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Abstract: This paper discusses the application of heuristic-based evolutionary technique in search for solutions concerning the 
dynamic job-shop scheduling problems with dependent setup times and alternate routes. With a combinatorial nature, these 
problems belong to an NP-hard class, with an aggravated condition when in realistic, dynamic and therefore, more complex 
cases than the traditional static ones. The proposed genetic algorithm executes two important functions: choose the routes 
using dispatching rules when forming each individual from a defined set of available machines and, also make the scheduling 
for each of these individuals created. The chromosome codifies a route, or the selected machines, and also an order to 
process the operations. In essence , each individual needs to be decoded by the scheduler to evaluate its time of completion, 
so the fitness function of the genetic algorithm, applying the modified Giffler and Thomson’s algorithm, obtains a scheduling 
of the selected routes in a given planning horizon. The scheduler considers the preparation time between operations on the 
machines and can manage operations exchange respecting the route and the order given by the chromosome. The best 
results in the evolutionary process are individuals with routes and processing orders optimized for this type of problem.

Key words: Genetic algorithms, Dispatching rules, Realistic job-shop scheduling. 

1.	 Introduction

The growing competition from companies , arising 
from the globalized market, reinforces their 
attention to quality and productivity, focusing in 
the relationships in the supply chain and flexibility, 
increasing the efficiency of manufacturing.

In this context, the Flexible Manufacturing System 
(FMS) combines high flexibility, productivity and 
low levels of stock: characteristics that accept the 
alternative routes of production and make it more 
agile and robust in face of failures. So, if a machine 

breaks during a task, a reschedule to find an alternate 
route is done to finish this job, respecting due dates 
already planned (Porter et al., 1999; Chan, 2003).

In respect to manufacturing systems directly involved 
with cells and FMS, Porter et al. (1999) and Matsuzaki 
(2004) point to the job-shop class in the production 
of small volumes and more variety of concurrent 
processes. In general, the job-shops are process-
oriented production systems and obey a pre-defined 
sequence of processing. The scheduling problems 
are widely studied because they assume difficult 
conditions to solve in polynomial time (NP-hard), due 
to their combinatorial nature (allocating machines to 
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produce parts). Also, the flexibility of alternate routes 
increases the combinations of resources to compose 
sequences and therefore, the problem complexity.

The literature presents researches involving the 
SDST-JSSP - Sequence Dependent Setup Times Job-
Shop Problems, which are classic JSSP extensions 
and in which a setup time between two consecutive 
operations is required. These extensions make the 
classic cases closer to realistic situations but more 
complex.

In dynamic cases, another extension commonly seen 
is the NDD-JSSP - Non Deterministic Dynamic Job 
Shop Problems, which differs from classical because 
the process does not start at time 0, with random 
characteristics over starting times and thus, close to 
realistic cases.

Regarding this perspective, this paper propounds 
combined heuristics techniques and genetic 
algorithms to solve the combination of these two 
kind of problems, called NDD-SDST-JSSP. The 
scheduling algorithm contemplates the goals of 
shorter processing time and delivery due dates, late 
start times, variations in processing times of tasks 
and dependent setup times. Also, there’s another 
one that forms routes and their internal sequencing, 
integrated in the GA’s evaluation function.

2.	 The JSSP problem

The scheduling problems belong to the NP-hard 
problems and exact methods are applied only for 
relatively small examples of the problem (Araújo, 
2006). Furthermore, real problems have additional 
details which involve more combinations than the 
classics (Herrmann et al., 1995).

The classical JSSP is a group of n jobs to be processed 
into a set of m machines. Each task has a number of 
operations and a technological sequence of process. 
These operations require an uninterrupted processing 
time over a designed machine. Therefore, it is a time-
completion problem that satisfies the constraints: the 
goal is the minor total completion time - makespan 
(Vazquez and Whitley, 2000).

In the SDST-JSSP, there is a setup time between 
consecutive operations in the same machine. Thus, 
once the operation Ojv leaves the machine Mv, before 
the Okv process starts, a setup time Soiv,okv is added 
(Gonzales et al., 2005). 

