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Abstract. Automatic techniques for program verification usually suffer
the well-known state explosion problem. Most of the classical approaches
are based on browsing the structure of some form of model (which rep-
resents the behavior of the program) to check if a given specification is
valid. This implies that a part of the model has to be built, and some-
times the needed fragment is quite huge.

In this work, we provide an alternative automatic decision method to
check whether a given property, specified in a linear temporal logic, is
valid w.r.t. a tccp program. Our proposal (based on abstract interpreta-
tion techniques) does not require to build any model at all. Our results
guarantee correctness but, as usual when using an abstract semantics,
completeness is lost.
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1 Introduction

The Concurrent Constraint Paradigm (ccp) is a simple, logic model which is
different from other (concurrent) programming paradigms mainly due to the no-
tion of store-as-constraint that replaces the classical store-as-valuation model.
It is based on an underlying constraint system that handles constraints on vari-
ables, thus, it deals with partial information. One challenging characteristic of
the ccp framework is that programs can manifest non-monotonic behaviors, im-
plying that standard approaches cannot be directly adapted. Within this fam-
ily, [dBGM00] introduced the Timed Concurrent Constraint Language (tccp in
short) by adding to the original ccp model the notion of time and the abil-
ity to capture the absence of information. With these features, one can specify
behaviors typical of reactive systems such as timeouts or preemption actions.

⋆ This work has been partially supported by the eu (feder) and the Spanish
mec/micinn, ref. tin 2010-21062-c02-02, and by Generalitat Valenciana, ref.
prometeo2011/052.



It is well-known that modeling and verifying concurrent systems by hand can
be an extremely hard task. Thus, the development of automatic formal methods
is essential. One of the most known techniques for formal verification is model
checking, that was originally introduced in [CE81,QS82] to automatically check
if a finite-state system satisfies a given property. It consisted in an exhaustive
analysis of the state-space of the system; thus the state-explosion problem is
its main drawback and, for this reason, many proposals in the literature try
to mitigate it. Some of the more successful ones are the symbolic approach
[BCM+92,HNSY94,BCC+03], on-the-fly model checking [Hol96] and the abstract
interpretation based techniques [CGL92,Dam96]. The model-checking technique
for tccp was first defined in [FV06], and also in this setting (optimized) symbolic
and abstract versions were later defined [AFV05,AGPV05].

All the proposals of model checking have in common that a part of the model
of the (target) program has to be built, and sometimes the needed fragment is
quite huge. In this work, we propose a completely different approach to the for-
mal verification of temporal (LTL) properties of concurrent (reactive) systems
specified in tccp. We formalize a method to validate a specification of the ex-
pected behavior of a tccp program P , expressed by a linear temporal formula φ,
which does not require to build any model at all.

The linear temporal logic we use to express specifications, csLTL, is an adap-
tation of the propositional LTL logic to the concurrent constraint framework,
following the ideas of [PV01,dBGM01,dBGM02,Val05]. It is expressive enough
to represent the abstract semantics of tccp with much precision. This logic is
also used as the basis of the abstract domain for a new (abstract) semantics for
the language.

In brief, our method is an extension of abstract diagnosis for tccp [CTV11]
where the abstract domain F is formed by csLTL formulas. We cannot use the
original abstract diagnosis framework of [CTV11] since F is not a complete lat-
tice.

The contributions of this work are the following:

– A new abstract semantics for tccp programs based on csLTL formulas;
– A novel and effective method to validate csLTL properties based on the

ideas of abstract diagnosis. This proposal intuitively consists in viewing P
as a formula transformer by means of an (abstract) immediate consequence
operator D̂JP K which works on csLTL formulas. Then, to decide the validity
of φ, we just have to check if D̂JP Kφ (i.e., the P -transformation of φ) implies
φ;

– An automatic decision procedure for csLTL properties that makes our method
effective.

With our technique we can check, for instance, that each time a train is
approaching, the gate is down, or that whenever a train has crossed, the gate is
up. When a property results non valid, the method identifies the buggy process
declaration.

A proof of concept prototype of our technique is available online at URL
http://safe-tools.dsic.upv.es/tadi/.
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2 The small-step operational behavior of the tccp
language

The tccp language [dBGM00] is particularly suitable to specify both reactive and
time critical systems. As the other languages of the ccp paradigm [Sar93], it is
parametric w.r.t. a cylindric constraint system which handles the data informa-
tion of the program in terms of constraints. The computation progresses as the
concurrent and asynchronous activity of several agents that can (monotonically)
accumulate information in a store, or query some information from it. Briefly, a
cylindric constraint system3 is an algebraic structure C = ⟨C,⪯,⊗,⊕, false, true,Var ,∃⟩
composed of a set of constraints C such that (C, ⪯) is a complete algebraic lattice
where ⊗ is the lub operator and false and true are respectively the greatest and
the least element of C; Var is a denumerable set of variables and ∃ existentially
quantifies variables over constraints. The entailment ⊢ is the inverse of order ⪯.

Given a cylindric constraint system C and a set of process symbols Π, the
syntax of agents is given by the grammar:

A ∶∶= skip ∣ tell(c) ∣ A ∥ A ∣ ∃xA ∣ ∑
n
i=1 ask(ci) → A ∣ now c then A else A ∣ p(x⃗)

where c, c1, . . . , cn are finite constraints in C; p/m ∈ Π and x⃗ denotes a generic
tuple of variables. A tccp program is an object of the form D . A, where A is
an agent, called initial agent, and D is a set of process declarations of the form
p(x⃗) ∶− A (for some agent A). The notion of time is introduced by defining a
discrete and global clock.

Let us now define the operational semantics of the language with a slight
difference from the original one in [dBGM00]. Essentially, to follow the philos-
ophy of computations defined in [SRP91], we stop computations that reach an
inconsistent store instead of continuing the computation. The operational se-
mantics of tccp is formally described by a transition system T = (Conf ,→).4

Configurations in Conf are pairs ⟨A, c⟩ representing the agent A to be executed
in the current global store c. The transition relation → ⊆ Conf × Conf is the
least relation satisfying the rules of Fig. 1. Each transition step takes exactly
one time-unit.

Informally, the tell(c) agent adds the constraint c to the store in the next time
instant and then stops. The choice agent ∑

n
i=1 ask(ci) → Ai consults the store and

non-deterministically executes (at the following time instant) one of the agents
Ai whose corresponding guard ci is entailed by the current store; otherwise, if
no guard is entailed by the store, the agent suspends. The conditional agent
now c then A else B behaves in the current time instant like A (respectively
B) if c is (respectively is not) entailed by the store. A ∥ B models the parallel
composition of A and B in terms of maximal parallelism. The agent ∃xA makes
variable x local to A. To this end, it uses the ∃ operator of the constraint system.
Finally, the agent p(x⃗) takes from D a declaration of the form p(x⃗) ∶− A and
then executes A at the following time instant.

3 See [dBGM00,Sar93] for more details on cylindric constraint systems.
4 Reviewers can find details in [CTV13a].
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⟨tell(c), d⟩ → ⟨skip, c⊗ d⟩
d ≠ false (R1)

⟨∑n
i=1 ask(ci) → Ai, d⟩ → ⟨Aj , d⟩

j ∈ [1, n], d ⊢ cj , d ≠ false (R2)

⟨A, d⟩ → ⟨A′, d′⟩
⟨now c then A else B, d⟩ → ⟨A′, d′⟩

d ⊢ c (R3)

⟨A, d⟩ /→
⟨now c then A else B, d⟩ → ⟨A, d⟩

d ⊢ c, d ≠ false (R4)

⟨B, d⟩ → ⟨B′, d′⟩
⟨now c then A else B, d⟩ → ⟨B′, d′⟩

d ⊬ c (R5)

⟨B, d⟩ /→
⟨now c then A else B, d⟩ → ⟨B, d⟩

d ⊬ c (R6)

⟨A, d⟩ → ⟨A′, d′⟩ ⟨B, d⟩ → ⟨B′, c′⟩
⟨A ∥ B, d⟩ → ⟨A′ ∥ B′, d′ ⊗ c′⟩

(R7)

⟨A, d⟩ → ⟨A′, d′⟩ ⟨B, d⟩ /→
⟨A ∥ B, d⟩ → ⟨A′ ∥ B, d′⟩
⟨B ∥ A, d⟩ → ⟨B ∥ A′, d′⟩

(R8)

⟨A, l ⊗ ∃x d⟩ → ⟨B, l′⟩
⟨∃lxA, d⟩ → ⟨∃l′xB, d⊗ ∃x l′⟩

(R9)

⟨p(x⃗), d⟩ → ⟨A, d⟩
p(x⃗) ∶− A ∈D, d ≠ false (R10)

Fig. 1. The transition system for tccp.

Let us introduce a (non trivial) example of tccp program that we use through
the paper to illustrate the achievements of our proposal.

Example 1 (Guiding example).
Through the paper, we use as guiding example a part of the full specification

of a railway crossing system introduced in [AGPV06]. Due to the monotonicity
of the store, streams (written in a list-fashion way) are used to model imperative-
style variables [dBGM00].

master(C ,G) ∶− ∃C ′,G′ (

now (C = [near ∣ ]) then

tell(C = [near ∣ C ′]) ∥ tell(G = [down ∣ G′]) ∥ master(C ′,G ′)

else now (C = [out ∣ ]) then

tell(C = [out ∣ C ′]) ∥ tell(G = [up ∣ G′]) ∥ master(C ′,G ′)

else master(C ,G))

4



The master process uses an input channel C (implemented as a stream) through
which it receives signals from the environment (trains), and an output channel G
through which it sends orders to the gate process. It checks the input channel for
a near signal (the guard in the first now agent), in which case it sends (tells) the
order down through G, links the future values (C ′) of the stream C and restarts
the check at the following time instant (recursive call master(C ′,G ′)). If the
near signal is not detected, then, the else branch looks for the out signal and (if
present) behaves dually to the first branch. Finally, if no signal is detected at the
current time instant (last else branch), then the process keeps checking from the
following time instant(the process call takes one time instant). The gate process
reacts to the signals from the master:

gate(G ,S) ∶− ∃G′, S′ (

ask(G = [down ∣ ]) →

( tell(G = [down ∣ G′]) ∥ ask(true)100 → (tell(S = [down ∣ S′]) ∥ gate(G′, S′)))

+ ask(G = [up ∣ ]) →

( tell(G = [up ∣ G′]) ∥ ask(true)100 → (tell(S = [up ∣ S′]) ∥ gate(G′, S′))))

where ask(true)n denotes the n-times repetition of the agent ask(true), and it
corresponds to a delay of n time units. Through the input channel G, orders are
received, and the state of the gate (represented by the stream S) is consequently
updated. The ask agent (with two branches) makes the gate wait (suspend) until
one of the guards is entailed, i.e., until one of the two orders is received. Once a
signal is detected, after 100 time instants, the state of the gate is appropriately
updated. and a recursive call is done in order to keep the gate active (i.e., waiting
for the successive order).

In this work, we prove the correctness of our technique w.r.t. the denotational
concrete semantics of [CTV13a], which is fully-abstract w.r.t. the small-step
behavior of tccp. Also csLTL is interpreted over this denotational model. We
thus need to introduce (at least) intuitivelythe most relevant aspects of such
semantics. The missing definitions, as well as the proofs of all the results, can
be found in [CTV13a].

The denotational semantics of a tccp program consists of a set of conditional
(timed) traces that represent, in a compact way, all the possible behaviors that
the program can manifest when fed with an input (initial store). Intuitively,
conditional traces can be seen as hypothetical computations in which, for each
time instant, we have a conditional state where each condition represents the
information that the global store has to satisfy in order to proceed to the next
time instant. Briefly, a conditional trace is a (possibly infinite) sequence t1⋯tn⋯
of conditional states, which can be of three forms:

conditional store: a pair η ↣ c, where η is a condition and c ∈ C a store;
stuttering: the construct stutt(C), with C ⊆ C ∖ {true};
end of a process: the construct ⊠.
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The conditional store η ↣ c means that η must be satisfied by the current store
in order to make the computation proceed. c is the information computed up to
the current time instant. The conditional store η ↣ c is used to represent a hypo-
thetical computation step, where η is the condition that the current store must
satisfy in order to make the computation proceed. c represents the information
that is provided by the program up to the current time instant. A condition η is
a pair η = (η+, η−) where η+ ∈ C and η− ∈ ℘(C) are called positive and negative
condition, respectively. The positive/negative condition represents information
that a given store must/must not entail, thus they have to be consistent in the
sense that ∀c− ∈ η− η+ ⊬ c−.

