D.A with D ∈ DΠ

C and A ∈ AΠ
C, we proceed by structural

induction on A.

skip The proof in this case is straightforward.

prefix(AJskipKF JDK)⇓d = prefix({⊠})⇓d = {ε, d} = BssJD . skipKd

tell(c)

prefix((AJtell(c)KF JDK⇓d) = prefix((tt ,∅) ↣ c ⋅ ⊠)⇓d)

= prefix(d ⋅ (d⊗ c))

= BssJD . tell(c)Kd

A=∑
n
i=1 ask(ci) →Ai We prove the two directions separately.

⊆ We show that, given a conditional trace r ∈ AJAKF JDK , it holds that
∀d ∈ C.prefix(r⇓d) ⊆ B

ssJD . AKd. We have to distinguish two cases.

r = (cj,∅) ↣ cj ⋅ rj↓cj
with 1 ≤ j ≤ n By (3.7) it follows that rj ∈

AJAjKF JDK . In case r⇓d is not defined (i.e., d ⊬ cj), prefix(r⇓d) =
∅ ⊆ BssJD.AKd. Otherwise, if r⇓d is defined, we have that d ⊢ cj
and (rj↓cj)⇓d⊗cj is defined too. We distinguish two sub-cases.

d ≠ ff In this case we have:

prefix(r⇓d)

= prefix({((cj ,∅) ↣ cj ⋅ rj↓cj)⇓d ∣1 ≤ j ≤ n, rj ∈ AJAjKF JDK})

[ by Definition 3.24 ]

= prefix({d ⋅ (rj↓cj)⇓d⊗cj ∣1 ≤ j ≤ n, rj ∈ AJAjKF JDK})

[ by Lemma A.6 and since d ⊢ cj ]

= prefix({d ⋅ rj⇓d ∣1 ≤ j ≤ n, rj ∈ AJAjKF JDK})

[ by Equation (3.1) ]

= {ε, d} ∪ {d ⋅ s ∣1 ≤ j ≤ n, s ∈ prefix(AJAjKF JDK⇓d)}

[ by Inductive Hypothesis ]

⊆ {ε, d} ∪ {d ⋅ s ∣1 ≤ j ≤ n, s ∈ BssJD . AjKd}

The element ε directly belongs to BssJD . AKd. Since d ⊢ cj ,
also d belongs to BssJD .AKd (at least one step is performed
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in the computation). Finally, the set {d ⋅ s ∣1 ≤ j ≤ n, ∈
BssJD .AjKd} is also contained in BssJD .AKd. In particular,
following Rule R2, the agent ∑

n
i=1 ask(ci) → Ai (executed

with a store d that entails one of the guards, e.g. cj) behaves,
in the next time instant, as the corresponding agent Aj over
the store (which is not modified in that step).

d = ff By definition of ⇓ (3.24), we have that prefix(r⇓ff ) =
{ε, ff } which corresponds to the set BssJD . AKff since the
transition relation → is not defined for the configuration
⟨A, ff ⟩.

r = stutt({c1, . . . , cn}) ⋅ r
′

By (3.7), we have that r′ ∈ AJAKF JDK
and for all 1 ≤ j ≤ n, cj ≠ tt . In case r⇓d is not defined (i.e., it
exists 1 ≤ j ≤ n such that d ⊢ cj), prefix(r⇓d) = ∅ ⊆ BssJD . AKd.
Otherwise, if r⇓d is defined then prefix(r⇓d) = {ε, d} ⊆ BssJD .
AKd.

⊇ For each d ∈ C, it exists a conditional trace r ∈ AJAKF JDK such that
prefix(r⇓d) ⊇ B

ssJD . AKd. There are three cases to be considered.

d does not satisfy any guard This means that for all 1 ≤ j ≤ n,
d ⊬ cj ; then, the small-step behavior is BssJD . AKd = {ε, d}.
Thus, it exists a conditional trace r ∈ AJAKF JDK such that r =
stutt({c1, . . . , cn}) ⋅ r

′ with r′ ∈ AJAKF JDK . Moreover, by Defini-
tion 3.24 and Definition 3.1, it follows that prefix(r⇓d) = {ε, d} ⊇
BssJD . AKd.

there exists cj such that d ⊢ cj and d ≠ ff In this case, one of
the conditional traces computed by the semantics evaluation
function A is r = (cj ,∅) ↣ cj ⋅ rj↓cj with rj ∈ AJAjKF JDK . Then,
we have:

prefix(r⇓d) =prefix(((cj ,∅) ↣ cj ⋅ rj↓cj)⇓d)

[ by Definition 3.24 ]

=prefix({d ⋅ (rj↓cj)⇓d⊗cj ∣ rj ∈ AJAjKF JDK})

[ by Lemma A.6 and since d ⊢ cj ]

=prefix({d ⋅ rj⇓d ∣ rj⇓d ∈ AJAjKF JDK⇓d})

[ by Equation (3.1) ]

={ε, d} ∪ {d ⋅ s ∣ s ∈ prefix(AJAjKF JDK⇓d)}

[ by Inductive Hypothesis ]

⊇{ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . AjKd}
[ by Rule R2 ]

⊇BssJD . AKd

d = ff In this case we have:

prefix(r⇓ff ) =prefix(((cj ,∅) ↣ cj ⋅ rj↓cj)⇓ff )

[ by Definition 3.24 ]

={ε, ff }

[ by Definition 3.1 ]
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⊇BssJD . AKff

Therefore, we can conclude that prefix(AJAKF JDK⇓d) = B
ssJD . AKd.

now c thenA1 elseA2 We prove the two directions independently. We abbre-
viate the conditional agent and call it A (A ∶= now c then A1 else A2).

⊆ We show that ∀d ∈ C. prefix(AJnow c then A1 else A2KF JDK⇓d) ⊆
BssJD . now c then A1 else A2Kd. There are seven possible cases,
one for each type of trace r in (3.8).

r = (c,∅) ↣ c ⋅ ⊠ By (3.8) we have that ⊠ ∈ AJA1KF JDK , which means,
by Definition 3.15, that A1 = skip. We consider now the three
possible cases:
d ⊢ c and d ≠ ff It is straightforward that prefix(r⇓d) = prefix(d⋅

d) = {ε, d, d ⋅ d}. On the behavioral part, we know from
Rule R4 that the observable of A is the set of all prefixes of
d ⋅ d, so we can conclude prefix(r⇓d) ⊆ B

ssJD . AKd.
d = ff The small-step behavior is BssJD . AKff = {ε, ff }. Since

ff ⊢ c it is straightforward that prefix(r⇓ff ) = {ε, ff } =
BssJD . AKff .

d ⊬ c Then the application of ⇓d to the agent semantics does not
compute any behavioral timed trace. Therefore, prefix(r⇓d) =
∅ ⊆ BssJD . AKd.

r = (η+ ⊗ c,η−) ↣ a⊗ c ⋅ r′↓c From (3.8) it follows that (η+, η−) ↣
a ⋅ r′ ∈ AJA1KF JDK , d being compatible with all the conditions
occurring in r′, a⊗ c ≠ ff and ∀h− ∈ η−. η+ ⊗ c ⊬ h−.
In case r⇓d is not defined (i.e., d⊯ (η+ ⊗ c, η−) or when d is not
compatible with some condition occurring in r′), we have that
prefix(r⇓d) = ∅ which is directly included in BssJD . AKd.
Otherwise, if r⇓d is defined, it follows that d⊫ (η+⊗ c, η−). This
implies that d ⊢ c since c belongs to the positive condition. Under
these conditions, we have:

prefix(r⇓d) =

= prefix({((η+ ⊗ c, η−) ↣ a⊗ c ⋅ r′↓c)⇓d ∣ (η
+, η−) ↣ a ⋅ r′ ∈ AJA1KF JDK})

[ by Definition 3.24 ]

= prefix({d ⋅ (r′↓c)⇓d⊗a⊗c ∣d ⋅ r
′⇓d⊗a ∈ AJA1KF JDK⇓d})

[ by Lemma A.6 since d ⊢ c ]

= prefix({d ⋅ r′⇓d⊗a ∣d ⋅ r
′⇓d⊗a ∈ AJA1KF JDK⇓d})

= prefix(AJA1KF JDK⇓d)

[ by Inductive Hypothesis ]

⊆ BssJD . A1Kd
[ by Rule R3 ]