3.	 Methods to solve JSSPs

In the literature, there is a great diversity of methods 
applied to solve the JSSPs. Jain and Meeran (1998) 
cite Johnson (1954) as one of the firsts significant 
works in the theory of scheduling,  which aimed to 
minimize the makespan.

Several other studies have followed him, where 
the variety of techniques involved and the forms 
to modelling these problems greatly increased over 
these nearly six decades. 

Following, some methods applied to solve the JSSP 
can be viewed, without the intention to terminate the 
discussion about the subject, but only listing the most 
expressive techniques quite evident in the literature 
which belong to this state of the art.

3.1.	 Exact and aproximative methods
Several strategies are presented in the literature to 
solve the classic JSSP. In decision problems as these 
ones, the Critical Path Method - CPM is one of the 
most mentioned. Also, formulations involving Linear 
Programming (LP), Integer Linear Programming 
(ILP) or Mixed Integer Programming (MIP) are 
used. Furthermore, the enumerative methods such 
as Branch and Bound (BB) are strong highlights 
and the dynamic programming is evidenced in the 
optimal solution of the classic JSSPs.

In general, many simplifications are required to 
problems in order to find solutions, and they still 
are little adaptable to variations in size, where 
applications are restricted to a few small problems 
(Wall, 1996).

It is not difficult to imagine that for real JSSPs, more 
complex than the classic ones, these implementation 
strategies will be aggravated.

So, a non exact method is now treated, due to its 
potential in solving JSSPs: the metaheuristics. 
They are able to search solutions, consisting in the 
application, at each step, of a subordinate heuristic, 
which has to be modeled for each specific problem. 

For them, the principle adopted to explore the solution 
in the space search can be local or populational. In 
the first case the operation is performed by means 
of movement applied to each step on the current 
solution, generating another promising approach in 
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its vicinity, like the Tabu Search or the Simulated 
Annealing techniques. Already, the methods based 
on population search, are to maintain a set of 
good solutions and combine them in order to try 
to produce even better solutions. Classic examples 
are the Genetic and also, the Memetic Algorithms. 
The following will be arranged some more detailed 
operating information of these metaheuristics, 
focusing on the problem dealt with in this work.

3.2.	 Tabu search
This metaheuristic is considered an iterative global 
optimization technique. Having originated from the 
search for integer programming problem solving, 
it was later extended to almost all combinatorial 
problems (Goldbarg and Luna, 2000). 

In general, the Tabu Search (Tabu Search - TS) is 
a procedure that restricts the search and tries to 
find optimal solutions, storing the search history 
in memory. It prohibits (tabu) movements in the 
neighbourhood with certain attributes, in order to 
guide the search process as well as solutions (based 
on available information) have double or are similar 
to previously stored solutions / obtained.

The work of Jain and Meeran (1998) takes the 
TS as one of the most efficient search for good 
solutions in classical job-shop systems. They note 
that methods like branch and bound, if combined, 
show improvements in search, yet with greater 
computational cost. Like most local search 
strategies, TS requires many parameters that must 
be carefully adjusted. Considering the imminent 
application of differences in actual cases studied, 
this may be a difficult barrier to be overcome.

3.3.	 Simulated Annealing
Belonging to the random-guided search techniques, 
Simulated Annealing - SA presents random 
components, but also employ current status 
information to guide the search of the solution of 
the problem studied. It is a local search method that 
accepts worsening movements to escape from local 
optima.

It is based on an analogy with thermodynamics, 
simulating the cooling of a heated set of atoms. 
For the use of SA should be defined a priori, 
a method for generating an initial solution s, a 
method for generating the surrounding solutions S 

(neighborhood structure) and an objective function 
f(s) to be optimized (Mauri and Lorena, 2006). 

Some contributions to neighborhood functions for 
JSSP were showed by Jain and Meeran (1998). 
Basically they consist of the reversal of processing 
orders from a pair of adjacent critical operations 
for the same machine. This method of SA proposed 
appears to be quite robust to the JSSP, but Jain and 
Meeran (1998) mentioned that the results are, also, 
poor. 