Due to the partial nature of the constraint system, we cannot use disjunction
to represent that some given constraints cannot be entailed, thus we have to use a
set of constraints for the negative condition. The conditional states of conditional
traces are monotone (i.e., for each ti = ηi ↣ ci and tj = ηj ↣ cj such that j ≥ i,
cj ⊢ ci) and consistent (i.e., each store does not entail the negative conditions of
the corresponding conditional state).

We abuse in notation and define as ∃̄x r the sequence resulting by removing
from the conditional trace r all the information about the variable x.

A set of conditional traces C is called maximal if no conditional trace is the
prefix of another. We denote the domain of maximal conditional trace sets as
M.(M, ⊑, ⊔, ⊓, M, {ε}) is a complete lattice, where M1 ⊑M2 ⇔∀r1 ∈M1 ∃r2 ∈
M2. r1 is a prefix of r2. We denote by M the top element of M.

We distinguish two special classes of conditional traces. r ∈ M is said to be
self-sufficient if the first condition is (true,∅) and, for each ti = (η+i , η

−
i ) ↣ ci and

ti+1 = (η+i+1, η
−
i+1) ↣ ci+1, ci ⊢ η

+
i+1 (each store satisfies the successive condition).

Moreover, r is self-sufficient w.r.t. x ∈ Var (x-self-sufficient) if ∃̄Var∖{x} r is self-
sufficient. Thus, this definition demands that for self-sufficient conditional traces,
no additional information (from other agents) is needed in order to complete the
computation. In an x-self-sufficient conditional trace the same happens but only
considering information about variable x.

The semantics definition is based on a semantics evaluation function AJAKI
which, given an agent A and an interpretation I , builds the conditional traces as-
sociated to A. The interpretation I is a function which associates to each process
symbol a set of (maximal)conditional traces “modulo variance”. The semantics
for a set of process declarations D is the fixpoint F JDK ∶= lfp(DJDK) of the con-
tinuous immediate consequences operator DJDKI (p(x⃗)) ∶= ⊔p(x⃗)∶−A∈DAJAKI .
Proof of full abstraction w.r.t. the operational behavior of tccp is given in
[CTV13a].

Example 2. Let Drc be the set of declarations of Example 1. Given an in-
terpretation I , the semantics of master(C ,G) is graphically represented in
Fig. 2, where we have used some shortcuts for characteristic constraints. Namely,
cnear ∶= (C = [near ∣ ]) (near signal has arrived), c′near ∶= ∃C′(C = [near ∣ C ′])
(link of channel C to the future channel C ′), cdown ∶= ∃G′(G = [down ∣ G′])
(delivery of order down), cout ∶= (C = [out ∣ ]), c′out ∶= ∃C′(C = [out ∣ C ′]),
cup ∶= ∃G′(G = [up ∣ G′]).
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(cnear ,∅) ↣ c′near ∧ cdown
(cout ,{cnear}) ↣ c′out ∧ cup

(true,{cnear , cout}) ↣ true

∃̄C′,G′

I(master(C ′,G ′)) ∃̄C′,G′

I(master(C ′,G ′))

I(master(C ,G))

Fig. 2. Tree representation of DJDrcKI (master(C ,G)) of Example 2.

The branch on the left represents the computation when a near signal arrives.
The first conditional state requires that cnear holds, thus the constraints c′near
and cdown are concurrently added to the store during that computational step. A
recursive call is also concurrently invoked. Process calls do not modify the store
when invoked, but they affect the store from the following time instant, which
is graphically represented by the triangle labeled with the interpretation of the
process. The branch in the middle is taken only if cout is entailed and cnear is
not entailed by the initial store (it occurs in the negative condition of the first
conditional state in that branch). Finally, the branch on the right represents the
recursive call invokedwhen both cnear and cout are not entailed by the initial
store.

3 Abstract semantics for tccp over csLTL formulas

In this section, we present a novel abstract semantics over formulas that ap-
proximates the small-step semantics described in Section 2 and, therefore, the
observable behavior of the program. To this end, we first define an abstract
domain of logic formulas which is a variation of the classical Linear Temporal
Logic [MP92]. Following [PV01,dBGM01,dBGM02,Val05], the idea is to replace
atomic propositions by constraints of the underlying constraint system.

Definition 1 (csLTL formulas). Given a cylindric constraint system C, c ∈ C
and x ∈ Var, formulas of the Constraint System Linear Temporal Logic over C
are defined by using the grammar:

φ ∶∶= ˙true ∣ ˙false ∣ c ∣ ¬̇φ ∣ φ ∧̇ φ ∣ ∃̇x φ ∣ ◯φ ∣ φ U φ.

We denote with csLTLCthe set of all temporal formulas over C (we omit C
if clear from the context).

The formulas ˙true, ˙false and connectives ¬̇, ∧̇ have the classical logical meaning.
The atomic formula c ∈ C states that c has to be entailed by the current store.
∃̇x φ is the existential quantification over the set of variables Var . ◯φ states that
φ holds at the next time instant, while φ1 U φ2 states that φ2 eventually holds
and in all previous instants φ1 holds.In the sequel (as usual), we use φ1 ∨̇ φ2 as a
shorthand for ¬̇φ1 ∧̇ ¬̇φ2; φ1 →̇ φ2 for ¬̇φ1 ∨̇ φ2; φ1 ↔̇ φ2 for φ1 →̇ φ2 ∧̇ φ2 →̇ φ1;
◇φ for ˙true U φ and ◻φ for ¬̇◇ ¬̇φ. φ1 W φ2 for (φ1 U φ2) ∨̇ ◻φ1. ◇φ holds
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if at some point in the future φ is true, and ◻φ holds if φ holds in the current
instant and always in the future.

A constraint formula is an atomic formula c or its negation ¬̇ c. Formulas of
the form ◯φ and ¬̇◯φ are called next formulas. Constraint and next formulas
are said to be elementary formulas. Finally, formulas of the form φ1 U φ2 (or
◇φ or ¬̇(◻φ)) are called eventualities.

We define the abstract domain F ∶= csLTL/↔̇ (i.e., the domain formed by
csLTL formulas modulo logical equivalence) ordered by →̇. The algebraic struc-
ture (F, →̇, ⋁̇, ⋀̇, ˙true, ˙false) is a (bounded) lattice but not a complete lattice,
since both ⋀̇ and ⋁̇ always exist just for finite sets of formulas.

The semantics of a temporal formula is typically defined in terms of an infinite
sequence of states which validates it. Here we use conditional traces instead. As
usually done in the context of temporal logics, we define the satisfaction relation
⊧ only for infinite conditional traces. We implicitly transform finite traces (which
end in ⊠) by replicating the last store infinite times. Namely, the trace (η+1 , η

−
1 ) ↣

c1 . . . (η
+
n, η

−
n) ↣ cn ⋅⊠ becomes (η+1 , η

−
1 ) ↣ c1 . . . (η

+
n, η

−
n) ↣ cn ⋅ (cn,∅) ↣ cn ⋯ (cn,

∅) ↣ cn ⋯, while ⊠ becomes (true,∅) ↣ true ⋯ (true,∅) ↣ true ⋯.

Definition 2. The semantics of φ ∈ F is given by function γF∶F→M defined as

γF(φ) ∶= ⊔{r ∈ M ∣ r ⊧ φ}, (3.1)

where, for each φ,φ1, φ2 ∈ csLTL, c ∈ C and r ∈ M, satisfaction relation ⊧ is
defined as:

r ⊧ ˙true and r /⊧ ˙false (3.2a)

(η+, η−) ↣ d ⋅ r′ ⊧ c iff η+ ⊢ c (3.2b)

stutt(η−) ⋅ r′ ⊧ c iff ∀d− ∈ η−. c ⊬ d− and r′ ⊧ c (3.2c)

r ⊧ ¬̇φ iff r ⊭ φ (3.2d)

r ⊧ φ1 ∧̇ φ2 iff r ⊧ φ1 and r ⊧ φ2 (3.2e)

r ⊧ ◯φ iff r1 ⊧ φ (3.2f)

r ⊧ φ1 U φ2 iff ∃i ≥ 1.∀j < i. ri ⊧ φ2 and rj ⊧ φ1 (3.2g)

r ⊧ ∃̇x φ iff exists r′ s.t. ∃̄x r
′ = ∃̄x r, r

′ x-self-sufficient and r′ ⊧ φ(3.2h)

We say that φ ∈ F is a sound approximation of R ∈M if R ⊑ γF(φ).
By abusing of notation, we extend the notion of ⊧ to sets of formulas in the
following way

r ⊧ Φ ⇐⇒ ∀φ ∈ Φ. r ⊧ φ (3.3)

A formula φ is said to be satisfiable if there exists r ∈ M such that r ⊧ φ, while
it is said to be valid if, for all r ∈ M, r ⊧ φ.

4 rk denotes the sub-sequence of r starting from state k.
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All the cases are fairly standard except (3.2b) and (3.2c). The conditional
trace r = (η+, η−) ↣ d ⋅ r′ prescribes that η+ is entailed by the current store, thus
r models all the constraint formulas c such that η+ ⊢ c. We have to note that,
by the monotonicity of the store of tccp computations, the positive conditions
in conditional traces contains all the information previously added in the con-
straint store. Furthermore, by the definition of condition, since η+ cannot be in
contradiction with η−, it holds that neither c is in contradiction with η−. Thus,
the conditional trace stutt(η−) ⋅ r′ models all the constraint formulas c that are
not in contradiction with the set η− and such that c holds in the continuation r′

by monotonicity.

Lemma 1. The function γF is monotonic, injective and ⊓-distributive.

3.1 csLTL Abstract Semantics

The technical core of our semantics definition is the csLTL agent semantics eval-
uation function ÂJAK which, given an agent A and an interpretation Î (for the
process symbols of A), builds a csLTL formula which is a sound approximation
of the (concrete) behavior of A. In the sequel, we denote by AΠC the set of agents
and DΠC the set of sets of process declarations built on signature Π and constraint
system C.

Definition 3. Let PC ∶= {p(x⃗) ∣ p ∈Π, x⃗ are distinct variables}. An F-interpretation
is a function PC → F modulo variance5. Two functions I, J ∶PC → F are vari-
ants if for each π ∈ PC there exists a renaming ρ such that (Iπ)ρ = J(πρ). The
semantic domain IF is the set of all F-interpretations ordered by the point-wise
extension of →̇.

Definition 4 (csLTL Semantics). Given A ∈ AΠC and Î ∈ IF, we define the

csLTL semantics evaluation ÂJAK
Î

by structural induction as follows.

ÂJskipK
Î
∶= true (3.4a)

ÂJtell(c)K
Î
∶= ◯ c (3.4b)

ÂJ∑ni=1 ask(ci) → AiKÎ ∶= ◻(⋀̇
n

i=1 ¬̇ ci) ∨̇ ((⋀̇
n

i=1 ¬̇ ci) U ⋁̇
n

i=1 (ci ∧̇ ◯ÂJAiKÎ))

(3.4c)

ÂJnow c then A1 else A2KÎ ∶= (c ∧̇ ÂJA1KÎ) ∨̇ (¬̇ c ∧̇ ÂJA2KÎ) (3.4d)

ÂJA1 ∥ A2KÎ ∶= ÂJA1KÎ ∧̇ ÂJA2KÎ (3.4e)

ÂJ∃xAK
Î
∶= ∃̇x ÂJAK

Î
(3.4f)

ÂJp(x⃗)K
Î
∶= ◯ Î(p(x⃗)) (3.4g)

Given D ∈ DΠC we define the immediate consequence operator D̂JDK∶ IF → IF as

D̂JDK
Î
(p(x⃗)) ∶= ⋁̇ {ÂJAK

Î
∣p(x⃗) ∶− A ∈D}

5 i.e., a family of elements of F, indexed by PC, modulo variance.
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It is straightforward to notice that ÂJAK and D̂JDK are monotonic.