⊆ BssJD . AKd

r = (η+ ⊗ c,η−) ↣ ff ⋅ ⊠ We consider two possible cases:
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d⊫ (η+ ⊗ c,η−) This implies that d ⊢ c. Under these condi-
tions, we get:

prefix(r⇓d)

= prefix(((η+ ⊗ c, η−) ↣ ff ⋅ ⊠)⇓d)

[ by Definition 3.24 ]

= {ε, ff }

[ by Definition 3.1 ]

⊆ BssJD . AKd

d⊯ (η+ ⊗ c,η−) In this case prefix(r⇓d) = ∅ which is directly
included in BssJD . AKd.

r = (c,η−) ↣ c ⋅ r′ In case r⇓d is not defined (i.e., d ⊯ (c, η−) or
also when d is not compatible with some condition occurring in
r′) we have that prefix(r⇓d) = ∅ ⊆ BssJD . AKd. Otherwise, by
(3.8), stutt(η−) ⋅ r′ ∈ AJA1KF JDK and d is compatible with all the
conditions occurring in r′. We have to consider two sub-cases.
d ≠ ff In this case we have:

prefix(r⇓d) =

= prefix({((c, η−) ↣ c ⋅ r′)⇓d ∣ stutt(η−) ⋅ r′ ∈ AJA1KF JDK})

[ by Definition 3.24 ]

= prefix({d ⋅ r′⇓d⊗c ∣ stutt(η−) ⋅ r′ ∈ AJA1KF JDK})

[ since d ⊢ c ]

= prefix({d ⋅ r′⇓d ∣ stutt(η−) ⋅ r′ ∈ AJA1KF JDK})

[ by Definition 3.15 ]

= prefix({d ⋅ r′⇓d ∣ r′ ∈ AJA1KF JDK})

[ by Equation (3.1) ]

= {ε, d} ∪ {d ⋅ s ∣ s ∈ prefix(AJA1KF JDK⇓d)}

[ by Inductive Hypothesis ]

⊆ {ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . A1Kd}
[ by Rule R4 ]

⊆ BssJD . AKd

The fourth step follows from the definition of the semantics
A (Definition 3.15). The construct stutt is introduced only
by an ask agent. Thus, we know that A1 is an ask agent. The
Equation (3.8), states that stutt(η−) is always followed by a
conditional trace which belongs to the semantics of the ask ,
which can be reduced to say that r′ belongs to AJA1KF JDK .

d = ff In this case we have that prefix(r⇓ff ) = {ε, ff } which
corresponds to the behavior BssJD .AKff since the transition
relation → is not defined for the agent A starting with store
ff .
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r = (tt ,{c}) ↣ tt ⋅ ⊠ By (3.8), ⊠ ∈ AJA2KI . By Definition 3.15, it
follows that A2 is a skip agent. We consider two sub-cases.
d ⊬ c It is straightforward that prefix(r⇓d) = prefix(d ⋅ d) =

{ε, d, d ⋅ d}. From Rule R6, we know that the observable of
the agent A consists of the set of all prefixes of d ⋅ d. There-
fore, prefix(r⇓d) ⊆ B

ssJD . AKd.
d ⊢ c In this case r⇓d does not compute any trace because d

does not satisfy the condition, thus prefix(r⇓d) = ∅ ⊆ BssJD.
AKd.

r = (η+, η− ∪ {c}) ↣ c′ ⋅ r′ In case r⇓d is not defined (i.e., d⊯ (η+, η−∪
{c})), prefix(r⇓d) = ∅, which is directly contained in BssJD.AKd.
Otherwise, if r⇓d it follows that (η+, η−) ↣ c′ ⋅ r′ ∈ AJA2KF JDK
and c′ ⊬ c. If d⊫ (η+, η− ∪ {c}), we know also that d ⊬ c. Under
these conditions, we have:

prefix({r⇓d)

= prefix({((η+, η− ∪ {c}) ↣ c′ ⋅ r′)⇓d ∣ (η
+, η−) ↣ c′ ⋅ r′ ∈ AJA2KF JDK})

[ by Definition 3.24 ]

= prefix({d ⋅ r′⇓d⊗c′ ∣d ⋅ r
′⇓d⊗c′ ∈ AJA2KF JDK⇓d})

= prefix(AJA2KF JDK⇓d)

[ by Inductive Hypothesis ]

⊆ BssJD . A2Kd
[ by Rule R5 ]

⊆ BssJD . AKd

r = (tt , η− ∪ {c}) ↣ tt ⋅ r′ By (3.8), we have that stutt(η−) ⋅ r′ ∈
AJA2KF JDK .
In case r⇓d is not defined (i.e., d⊯ (tt , η−∪{c})), prefix(r⇓d) = ∅,
which is directly contained in BssJD . AKd.
Otherwise, if r⇓d is defined it follows that d ⊫ (tt , η− ∪ {c}).
Then, we have:

prefix(r⇓d)

= prefix({((tt , η− ∪ {c}) ↣ tt ⋅ r′)⇓d ∣ stutt(η−) ⋅ r′ ∈ AJA2KF JDK})

[ by Definition 3.24 ]

= prefix({d ⋅ r′⇓d ∣ stutt(η−) ⋅ r′ ∈ AJA2KF JDK})

[ by Definition 3.15 ]

= prefix({d ⋅ r′⇓d ∣ r
′ ∈ AJA2KF JDK})

[ by Equation (3.1) ]

= {ε, d} ∪ {d ⋅ s ∣ s ∈ prefix(AJA2KF JDK⇓d)}

[ by Inductive Hypothesis ]

⊆ {ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . A2Kd}
[ by Rule R6 ]

⊆ BssJD . AKd
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The third step can be done since each construct stutt(η−) is
introduced by a choice agent, and Equation (3.7) states that it
is always followed by a conditional trace r′ belonging recursively
to the semantics of A2.

⊇ We have four cases, one for each rule defining the operational seman-
tics for the conditional agent in Figure 1.

Rule R3 Let us recall the conditions to apply Rule R3: it must
occur ⟨A1, d⟩ → ⟨A′

1, d
′⟩ and d ⊢ c. In this case, we have that

BssJD.AKd = BssJD.A1Kd. By inductive hypothesis, we know that
prefix(AJA1KF JDK⇓d) ⊇ B

ssJD.A1Kd, thus also prefix(AJA1KF JDK⇓d) ⊇
BssJD.AKd. Next, we prove the inclusion prefix(AJAKF JDK⇓d) ⊇
prefix(AJA1KF JDK)⇓d. We proceed by induction on the structure
of a generic r1 ∈ AJA1KF JDK in order to find r ∈ AJAKF JDK such
that prefix(r1⇓d) ⊆ prefix(r⇓d).
r1 = ⊠ By (3.8), r = (c,∅) ↣ c ⋅ ⊠ ∈ AJAKF JDK . We know that

⊠⇓d = d and r⇓d = d ⋅ (d⊗ c) = d ⋅ d, since d ⊢ c. It is easy to
see that the prefixes of d are all included in the prefixes of
d ⋅ d.

r1 = (η
+, η−) ↣ c′ ⋅ r′ By definition, r = (η+ ⊗ c, η−) ↣ c′ ⊗ c ⋅

r′↓c ∈ AJAKF JDK . If d ⊫ (η+, η−), then r1⇓d = d ⋅ r
′⇓d⊗c′ and,

since d ⊢ c by the initial assumptions, r⇓d = d ⋅ r′⇓d⊗c′⊗c =
d ⋅ r′⇓d⊗c′ = r1⇓d, thus the inclusion of the prefixes directly
holds. Otherwise, if d ⊯ (η+, η−), then the operator ⇓d is
undefined in both cases.

r1 = stutt(η−) ⋅ r′ By definition, r = (c, η−) ↣ c⋅r′↓c ∈ AJAKF JDK .
If for all h− ∈ η−, d ⊬ h−, then r1⇓d = d and it holds that its
prefixes are all included in the prefixes of r⇓d = d ⋅ r⇓d⊗c.
Otherwise, if it exists h− ∈ η− such that d ⊢ h−, then the ⇓d
operator is undefined in both cases.