Only when incorporated into other techniques (eg .: 
genetic algorithm) is that the quality of the results is 
improved. The authors also mention the excessive 
consumption of computational time for good solutions 
can be found, and the high dependence of the 
parameters to the algorithm’s nature. It adds that slow 
colds also potentiate the best results, but also generate 
a considerable computational time consumption. 

3.4.	 Evolutionary algorithms
The Evolutionary Algorithms (EAs) are heuristic 
search techniques based on natural selection 
mechanisms, computationally simulating the 
environments which use the principles of evolution 
and heredity. They operate with a population of 
solutions (chromosomes, or individuals), applying 
selection techniques guided by the ability of each 
one and subsequently genetic operators such as 
reproduction and mutation act on them, generating 
new individuals, new solutions. 

According to Linden (2008), there are several 
proposed computational models based on the 
concept of simulation of evolution through 
selection and breeding and mutation operators, 
all dependent on each individual’s fitness in their 
species and the environment in which it’s inserted. 
Barboza (2005) cite some of these methods, as the 
Evolutionary Strategies (EE), Genetic Programming 
(PG), Classifier Systems (CS) and Transgenetic 
Computational (CT), among others, saying that 
the most widespread and researched is the Genetic 
Algorithm (GA), given their flexibility and 
effectiveness in performing global search in different 
environments.

4.	 Applied methods 

In general, the solution method proposed for NDD-
SDST-JSSP is a combination of dispatching rules, 
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the genetic and the modified GT algorithms (Giffler 
and Thompson, 1960). Thus, several considerations 
were made, starting from the chromosome coding, 
application of genetic operators and evaluation of 
individuals.

4.1.	 The priority dispatching rules
The most popular heuristic techniques applied to 
scheduling problems, the Priority Dispatching Rules 
(PDR´s), have demonstrated their importance in 
several works and even today, are still widely used 
in combined methods. Some examples are the work 
of Singh, Mehta and Jain (2006), El-Bouri and Shah 
(2006), Branco (2010), among others.

Such importance lies in the easy implementation 
and low computational cost required. In general, 
the procedure is to choose a set of operations, not 
scheduled yet. According to a criterion of choice, a 
set formed by operations that can be processed in a 
specific machine will have one of them selected by 
this adopted criterion, which will be inserted into the 
scheduling.

According to the tests, are used the following know 
rules from the literature:

-- RND (random): Rule based in random uniformly 
distributed variable;

-- SPT (shortest process time): gives greater priority 
to the task that presents smaller processing time. 

-- S/RPT (slack per remaining processing time): 
gives priority to operations based on the 
composite index by the ratio of the delivery date, 
subtracts the task completion and remaining 
processing time.

There are several other rules, such as SRPT, 
LTWK and SPT/TWK, commented by Chiang and 
Fu (2006). Extensions of SPT incorporate, under 
combined conditions, other goals, also with good 
efficiency and late operations.

Jain and Meeran (1998) apud Chang et  al. (1996) 
show a study evaluating 42 PDRs applied in an 
integer linear programming model, where the SPT 
rule showed the best performance.

Regarding work interests, it is important to consider 
the due time when implementing processes, given 
the characteristics of demand oriented to orders/
requests that the processes are subject to, but without 
forgetting the relevant conditions concerning flow 

time in processes, that leads to combined rules. 
Thus, the aim is to combine some simpler rules to 
promote better results in low computational time. 
Therefore, SPTq (less time needed to complete a 
process) is selected in Equation  1 and S/RPT, in 
Equation 2, motivated by the success of the first, in 
a wide variety of jobs and, for the latter, considering 
the time needed to complete the ongoing processes.
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where:

di = jobi due date;

pij = processing time of the operation j in job i;

t = current time;

mi = number of operations remaining to finish jobi;
mi

q j
piq

=
∑ = iSPTq = process time remaining (jobi);

Both indexes are inversely proportional to the 
priority value, i.e., higher priority to lower value and 
lower priority to higher values, so the algorithm is 
built to prioritize operations with lower rates.