Example 3. Consider the set of declarations Drc of Example 1 and let us use
◯n to abbreviate the repetition of ◯ n-times. Given Î ∈ IF, with Definition 4
we compute

φM (Î) ∶= D̂JDrcKÎ(master(C ,G))) = φnear(Î) ∨̇ φout(Î) ∨̇ φcwait(Î)

φg(Î) ∶= D̂JDrcKÎ(gate(G ,S))(φgwait U (φdown(Î) ∨̇ φup(Î))) ∨̇ ◻φgwait

where

φnear(Î) = ∃̇C′,G′ (C = [near ∣ ] ∧̇ ◯C = [near ∣ C ′] ∧̇

◯G = [down ∣ G′] ∧̇ ◯ Î(master(C ′,G ′)))

φout(Î) = ∃̇C′,G′ (¬̇(C = [near ∣ ]) ∧̇ ◯C = [out ∣ C ′] ∧̇

C = [out ∣ ] ∧̇ ◯G = [up ∣ G′] ∧̇ ◯ Î(master(C ′,G ′)))

φcwait(Î) = ¬̇(C = [near ∣ ]) ∧̇ ¬̇(C = [out ∣ ]) ∧̇ ◯ Î(master(C ,G))

φgwait = ¬̇(G = [down ∣ ]) ∧̇ ¬̇(G = [up ∣ ])

φdown(Î) = ∃̇G′,S′ (G = [down ∣ ] ∧̇ ◯(◯G = [down ∣ S′] ∧̇

◯100(◯S = [down ∣ S′] ∧̇ ◯ Î(gate(G ′,S ′)))))

φup(Î) = ∃̇G′,S′ (G = [up ∣ ] ∧̇ ◯(◯G = [up ∣ G′] ∧̇

◯100(◯S = [up ∣ S′] ∧̇ ◯ Î(gate(G ′,S ′)))))

The three disjoints of φM (Î) match the three possible behaviors of master(C ,G):
when signal near is emitted by the train (φnear(Î)), when out is emitted (φout(Î)),
and when no signal arrives (φcwait(Î)).

Similarly, the formula φg(Î) states that, either the process waits forever, or

when a signal is received, then it changes the state of the gate (φdown(Î) and
φup(Î)).

We have that Â is a sound approximation of A and D̂ is a sound approximation
of D.

Theorem 1 (Correctness of Â and D̂). Let A ∈ AΠC , D ∈ DΠC and Î ∈ IF.

Then, AJAKγF(Î) ⊑ γ
F(ÂJAK

Î
) and DJDKγF(Î) ⊑ γ

F(D̂JDK
Î
).

4 Abstract diagnosis of tccp with csLTL formulas

Since F is just a bounded lattice, it is impossible to find for the function γF

an adjoint function α which forms a Galois Connection ⟨α, γ⟩, and therefore we
cannot use the abstract diagnosis framework for tccp defined in [CTV11] (which
is actuallyparametric w.r.t. a Galois Insertion ⟨α, γ⟩). Thus, we propose in this
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section a new weaker version of abstract diagnosis that works on F and which is
defined using just γF 6.

Given a set of declarations D and Ŝ ∈ IF, which is the specification of the
abstract intended behavior of D over F, we say that

1. D is (abstractly) partially correct w.r.t. Ŝ if F JDK ⊑ γF(Ŝ).
2. D is (abstractly) complete w.r.t. Ŝ if γF(Ŝ) ⊑ F JDK.

The differences between F JDK and γF(Ŝ) are usually called symptoms. Many of
the symptoms are just a consequence of some “originating” ones, those which
are the direct consequence of errors. The abstract diagnosis determines exactly
the “originating” symptoms and, in the case of incorrectness, the faulty process
declarations in D. This is captured by the definitions of abstractly incorrect
process declaration and abstract uncovered element :7

Definition 5. Let D ∈ DΠC , R a process declaration for process p, φt ∈ F and

Ŝ ∈ IF.

– R is abstractly incorrect w.r.t. Ŝ (on testimony φt) if φt →̇ D̂J{R}K
Ŝ
(p(x⃗))

and φt ∧̇ Ŝ(p(x⃗)) = ˙false.
– φt is an uncovered element for p(x⃗) w.r.t. Ŝ if φt →̇ Ŝ(p(x⃗)) and φt ∧̇ D̂JDK

Ŝ
(p(x⃗)) =

˙false.

Informally, R is abstractly incorrect if it derives a wrong abstract element φt
from the intended semantics. Dually, φt is uncovered if the declarations cannot
derive it from the intended semantics.

Theorem 2. Let D ∈ DΠC and Ŝ ∈ IF.

1. If there are no abstractly incorrect process declarations in D (i.e., D̂JDK
Ŝ
→̇

Ŝ), then D is partially correct w.r.t. Ŝ.
2. Let D be partially correct w.r.t. Ŝ. If D has abstract uncovered elements then

D is not complete.

Absence of abstractly incorrect declarations is a sufficient condition for partial
correctness, but it is not necessary. Because of the approximation, it can happen
that a (concretely) correct declaration is abstractly incorrect. Hence, abstract
incorrect declarations are in general just a warning about a possible source of
errors. However, an abstract correct declaration cannot contain an error; thus,
no (manual) inspection is needed for declarations which are not abstractly in-
correct. Moreover, as shown by the following theorem, all concrete errors—that
are “visible”—are indeed detected, as they lead to an abstract incorrectness or

6 Actually, the proposal could be defined parametrically w.r.t. a suitable family of
concretization functions. However, for the sake of simplicity, we formulate just the
specific instance for γF.

7 It is worth noticing that although the notions defined in this section are similar
to those defined for the standard approach, the formal definitions and proofs are
different due to the weaker framework.
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abstract uncovered. Intuitively, in this setting,a concrete error is visible if it is
possible to express a formula φ whose concretization reveals the error (i.e., if
the logic is expressive enough).

Theorem 3. Let R be a process declaration for p(x⃗), S a concrete specification
and Ŝ a sound approximation for S (i.e., S ⊑ γF(Ŝ)).

1. If DJ{R}KS ⋢ γF(Ŝ) and it exists φt such that γF(φt) ⊑ DJ{R}KS (p(x⃗)) and
φt ∧̇ Ŝ(p(x⃗)) = ˙false, then R is abstractly incorrect w.r.t. Ŝ (on testimony
φt).

2. If there exists an abstract uncovered element φ w.r.t. Ŝ, then there exists
r ∈ γF(φ) such that r ∉ DJ{R}KS (p(x⃗)).

Point 1 can be read as:the concrete error has an abstract symptom which is
not hidden by the approximation on Ŝ and, moreover, there exists a formula φt
which can express it.

In the following examples, we borrow from [AGPV06] the notation for last
entailed value of a stream: X=̇c holds if the last instantiated value in the stream
X is c.

Example 4. We verify (for Example 1) that each time a near signal arrives from
a train, the gate eventually is down. To model this property, we define the
specification (of the property) Ŝdown as

φordersent ∶= Ŝdown(master(C ,G)) ∶= ◻(C=̇near →̇ ◇(G=̇down))

φgatedown ∶= Ŝdown(gate(G ,S)) ∶= ◻(G=̇down →̇ ◇(S=̇down))

To check whether the program implies the specification (D̂JDrcKŜdown
→̇ Ŝdown)

(see Example 3) we have to check if φM (Ŝdown) →̇ φordersent and φg(Ŝdown) →̇
φgatedown . Recall the fixpoint characterization of the temporal operators, i.e.,
◻p = p ∧̇ ◯◻p and ◇p = p ∨̇ ◯◇p. It can be seen that each of the three
disjoints of φM (Ŝdown), see Example 3, implies φordersent . For φg(Ŝdown), while
the process is waiting, the antecedent of both implications cannot be derived,
thus the formula is true. Moreover, when the order down arrives (in the second
component of the until), it also occurs that the state is updated (see φdown in
Example 3). Thus, φg(Ŝdown) →̇ Ŝdown and then D̂JDrcKŜdown

→̇ Ŝdown . Thus, by

Theorem 2, Drc is partially correct w.r.t. Ŝdown .

Example 5. We can verify that it is not valid that eventually in the future either
the order up or down is sent by the gate. This is a warning about a possible
error in the definition of gate process w.r.t. the specification Ŝw. We define the
specification:

φupdown ∶= Ŝw(gate(G ,S)) ∶= ◇(G=̇up ∨̇ G=̇down)

Since

φg(Ŝw) ∶= D̂JDrcKŜw(gate(G ,S)) = (φgwait U (φdown(Ŝw) ∨̇ φup(Ŝw))) ∨̇ ◻φgwait

then φg(Ŝw) /̇→ φupdown (since ◻φgwait = ◻(¬̇(G=̇up) ∧̇ G=̇down) does not imply
◇(G=̇up ∨̇ G=̇down)).
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When the check of a process declaration R agains a specification S fails, then
our method reports that R is not partially correct w.r.t. the specification.

Example 6. Now we show how our technique detects an error in a buggy set of
declarations obtained from Drc by removing instruction tell(G = [up ∣ G′]) in the
definition of process master. To avoid misunderstandings, we call the modified
process master′ and let R be the new set of declarations.

We aim to verify that the order up is sent whenever the signal out is received.
Thus, we define the (property) specification:

φ ∶= Ŝup(master ′(C ,G)) ∶= ◻((C=̇out) →̇ ◇(G=̇up))

We need to compute the (one step) semantics for the (buggy version of the)
process:

φ′ ∶= D̂J{R}K
Ŝup

(master ′(C ,G)) = φ′near ∨̇ φ
′
out ∨̇ φ

′
cwait

where

φ′near ∶= ∃̇C′,G′ (C = [near ∣ ] ∧̇ ◯C = [near ∣ C ′] ∧̇

◯G = [down ∣ G′] ∧̇ ◯ Ŝup(master ′(C ′,G ′)))

φ′out ∶= ∃̇C′,G′ (¬̇(C = [near ∣ ]) ∧̇ C = [out ∣ ]∧̇

◯(C = [out ∣ C ′] ∧̇ ◯ Ŝup(master ′(C ′,G ′))))

φ′cwait ∶= ¬̇(C = [near ∣ ]) ∧̇ ¬̇(C = [out ∣ ]) ∧̇ ◯ Ŝup(master ′(C ,G))

We detect an incorrectness of R (in master′ process) w.r.t. Ŝup on testimony

φ′out since φ′out →̇ φ′ and φ′out ∧̇ φ =
˙false .

When we deal with programs with loops that do not produce contributes
at all (these are in some sense non meaningful programs), then our technique
shows a negative phenomenon, which in general happens for sets of declarations
D where D̂JDK has more than one fixpoint. In such situation, we can have
that the actual behavior does not model a specification Ŝ which is a non-least
fixpoint of D̂JDK, but, since Ŝ is a fixpoint, we do not detect abstractly incorrect
declarations.

Example 7 (Pathological cases). Let Dp ∶= {q(y) ∶− now y = 1 then q(y) else
q(y)} . It is worth noticing that this program is a loop that does nothing at all
since, independently upon the check if x = 1, it calls itself. the property to be
checked Ŝp(q(y)) ∶= ◇(y = 1). Then,

D̂JDpKŜp(q(y)) = (y = 1 ∧̇ ◇x = 1) ∨̇ (¬̇ y = 1 ∧̇ ◇x = 1)

We can see that D̂JDpKŜp →̇ ◇(y = 1), thus and, by Theorem 2, Dp is partially

correct w.r.t. Ŝp. However, it can be noticed that y = 1 is not explicitly added
by the process q(y).
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α A(α)
R1 ¬̇ ¬̇φ {φ}
R2 φ1 ∧̇ φ2 {φ1, φ2}
R3 ¬̇◯φ {◯¬̇φ}

β B1 (β) B2 (β)
R4 ¬̇(φ1 ∧̇ φ2) {¬̇φ1} {¬̇φ2}
R5 ¬̇(φ1 U φ2) {¬̇φ1, ¬̇φ2} {φ1, ¬̇φ2, ¬̇◯(φ1 U φ2)}
R6 φ1 U φ2 {φ2} {φ1, ¬̇φ2,◯(φ1 U φ2)}
R7 φ1 U φ2 {φ2} {φ1, ¬̇φ2,◯((Γ ∗ ∧̇ φ1) U φ2)}

Fig. 3. α- and β-formulas rules

Note that, if Ŝ(p(x⃗)) is assumed to hold for each process p(x⃗) defined in D and
D̂JDK

Ŝ
→̇ Ŝ, then F JDK satisfies Ŝ.

To conclude this section, we would like to point out that with our method
have validated/unvalidated all the properties of systems already present in the
tccp literature.

4.1 An automatic decision procedure for csLTL

In order to make our abstract diagnosis approach effective, we have defined
an automatic decision procedure to check the validity of the csLTL formu-
las that are involved in Definition 5 (of the form ψ →̇ φ with φ = Ŝ(p(x⃗))
and ψ = D̂JDK

Ŝ
(p(x⃗))). In this section, we obtain such decision procedure

by adaptingto csLTL the tableau construction for Propositional LTL (PLTL) of
[GHLN08,GHL+09]. [CTV13b] contains a preliminary version of the method. The
presented results work only for specifications without existential quantifications.
Actually, this restriction is quite irrelevant in our context since, in general, we are
interested in proving properties related to the visible behavior of the program,
not to the local variables.