Rule R4 The conditions to apply this rule are ⟨A1, d⟩ /→, d ⊢ c
and d ≠ ff , in which case the small-step behavior is defined as
BssJD . AKd = prefix(d ⋅ d). There are two cases in which it may
happen that ⟨A1, d⟩ /→:
A1 = skip By (3.2), ⊠ ∈ AJA1KF JDK and r = (c,∅) ↣ c ⋅ ⊠ ∈
AJAKF JDK . We now have that r⇓d = d ⋅ (d⊗ c) = d ⋅ d, whose
prefixes coincide with BssJD . AKd.

A1 = ∑
n
i=1 ask(ci) →Bi and ∀1 ≤ i ≤ n ⊬ ci By (3.7), stutt({c1, . . . , cn})⋅

r′ ∈ AJA1KF JDK and, as a consequence, r = (c,{c1, . . . , cn}) ↣
c ⋅ r′ belongs to AJAKF JDK . Now we compute r⇓d and we get
the trace d ⋅ r′⇓d⊗c = d ⋅ r′⇓d. By definition of the evalua-
tion function A, r′ is different from the empty conditional
trace ε (by (3.7) a stutt construct is always followed by an-
other conditional state). Therefore, r′⇓d = d ⋅ d ⋅ s for some
behavioral trace s. As a consequence, the behavior of the
agent BssJD . AKd = d ⋅ d is included in the set of prefixes of
r⇓d = d ⋅ d ⋅ s.

In case d = ff we are not allowed to apply any rule in Figure 1,
so the small-step behavior is BssJD . AKff = {ε,ff }. In this case,
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A1 = skip since ff is strong enough to entail any guard of a generic
agent ∑

n
i=1 ask(ci) → Bi. As explained above, ⊠ ∈ AJA1KF JDK

and r = (c,∅) ↣ c ⋅ ⊠ ∈ AJAKF JDK , thus r⇓ff = ff , and it is easy
to note that BssJD . AKff ∈ prefix(ff ).

Rule R5 This case is analogous to the case for Rule R3 but, in-
stead of executing the then branch (A1), the else branch of the
conditional agent (A2) is taken, under the condition that d ⊬
c. More specifically, the conditions imposed for the applica-
tion of the rule are ⟨A2, d⟩ → ⟨A′

2, d
′⟩ and d ⊬ c, in which case

BssJD.AKd = BssJD.A2Kd. By inductive hypothesis, we know that
prefix(AJA2KF JDK⇓d) ⊇ B

ssJD.A1Kd, thus also prefix(AJA2KF JDK⇓d) ⊇
BssJD.AKd. In the following, we prove that prefix(AJAKF JDK⇓d) ⊇
prefix(AJA2KF JDK⇓d) when d ⊬ c. We proceed by induction on
the structure of a generic r2 ∈ AJA2KF JDK in order to find a con-
ditional trace r ∈ AJAKF JDK such that prefix(r2⇓d) ⊆ prefix(r⇓d).
r2 = ⊠ In this case, r = (tt ,{c}) ↣ tt ⋅ ⊠ belongs to AJAKF JDK .

We have ⊠⇓d = d, whose prefixes are included in those of
r⇓d = d ⋅ d.

r2 = (η
+, η−) ↣ c′ ⋅ r′ In this case, r = (η+, η− ∪ {c}) ↣ c′ ⋅ r′ ∈

AJAKF JDK . Let us now assume that d ⊫ (η+, η−); then,
r2⇓d = d⋅r

′⇓d⊗c′ . In addition, since by the initial assumptions
d ⊬ c, r⇓d = d ⋅ r

′⇓d⊗c′ , the inclusion of the prefixes directly
holds. Otherwise, if d ⊯ (η+, η−), then the operator ⇓d is
undefined in both cases.

r2 = stutt(η−) ⋅ r′ By definition, r = (tt , η− ∪ {c}) ↣ tt ⋅ r′ ∈
AJAKF JDK . Assume that for all h− ∈ η−, d ⊬ h−. Then,
r2⇓d = d, and its prefixes are all included in the prefixes of
r⇓d = d ⋅r

′⇓d. Otherwise, if it exists h− ∈ η− such that d ⊢ h−,
then the ⇓d operator is undefined in both cases.

Rule R6 This case is analogous to the case for Rule R4. Now, the
conditions to apply the rule are that ⟨A2, d⟩ /→ and d ⊬ c. In this
case, the small-step behavior is BssJD .AKd = prefix(d ⋅d). There
are two cases in which it may happen that ⟨A2, d⟩ /→:
A2 = skip By (3.2), ⊠ ∈ AJA2KF JDK and r = (tt ,{c}) ↣ tt ⋅ ⊠ ∈
AJAKF JDK . Then, since d ⊬ c, we have that r⇓d = d ⋅d, which
coincides with BssJD . AKd.

A2 = ∑
n
i=1 ask(ci) →Bi and ∀1 ≤ i ≤ n ⊬ ci By (3.7), stutt({c1, . . . , cn})⋅

r′ ∈ AJA2KF JDK and, as a consequence, r = (c,{c1, . . . , cn}) ↣
c ⋅ r′ belongs to AJAKF JDK . Now, we compute r⇓d and we
get as result the trace d ⋅ r′⇓d. Since, by definition of the
semantics evaluation function A, a stutt is always followed
by another conditional tuple, then r′ is different from the
empty trace. Therefore, r′⇓d = d ⋅ s for some trace s. As a
consequence, the behavior of the agent BssJD . AKd = d ⋅ d is
included in the set of prefixes of r⇓d = d ⋅ d ⋅ s.

A1 ∥A2 We prove the two directions separately.

50



⊆ We distinguish five different cases. Let r ∶= r1 ∥̄ r2 ∈ AJA1 ∥ A2KF JDK
such that r1 ∈ AJA1KF JDK and r2 ∈ AJA2KF JDK .
r = r1 By Definition 3.9, r1 is a generic conditional trace and r2 = ⊠

(or r2 = ε). In other words, r2 is associated to an agent that adds
no information. We have:

prefix((r1 ∥̄ r2)⇓d) =prefix(r1⇓d)

=AJA1KF JDK⇓d

[ by Inductive Hypothesis ]

⊆BssJD . A1Kd
=BssJD . A1 ∥ A2Kd

Since A2 does not modify the store, we can conclude that the
two behaviors BssJD . A1Kd and BssJD . A1 ∥ A2Kd coincide.

r = stutt(η−1 ∪ η
−

2) ⋅ r
′

In case d ⊬ h− ∀h− ∈ (η− ∪ δ−), we have that
prefix(r⇓d) = prefix(d) = {ε, d} ⊆ BssJD . A1 ∥ A2Kd
Otherwise, r⇓d is not defined, thus, the set prefix(r⇓d) is empty
and the inclusion directly holds.

r = (η ⊗ δ) ↣ c1 ⊗ c2 ⋅ (r
′

1↓c2 ∥̄ r
′

2↓c1) By Definition 3.9, r1 = η ↣
c1 ⋅r

′
1 ∈ AJA1KF JDK , r2 = η ↣ c2 ⋅r

′
2 ∈ AJA2KF JDK and (c1⊗c2) ≠ ff .

Let us distinguish three sub-cases.
d⊫ (η ⊗ δ) and d ≠ ff Due to the form of r1 and r2, we know

that there exist two agents A′
1 and A′

2 such that ⟨A1, d⟩ →
⟨A′

1, d⊗ c1⟩ and ⟨A2, d⟩ → ⟨A′
2, d⊗ c2⟩, respectively. Then,

prefix(r⇓d) =

= prefix({d ⋅ (r′1↓c2 ∥̄ r
′
2↓c1)⇓d⊗c1⊗c2 ∣ r′1 ∈ AJA′

1KF JDK , r
′
2 ∈ AJA′

2KF JDK})

[ c1 and c2 are already in the stores of r1 and r2, respectively ]

= prefix({d ⋅ (r′1↓c1⊗c2 ∥̄ r
′
2↓c1⊗c2)⇓d⊗c1⊗c2 ∣ r′1 ∈ AJA′

1KF JDK and r′2 ∈ AJA′
2KF JDK})

[ by Lemma A.3 ]

= prefix({d ⋅ (r′1 ∥̄ r
′
2)↓c1⊗c2⇓d⊗c1⊗c2 ∣ r′1 ∈ AJA′

1KF JDK and r′2 ∈ AJA′
2KF JDK})

[ by Lemma A.6 ]

= prefix({d ⋅ (r′1 ∥̄ r
′
2)⇓d⊗c1⊗c2 ∣ r′1 ∈ AJA′

1KF JDK and r′2 ∈ AJA′
2KF JDK})