The iCHR is given by the equations below:
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4.2.	 The genetic algorithm 

Solving a wide variety of problems in class NP - 
complete, Evolutionary Algorithms (EAs) make 
heuristic search techniques based on natural 
mechanisms of selection, simulating computational 
environments based on these principles of evolution 
and heredity (Goldberg, 1989).
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The proposed structure to chromosome has two 
known parts: head and body. The “head” contains 
the information of the route and the “body” will 
act in the operation sequence, both with the same 
dimensions and, for each operation, the locus 
contains a machine index. The Figure 1 shows the 
relationship between the operations and machines 
available to process them and the structure of the 
“head” of the chromosome.

	
  

Figure 1. Example of relation between the original 
table of operations and the chromossome structure – 
phenotype×genotype (source: own).

Also, the “body” contains whole alleles, not repeated, 
in the interval ai=[0,total operations-1] and, in the 
scheduling, it indexes the order of operations, as the 
Figure 2 shows.

	
  
Figure 2. Example of scheduling process from a given 
chromosome – phenotype×genotype (source: own).

4.3.	 Creating the initial population
Since the “head” must be built first, this is made us-
ing random numbers in the range of [0,nmij-1], where 
nmij is the number of available machines to process 
operation j of the process i. The Figure 1 above 

shows this construction part, where resource alloca-
tion starts building the “body”, an ordered 0 to nmij-1 
array.

4.4.	 Evaluation of the population

The function corresponding to the evaluation of 
the population, individual by individual, is the 
fitness function. Each of these values are the 
quantification of its adaptations. In other words, it 
means to apply the modified GT algorithm to make 
the active scheduling for each chromosome. The 
time completion can be the objective function of the 
search. Where: n = number of tasks; oik = operation k 
of job i; tik = time able to start operation k of job i; 
pik = processing time of the operation k belonging to 
the job i. 

As follows, the modified GT algorithm schedulings:

Modified GT Algorithm:

Step 1: Place the first schedulable operation of each 
task (of the active planning horizon) in the set of 
candidate operations C={oi1|1 ≤ i ≤ n};

Step 2: Choose an operation o’ of C, with earliest 
completion time;

Step 3: Determine the machine M’, in which o’ must 
be processed and thus build the set G (the conflict 
set of M’), consisting of all operations of C to be 
executed in M’;

Step 4: Remove operations that do not start before o’ 
finish, G = {oik ∈ G | tik <t'+p'}

Step 5: Run the sub- algorithm to select an operation 
o*ik of G;

Step 6: Remove o*
ik  from C, where C=C\{oik}

Step 7: Insert the operation o*
ik in the schedule and 

calculate start time; 

Step 8: Insert the successor operation of the o*
ik in the 

set C (if any); 

Step 9: If C ≠ ∅ , go to Step 2, if not END.

End of sub-algorithm.
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And, to calculate the step 5 (chosing the O*
ik of G), 

the sub-algorithm is now presented:

Sub-algorithm Step 5

Create CR: set of operations using M’, unscheduled, 
and with previous scheduled;

If G ∩ Cr ≠ {} then

Choose operation G∩Cr with higher priority 
index (RHP’s)

Else

Create PG: set of processes belonging to the G 
operations;

Create CrG: subset of Cr, with the operations ∈ 
to the processes of PG;

If CrG ≠ {} then

Find O: operation of CrG with higher priority 
index;

Find J*: process that contains the task O;

Find O*: operation of G belonging to J*;

Else

Find O*: oper. of G with low priority;

End if;

End if;

End of sub-algorithm.

For the M’ machine, if the operation is to be the one 
sequenced by thex “body” of the chromosome and 
the one with highest priority index, it will also be the 
operation O*, i.e., the candidate operation elected 
to be scheduled. Otherwise, if the sequence does 
not match with the job-shop problem, conflicts may 
occur.