Intuitively, a tableau construction builds a tree whose nodes are labeled with
sets of formulas. The root is labeled with the set of formulas which has to be
checked for satisfiability. Branches are built according to rules defined on the
syntax of formulas (see Fig. 3 defining α and β formulas). If all leaves of the tree
are closed, then the formula has no models. Otherwise, we can obtain a model
that satisfies the formula from the open leaves.

A tableau rule is applied to a node n labeled with the set of formulas L(n).
Each rule application requires the selection of a formula from L(n). We call
context the set of formulas L(n) ∖ {φ} and we denote it with Γ . Conjunctions
are α-formulas and disjunctions β-formulas. Fig. 3 presents the rules for α− and
β−formulas. Tables in Fig. 3 are interpreted as follows. Each row in a table
represents a rule. Each time that an α−rule is applied to a node of the tree, a
formula of the node matching the pattern in column α is replaced in a child node
by the corresponding A(α). For the β-rules, two children nodes are generated,
one for each column B1 (β) and B2 (β).

Almost all the rules are standard. However, Rule R7 uses the so-called context
Γ ∗, which is defined as Γ ∗ ∶= ⋁̇γ∈Γ ¬̇γ. The use of contexts is the mechanism
to detect the loops that allows one to mark branches containing eventuality
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formulas as open. This kind of rules were first introduced in [GHL+07]. The idea
is that, by using contexts, loops where no formula changes are discarded since
they cannot close a branch.

Note that there is no rule defined for the ◯ operator. In fact, the next(Φ)
function transforms a set of elementary formulas Φ into another: next(Φ) ∶=
{φ ∣ ◯φ ∈ Φ}∪{¬̇φ ∣ ¬̇◯φ ∈ Φ}∪{c ∣ c ∈ Φ, c ∈ C}. This operator is different from
the corresponding one of PLTL in that, in addition to keeping the internal for-
mula of the next formulas, it also passes the constraints that are entailed at the
current time instant to the following one. This makes sense for tccp computations
since, as already mentioned, the store in a computation is monotonic, thus no
information can be removed and it happens that, always, c implies ◯ c. The next
operator is a key notion in the kind of tableaux defined in [GHLN08,GHL+09].
This operator allows one to identify stages in a tableaux which represent time
instants in the model. Some additional checks (explained in the following sec-
tions) allow to avoid the use of auxiliary graph representations for determining
satisfiability/unsatisfiability of formulas.

A second main difference w.r.t. the PLTL case regards the existential quantifi-
cation. The csLTL existential quantification does not correspond to the first-order
logic one. It is introduced to model information about local variables, thus, the
formula ∃̇x φ can be seen as the formula φ where the information about x is
local.

We define a specific rule for the ∃̇ case. In particular, when the selected
formula of a given node is of the form ∃̇x φ, it is created a node, child of n,
whose labeling is that of n except that the formula ∃̇x φ is replaced by φ.

In this section, we present a tableau method for our csLTL formulas following
the ideas of [GHLN08,GHL+09].

4.2 Semantic csLTL tableaux

Definition 6 (csLTL tableau). A csLTL tableau for a finite set of formulas Φ
is a tuple TΦ = (Nodes, nΦ,L,B ,R ) such that:

1. Nodes is a finite non-empty set of nodes;
2. nΦ ∈ Nodes is the initial node;
3. L ∶ Nodes → ℘(csLTL) is the labeling function that associates to each node

the formulas which are true in that node; the initial node is labeled with Φ;
4. B is the set of branches such that exactly one of the following points holds

for every branch b = n0, . . . , ni, ni+1, . . . , nk ∈ B and every 0 ≤ i < k:
(a) for an α-formula α ∈ L(ni), L(ni+1) = {A(α)} ∪ L(ni) ∖ {α};
(b) for a β-formula β ∈ L(ni), L(ni+1) = {B1 (β)} ∪ L(ni) ∖ {β} and there

exists another branch in B of the form b′ = n0, . . . , ni, n
′
i+1, . . . , n

′
k such

that L(n′i+1) = {B2 (β)} ∪ L(ni) ∖ {β} ;
(c) for an existential quantified formula ∃̇x φ

′ ∈ L(ni), L(ni+1) = {φ′′} ∪

L(ni) ∖ {∃̇x φ
′} where φ′′ ∶= φ′[y/x] with y fresh variable;

(d) in case L(ni) is a set formed only by elementary formulas, L(ni+1) =
next(L(ni)), where next(Φ) ∶= {φ ∣ ◯φ ∈ Φ} ∪ {¬̇φ ∣ ¬̇◯φ ∈ Φ} ∪ (Φ∩C).
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A branch b ∈ B is said to be maximal if it is not a proper prefix of another
branch in B.

Rules 4a and 4b are standard, replacing α and β-formulas with one or two for-
mulas according to the matching pattern of rules in Fig. 3, except for Rule R7
that uses the so-called context Γ ∗, which is defined in the following. The next
operator used in Rule 4d is different from the corresponding one of PLTL since it
also preserves the constraint formulas. This is needed for guaranteeing correct-
ness since, as already mentioned, in tccp computations the store is monotonic,
thus (c →̇ ◯ c and) constraint information has to be permanent.Finally, Rule 4c
is specific for the ∃̇ case: ∃̇x is removed after renaming x with a fresh variable.8

Definition 7. A node in the tableau is inconsistent if it contains

– a couple of formulas φ, ¬̇φ, or
– the formula ˙false, or
– a constraint formula ¬̇ c′ such that the merge c of all the (positive) constraint

formulas c1, . . . , cn in the node (c ∶= c1 ⊗ ⋅ ⋅ ⋅ ⊗ cn) is such that c ⊢ c′.

When a branch contains an inconsistent node, it is said to be closed, otherwise
it is said to be open.

The last condition for inconsistence of a node is particular to the ccp context.
Similarly to the PLTL case, there exists only a finite number of different

labels in a tableau. Thus, if there exists an infinite branch b = n0, n1, . . . nk . . ., it
necessarily contains a cycle (i.e., contains infinitely many repetition of nodes with
the same label). These branches are called cyclic branches and can be finitely
represented as path(b) = n0, n1, . . . , nj , (nj+1, . . . , nk)

ω when L(nk) = L(nj) for
0 ≤ j < k. Every branch of a tableau is divided into stages, denoted by stages(b).
A stage is a sequence of consecutive nodes between two consecutive applications
of the next operator. We abuse of notation and denote by L(s) the labeling of a
stage s defined as ⋃n∈s L(n). It can be noticed that if b contains a cyclic sequence
of nodes, then stages(b) is a cyclic sequence of stages.

Definition 8 ([GHL+09]). A stage s is saturated if no α-, β- or hiding rule
can be applied to any of its nodes.

An eventuality formula φ1 U φ2 that belongs to the labeling of a stage s in a
branch it is fulfilled if there exists a subsequent stage s′ such that φ2 ∈ L(n′).

A sequence of stages S is fulfilling if all the eventuality formulas are fulfilled
in S and a branch b is fulfilling if all stages(b) are fulfilling.

An open branch is expanded if it is fulfilling and all its stages are saturated.
A tableau is called expanded if every maximal branch is expanded or closed.
An expanded tableau is closed if every branch ends in an inconsistent node,

otherwise it is open.

8 Note that the csLTL existential quantification does not correspond to the one of
first-order logic. It is introduced to model information about local variables, and
∃̇x φ can be seen just as φ where the information about x is local.
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These notions are needed to formalize the tableau construction since only branches
that are non-expanded and open are selected to be further developed.

Definition 9 (systematic tableau algorithm). Given a finite set of formulas
Φ, the systematic tableau TΦ is built by repeatedly selecting an unmarked leaf
node l and applying, in order, one of the points shown below.

1. Select an eventuality in l (if there is at least one) and distinguish it.
2. If l is an inconsistent node, then mark it as closed (×).
3. If L(l) is a set of constraint formulas, mark l as open (⊙).
4. Choose φ ∈ L(l) such that φ is not a next formula and it is not the distin-

guished eventuality. Then,

– if φ is an ∃-formula (φ = ∃̇x φ
′), then create a new node l′ as a child of l

and label it as L(l′) = (L(l)∖{φ})∪{φ′}, where φ′ ∶= φ[y/x] with y fresh
variable;

– if φ is an α-formula, create a new node l′ as a child of l and label it as

L(l′) = (L(l) ∖ {φ}) ∪A(φ) by using the corresponding rule in Fig. 3;
– if φ is a β-formula, create two new nodes l′ and l′′ as children of l and

label them as L(l′) = (L(l)∖{φ})∪B1 (φ) and L(l′′) = (L(l)∖{φ})∪B2 (φ)
by using the corresponding rule in Fig. 3. For Rule R7, when φ is an
eventuality, we choose Γ ∗ ∶= true.

5. When all the non distinguish formulas have been selected, apply Rule R7
with Γ ∗ ∶= ⋁̇γ∈Γ ¬̇γ to the distinguish eventuality φ: create two new nodes l′

and l′′ as children of l and label them as L(l′) = (L(l) ∖ {φ}) ∪ B1 (φ) and

L(l′′) = (L(l)∖{φ})∪B2 (φ). Then, distinguish the next formula in B2 (β);.
6. If L(l) is a set of elementary formulas, then
7. if L(l) = L(l′) for l′ ancestor of l (i.e., we detect a cycle), take the oldest

ancestor of l that is labeled as L(l) (denote it by l′′) and check if all the
eventualities in the path between l′′ and l have been distinguished in such
path. In this case mark l as open (⊙). Otherwise, apply the next operator:
create a new node l′ as child of l and label it as L(l′) = next(L(l)). Then,
distinguish a new eventuality in L(l′) following a fair strategy.

8. If no cycle has been detected, apply the next operator: create a new node
l′ as child of l and label it as L(l′) = next(L(l)). If φ is the distinguished
formula in l and next(φ) = φ′, phi′ becomes the distinguished eventuality in
l′. Otherwise, distinguish a new eventuality in L(l′) following a fair strategy.

The construction terminates when every branch is marked.

Lemma 2. Given a finite set Φ ⊆ csLTL, the algorithm of Definition 9 using a
fair strategy terminates and builds an expanded tableau for TΦ.

The proposed algorithm is sound and complete for proving the satisfiabil-
ity/unsatisfiability of csLTL formulas.

Theorem 4 (soundness and completeness). Φ ⊆ csLTL is unsatisfiable if
and only if there exists a closed systematic tableau for Φ.
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Proposition 1. Let TΦ be an open systematic tableau for Φ = {ψ, ¬̇φ}, b be an
open branch in TΦ, ϕi be the conjunction of the constraint formulas occurring in
the i-th stage of b and ϕ be ϕ1 ∧̇ ◯ϕ2 . . . ∧̇ ◯

n ϕn. Then ϕ →̇ ψ and ϕ ↛̇ φ.

The construction consists in selecting at each step a non-expanded branch
that can be extended by using α or β rules or ∃̇ elimination. When none of these
can be applied, the next operator is used to pass to the next stage. When dealing
with eventualities, to determine the context Γ ∗ in Rule R7, it is necessary to
distinguish the eventuality that is being unfolded in the path. Given a node n
and φ ∈ L(n), Γ ∶= L(n)∖{φ}. Then, when Rule R7 is applied to a distinguished
eventuality, we set Γ ∗ ∶= ⋁̇γ∈Γ ¬̇γ; otherwise Γ ∗ ∶= true. If a node does not
contain any distinguished eventuality, then the algorithm distinguishes one of
them and rule R7 is applied to it. Each node of the tableau has at most one
distinguished eventuality.

The algorithm marks nodes when they cannot be further processed. In par-
ticular, a node is marked as closed when it is inconsistent and is marked as
open when it contains just constraint formulas or when it is the last node of an
expanded branch (all the eventualities in the branch have been distinguished).

By construction, each stage in the systematic tableau TΦ for Φ is saturated.
In order to ensure termination of the algorithm it is necessary to use a fair
strategy to distinguish eventualities, in the sense that every eventuality in an
open branch must be distinguished at some point. This assumption and the fact
that, given a finite set of initial formulas, there exists only a finite set of possible
labels in a systematic tableau, imply termination.

It is worth noticing that, by the application of the rules in Fig. 3, when
both φ and ¬φ belong to the labeling of a stage in a branch b, then any branch
prefixed by b is closed. Moreover, by construction, non-fulfilled undistinguished
eventualities in a branch are maintained until they are fulfilled or they become
distinguished. Thanks to Theorem 4, to check the validity of a formula (involved
in Definition 5) of the form ψ →̇ φ, with φ = Ŝ(p(x⃗)) and ψ = D̂JDK

Ŝ
(p(x⃗)), we

just have to build the tableau for its negation T¬̇(ψ→̇φ) and check if it is closed or
not. If it is, we have that D is abstractly correct. Otherwise, by Proposition 1,
we have thatfrom T¬̇(ψ→̇φ) we can extractan explicit testimony ϕ of the abstract

incorrectness of D. , since ϕ →̇ D̂JDK
Ŝ
(p(x⃗)) and ϕ ↛̇ Ŝ(p(x⃗)).