[ by Lemma A.8 ]

= prefix({d ⋅ (r′1⇓d⊗c1⊗c2 ∥̆ r
′
2⇓d⊗c1⊗c2) ∣ r′1 ∈ AJA′

1KF JDK and r′2 ∈ AJA′
2KF JDK})

[ by Equation (3.1) ]

= {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s′1 ∈ prefix(AJA′

1KF JDK⇓d⊗c1⊗c2),

s′2 ∈ prefix(AJA′
2KF JDK⇓d⊗c1⊗c2)}

[ by Inductive Hypothesis ]

⊆ {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s′1 ∈ B

ssJD . A′
1Kd⊗c1⊗c2 , s

′
2 ∈ B

ssJD . A′
2Kd⊗c1⊗c2}

[ by Definition A.7 and by Definition 3.1 ]

⊆ {ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . A′
1 ∥ A

′
2Kd⊗c1⊗c2}

[ by Rule R7 ]
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⊆ BssJD . A1 ∥ A2Kd

d = ff We have that ⟨A1, ff ⟩ /→ and ⟨A2, ff ⟩ /→, thus BssJD .
A1 ∥ A2Kff = {ε, ff }. Since d ⊫ (η ⊗ δ), we have that
prefix(r⇓ff ) = {ε, ff }, which corresponds to the small-step
behavior BssJD . A1 ∥ A2Kff .

d⊯ (η ⊗ δ) In this case the set prefix(r⇓d) is empty since ⇓d is
not defined under these conditions, thus it is directly included
in BssJD . A1 ∥ A2Kd.

r = (η ⊗ δ) ↣ ff ⋅ ⊠ By Definition 3.9 we have that r1 = η ↣ c1 ⋅ r
′
1,

r2 = δ ↣ c2 ⋅ r
′
2 and c1 ⊗ c2 = ff . We have to consider three cases:

d⊫ (η ⊗ δ) and d ≠ ff

prefix(r⇓d) =prefix(d ⋅ c1 ⊗ c2)

=prefix(d ⋅ ff )

={d ⋅ s ∣ s ∈ BssJD . A′
1 ∥ A

′
2Kff }

[ by Rule R7 ]

⊆BssJD . A1 ∥ A2Kd

In fact, also the second component of the behavior is the store
ff . This case represents the situation in which the contribu-
tion of the two conditional traces results in an inconsistent
conditional trace.

d = ff We have that ⟨A1, ff ⟩ /→ and ⟨A2, ff ⟩ /→, thus BssJD .
A1 ∥ A2Kff = {ε, ff }. Since d ⊫ (η ⊗ δ), we have that
prefix(r⇓ff ) = {ε, ff }, which corresponds to the small-step
behavior BssJD . A1 ∥ A2Kff .

d⊯ (η ⊗ δ) In this case, r⇓d is undefined, thus we have that
∅ ⊆ BssJD . A1 ∥ A2Kd.

r = (η+, η− ∪ δ−) ↣ c1 ⋅ (r
′

1 ∥̄ r
′

2↓c1) By Definition 3.9, r1 = η ↣ c1 ⋅
r′1 ∈ AJA1KF JDK , r2 = stutt(δ−) ⋅ r′2 ∈ AJA2KF JDK with r′2 that
recursively belongs to AJA2KF JDK and for all h− ∈ δ−, η+ ⊬ h−.
Let us distinguish three sub-cases.
d⊫ (η+, η− ∪ δ−) . Then,

prefix(r⇓d)

= prefix({d ⋅ (r′1 ∥̄ r
′
2↓c1)⇓d⊗c1 ∣ r′1 ∈ AJA′

1KF JDK , r
′
2 ∈ AJA2KF JDK})

[ c1 is already contained in the stores of r1 ]

= prefix({d ⋅ (r′1 ∥̄ r
′
2)↓c1⇓d⊗c1 ∣ r′1 ∈ AJA′

1KF JDK , r
′
2 ∈ AJA2KF JDK})

[ by Lemma A.6 ]

= prefix({d ⋅ (r′1 ∥̄ r
′
2)⇓d⊗c1 ∣ r′1 ∈ AJA′

1KF JDK , r
′
2 ∈ AJA2KF JDK})

[ by Lemma A.8 ]

= prefix({d ⋅ (r′1⇓d⊗c1 ∥̆ r
′
2⇓d⊗c1) ∣ r′1 ∈ AJA′

1KF JDK , r
′
2 ∈ AJA2KF JDK})

[ by Equation (3.1) ]
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= {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s′1 ∈ prefix(AJA′

1KF JDK⇓d⊗c1), s
′
2 ∈ prefix(AJA2KF JDK⇓d⊗c1)}

[ by Inductive Hypothesis ]

⊆ {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s′1 ∈ B

ssJD . A′
1Kd⊗c1 , s

′
2 ∈ B

ssJD . A2Kd⊗c1}
[ by Definition A.7 and by Definition 3.1 ]

⊆ {ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . A′
1 ∥ A2Kd⊗c1}

[ by Rule R8 ]

⊆ BssJD . A1 ∥ A2Kd

d = ff We have that ⟨A1, ff ⟩ /→ and ⟨A2, ff ⟩ /→, thus BssJD .
A1 ∥ A2Kff = {ε, ff }. Since d ⊫ (η ⊗ δ), we have that
prefix(r⇓ff ) = {ε, ff }, which corresponds to the small-step
behavior BssJD . A1 ∥ A2Kff .

d⊯ (η+, η− ∪ δ−) In this case, we have that prefix(r⇓d) = ∅ ⊆
BssJD . A1 ∥ A2Kd.

⊇ In the following, we show that if s ∈ BssJD . A1 ∥ A2Kd, then s ∈
prefix(AJA1 ∥ A2KF JDK⇓d), i.e., we can find a conditional trace r ∈
AJA1 ∥ A2KF JDK such that s ∈ prefix(r⇓d). We have four possible
cases, depending on the rules defining the operational semantics for
the agent.

1. If ⟨A1, d⟩ → ⟨A′
1, d

′
1⟩ and ⟨A2, d⟩ → ⟨A′

2, d
′
2⟩, the behavior of the

parallel composition is BssJD.A1 ∥ A2Kd = {d⋅s′ ∣ s′ ∈ BssJD.A′
1 ∥

A′
2Kd′1⊗d′2}. Let s be an element of that set. By inductive hy-

pothesis, we know that there exist r1 ∈ AJA1KF JDK and r2 ∈
AJA2KF JDK such that d ⋅s′1 ∈ prefix(r1⇓d) and d ⋅s′2 ∈ prefix(r2⇓d),
with s′1 ∈ BssJD . A′

1Kd and s′2 ∈ BssJD . A′
2Kd. Now, consider

r = r1 ∥̄ r2; this conditional trace belongs to AJA1 ∥ A2KF JDK
whenever r1 and r2 are compatible via parallel composition (i.e.,
r1 ∥̄ r2 is a valid conditional trace). We show that s ∈ prefix((r1 ∥̄ r2)⇓d).

prefix((r1 ∥̄ r2)⇓d)

[ by Lemma A.8 ]

= prefix(r1⇓d ∥̆ r2⇓d)

[ by Definition 3.24 ]

= {ε, d} ∪ {(d ⋅ s′1) ∥̆ (d ⋅ s′2) ∣ s
′
1 ∈ B

ssJD . A′
1Kd′1 and s′2 ∈ B

ssJD . A′
2Kd′2}

[ by Definition A.7 ]

= {ε, d} ∪ {d ⋅ s′1 ∥̆ s
′
2 ∣ s′1 ∈ B

ssJD . A′
1Kd′1 and s′2 ∈ B

ssJD . A′
2Kd′2}

[ by Definition A.7 and by Definition 3.1 ]

= {ε, d} ∪ {d ⋅ s′ ∣ s′ ∈ BssJD . A′
1Kd′1 ∥̆ B

ssJD . A′
2Kd′2}

[ by Rule R7 and Equation (A.1) ]

= {ε, d} ∪ {d ⋅ s′ ∣ s′ ∈ BssJD . A′
1 ∥ A

′
2Kd′1⊗d′2}

It follows directly that s ∈ prefix((r1 ∥̄ r2)⇓d).