Because there are two conflicting interests, both of 
them without the creation of unfeasible individuals 
must be considered. The goal is to find, in G, an 
operation that most closely matches to that suggested 
by the chromosome’s “body”, i.e., to the machine 
M’, it is tried to schedule an operation of G which 
belongs to the same process of the highest indexed 
operation from Cr.

If no intersection of G with the operation indicated 
by the sequencing for M’ exists, then the one with 
less priority is selected, relaxing in some choice 
criterion.

4.5.	 Selecting individuals
The selection process must list individuals, which 
will be part of the reproduction. The selection 
method adopted was proposed by Mayerle (1994), 
which consists in a ordered stochastic selection, 
having, in maximization, individuals in decreasing 
order according to their fitness, as follows).  

( )Sel R r R j m rnd m m1 2
1 4

j

2$
!= = + - - + +^ h; E) 3 � (5)

Where: R is the set of the m individuals; rj is the j-th 
chromosome; rnd is random uniformly distributed 
∈ [0,1); ⌈x⌉ is the smallest integer greater than x. 

The method provides less selective pressure then 
Monte Carlo’s selection (roulette), and also allows 
the best individuals to have more chance of crossing 
than the less able ones with the merit of recovering 
the super-individual effect, which will possibly exist 
due to the elitist strategy regarding the population 
formation.

4.6.	 Strategy to form a population
The population is created considering four different 
formation processes: cloning, random formation, 
greedy formation and reproduction. Because there 
is a sorting process, the best are cloned to the 
current population, but in a small fraction of the 
total population. Other small fraction is designed 
to individuals generated by the original algorithm 
of the first population. The fourth way of formation 
consists in generating a very small population part 
using dispatching rules (DRs) widely discussed 
in the literature, as: SPT, S/PRT, CHR and RND 
(shortest processing time, slack per remaining time, 
combined heuristic rule and random, respectively). 
The user also defines the number of individuals to 
compete for reproduction. This strategy is based on 
Gonçalves et al. (2005), whose intention is to avoid 
a premature convergence of the population. 

4.7.	 Genetic operators applied to GA
The operators applied in the GA are: crossover, 
mutation and cloning. 
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Starting with the crossover operator, the main 
operator of genetic algorithm, perpetuates the 
characteristics of the fittest individuals through the 
exchange of parents’ information, passing it to the 
offspring individuals. The application is different 
to the “head” and to the “body”. To the first, their 
alleles are copied to the offsprings. For this, the 
uniform crossover is applied, based on a binary mask 
formed by 0/1 digits. 

Figure 3. Example of the “mask” used into the uniform 
crossover operator (source: own).

In crossover process, a mask allele “zero” means, 
to the offspring, that the gene’s donor is father 
1. Otherwise, the donor is father 2. To another 
offspring, the reversal of the mask is required before 
the process. No harmonization is required. 

After, individuals are subjected to the second phase of 
the crossing, now using order-based operators. This 
is necessary due to the desire to keep the sequence 
proposed by the parents as faithful as possible. The 
operator now is the PPX (precedence preservative 
crossover), acting in the chromosomes’ “bodies” 
and using the masks involved in the previous step. 
Inheriting from his father 1 all the genes situated 
in his respective locus of the “zero” allele mask, it 
starts to complete the sequence based on the father 2. 
If the allele obtained from the father 2 already exists 
in some locus of offspring 1, it sought the next, until 
the gap can be completed. 

	
  
Figure 4.  Example of the PPX crossover operator used to 
from a new offspring (source: own).

This operator was applied based on the observations 
of Gonçalves et al. (2005), such operators produce 
good effects when applied to schedules, instead of 
the traditional one or two cut points. 

Moreover, during the crossover process, the mutation 
operator will actuate changing the value sampled 
by another one, randomly generated. In phenotype 
terms, it’s a new route, meaning a new machine 
assignment to that operation.

In the “body”, the mutation will exchange genes 
between two randomly selected points, forcing task 
sequence changes. 