The construction of ψ = D̂JDK
Ŝ
(p(x⃗)) is linear in the size of D. The system-

atic tableau construction of ¬̇(ψ →̇ φ) (from what said in [GHL+09]) has worst

case O(2O(2
∣ ¬̇(ψ→̇φ)∣

)). However, we believe that such bound for the worst-case
asymptotic behavior is quite meaningless in this context, since it is not very
realistic to think that the formulas of the specification should grow much (big
formulas are difficult to comprehend and in real situations people would hardly
try even to imagine them). Consequently, we would not have big implications
ψ →̇ φ, since ψ is bounded by φ.Moreover, note that tableau explosion is due
to nesting of eventualities and in practice few eventualities are used in speci-
fications. Therefore, in real situations, we do not expect that (extremely) big
tableaux will be built.
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∃̇x φ ∧̇ ◻(¬̇ y = 1) ∃̇x φ,◻(¬̇ y = 1) φ,◻(¬̇ y = 1)
β

y = 1 ∧̇ ◯x = 5 ∧̇ ◯(◇ y = 1),◻(¬̇ y = 1)

y = 1,◯x = 5,◯(◇ y = 1),◻(¬̇ y = 1)

y = 1,◯x = 5,◯(◇ y = 1), ¬̇ y = 1,◯◻(¬̇ y = 1)
×

¬̇ y = 1 ∧̇ ◯ y = 1,◻(¬̇ y = 1)

¬̇ y = 1,◯ y = 1,◻(¬̇ y = 1)

¬̇ y = 1,◯ y = 1,◯(◻(¬̇ y = 1))

y = 1,◻(¬̇ y = 1)

y = 1, ¬̇ y = 1,◯(◻(¬̇ y = 1))
×

α ∃

α

α

α

α

X

α

Fig. 4. Tableau for ∃̇x φ →̇ ◇ y = 1 of Example 9.

Furthermore, since we can work with incomplete programs, we can validate
pieces of code in isolation (even before having wrote the whole program), thus
the computational cost can be diluted during development.
Example 9. Let us assume that we are trying to check whether process

R ∶= p(y) ∶− ∃x (now y = 1 then tell(x = 5) ∥ p(y) else tell(y = 1))

satisfies Ŝ(p(x⃗)) ∶= ◇(y = 1). Since D̂J{R}K
Ŝ
= ∃̇x φ, where

φ = (y = 1 ∧̇ ◯x = 5 ∧̇ ◯(◇ y = 1)) ∨̇ (¬̇ y = 1 ∧̇ ◯ y = 1)

Thus, we have to check if ∃̇x φ →̇ ◇(y = 1). Fig. 4 shows the systematic tableau
built for the negation of the formula, i.e., ∃̇x φ ∧̇ ◻ ¬̇(y = 1).

Arrows labeled with α and β correspond to the application of α and β rules,
respectively; arrows labeled with X represent the application of the next opera-
tor. Finally, arrows labeled with ∃ correspond to the elimination of the existential
quantification for the formula ∃̇x φ.

Since both branches are closed, the tableaux is closed, which means that
∃̇x φ ∧̇ ◻ ¬̇(y = 1) is not satisfied and its negation ∃̇x φ →̇ ◇(y = 1) is valid, mean-
ing that R is abstractly correct w.r.t. Ŝ.

5 Related Work

A Constraint Linear Temporal Logic is defined in [Val05] for the verification
of a different timed concurrent language, called ntcc, which shares with tccp
the concurrent constraint nature and the non-monotonic behavior. A fragment
of the proposed logic, the restricted negation fragment where negation is only
allowed for state formulas, is shown to be decidable. However, no efficient decision
procedure is given (apart from the proof itself). Moreover, the verification results
are given for the locally-independent fragment of ntcc, which avoids the non-
monotonicity of the original language. In contrast, in this work, we address the
problem of checking temporal properties for the full tccp language.
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Some model-checking techniques have been defined for tccp in the past, seex
[FV06,AFV05,AGPV05,FPV01]. It is worth noting that the notions of correct-
ness and completeness in these works are defined in terms of F JDK, i.e., in
terms of the concrete semantics, and therefore their check requires a (potentially
infinite) fixpoint computation. In contrast, the notions of abstractly incorrect
declarations and abstract uncovered elements are defined in terms of just one
application of D̂JDK to Ŝ. Moreover, since D̂JDK is defined compositionally, all
the checks are defined on each process declaration in isolation. Hence, our pro-
posal can be used with partial sets of declarations. It can also be used with
partial specifications (an undefined specification of a process is implicitly false).
Obviously, one cannot detect errors in declarations involving processes which
have not been specified, but for the declarations that involve processes that
have a specification, the check can be made, even if the whole set of declarations
has not been written yet.

This is particularly useful for applications, since the diagnosis could be used
from the beginning of the development phase. Moreover, it could be performed
incrementally, thus the overall computational cost can be parceled over time.
On the contrary, model checking can be applied only with a fully specified sys-
tem and its inherent complexity resides in its necessity to compute somehow a
semantics fixpoint.

With our proposal, we can easily specify a possible intervention coming from
a surrounding environment simply by adding a suitable formula. With model
checking, this needs to be done by simulating such environment in software with
an additional set of declarations. When a property is falsified, model checking
provides a counterexample in terms of an erroneous execution trace, leaving to
the user the problem of locating the source of the bug. On the contrary, we
identify the faulty process declaration.

In [FOPV07], a first approach to the declarative debugging of a ccp language
is presented. However, it does not cover the particular extra difficulty of the non-
monotonicity behavior, common to all timed concurrent constraint languages.
This makes our approach significantly different. Moreover, although they propose
the use of LTL for the specification of properties, their formulation, based on
the depth-k concretization function, complicates the task of having an efficient
implementation.

Finally, this proposal clearly relates to the abstract diagnosis framework for
tccp defined for Galois Insertions [CTV11]. That work can compete with the
precision of model checking, but its main drawback is the fact that the abstract
domain used theredid not allow to specify temporal properties in a compact
way. In fact, specifications consisted of sets of abstract conditional traces. Thus,
specifications were big and unnatural to be written. The use of temporal logic
in this proposal certainly overcomes this problem.
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6 Conclusion and Future Work

In this paper, we have defined an abstract semantics for tccp based on the
domain of a linear temporal logic with constraints. The semantics is correct
w.r.t. the behavior of the language.

By using this abstract semantics, we have defined a method to validate csLTL
formulas for tccp sets of declarations. Since the abstract semantics cannot be de-
fined by means of a Galois Connection, we cannot use the abstract diagnosis
framework for tccp defined in [CTV11], thus we devised (from scratch) a weak
version of the abstract diagnosis framework based only on a concretization func-
tion γ. It works by applying D̂JDK to the abstract specification and then by
checking the validity of the resulting implications (whether that computation
implies the abstract specification). The computational cost depends essentially
on the cost of that check of the implication.

We have also presented an automatic decision procedure for the csLTL logic,
thus we can effectively check the validity of that implication. We are currently
finishing to implement a proof of concept tool, which is available online at URL
http://safe-tools.dsic.upv.es/tadi/, that realizes the proposed instance.
Then we would be able to compare with other tools and assess the “real life”
goodness of our proposal.

In the future, we also plan to explore other instances of the method based
on logics for which decision procedures or (semi)automatic tools exists. This
proposal can also be immediately adapted to other concurrent (non-monotonic)
languages (like tcc and ntcc) once a suitable fully abstract semantics has been
developed.
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A Proofs and results of Sections 3 and 4

In this section we present the proofs of the results presented in Sections 3 and 4
and some auxiliary results.

Lemma 1. The function γF is monotonic, injective and ⊓-distributive.

Proof. γF is monotonic. Let φ1, φ2 ∈ F such that φ1 →̇ φ2. By Definition 2, for
all r ∈ M, if r ⊧ φ1 then r ⊧ φ2. Thus, ⊔{r ∣ r ⊧ φ1} ⊑ ⊔{r ∣ r ⊧ φ2} and, by
Equation (3.1), γF(φ1) ⊑ γ

F(φ2).
γF is injective. Let φ1, φ2 ∈ F such that γF(φ1) = γF(φ2). By Equation (3.1)

and Definition 2, this means that φ1 and φ2 have the same models, thus,
φ1 ↔̇ φ2.

γF is ⊓-distributive. Consider φ1, φ2 ∈ F, we show that γF(φ1 ∧̇ φ2) = γ
F(φ1) ⊓ γ

F(φ1).

γF(φ1 ∧̇ φ2) =⊔{r ∈M ∣ r ⊧ φ1 ∧̇ φ2}

[ by Equation (3.2e) ]

=⊔{r ∈M ∣ r ⊧ φ1 and r ⊧ φ2}

[ by definition of ⊓ ]

=⊔{r ∈M ∣ r ⊧ φ1} ⊓⊔{r ∈M ∣ r ⊧ φ2}

[ by Definition 2 ]

=γF(φ1) ⊓ γ
F(φ1)

Lemma 3 (Correctness of ⋀̇). Given φ1, φ2 ∈ F, γF(φ1 ∧̇ φ2) ⊒ ⊔{r1 ∥̄ r2 ∣
r1 ∈ γ

F(φ1), r2 ∈ γ
F(φ2), r1 ∥̄ r2 is defined}.

Proof. Consider r1 ∈ γF(φ1) and r2 ∈ γF(φ2) such that r1 ∥̄ r2 is defined. We
show that r1 ∥̄ r2 ∈ γ

F(φ1 ∧̇ φ2) (i.e., r1 ∥̄ r2 ⊧ φ1 ∧̇ φ2). Since r1 ∥̄ r2 is defined,
the conditions and stores in r2 cannot be in contradiction with those in r1, thus
neither with φ1, which means that (r1 ∥̄ r2) ⊧ φ1. Following a similar reasoning,
we have that (r1 ∥̄ r2) ⊧ φ2 and finally, from Equation (3.2e) we can conclude
that (r1 ∥̄ r2) ⊧ φ1 ∧̇ φ2. ⊓⊔

Lemma 4 (Correctness of ∃̇x).
Given φ ∈ F, γF(∃̇x φ) ⊒ ⊔{∃̄x r ∣ r ∈ γF(φ), r is x-self-sufficient}.

Proof. Let r ∈ γF(φ) be x-self-sufficient. By Equation (3.1) r ⊧ φ, and by Equa-
tion (3.2h) it follows directly that ∃̄x r ⊧ ∃̇x φ. By Equation (3.1) we can conclude
that ∃̄x r ∈ γ

F(∃̇x φ). ⊓⊔

Theorem 1. Let A ∈ AΠC , D ∈ DΠC and Î ∈ IF. Then, AJAKγF(Î) ⊑ γ
F(ÂJAK

Î
)

and DJDKγF(Î) ⊑ γ
F(D̂JDK

Î
).

Proof. Let A ∈ AΠC and Î ∈ IF, we show that AJAKγF(Î) ⊑ γ
F(ÂJAK

Î
) by struc-

tural induction on A.
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Case A = skip.

AJskipKγF(Î) = {(true,∅) ↣ true ⋯ (true,∅) ↣ true ⋯}

[ by Definition 2 since ⊠ ⊧ true ]

⊑ {r ∣ r ⊧ true}

[ by Equation (3.1) ]

= γF(true)

[ by Equation (3.4a) ]

= γF(ÂJskipK
Î
)

Case A = tell(c).

AJtell(c)KγF(Î) = {(true,∅) ↣ c ⋅ (c,∅) ↣ c ⋯ (c,∅) ↣ c ⋯}

[ by Definition 2 ]

⊑ {r ∣ r ⊧ ◯ c}

[ by Equation (3.1) ]

= γF(◯ c)

[ by Equation (3.4b) ]

= γF(ÂJtell(c)K
Î
)

Case A = ∑
n
i=1 ask(ci) → Ai. Let r ∈ AJAKγF(Î), we have to prove two cases.