2. If ⟨A1, d⟩ → ⟨A′
1, d

′
1⟩ and ⟨A2, d⟩ /→, then Rule R8 is applied and

we have that BssJD .A1 ∥ A2Kd = {d ⋅ s′ ∣ s′ ∈ BssJD .A′
1 ∥ A2Kd′1}.
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Let s be an element of that set. By inductive hypothesis, we
know that it exists r1 ∈ AJA1KF JDK such that d ⋅s′1 ∈ prefix(r1⇓d)
with s′1 ∈ B

ssJD . A′
1Kd. Moreover, it exists r2 ∈ AJA2KF JDK such

that r2⇓d = d. We distinguish two cases (corresponding to the
two agents that can make the agent A2 not to proceed) in order
to prove that s ∈ prefix((r1 ∥̄ r2)⇓d).
A2 = skip In this case, the behavior of the parallel composition

is that of A1 since A2 makes no contribution to the com-
putation. Then, (r1 ∥̄ ⊠)⇓d = d ⋅ s

′ with s′ ∈ BssJD . A′
1Kd =

BssJD . A′
1 ∥ A2Kd, thus s ∈ prefix((r1 ∥̄ ⊠)⇓d).

A2 = ∑
n
i=1 ask(ci) →Bi Consider r2 = stutt({c1, . . . , cn}) ⋅ r

′
2

with r′2 ∈ AJA1KF JDK . We can assume that d ⊬ ci for all
ci, otherwise, the agent A2 would proceed.

prefix((r1 ∥̄ stutt(c1, . . . , cn) ⋅ r
′
2)⇓d) =

= prefix({d ⋅ (r′1 ∥̄ r
′
2)⇓d′1 ∣ r′1 ∈ AJA1KF JDK and r′2 ∈ AJA2KF JDK})

[ by Lemma A.8 ]

= prefix({d ⋅ (r′1⇓d′1 ∥̆ r
′
2⇓d′1) ∣ r

′
1 ∈ AJA1KF JDK and r′2 ∈ AJA2KF JDK})

[ by Equation (3.1) ]

= {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s′1 ∈ prefix(AJA1KF JDK⇓d′1) and

s′2 ∈ prefix(AJA2KF JDK⇓d′1)}

[ by Inductive Hypothesis ]

= {ε, d} ∪ {d ⋅ (s′1 ∥̆ s
′
2) ∣ s

′
1 ∈ B

ssJD . A′
1Kd′1 and s′2 ∈ B

ssJD . A2Kd′1}

[ by Definition A.7 and by Definition 3.1 ]

= {ε, d} ∪ {d ⋅ s′ ∣ s′ ∈ BssJD . A′
1Kd′1 ∥̆ B

ssJD . A2Kd′1}

[ by Rule R7, Rule R8 and Equation (A.1) ]

= {ε, d} ∪ {d ⋅ s′ ∣ s′ ∈ BssJD . A′
1 ∥ A2Kd′1}

It follows directly that s ∈ prefix((r1 ∥̄ r2)⇓d).

3. If ⟨A1, d⟩ /→ and ⟨A2, d⟩ → ⟨A′
2, d

′
2⟩, then the situation is sym-

metric to the previous case, so we can conclude that BssJD.A1 ∥
A2Kd ⊆ prefix(AJA1 ∥ A2KF JDK⇓d).

4. Finally, if ⟨A1, d⟩ /→ and ⟨A2, d⟩ /→, then we can reason similarly
to Point 2, considering, for both A1 and A2, the two cases in
which they cannot proceed. We can conclude that BssJD . A1 ∥
A2Kd = {ε, d} ⊆ prefix(AJA1 ∥ A2KF JDK⇓d).

∃xA1 We prove the two directions independently.

⊆ We show that: prefix(AJ∃xA1KF JDK⇓d) ⊆ BssJD . ∃xA1Kd. Let r =
∃̄x r1 such that r1 ∈ AJA1KF JDK and r1 is x-self-sufficient. We show
that the prefixes of (∃̄x r1)⇓d are included in the behavior BssJD .
∃xA1Kd by structural induction on r1:
r1 = ε The statement directly holds.
r1 = ⊠ Then, ⊠⇓d = d, which belongs to BssJD . ∃xA1Kd.
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r1 = η ↣ l ⋅ r
′

1 By Definition 3.15, we have that r′1 ∈ AJA′
1KF JDK

and, by inductive hypothesis, there exists a transition ⟨A1, d⟩ →
⟨A′

1, d
′⟩.

Since r1 is x-self-sufficient, also r′1 is x-self-sufficient. Now, we
have three cases.
d⊫ ∃x η and d ≠ ff

prefix(r⇓d)

= prefix({∃̄x(η ↣ l ⋅ r′1)⇓d ∣ r
′
1 ∈ AJA′

1KF JDK and r′1 x-self-sufficient})

[ by Definition 3.24 ]

= prefix({d ⋅ (∃̄x r
′
1)⇓d⊗∃x l ∣ r

′
1 ∈ AJA′

1KF JDK and r′1 x-self-sufficient})

[ r′1 ∈ AJA′
1KF JDK and r′1 x-self-sufficient ]

= prefix({d ⋅ s ∣ s ∈ (AJ∃xA′
1KF JDK)⇓d⊗∃x l})

[ by Equation (3.1) ]

= {ε, d} ∪ {d ⋅ s ∣ s ∈ prefix(AJ∃xA′
1KF JDK⇓d⊗∃x l)}

[ by Inductive Hypothesis ]

⊆ {ε, d} ∪ {d ⋅ s ∣ s ∈ BssJD . ∃xA′
1Kd⊗∃x l}

[ by Rule R9 ]

⊆ BssJD . ∃xA1Kd

d = ff We have that ⟨∃xA1, ff ⟩ /→, thus BssJD . ∃xA1Kff =
{ε, ff }. On the other hand, since d ⊫ ∃x η, we have that
prefix(r⇓ff ) = {ε, ff } which corresponds to the small-step
behavior BssJD . ∃xA1Kff .

d⊯ ∃x η Then, the operator ⇓d is undefined for the conditional
trace, thus prefix(r⇓d) = ∅ ⊆ BssJD . ∃xA1Kd.

r1 = stutt({c1, . . . , cn}) ⋅ r
′

1 By Definition 3.15, r′1 ∈ AJ∑ii=1 ask(ni) → BiKF JDK .
If it exists no index 1 ≤ j ≤ n such that d ⊢ cj , then this implies
that d ⊢ ∃x cj . In such case, we have

prefix(r⇓d) = prefix(∃̄x(stutt({c1, . . . , cn}) ⋅ r
′
1)⇓d)

= prefix(stutt({∃x c1, . . . ,∃x cn}) ⋅ ∃̄x r
′
1⇓d)

[ by Definition 3.24 ]

= d ⊆ BssJD . ∃xA1Kd

Otherwise, if it exists an index j such that d ⊢ cj , then r⇓d is
undefined, thus prefix(r⇓d) = ∅ ⊆ BssJD . ∃xA1Kd.

⊇ From Rule R9, we know that, if d ≠ ff , then BssJD . A1Kl⊗∃x d =
l′ ⋅ BssJD . A′

1Kd, where l and l′ are local stores. Moreover, l = tt
because it is the initial (local) store for A1. In the following, we show
that d ⋅ BssJD . ∃xA′

1Kd⊗∃x l ∈ AJ∃xA1KF JDK⇓d, i.e., it exists a trace
r ∈ AJ∃xA1KF JDK such that r⇓d = d ⋅ s with s ∈ BssJD . ∃xA′

1Kd⊗∃x l.
By inductive hypothesis, BssJD . A1K∃x d ⊆ prefix(AJA1KF JDK⇓∃x d),
and by Rule R9, it holds that there exists r1 ∈ AJA1KF JDK such that
r1⇓∃x d = ∃x d ⋅ B

ssJD . ∃xA′
1Kl′ .
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Now, r1 is x-self-sufficient since the only external information is pro-
vided by ∃x d, which in fact does not contain information about x.
Moreover, r1 is of the form η ↣ l′ ⋅r′1 with r′1 ∈ AJA′

1KF JDK . Therefore,
it exists r ∈ AJ∃xA1KF JDK such that r = ∃̄x r1. Then,

r⇓d = (∃̄x η ↣ l′ ⋅ r′1)⇓d

= (∃x η ↣ ∃x l
′ ⋅ ∃̄x r

′
1)⇓d

[ by Definition 3.24 ]