5.	 Applied tests

With interest in the analisys of how the algorithm 
solves the proposed problems types and their 
characteristics, the original data from Chan (2003) 
and Kumar et  al. (2003) (Appendix I and II, 
respectively) were applied in the tests. Although, 
some modified problems proposed by Araujo (2006) 
were, also applied.

5.1.	 From simple routes or classic JSSPs
In these cases, the combined dispatching rule 
presented in Equation 4 contributes to form the route 
with specific criteria. This CHR is choosen based in 
a previous survey of Branco (2010) among others, 
when it is used in classic JSSPs with good results to 
these problems which have the characteristic of just 
one route to choose. Thus, the CHR is also applied to 
the NDD-SDST-JSSP presented in this work.

5.2.	 Expansion of alternative routes
In order to evaluate the algorithm ability with 
alternative routes combinations, Araujo (2006) 
expanded the original Chan (2003) problem (data in 
Appendix 1), introducing another machine and so, 
turning some task processes more flexible.

The average makespan with the proposed conjuncture 
was reduced, at minimum values from 931  ut to 
786  ut, with average computational time close to 
20 s using a dual core cpu with 2 Gbytes of RAM. It 
was expected, since the increase of machine number 
also increases the number of routes and thus the 
processing options. Araujo (2006), observing it has 
raised the issue that, since it increases the amount 
of routes and thus reduces the total processing time, 
reduces, at the same time, the frequency of use of 
machines.
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5.3.	 Non-Deterministic Dynamic 
characteristics

For the tests involving NDD-JSSP (realistic) 
simulation routines in the original algorithm 
were introduced with the aim to generate random 
variables, and the simulated times are: instant 
start operation processing, transport time between 
machines, operation processing time in the machine. 
All these times are crucial for defining the end time 
of each operation, in each job.

The simulation of turbulent environment scheduling 
consists in to generate random variables with defined 
average and standard deviation. The average is equal 
to the original time and standard deviation will be 
between 5, 10 and 20%.

These indeterminisms created during the scheduling, 
they vary setup times (dependent), processing times, 
start and traveling time are important to evaluate the 
behavior of the solution NDD-JJSP proposed, since 
it reacts at the time when the change is detected, 
adapting itself.

Considering the objective function and the Chan 
(2003) original problem, the minimum and average 
data obtained for each case are: 960 and 990, 
1013 and 1045, 995 and 1022, respectively, for the 
turbulence simulations with 5, 10 and 20%. It is 
noticed that they vary little from one class to another, 
according to the disturbances generated, which 
presents good scheduling in dynamic environments, 
as can be viewed in Table 1. 

Table 1. Results of mean makespans from the solved 
problems, considering disturbances of 0, 5, 10 and 20% 
and 1 and 5% mutations rates.

Mean makespan
Kumar Chan Chan (expand.)

Disturb 1% 5% 1% 5% 1% 5%
0% 385 383 944 949 842 830
5% 431 432 997 996 859 840
10% 457 459 1049 1051 899 909
20% 527 523 1168 1167 1048 1032

In a non turbulent environment and, the makespan 
obtained by Chan (2003) is close to 1000  ut, 
Araujo (2006) a mean of 1070  ut and this work 
reached 931/944 of minimal/mean values. The same 
performance analysis is done to the Kumar et  al. 
(2003) problem (Appendix 2), where the closeness of 
the makespans results is also observed, which were: 
381, 424, 501 ut. The adopted conjuncture is robust 

with regard to schedules in turbulent environments. 
Araujo (2006) has obtained 410  ut for the same 
demand of pieces. Comparing and considering 
no disturbances, this work got a 350/383  ut of 
minimum/mean makespans values, meaning good 
response even with disturbances.

5.4.	 Test of dependent setup times
To evaluate the dependent setup times in the JSSPs, 
the problem in Table 2, is approached with the goal 
to analise the solutions to this classic problem with 
and without setup times.
Table 2. Data from a randomly formed 3x3 JSSP (source: 
Yamada and Nakano (1997)).