1. Let r ∶= stutt({c1, . . . , cn}) . . . stutt({c1, . . . , cn})
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

⋅(ci,∅) ↣ ci ⋅ (ri↓ci) with

1 ≤ i ≤ n and ri ∈ AJAiKγF(Î). From (3.2b) and (3.2d), it follows that

stutt({c1, . . . , cn}) ⊧ ¬̇ ci for all 1 ≤ i ≤ n. Thus, by (3.2e), for all 1 ≤

j ≤ k rj ⊧ ⋀̇
n

i=1 ¬̇ ci. From (3.2b), it follows that (ci,∅) ↣ ci ⊧ ci, and,
by inductive hypothesis, ri ⊧ ÂJAiKÎ . Therefore the sub-trace (ci,∅) ↣

ci ⋅ (ri↓ci) models the formula ci ∧̇ ◯ÂJAiKÎ and as a consequence mod-

els also ⋁̇
n

i=1 (ci ∧̇ ◯ÂJAiKÎ). Since this sub-trace is precede in r by the
suffix stutt({c1, . . . , cn}) . . . stutt({c1, . . . , cn}), from (3.2g), it follows that

r ⊧ (⋀̇
n

i=1 ¬̇ ci) U ⋁̇
n

i=1 (ci ∧̇ ◯ÂJAiKÎ) and, from (3.4c), we can conclude

that r ⊧ ÂJAK
Î
.

2. Let r ∶= stutt({c1, . . . , cn}) ⋯ stutt({c1, . . . , cn}) ⋯. From (3.2c) and (3.2d)
it follows that stutt({c1, . . . , cn}) ⊧ ¬̇ ci for all 1 ≤ i ≤ n. Thus, by (3.2e),

stutt({c1, . . . , cn}) ⊧ ⋀̇
n

i=1 ¬̇ ci. Since r is an infinite replication of stutt({c1, . . . , cn}),

by definition of ◻, r ⊧ ◻⋀̇
n

i=1 ¬̇ ci and, by (3.4c) we can conclude that
r ⊧ ÂJAK

Î
.

Case A = now c then A1 else A2. Let r ∈ AJAKγF(Î). We show that r ⊧ (c ∧̇ ÂJA1KÎ) ∨̇ (¬̇ c ∧̇ ÂJA2KÎ).
We have to prove seven cases:
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1. Let r ∶= (c,∅) ↣ c ⋯ (c,∅) ↣ c ⋯ such that (true,∅) ↣ true ⋯ (true,
∅) ↣ true ⋯∈ AJA1KγF(Î). From (3.2b) it follows that r ⊧ c. By inductive

hypothesis, (true,∅) ↣ true ⋯ (true,∅) ↣ true ⋯∈ γF(ÂJA1KÎ). Moreover,
true is the stronger formula that (true,∅) ↣ true ⋯ (true,∅) ↣ true ⋯ can
model. Thus, it follows that true →̇ ÂJA1KÎ . Since ∀φ ∈ csLTL. φ →̇ true ∧̇ φ,

it holds that r ⊧ c ∧̇ ÂJA1KÎ .

2. Let r ∶= (η+⊗c, η−) ↣ d⊗c ⋅(r′↓c) such that (η+, η−) ↣ d ⋅r′ ∈ AJA1KγF(Î), d⊗

c ≠ false, ∀c− ∈ η−. η+⊗c ⊬ c− and r′ is c-compatible. By (3.2b), it follows that
r ⊧ c. By inductive hypothesis, we know that (η+, η−) ↣ d ⋅ r′ ∈ γF(ÂJA1KÎ),
and by (3.1), (η+, η−) ↣ d ⋅ r′ ⊧ ÂJA1KÎ . By hypothesis, (η+, η−) ↣ d ⋅ r′ is

compatible with c, thus ÂJA1KÎ cannot contain ¬̇ c. Furthermore, it can be
noticed that r adds to (η+, η−) ↣ d ⋅ r′ only the constraint c in the positive
conditions and in the stores, thus, it follows that r ⊧ ÂJA1KÎ . By (3.2e) we

conclude that r ⊧ c ∧̇ ÂJA1KÎ .

3. Let r ∶= (η+ ⊗ c, η−) ↣ false ⋅ (false,∅) ↣ false ⋯ (false,∅) ↣ false ⋯ such
that (η+, η−) ↣ d ⋅ r′ ∈ AJA1KγF(Î), d ⊗ c = false, ∀c− ∈ η−. η+ ⊗ c ⊬ c− and

r′ is c-compatible. By (3.2b), it follows that r ⊧ c. By inductive hypothesis,
(η+, η−) ↣ d ⋅ r′ ∈ γF(ÂJA1KÎ) and, by (3.1), (η+, η−) ↣ d ⋅ r′ ⊧ ÂJA1KÎ .

Reasoning similarly to Point 2 above, it can be noticed that r ⊧ ÂJA1KÎ .

Thus, by (3.2e) we conclude that r ⊧ c ∧̇ ÂJA1KÎ .

4. Let r ∶= (c, η−) ↣ c ⋅(r′↓c) such that stutt(η−)⋅r′ ∈ AJA1KγF(Î), ∀c
− ∈ η−. η+⊗

c ⊬ c− and r′ is c-compatible. It follows from (3.2b) that r ⊧ c. By inductive
hypothesis, stutt(η−)⋅r′ ∈ γF(ÂJA1KÎ), and, by (3.1), stutt(η−)⋅r′ ⊧ ÂJA1KÎ .

Reasoning as in Point 2 of this proof it follows that r ⊧ ÂJA1KÎ . Thus,

r ⊧ c ∧̇ ÂJA1KÎ .

5. Let r ∶= (true,{c}) ↣ true ⋅ (true,∅) ↣ true ⋯ (true,∅) ↣ true ⋯ such that
(true,∅) ↣ true ⋯ (true,∅) ↣ true ⋯∈ AJA2KγF(Î). By (3.2b) and (3.2d),

r ⊧ ¬̇ c. By inductive hypothesis, (true,∅) ↣ true ⋯ (true,∅) ↣ true ⋯∈
γF(ÂJA2KÎ) and, reasoning as in Point 1 of this proof, it follows that true →̇

ÂJA2KÎ . Since ∀φ ∈ csLTL. φ →̇ true ∧̇ φ, it holds that r ⊧ ¬̇ c ∧̇ ÂJA2KÎ .

6. Let r ∶= (η+, η− ∪ {c}) ↣ d ⋅ r′ such that (η+, η−) ↣ d ⋅ r′ ∈ AJA2KγF(Î)

and η+ ⊬ c. By (3.2b), r ⊧ ¬̇ c. By inductive hypothesis, (η+, η−) ↣ d ⋅ r′ ∈
γF(ÂJA2KÎ) and, by (3.1), (η+, η−) ↣ d ⋅ r′ ⊧ ÂJA2KÎ . It can be noticed that

ÂJA2KÎ cannot imply the formula c, otherwise (η+, η−) ↣ d ⋅ r′ would not

be a model for ÂJA2KÎ since by hypothesis η+ ⊬ c. Since r differs from (η+,
η−) ↣ d ⋅ r′ only in the presence of c in the first negative condition, it follows
that r ⊧ ÂJA2KÎ . Thus, by (3.2e) we conclude that r ⊧ ¬̇ c ∧̇ ÂJA2KÎ .

7. Let r ∶= (true, η− ∪ {c}) ↣ true ⋅ r′ such that stutt(η−) ⋅ r′ ∈ AJA2KγF(Î).

By (3.2c), r ⊧ ¬̇ c and, by inductive hypothesis, stutt(η−) ⋅ r′ ⊧ ÂJA2KÎ .

Reasoning as in the previous Point 6 it can be noticed that r ⊧ ÂJA2KÎ and,

therefore, r ⊧ ¬̇ c ∧̇ ÂJA2KÎ .
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We have proven that for all r ∈ AJAKγF(Î) either r ⊧ c ∧̇ ÂJA1KÎ or r ⊧ ¬̇ c ∧̇ ÂJA2KÎ .

Therefore, from (3.4d) we conclude that r ⊧ ÂJAK
Î
.

Case A = A1 ∥ A2. Let r1 ∥̄ r2 ∈ AJA1 ∥ A2KγF(Î) such that r1 ∈ AJA1KγF(Î) and

r2 ∈ AJA2KγF(Î). By inductive hypothesis, r1 ∈ γ
F(ÂJA1KÎ) and r2 ∈ γ

F(ÂJA2KÎ).
It follows from Lemma 3 that r1 ∥̄ r2 ∈ γ

F(ÂJA1 ∥ A2KÎ).
Case A = ∃xA1. Let ∃̄x r1 ∈ AJ∃xA1KγF(Î) such that r1 ∈ AJA1KγF(Î) and r1 is

x-closed. By inductive hypothesis, r1 ∈ γ
F(ÂJA1KÎ) and, by Lemma 4, it follows

that ∃̄x r1 ∈ γ
F(ÂJ∃xA1KÎ).

Case A = p(x⃗). Let r ∶= (true,∅) ↣ true ⋅ r′ ∈ AJp(x⃗)KγF(Î) such that r′ ∈

γF(Î(p(x⃗))). By (3.1), it follows that r′ ⊧ Î(p(x⃗)). From (3.2f) we can con-
clude that r ⊧ ◯Î(p(x⃗)) and, thus, r ∈ γF(ÂJp(x⃗)K

Î
).

Let D ∈ DΠC and Î ∈ IF. We prove that DJDKγF(Î) ⊑ γ
F(D̂JDK

Î
) by showing that

for all p(x) ∶− A ∈D, DJDKγF(Î)(p(x⃗)) ⊑ γF(D̂JDK
Î
(p(x⃗))).

DJDKγF(Î)(p(x⃗)) = ⊔
p(x)∶−A∈D

AJAKγF(Î)

[ by the soundness of Â ]

⊑ ⊔
p(x)∶−A∈D

γF(ÂJAK
Î
)

[ by the monotonicity of γF (Lemma 1) ]

⊑ γF(⋁̇p(x)∶−A∈D ÂJAK
Î
)

= γF(D̂JDK
Î
)(p(x⃗))

Lemma 5. For each A ∈ AΠC and each D ∈ DΠC , ÂJAK and D̂JDK are monotonic.

Proof. Consider A ∈ AΠC ; we show that for each Î1, Î2 ∈ IF and for each A ∈ AΠC ,

Î1 →̇ Î2 ⇒ ÂJAK
Î1
→̇ ÂJAK

Î2
. Observe that the only case in which Â depends on

the interpretation is the case of the process call. By definition of →̇, Î1(p(x⃗)) →̇
Î2(p(x⃗)), thus:

ÂJp(x⃗)K
Î1

= ◯Î1(p(x⃗)) →̇ ◯ Î2(p(x⃗)) = ÂJp(x⃗)K
Î2

The monotonicity of D̂JDK follows directly from the monotonicity of ÂJAK. ⊓⊔

Theorem 2. Let D ∈ DΠC and Ŝ ∈ IA.

1. If there are no abstractly incorrect process declarations in D (i.e., D̂JDK
Ŝ
→̇

Ŝ), then D is partially correct w.r.t. Ŝ.

2. Let D be partially correct w.r.t. Ŝ. If D has abstract uncovered elements then
D is not complete.
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Proof. Point 1 By hypothesis, D̂JDK
Ŝ
→̇ Ŝ. Since γF is monotonic (Lemma 1),

γF(D̂JDK
Ŝ
) ⊑ γF(Ŝ). By the soundness of D̂ (Theorem 1) and by transitivity

it follows that DJDKγF(Ŝ) ⊑ γ
F(Ŝ). It can be noticed that γF(Ŝ) is a pre-

fixpoint of DJDK, thus, from Knaster-Tarski’s theorem it follows directly
that lfp DJDK →̇ γF(Ŝ). The thesis follows directly from the definition of
F JDK (F JDK = lfp DJDK).

Point 2 By hypothesis, φt is such that φt →̇ D̂JDK
Ŝ

and φt ∧̇ D̂JDK
Ŝ
= ˙false.

Thus, it follows that γF(D̂JDK
Ŝ
) ⊓ γF(Ŝ) = {ε}. SinceDJDKγF(Ŝ) ⊑ γ

F(D̂JDK
Ŝ
),

we have that DJDKγF(Ŝ) ⊓ γ
F(Ŝ) = {ε}. Suppose that γF(S) ⊑ F JDK. Since

by hypothesis F JDK ⊑ γF(S), we have that F JDK = γF(S). It follows that
DJDKF JDK ⊓F JDK = {ε}, but this is a contradiction since F is a fixpoint.

Thus, γF(Sα) ⋢ F JDK and the thesis holds.

Theorem 3. Let R be a process declaration for p(x⃗), S a concrete specification
and Ŝ a sound approximation for S (i.e., S ⊑ γF(Ŝ)).

1. If DJ{R}KS ⋢ γF(Ŝ) and it exists φt such that γF(φt) ⊑ DJ{R}KS (p(x⃗)) and
φt ∧̇ Ŝ(p(x⃗)) = ˙false, then R is abstractly incorrect (on φt) w.r.t. Ŝ.