= d ⋅ (∃̄x r
′
1)⇓∃x l′⊗d

[ by Definition 3.24 ]

= d ⋅ s with s ∈ AJ∃xA′
1KF JDK⇓∃x l′⊗d

[ by Inductive Hypothesis ]

= d ⋅ s with s ∈ BssJD . ∃xA′
1K∃x l′⊗d

If d = ff , then we have that prefix(r⇓ff ) = {ε, ff }, which corresponds
to the small-step behavior BssJD . ∃xA1Kff since the transition rela-
tion → is not defined for ⟨∃xA1, ff ⟩.

p(x⃗) We have to distinguish two sub-cases.

d ≠ ff

prefix(AJp(x⃗)KF JDK⇓d) = prefix({(tt ,∅) ↣ tt ⋅ r′ ∣ r′ ∈ F JDK(p(x⃗))}⇓d)

[ since F JDK = DJDKF JDK ]

= prefix({(tt ,∅) ↣ tt ⋅ r′ ∣ r′ ∈ DJDKF JDK(p(x⃗))}⇓d)

[ by Definition 3.19 ]

= prefix({(tt ,∅) ↣ tt ⋅ r′ ∣ r′ ∈ AJBKF JDK , p(x⃗) ∶− B ∈D}⇓d)

= prefix({d ⋅ s′ ∣ s′ ∈ (AJBKF JDK)⇓d, p(x⃗) ∶− B ∈D})

[ by Inductive Hypothesis ]

= prefix({d ⋅ s′ ∣ s′ ∈ BssJD . BKd, p(x⃗) ∶− B ∈D})

[ by Rule R10 ]

= BssJD . p(x⃗)Kd

Notice that, in the second last equality, the structural induction hy-
pothesis cannot be applied because B can be structurally greater
than p(x⃗). For this reason, we have to introduce a second induction
on the number of p(x⃗) present on B. If B does not contain any
process call p(x⃗), then we can directly apply structural induction.
Otherwise, if the agent contains one process call p(x⃗), it is sufficient
to replace the call with the body of the declaration. In this way, B
has less process calls p(x⃗) than A and we can apply the inductive
hypothesis.

d = ff In this case, the transition relation → is not defined for the con-
figuration ⟨p(x⃗), ff ⟩, hence

prefix(AJp(x⃗)KF JDK⇓ff ) = prefix({((tt ,∅) ↣ tt ⋅ r′)⇓ff ∣ r′ ∈ F JDK(p(x⃗))})

= {ε, ff }

= BssJD . p(x⃗)Kff

56



Proof of Theorem 3.26.
By Theorem 3.25 it follows that for each program P and each c ∈ C, prefix(PJP K⇓c) =
BssJP Kc. Thus, we show that PJP1K = PJP2K ⇐⇒ ∀c ∈ C.prefix(PJP1K⇓c) =
prefix(PJP2K⇓c).

⇒ Follows directly from Definition 3.24 and by definition of prefix .

⇐ To prove this implication we first need to show that PJP1K ≠ PJP2K ⇒ ∃c̄ ∈
C. PJP1K⇓c̄ ≠ PJP2K⇓c̄. Without loss of generality, assume that PJP1K ⊃
PJP2K, thus, it exists r1 ∈ PJP1K such that r1 /∈ PJP2K. We can distinguish
two cases: PJP2K is empty or PJP2K contains at least one conditional trace.

If PJP2K = ∅, then PJP2K⇓c is empty for any possible c ∈ C. Now, if we
choose c̄ to be the lub (⊗) of all the positive conditions occurring in r1,
then r1⇓c̄ is a valid trace. Therefore, PJP1K⇓c̄ ⊇ {r1⇓c̄} ≠ ∅.

If PJP2K ≠ ∅, by the initial assumptions, it exists a conditional trace
r2 ∈ PJP2K such that r1 ≠ r2. Without loss of generality, assume that
length(r1) ≤ length(r2) and that r1 differs from r2 at position k, with
k ∈ [1, length(r1)]. The index k is guaranteed to exist.7 We consider the
six possible cases, corresponding to the possible forms of the conditional
state at position k, in order to prove that there exists a store c̄ such that
PJP1K⇓c̄ ≠ PJP2K⇓c̄. In the following, the stores c̄1 and c̄2 correspond to
the lub (⊗) of all the positive conditions occurring in r1 and r2, respec-
tively.

1. Let be (η+1 , η
−
1 ) ↣ d1 and (η+2 , η

−
2 ) ↣ d2 the k-th conditional tuple in

r1 and r2, respectively. There are three possible ways in which these
two tuples can differ:

η+1 ≠ η
+

2 Let us assume that η+1 ⊢ η
+
2 and η+2 ⊬ η

+
1 . Notice that r1 has

to come from the semantics of an ask or a now construct since
they are the only tccp agents that can add information to the
positive condition (see Definition 3.15). Hence, there exists also
a conditional trace r̄1 ∈ PJP1K in which η+1 occurs in a negative
condition (corresponding to the else branch of a now agent) or
in a stutt construct (corresponding to the suspension of an ask
agent) of the sequence. There are two cases in which r̄1 does
not exists, but both are in contradiction with the hypothesis:
(1) when η+1 = tt , but this contradicts η+2 ⊬ η+1 or (2) when a
constraint d stronger than η+1 (d ⊢ η+1 ) is propagated. In this
last case, the trace r̄1 does not exists since the condition is in
contradiction with the propagated store. However, since η+1 ⊢ η

+
2 ,

it follows that d entails also η+2 (d⊗ η+1 = d⊗ η+2 = d). Therefore,
the propagation of d makes r1 and r2 equal. Since they were
supposed to be different only at this point, this is a contradiction
with the hypothesis r1 ≠ r2. Therefore, r̄1 exists and belongs to
PJP1K. Furthermore, r̄1 differs from any trace in PJP2K for at
least the negative part of a condition or the body of a stutt ,

7There are two cases in which k does not exist, but both are in contradiction with the
initial hypothesis: (1) r1 = r2 or (2) one of the traces is a prefix of the other.
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otherwise, reasoning in a similar way as above, r1 would also
belong to PJP2K, and this is not possible.
If η+1 ⊬ η

+
2 and η+2 ⊢ η

+
1 , we can reason in a symmetric way, thus

concluding that it exists r̄2 ∈ PJP2K that differs from any trace
in PJP1K for at least the negative part of a condition or the body
of a stutt .
Finally, if η+1 ⊬ η+2 and η+2 ⊬ η+1 , we can reason as before and
deduce that there exist two traces r̄1 ∈ PJP1K and r̄2 ∈ PJP2K,
which contains respectively η+1 and η+2 in the negative part of the
condition, and such that r̄1 /∈ PJP2K and r̄2 /∈ PJP1K.
In case r̄1 (respectively r̄2) comes from an ask agent we remand
to the following Points 2, 3 and 4 of the proof, where we deal with
the conditional traces containing stutt constructs. Otherwise, if
r1 comes from a now agent we can reduce to the following case
where we deal with the negative part of the conditions (η−1 ≠ η−2 ).

η−1 ≠ η
−

2 Let us first assume that η−1 ⊂ η−2 . This means that the store
at position k in r2 has to satisfy a stronger condition than the
one in r1. Let c̄ ∶= c̄1 ⊗ h−2 , with h−2 ∈ η−2 ∖ η−1 . Under these
conditions, r1⇓c̄ computes a behavioral timed trace whereas r2⇓c̄
computes no trace since, at position k, c̄ entails one of the stores
in the negative condition.
For the case in which η−2 ⊂ η−1 we choose c = c̄2 ⊗ h

−
1 , with h−1 ∈

η−1 ∖ η
−
2 and reason in an symmetric way.