2. If there exists an abstract uncovered element φ w.r.t. Ŝ, then there exists
r ∈ γF(φ) such that r ∉ DJ{R}KS (p(x⃗)).

Proof. Point 1 By hypothesis it exists φt such that γF(φt) ⊑ DJ{R}KS and
φt ∧̇ Ŝ = ˙false. Since S ⊑ γF(Ŝ), we have that DJ{R}KS ⊑ DJ{R}KγF(Ŝ) and,

by Theorem 1, DJ{R}KγF(Ŝ) ⊑ γ
F(D̂J{R}K

Ŝ
). The thesis follows directly from

Lemma 5, since φt →̇ D̂J{R}K
Ŝ

.

Point 2 By hypothesis φt ∧̇ D̂J{R}K
Ŝ
= ˙false. By Lemma 5 and since γF is

⊓-distributive, it follows that γF(φt) ⊓ γ
F(D̂J{R}K

Ŝ
) = {ε}. By Theorem 1,

DJ{R}KγF(Ŝ) ⊑ γ
F(D̂J{R}K

Ŝ
) and, since S ⊑ γF(Ŝ), it follows thatDJ{R}KS ⊑

γF(D̂J{R}K
Ŝ
). Thus, γF(φt) ⊓ DJ{R}KS = {ε} and this means that there ex-

ists r ∈ γF(φt) such that r ∉ DJ{R}KS .

Now we present the proofs of the results presented in Section 4.1 together
with some auxiliary definitions and results which are used in those proofs.

We first show that α- and β-formulas rules and the next operator preserve
the satisfiability of a set of formulas.

Lemma 6. Given a set of formulas Φ, an α-formula α and a β-formula β:

1. Φ ∪ {α} is satisfiable ⇐⇒ Φ ∪A(α) is satisfiable;
2. Φ ∪ {β} is satisfiable ⇐⇒ Φ ∪B1 (β) or Φ ∪B2 (β) is satisfiable;
3. if Φ is a set of elementary formulas, Φ is satisfiable ⇐⇒ next(Φ) is satisfi-

able;

Proof. We prove the three points separately.

1. Let us consider the rules for α-formulas in Fig. 3. Let Φ be a set of formulas,
α an α-formula and φ,φ1, φ2 ∈ csLTL.
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R1 Let α = ¬̇ ¬̇φ, this case follows directly from the equivalence ¬̇ ¬̇φ = φ.
R2 Let α = φ1 ∧̇ φ2, this case follows directly from Definition 2, in particular

Equation (3.2e).
R3 Let α = ¬̇◯φ, this case follows directly from the equivalence ¬̇◯φ =

◯¬̇φ.
2. Let us consider the rules for β-formulas in Fig. 3. Let Φ be a set of formulas,
β a β-formula and φ1, φ2 ∈ csLTL.

R4 Let β = ¬̇(φ1 ∧̇ φ2). We show the two directions independently.
⇒ Assume that it exists r ∈ M such that r ⊧ Φ ∪ {¬̇(φ1 ∧̇ φ2)}. By

applying De Morgan laws r ⊧ Φ ∪ {¬̇φ1 ∨̇ ¬̇φ2}. By Definition 2 it
follows directly that r ⊧ Φ ∪ {¬̇φ1} or r ⊧ Φ ∪ {¬̇φ2}.

⇐ Without lost of generality assume that it exists r ∈ M such that
r ⊧ Φ∪{¬̇φ1}. It follows that r ⊧ Φ∪{¬̇φ1 ∨̇ ¬̇φ2} and by De Morgan
laws r ⊧ Φ ∪ {¬̇(φ1 ∧̇ φ2)}.

R5 Let β = ¬̇(φ1 U φ2).
⇒ Assume that it exists r ∈ M such that r ⊧ Φ∪{¬̇(φ1 U φ2)}. We build

a model for at least one of the following sets: Φ∪{φ1, ¬̇φ2, ¬̇◯(φ1 U
φ2)} and Φ ∪ {¬̇φ1, ¬̇φ2}. We distinguish two cases.
In case r ⊧ φ1, we have r ⊧ Φ ∪ {φ1, ¬̇(φ1 U φ2)}, thus, by the
fixpoint characterization of U , r ⊧ Φ ∪ {φ1, ¬̇(φ2 ∨̇ ◯(φ1 U φ2))}. It
can be notice that ¬̇(φ2 ∨̇ ◯(φ1 U φ2)) = ¬̇φ2 ∧̇ ¬̇◯(φ1 U φ2) and
by Definition 2 it follows that r ⊧ Φ ∪ {φ1, ¬̇φ2, ¬̇◯(φ1 U φ2)}.
Otherwise, in case r ⊭ φ1, r ⊧ Φ ∪ {¬̇φ1, ¬̇(φ1 U φ2)}. This means
that r ⊧ ¬̇φ1, r ⊧ ¬̇(φ1 U φ2) and r ⊧ Φ. By definition of U it
follows that r ⊭ φ2, otherwise r ⊧ φ1 U φ2 and this contradicts the
hypothesis. Therefore, r ⊧ ¬̇φ1 and r ⊧ ¬̇φ2 and we can conclude
that r ⊧ Φ ∪ {¬̇φ1, ¬̇φ2}.

⇐ Assume that it exists r ∈ M such that r ⊧ Φ ∪ {φ1, ¬̇φ2, ¬̇◯(φ1 U
φ2)}. By definition of U if follows that r ⊭ φ1 U φ2, since φ2 and
◯(φ1 U φ2) are not modeled by r. Thus, we can conclude that
r ⊧ Φ ∪ {¬̇(φ1 U φ2)}.
Now assume that it exists r ∈ M such that r ⊧ Φ∪{¬̇φ1, ¬̇φ2}. Since
neither φ1 nor φ2 are not modeled by r, it follows that r ⊭ φ1 U φ2,
thus, r ⊧ Φ ∪ {¬̇(φ1 U φ2)}.

R7 Let β = φ1 U φ2 be an eventuality in the context Φ.
⇒ Assume that it exists r ∈ M such that r ⊧ Φ ∪ {φ1 U φ2}, we build

a model for at least one of the following sets: Φ ∪ {φ2} and Φ ∪
{φ1, ¬̇φ2,◯((Φ∗ ∧̇ φ1) U φ2)}. Let j ≥ 0 be the least j such that
rj ⊧ φ2. If j = 0 then r ⊧ φ2 and r ⊧ Φ ∪ {φ2}. Otherwise, if j > 0,
then r ⊭ φ2 and, by definition of U , r ⊧ φ1. Let i be the greatest index
such that 0 ≤ i < l and ri ⊧ Φ∪{φ1 U φ2}. It follows that Φ or φ1 U φ2
should not hold in the next time instant. Since φ2 has not be reached
yet we have that ri+1 ⊧ φ1 U φ2, thus, at least one φ ∈ Φ should not
be modeled by ri+1. It follows that ri ⊧ ◯((Φ∗ ∧̇ φ1) U φ2).

⇐ We have to distinguish two cases. Assume that it exists r ∈ M such
that r ⊧ Φ ∪ {φ2}, thus, r ⊧ Φ ∪ {φ1 U φ2}.

29



Otherwise assume that it exists r ∈ M such that r ⊧ Φ∪{φ1, ¬̇φ2,◯((Φ∗ ∧̇ φ1) U
φ2)}. Since r ⊧ ◯((Φ∗ ∧̇ φ1) U φ2) we have that r ⊧ ◯(φ1 U φ2).
Thus, by definition of U we conclude that r ⊧ Φ ∪ {φ1 U φ2}.

3. Consider the set Φ = {c1, . . . , cn,◯φ1, . . . ,◯φm, ¬̇◯ψ1, . . . , ¬̇◯ψk}, with
c1, . . . , cn ∈ C and φ1, . . . , φm, ψ1, . . . , ψk ∈ csLTL. We show the two directions
independently.
⇒ Assume that it exists r ∈ M such that r ⊧ Φ. Let us recall that r1 is

suffix of r obtained by delete the first element of r. By Definition 2 it
follows that r ⊧ ci for i = 1 . . . n, r ⊧ ◯φj for j = 1 . . .m and r ⊭ ◯ψl for
l = 1 . . . k. From monotonicity of r it follows that r1 ⊧ ci for i = 1 . . . n.
Moreover, by (3.2f), r1 ⊧ φj for j = 1 . . .m and r1 ⊭ ψl for l = 1 . . . k.
Thus it follows directly that r1 ⊧ next(Φ).

⇐ Now assume that it exists r ∈ M such that r ⊧ next(Φ). Consider C ∶=
c1 ⊗ ⋅ ⋅ ⋅ ⊗ cn. It is easy to notice that r′ ∶= (C,∅) ↣ C ⋅ r is a monotone
and consistent conditional trace, otherwise r(1) ⊭ c and r ⊭ next(Φ). We
show that (C,∅) ↣ C ⋅ r is a model for Φ. By definition of C, is easy
to notice that (C,∅) ↣ C ⊧ ci for i = 1 . . . n. Furthermore, by (3.2f),
(C,∅) ↣ C ⋅ r ⊧ ◯φj for j = 1 . . .m and r ⊭ ψl for l = 1 . . . k, thus (C,
∅) ↣ C ⋅ r ⊭ ¬̇◯ψl. Therefore, (C,∅) ↣ C ⋅ r ⊧ Φ.

⊓⊔

The correctness of the rule for the existential quantification derives from the
following lemma, which shows that ∃̇x φ and φ are equi-satisfiable.

Lemma 7. Let φ ∈ csLTL, ∃̇x φ is satisfiable ⇐⇒ φ satisfiable.

Proof. We show the two directions independently.

⇒ This direction follows directly from (3.2h).

∃̇x φ satisfiable⇒ it exists r ∈ M. r ⊧ ∃̇x φ

⇒ it exists r′ ∈ M. ∃̄x r
′ = ∃̄x r and r′ ⊧ φ

⇒ φ satisfiable

⇐ Let r be a model for φ, if we remove from r the information regarding x, we
obtain a model r′ ∶= ∃̄x r for ∃̇x φ. Indeed, ∃̄x r = ∃x r (∃ is idempotent) and
r ⊧ φ, thus, by (3.2h) r′ ⊧ ∃̇x φ.

⊓⊔

Corollary 1. Let Φ ⊆ csLTL such that x ∈ Var does not appear in Φ and let
φ ∈ csLTL. Then, Φ ∪ {∃̇x φ} is satisfiable ⇐⇒ Φ ∪ {φ} is satisfiable.

Proof. Follows directly from Lemma 7. x does not appear in Φ, thus the local
variable x of φ is independent from any other variable in Φ. ⊓⊔

It can be noticed that the fact that x cannot appear in Φ is not a real
restriction since it is possible to perform a renaming in order to apply safely the
∃̇ elimination without incurring in variable names crushes.

Cyclic branches in a tableau can be represented in a finite way by means of
the notion of path.
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Definition 10. Let b = n0, n1, . . . nk be an open branch such that L(nk) = L(nj)
for 0 ≤ j < k, then b is cyclic and we define path(b) = n0, n1, . . . , nj , (nj+1, . . . , nk)

ω.

Every branch of a tableau is divided into stages. A stage is a sequence of
consecutive nodes between two consecutive applications of the next operator.

Definition 11. Given a branch b, every maximal subsequence ni, ni+1, . . . nj of
path(b) is called a stage if, for all i ≤ l ≤ j, L(nl) is not formed only by elemen-
tary formulas or L(nl) ≠ next(L(nl−1)). We denote by stages(b) the sequence of
the stages in b.

We distinguish a particular class of stages called saturated.

Definition 12. A stage s is saturated if and only if for every φ ∈ L(s):

– if φ is an α-formula then A(α) ⊆ L(s);

– if φ is an beta-formula then B1 (β) ⊆ L(s) or B2 (β) ⊆ L(s);

– if φ = ∃̇x φ
′ with x ∈ Var and φ′ ∈ csLTL then φ′ ∈ L(s).

Definition 13. Let TΦ be a tableau and S = s0, s1, . . . , sn be a sequence of stages
in TΦ. Any eventuality φ1 U φ2 ∈ L(si) with 0 ≤ i ≤ n is said to be fulfilled in S
if there exists j ≥ i such that φ2 ∈ L(sj).

Intuitively, the formula is fulfilled in the path if we can reach (following the path)
a node where φ2 is true.

Definition 14. A sequence of stages S is said to be fulfilling if and only if every
eventuality occurring in S is fulfilled in S. A branch b is said to be fulfilling if
and only if path(stages(b)) is fulfilling.

Now we give the definition of expanded branch. Open expanded branches
correspond to models of the initial set of formulas.

Definition 15. An open branch b is expanded if and only if b is fulfilling and
each stage in stages(b) is saturated.