Finally, if η−1 ⊈ η−2 and η−2 ⊈ η−1 , we can choose indifferently c̄ =
c̄1⊗h

−
2 or c̄ = c̄2⊗h

−
1 and conclude that r1⇓c̄ computes a behavioral

timed trace but r2⇓c̄ is not defined, or vice-versa.
Thus, we can conclude that PJP1K⇓c̄ ≠ PJP2K⇓c̄.

d1 ≠ d2 Consider c̄ = c̄1 = c̄2. There are two possible cases. Assume
first that c̄ ⊬ d1 and c̄ ⊬ d2. Both r1 and r2 must be compatible
with their own conditions, thus, being the store monotonic, it
happens that r1⇓c̄ and r2⇓c̄ are both defined. Moreover, we know
that η+1 = η+2 and from Property A.1 d1 ⊢ η

+
1 and d2 ⊢ η

+
1 . Since

c̄ ⊬ d1 and c̄ ⊬ d2, we can conclude that in r1⇓c̄ at position k we
have the store d1, whereas in r2⇓c̄ at the same position we find
the store d2 that is different from d1 by the initial assumptions.
Thus r1⇓c̄ ≠ r2⇓c̄. Assume now that c̄ contains more information
than the store d1 (respectively d2). Then, we know that, at
certain point in r1 (respectively r2), the positive condition is
stronger than d1 (respectively d2). Therefore, we can reason as
in the previous case when η+1 ≠ η+2 and r1 (respectively r2) are
produced by the semantics of an ask or a now agent.

2. Let stutt(η−1 ) (respectively stutt(η−2 )) be the k-th conditional state
in r1 (respectively r2). It is sufficient to proceed as in Point 1 of this
proof (case η−1 ≠ η−2 ) to show that there exists a store c̄ such that
r1⇓c̄ is well defined while r2⇓c̄ is not. For instance, if η−1 ⊂ η−2 we set
c̄ = c̄1 ⊗h

−
2 , with h−2 ∈ η−2 ∖ η

−
1 . It is easy to notice that r1⇓c̄ computes

a behavioral timed trace but r2⇓c̄ recovers no trace since at position
k the constraint h−2 belongs to the negative part of the condition.
Therefore, PJP1K⇓c̄ ≠ PJP2K⇓c̄.
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3. Let η1 ↣ d1 be the k-th conditional tuple in r1 and stutt(η−2 ) the
k-th element in r2. Consider c̄ = c̄1. Up to instant k, r1⇓c̄ and r2⇓c̄
coincide and, as r1 and r2 differ only at position k, c̄ satisfies all the
conditions in r1 and in r2 till up that position. The behavioral timed
trace r2⇓c̄ ends at position k since a stutt has been encountered (see
Definition 3.24). However, since r1 is maximal, r1⇓c̄ does not end
at position k but continues with at least another state, otherwise we
would have found an ending symbol ⊠. In conclusion, r2⇓c̄ is at least
one store longer than r1⇓c̄, thus, PJP1K⇓c̄ ≠ PJP2K⇓c̄.

4. If η2 ↣ d2 is the k-th element in r2 and stutt(η−1 ) that in r1, then the
proof is symmetric to previous Point 3.

5. Let ⊠ and η2 ↣ d2 be the k-th states of r1 and r2, respectively.
We can reason similarly to Point 3 above in this proof, by choosing
c̄ = c̄2. By hypothesis, r1 and r2 differ only at position k, thus, r1⇓c̄
and r2⇓c̄ compute the same behavioral timed trace up to position
k-th. However, while r1⇓c̄ stops at instant k (an ending symbol ⊠ is
found), r2⇓c̄ is at least one store longer. Thus, PJP1K⇓c̄ ≠ PJP2K⇓c̄.

6. Let ⊠ be the k-th element of r1 and stutt(η2) the conditional state
occurring in r2 at the same position. We set c̄ = c̄1 ⊗ h

−
2 , with h−2 ∈

η−2 ∖η
−
1 . In this way, r1⇓c̄ is defined but r2⇓c̄ computes no trace since,

at position k, the constraint h−2 is required not to be entailed by the
current store. Thus, PJP1K⇓c̄ ≠ PJP2K⇓c̄.

In conclusion, we can always choose an adequate c̄ which differentiates
PJP1K⇓c̄ from PJP2K⇓c̄. From Definition 3.15 and Definition 3.19, it
can be noticed that the traces contained in PJP1K and PJP2K either end
in ⊠ or are infinite. From this observation, it follows directly that, if
PJP1K⇓c̄ ≠ PJP2K⇓c̄, then prefix(PJP1K⇓c̄) ≠ prefix(PJP2K⇓c̄). Other-
wise, there would exists a trace in PJP1K that is prefix of a trace in
PJP2K (or viceversa), which is not possible since ⊠ is a termination sym-
bol and an infinite trace cannot prefix another infinite trace. Thus, we
can conclude that if PJP1K ≠ PJP2K, then there exists c̄ ∈ C such that
prefix(PJP1K⇓c̄) ≠ prefix(PJP2K⇓c̄), and this concludes the proof.

Proof of Proposition 3.27.
⇒ Straightforward.

⇐ By Definition 3.19, PJD1 . AK = AJAKF JD1K and PJD2 . AK = AJAKF JD2K .
We have to check that F JD1K = F JD2K. The only case depending on the
interpretation is when A = p(x⃗). By hypothesis,

AJp(x⃗)KF JD1K = ⊔{(true,∅) ↣ true ⋅ r ∣ r ∈ F JD1K(p(x⃗))}

= ⊔{(true,∅) ↣ true ⋅ r ∣ r ∈ F JD2K(p(x⃗))} = AJp(x⃗)KF JD2K

We have to check that F JD1K(p(x⃗)) and F JD2K(p(x⃗)) coincide for each
p(x⃗) ∈ PC. Since F JD1K (respectively F JD2K) is the least fixpoint of
DJD1K� (respectively DJD2K�), we know that it contains only information
regarding the procedure calls in D1 (respectively D2). So we can conclude
that F JD1K = F JD2K.
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Proof of Corollary 3.28.
Consider D1, D2 ∈ DΠ

C:

D1 ≈F D2 ⇔F JD1K = F JD2K
[ by Proposition 3.27 ]

⇔∀A ∈ AΠ
C.PJD1 . AK = PJD2 . AK

[ by Theorem 3.26 ]

⇔∀A ∈ AΠ
C∀c ∈ C.prefix(PJD1 . AK⇓c) = prefix(PJD2 . AK⇓c)

[ by Theorem 3.25 ]

⇔∀A ∈ AΠ
C∀c ∈ C.BssJD1 . AKc = BssJD2 . AKc

⇔D1 ≈ss D2

A.2 Proofs of Section 4

Lemma A.9 (M, ⊑, ⊔, ⊓, M, {ε}) −−−−−→Ð→←−−−−−−−
αio

γio

(IO, ⊆, ⋃, ⋂, IO, ∅)

Proof.
αio is monotonic LetR1,R2 ∈M such thatR1 ⊑ R2, thus, αio(R1) ⊆ αio(R2).

Otherwise, if there exists an input-output pair belonging to αio(R1) but
not to αio(R2), this means that the associated trace belongs to R1 but
not to R2, and this contradicts the hypothesis.

γio is monotonic Let P1, P2 ∈ IO such that P1 ⊆ P2. Suppose that γio(P1) ⋢
γio(P2), in this case, there exists r1 ∈ γio(P1) but not r2 ∈ γio(P1) that
extends r1 (r1 is a prefix of r2). It is easy to see that this situation is
impossible since, by the definition of γio , r1 has to belong also to γio(P2)
(since P1 ⊆ P2) and r1 trivially extends itself.

(γio ○αio) is extensive This means that for all R ∈M, R ⊑ γio(αio(R)). We
show that r ∈ R⇒ r ∈ γio(αio(R)); we distinguish three cases:

r = η1 ↣ c1 ⋅ ⋅ ⋅ ⋅ ⋅ ηn ↣ cn ⋅ ⊠ We have that αio(R) ⊇ {⟨c0, fin(c)⟩ ∣ c0 ∈
C and last(r⇓c0) = c}. Thus, by (4.2), it follows that r ∈ γio(αio(r)).

r = η1 ↣ c1 ⋅ ⋅ ⋅ ⋅ ⋅ stutt(η−n) ⋅ . . . We have that αio(R) ⊇ {⟨c0, fin(c)⟩ ∣
c0 ∈ C and last(r⇓c0) = c}. From (4.2), it follows that r ∈ γio(αio(r)).

r = η1 ↣ c1 . . . ηn ↣ cn . . . (an infinite sequence that does not contain
any stutt). We have that αio(R) ⊇ {⟨c0, inf (c)⟩ ∣ c0 ∈ C, r⇓c0 =
c′0 . . . c

′
i . . . , and ⊗i≥0 c

′
i = c}. By (4.2), we have that r ∈ γio(αio(r)).

(αio ○γio) is the identity for IO This means that for all P ∈ IO, P = αio(γio(P )).
We show the two inclusions separately.

⊆ We first show that p ∈ P ⇒ p ∈ αio(γio(P )) by distinguishing two
sub-cases.

p = ⟨c0, fin(cn)⟩ In this case, γio(P ) contains all the conditional
traces r such that last(r⇓c0) = cn. By (4.1), p ∈ αio(γio(P )).
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p = ⟨c0, inf (c)⟩ We have that γio(P ) contains all the conditional
state sequences r such that r⇓c0 = c0 . . . ci . . . and ⊗i≥0 = c. By
(4.1), p ∈ αio(γio(P )).

⊇ Now we show the other inclusion i.e., p ∈ αio(γio(P )) ⇒ p ∈ P . We
have to consider two sub-cases.

p = ⟨c0, fin(cn)⟩ In this case, it exists r ∈ γio(P ) such that last(r⇓c0) =
cn. Obviously, p ∈ P , otherwise r would not belong to γio(P ).

p = ⟨c0, inf (c)⟩ In this case, it exists r ∈ γio(P ) such that r⇓c0 =
c0 . . . ci . . . and ⊗i≥0 = c. It is easy to notice that p ∈ P , otherwise,
by using γio , we would not obtain r.

Proof of Proposition 4.4.
Consider D ∈ DΠ

C and A ∈ AΠ
C, then αio(PJD . AK) = BioJD . AK. We show the

two inclusions independently.

⊆ Let r ∈ PJD . AK and c0 ∈ C such that r⇓c0 is defined. In order to show
that αio({r}) ⊆ B

ioJD . AK, we distinguish two cases.

1. In case r⇓c0 is finite, by (4.1), αio({r}) = ⟨c0, fin(cn)⟩ ∈ αio(PJD.AK),
where cn ∶= last(r⇓c0). Moreover, by Definitions 3.19, 3.15 and 3.24,
it is easy to notice that r must be of one of the following forms:

(a) r ends with ⊠,

(b) r contains a stutt or

(c) r contains a conditional store η ↣ d such that there is no stutt
before it and c0 ⊗ d = ff .

Now, let us show that on the behavioral part, when A, with initial
store c0, behaves as ⟨A, c0⟩ →

∗ ⟨An, cn⟩ /→ (the sequence is finite),
r takes also one of those forms. Looking at the agent semantics A
(Definition 3.15) we observe that:

(a) we obtain a sequence that ends with ⊠ if a subagent of A is
equal to skip or tell, this means that, starting from an initial
store c0 such that last(r⇓c0) is well defined, the operational se-
mantics cannot perform any step from the reached configuration
⟨skip, cn⟩ /→;

(b) when A contains an agent ∑
n
i=1 ask(gi) → Ai and ∀i ∈ [1, n]. gi ≠

ff , then a stutt(∪ni=1) is introduced. Since we assume that r⇓c0
is well defined, it holds that the guards are not entailed by c0
(merged with the store produced by the sequence up to that
position), thus the operational semantics cannot perform any
step from the reached configuration ⟨∑

n
i=1 ask(gi) → Ai, cn⟩ /→;

(c) when r contains a conditional state η ↣ d (that occurs before any
stutt) such that c0 ⊗ d = ff , we can deduce that, starting from
⟨A, c0⟩, we reach in a finite number of operational steps the state
⟨An, ff ⟩ /→, from which no further derivation is possible since an
inconsistent store has been produced.

Thus, by Definition 4.2, ⟨c0, fin(cn)⟩ ∈ B
ioJD . AK.
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2. In case r⇓c0 = c0⋯ci⋯ is infinite, let us define c ∶= ⊗i≥0ci. By (4.1),
αio({r}) = ⟨c0, inf (c)⟩ ∈ αio(PJD . AK). By Theorem 3.25, it is easy
to notice that r⇓c0 ∈ B

ssJD . AKc0 , in fact, agent A with initial store
c0 behaves in the following way: ⟨A, c0⟩ → . . . → ⟨Ai, ci⟩ → . . . . By
Definition 4.2, it follows that ⟨c0, inf (c)⟩ ∈ BioJD . AK.

⊇ Let p ∈ IO, we show that p ∈ BioJD . AK ⇒ p ∈ αio(PJD . AK). Let us
distinguish two cases.

p = ⟨c0, fin(cn)⟩ By Definition 4.2, it follows that ⟨A, c0⟩ → . . .→ ⟨An, c0⟩ /→,
and by Definition 3.1, c0⋯cn ∈ B

ssJD .AKc0 . By Theorem 3.25, it ex-
ists r ∈ PJD . AK such that r⇓c0 = c0⋯cn, and by (4.1) it follows that
⟨c0, fin(cn)⟩ ∈ αio(PJD . AK).

p = ⟨c0, inf (c)⟩ By Definition 4.2, it follows that ⟨A, c0⟩ → . . .→ ⟨Ai, ci⟩ →,
and by Definition 3.1, c0⋯ci ⋅ ⋅ ⋅ ∈ B

ssJD . AKc0 . By Theorem 3.25, it
exists r ∈ PJD . AK such that r⇓c0 = c0⋯ci⋯, and by (4.1) it follows
that ⟨c0, inf (c)⟩ ∈ αio(PJD . AK).

Proof of Theorem 4.6.
From Proposition 4.4 and by definition of πF (Definition 4.2), for each tccp
program P , πF (αio(PJP K)) = Bio

F JP K. Thus, it is sufficient to show that
OioJP1K = OioJP2K ⇐⇒ πF (αio(PJP1K)) = πF (αio(PJP2K)) for P1 and P2

tccp programs such that no trace in PJP1K ⊔ PJP2K is a failed conditional trace.
We prove the two directions separately.

⇒ We prove the equivalent implication: πF (αio(PJP1K)) ≠ πF (αio(PJP2K)) ⇒
OioJP1K ≠ OioJP2K. Let us assume, without loss of generality, that πF (αio(PJP1K)) ⊂
πF (αio(PJP2K)), which means that there exist r2 ∈ PJP2K and c0 ∈ C
such that r2⇓c0 = c0⋯cn, but it does not exist r1 ∈ PJP1K such that
r1⇓c0 = c0⋯cn. Furthermore, cn ≠ ff since, by hypothesis, r2 is not a
failed conditional trace. By Theorem 3.25, c0⋯cn ∈ B

ssJP2K and, by Defi-
nition 4.2, ⟨c0, cn⟩ ∈ B

io
F JP2K. Since Bio

F and Oio differ only on sequences
terminating in ff and cn ≠ ff , it follows that ⟨c0, cn⟩ ∈ O

ioJP2K. On the
other hand, we have that c0⋯cn ∉ BssJP1K, thus ⟨c0, cn⟩ ∉ B

io
F JP1K. It is

easy to see that, given a tccp program P , OioJP K ⊆ Bio
F JP K, thus it holds

that ⟨c0, cn⟩ ∉ O
ioJP1K. This means that ⟨c0, cn⟩ ∈ O

ioJP2K ∖OioJP1K and
we can conclude that OioJP1K ≠ OioJP2K.

⇐ We prove the equivalent implication: OioJP1K ≠ OioJP2K ⇒ πF (αio(PJP1K)) ≠
πF (αio(PJP2K)). Without loss of generality, assume thatOioJP1K ⊂ OioJP2K,
thus, there exists ⟨c0, cn⟩ ∈ O

ioJP2K such that ⟨c0, cn⟩ ∉ O
ioJP1K. Since

no trace in PJP1K ⊔ PJP2K is failed, we can assume that cn ≠ ff . This
means that, by using the transition relation defined in [14], we have
a derivation of the form ⟨A2, c0⟩ → . . . ⟨A′

2, cn⟩ /→, with A2,A
′
2 ∈ AΠ

C,
D2 ∈ DΠ

C and P2 = D2 . A2; On the other hand, it can be noticed that,
by using the transition relation of Figure 1, for P1 there is no deriva-
tion starting with c0 and ending in cn. Thus, we have that ⟨c0, cn⟩ ∈
Bio

F JP2K and ⟨c0, cn⟩ ∉ Bio
F JP1K. From Proposition 4.4, it follows that

⟨c0, cn⟩ ∈ πF (αio(PJP2K)) ∖ πF (αio(PJP1K)) and we can conclude that
πF (αio(PJP1K)) ≠ πF (αio(PJP2K)).
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