When constructing a tableau only non-expanded open branches are selected
to be enlarged with the rules in Fig. 3. When all branches are closed or expanded
the tableau cannot be further expanded.

Proposition 2. Let TΦ be the systematic tableau for Φ, each stage s occurring
in TΦ is saturated.

Proof. By looking to Definition 9 it can be noticed that the algorithm applies
any possible α-, β-rule and ∃̇ elimination before applying the next operator to
jump to the following stage. ⊓⊔
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It can be proved that starting from a finite set of formulas Φ, the set of
formulas which can occur in the construction of the systematic tableau TΦ is
finite. This result is the adaptation to the csLTL case of the corresponding result
for PLTL shown in [GHL+09].

We denote as clo(Φ) the closure of a set of formulas Φ which contains all the
formulas that can occur in any systematic tableau for Φ.

Let us first introduces some auxiliary sets of formulas which are used in the
definition of clo(Φ).

We denote as subf (Φ) the set of sub-formulas in Φ and their negations.
preclo(Φ) extends subf (Φ) with the formulas that can be generated from subf (Φ)
by means of the rules in Fig. 3 (α, β rules and ∃̇ elimination) except Rule R7.

preclo(Φ) ∶= subf (Φ) ∪ {◯(φ1 U φ2), ¬̇◯(φ1 U φ2),◯¬̇(φ1 U φ2) ∣φ1 U φ2 ∈ subf (Φ)}

{◯(¬̇φ) ∣ ¬̇(◯φ) ∈ subf (Φ)} ∪ {φ ∣ ∃̇x φ ∈ subf (Φ)}

clo(Φ) captures the formulas generated by Rule R7 by using negctx(Φ) which
represents the conjunctions of negated contexts introduced by Rule R7.

clo(Φ) ∶={⋀̇∆ ∣∆ ⊆ {φ1 ∣φ1 U φ2 ∈ subf (Φ)} ∪ negctx(Φ)}

where negctx(Φ) ∶= {Γ ∗ ∣Γ ⊆ preclo(Φ)}

Definition 16. Let Φ be a set of formulas, the closure of Φ is defined as

clo(Φ) ∶=preclo(Φ) ∪ clo(Φ)

∪ {(φ1 ∧̇ φ2) U ψ,◯((φ1 ∧̇ φ2) U ψ) ∣φ U ψ ∈ subf (Φ) and φ1, φ2 ∈ clo(Φ)}

Proposition 3. Let Φ ⊆ csLTL be a finite set, then clo(Φ) is also finite.

Proof. It follows directly from Definition 16. ⊓⊔

The fact that clo(Φ) is finite is not enough to guarantee that the algorithm
terminates in a finite number of steps. It is necessary to assume that the algo-
rithm uses a fair strategy to distinguish eventualities. this means that no even-
tuality formula in an open branch can remain non-distinguished indefinitely. A
fair strategy guarantees the termination of the construction.

Let us recall some significant results shown in [GHL+09] about the handle
of eventualities in the construction of the systematic tableau TΦ for a set of
formulas Φ.

Proposition 4. Let s be a stage in a branch b of TΦ, if {φ, ¬̇φ} ⊆ L(s) then
every branch prefixed by b is closed.

Proof. It can be noticed that the application of the rules in Fig. 3 to two com-
plementary formulas belonging to the same stage (but not necessarily to the
same node) will generate two complementary formulas that belong to the same
node. ⊓⊔
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The following proposition states that non-satisfied undistinguished eventual-
ities are kept in branches at least until they are fulfilled or they become distin-
guished.

Proposition 5. Let b be a branch of TΦ and s0, s1, . . . , sk be a prefix of path(stages(b)).
If φ1 U φ2 ∈ L(ni) for some 0 ≤ i ≤ k, φ1 U φ2 is not distinguished in si, . . . , sk
and φ2 /∈ L(si) ∪ ⋅ ⋅ ⋅ ∪L(sk), then {φ1, ¬̇φ2,◯(φ1 U φ2)} ⊆ L(sj) for all i ≤ j ≤ k.

Proof. By the construction of TΦ since undistinguished eventualities are handled
by Rule R7. ⊓⊔

The following proposition states that if a distinguished eventuality φ1 U φ2
is not fulfilled in and expanded branch b, then b is closed, since the expansion of
φ1 U φ2 by using Rule R7, is in contradiction with the context.

Proposition 6. Let b be a branch of TΦ and s0, s1, . . . , sk be a prefix of path(stages(b)).
Consider the eventuality φ1 U φ2, and let i be the least index such that the even-
tuality φ1 U φ2 is distinguished in the stage si. If φ2 /∈ L(si)∪⋅ ⋅ ⋅∪L(sk) then, for
all 0 ≤ l ≤ k − i, {δl, ¬̇φ2,◯(δl+1 U φ2)} ⊆ L(si+l) where δ0 = φ1 and δl+1 = δl ∧̇ χ
for some χ ∈ negctx(Φ).

Moreover, if δl = ⋀̇Γ for some Γ such that χ ∈ Γ , then every maximal branch
prefixed by s0, . . . , si+l is closed.

Proof. By construction of TΦ, distinguished eventualities are handled by Rule R7.
This rule gives rise to two branches: one containing {γl, ¬̇φ2,◯(γl+1 U φ2)} and
the other containing φ2. If ◯(γl+1 U φ2) is the distinguish eventuality in a succes-
sive node n on stage si+l then, in the next stage, si+l the distinguished eventuality
is γl+1 U φ2 in a node n′. By Rule R7, γ0 = φ1 and for all j > 0 γj = γj−1 ∧̇∆

∗
j−1

where ∆∗
j−1 ∈ negctx(Φ) and Γj−1 is the context L(n) ∖ {◯(γl+1 U φ2)}. There-

fore, by induction on l, γl ∈ clo(Φ) for all 0 ≤ l ≤ k − 1.
Moreover we have that χ is the negation of the context of a node in si+l, if

δl = ⋀̇Γ for some Γ such that χ ∈ Γ , then every branch prefixed by s0, . . . , si+l
contains at the same stage two complementary formulas {ψ, ¬̇ψ}. From Propo-
sition 4 we can conclude every maximal branch prefixed by s0, . . . , si+l is closed.

⊓⊔

Corollary 2. Every distinguish eventuality in a cyclic branch of TΦ is fulfilled.

Proof. By Proposition 6 if a distinguish eventuality in a branch b is unfulfilled,
then b is closed and it is not cyclic. ⊓⊔

Proposition 7. Let b be a branch of TΦ. b is open if and only if one of the
following points holds:

1. the last node of b contains only constraint formulas;
2. b is cyclic and for every eventuality φ ∈ L(n) for a node occurring in b, φ is

fulfilled in b.
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Proof. It follows directly from Point 3 and Point 7 in the algorithm of Definition 9
and from Proposition 4 and Corollary 2. ⊓⊔

Let us recall Lemma 2.

Lemma 2. The algorithm of Definition 9 by using fair strategy given as input
a finite set Φ ⊆ csLTL, terminates by building an expanded tableau for TΦ.

Proof. Suppose that the algorithm does not terminates. This means that TΦ
contains an infinite branch b = n1, n2, . . . , ni . . . . By Propositions 3, 6 and 7 this
can happen only if b contains an eventuality that is never distinguished, which
contradicts the fairness assumption.

The following proposition shows the behavior of negated eventualities. It is
needed to prove completeness.

Proposition 8. Let b be a branch in the systematic tableau TΦ for Φ ⊆ csLTL,
and let sj be a stage of the path p in the branch (p = path(b)) such that ¬̇(φ1 U
φ2) ∈ L(sj). Then, every finite subsequence of p of the form π = sj , sj+1, . . . , sk
satisfies one of the following properties:

1. {φ1, ¬̇φ2,◯¬̇(φ1 U φ2)} ⊆ L(si) for j ≤ i ≤ k.
2. There exists j ≤ i ≤ k such that {¬̇φ1, ¬̇φ2} ⊆ L(si) and {φ1, ¬̇φ2,◯¬̇(φ1 U

φ2)} ⊆ L(sl) for j ≤ l ≤ i − 1.

Proof. We proceed by induction of k − j. In case k = j the property follows
directly from Rule R5 and since each stage of a systematic tableau is sat-
urated (Proposition 2). In case k > j, by inductive hypothesis we have that
π′ = sj , . . . , sk−1 satisfies one of the two properties of Proposition 8. If π′ satis-
fies Point 1 then by the saturation of the stage (Proposition 2) it follows that
{φ1, ¬̇φ2, ¬̇(φ1 U φ2)} ⊆ L(sk) or {¬̇φ1, ¬̇φ2} ⊆ L(sk), thus π verifies Point 1 or
Point 2 respectively. Otherwise, if π′ satisfies Point 2 so does π. ⊓⊔

This proposition ensures that, if a node is labeled with a negated eventuality,
then every node in a finite suffix of the path from that node, by construction,
does not contain the second part of the eventuality (φ2).

In order to prove completeness, we need an auxiliary lemma and the definition
of the auxiliary function stores that, given a sequence of stages, builds a suitable
conditional trace which join all the accumulated information in a stage at each
time instant.

To define stores, we abuse of notation and write ε the empty sequence of
stages. Recall that ⊗ is the join operation of the constraint system and ⊗∅ =
true.

stores(ε) = ε

stores(s ⋅ S) = (C,∅) ↣ C ⋅ stores(S)

where C =⊗{c ∣ c ∈ C, c ∈ L(n), n ∈ s}
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By definition of next, which in our case propagates the constraints from one
stage to the following, the conditional trace r resulting of applying stores to a
sequence of stages S is monotone. Furthermore, since all the negative conditions
are empty, r is also consistent.

We show that, a systematic tableau TΦ built for Φ, we can compute a model
for Φ from every open branch b in TΦ.

Lemma 8. Let b be an open expanded branch in the systematic tableau TΦ for
Φ ⊆ csLTL. Given the sequence of stages S in path(b), then stores(S) ⊧ Φ.

Proof. Let r ∶= stores(S). To show that r ⊧ Φ, it is sufficient to show that for
all φ ∈ Φ, r ⊧ φ. Note that, by Definition 9 and by the definition of stores, r
contains, at each time instant, all the constraints in the labeling of the nodes in
the corresponding stage. We proceed by induction on the structure of φ.

– Let φ = c with c ∈ C; Since the first state in r contains c (which we know
belongs to the labels in the first stage), then by the definition of ⊧ (Defini-
tion 2), r ⊧ c.

– Let φ be of one of the following forms ¬̇ ¬̇φ1, φ1 ∧̇ φ2, ¬̇φ1 ∧̇ φ2, ◯φ1, ¬̇◯φ1
or ∃̇x φ1; Since every stage is saturated and by induction hypothesis on {φ1},
{φ1, φ2}, {¬̇φ1, ¬̇φ2}, {φ1}, {¬̇φ1} and {φ1}, respectively, r ⊧ φ.

– Let φ = φ1 U φ2, since b is an open extended branch, φ is fulfilled in b
and, as a consequence, in path(S). Therefore, it exists a finite subsequence
s0, s1, . . . , sn of path(S) such that φ2 ∈ L(sn) and for all 0 ≤ i < n, φ1 ∈ L(si).
By inductive hypothesis, rn ⊧ φ2 and for all 0 ≤ i < n, ri ⊧ φ1. By (3.2g) in
Definition 2, it follows that r ⊧ φ1 U φ2.

– Let φ = ¬̇(φ1 U φ2) By Proposition 8 it does not exist a finite subsequence
s0, s1, . . . , sn of path(stages(b)) such that φ2 ∈ L(sn) and for all 0 ≤ i < n,
φ1 ∈ L(si). By inductive hypothesis, it follows that rn ⊭ φ2 or it exists
0 ≤ i < n such that ri ⊭ φ1. Thus, by (3.2g) in Definition 2 it follows that
r ⊭ φ1 U φ2, and by (3.2d) r ⊧ ¬̇(φ1 U φ2).

⊓⊔

Theorem 4. Φ ⊆ csLTL is unsatisfiable if and only if there exists a closed sys-
tematic tableau for Φ.

Proof. ⇒ Suppose that it does not exist a closed tableau for Φ, then the sys-
tematic tableau TΦ would be open. Let b be an open branch of TΦ and S its
stages. By Lemma 8, stores(path(S)) is a model for Φ, thus Φ is satisfiable.

⇐ Let TΦ be the closed systematic tableau for Φ. This means that the set of for-
mulas labeling each leaf is unsatisfiable. By the algorithm in Definition 9 and
by Lemma 6, it follows that every node in TΦ is labeled with an unsatisfiable
set of formulas. Thus, Φ is unsatisfiable.
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