Job Oper. Machine Order TSTART TSTOPl Pij

3 3 3 0 0 1 1
3 1 2 1 0 3 3
1 1 1 2 0 3 3
2 3 2 3 0 4 4
2 2 3 4 0 3 3
1 3 3 5 0 3 3
1 2 2 6 0 3 3
2 1 1 7 0 2 2
3 2 1 8 0 2 2

Unique of each chromosome, a processing order 
is established for each operation (“body”), as the 
machines that will process each task.

This test shows how the scheduler creates a agenda 
from a given chromosome and a table of dependent 
setup times among operations, where the scheduler 
can obtain a result as the Figure 5, with 15 ut to be 
finished.

With a setup dependent time between operations 
(1,1,1) and (2,1,1), in the assigned sequence of the 
machine 1 (iteration 3), a second scheduling can be 
obtained (Figure 6).

Figure 5. Example of solution of Yamada and Nakano 3×3 
JSSP (source: own).

Int. J. Prod. Manag. Eng. (2016) 4(2), 75-85 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

Branco, R. M., Coelho, A. S., Mayerle, S. F.

82

http://creativecommons.org/licenses/by-nc-nd/4.0/


It is observed that the depend setup time made the 
scheduler choose, in its 3rd iteration, the operation 
(3,2,1), instead of (2,1,1). Being dependent on a 
predecessor operation, the processing time will 
increase from 2 ut to 5 ut, leading the the completion 
time to increase from 5 ut to 8 ut

	
  

Figure 6. Example of solution of Yamada, Nakano 3×3 
JSSP considering dependent setup time (source: own).

The scheduler has taken the best choice, considering 
de cost to accept, as in the Figure 3, the (2,1,1) after 
the (1,1,1). This choice saved 1  ut in this special 
case, so the goal was achieved when the scheduler 
did this exchange of tasks aimed at performing 
the best schedule, avoiding the time costs of the 
operations for the same order established by the 
same chromosome.

6.	 Discussions of results

This paper proposes a scheduling technique using 
combined heuristic rule (CHR) in schedules based in 
a modified version of the GT algorithm. The focus is 
to promote efficient scheduling in realistic job-shop 
problems (no determinism in times of operations), 
and, at the same time, consider the dependent setup 
times between operations in the same machine.

With the implemented algorithms in object-pascal 
language was possible to observe the general behavior 
in turbulent environments (varying time of operations 
process), with good scheduling capabilities without 
exceeding the proposed completion times. Also the 

good results found when compared to those obtained 
by other authors made further encouraging the 
implementation in future decision-making process.

The heuristic rule CHR was efficient in the test 
results, which usually get good solutions with time 
quite satisfactory, probably due to components based 
on rules: SPT and S/PRT. Regardless, the adopted 
situation for the genetic algorithm, which inserts 
individuals formed by other heuristics, could “dope” 
at low rates the population that was being built at 
each iteration. 

The super-individual absence was important to 
the good performance of the GA, as a result of the 
selection proposed by Mayerle (1994).

With focus on problems with multiple route options, 
as the problems posed by Kumar et  al. (2003) 
and Chan (2003), algorithms for route selection 
(using coding “head/body” of the chromosome and 
equipment tables available on the shop floor, as well 
as their processing times for each operation and 
setup times) and scheduling (inserted into the GA as 
the fitness function based on the modified algorithm 
GT), the results reached makespan, in some cases, 
better than the original solution problems. The 
expectations have not changed when the results were 
contrasted with those obtained by Araujo (2006), 
solved by other circumstances, also based on genetic 
algorithms. 

Considering the problems demonstrates the proposal 
ability to organize, for a given planning horizon, 
the tasks to be scheduled, whether belonging to a 
physical or virtual manufacturing cell, which may 
form an alternate route, also considering dependent 
setup times.

About dependent setup times, the tests can show 
good results, exchanging operations in order to 
find best completion times, scapping from the costs 
imposed by the times among operations, respecting 
the order predefined by the chromosome.
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Appendix I

Table I. Data from the original (without gray data) and modified problem of Chan (2003) (source: Araujo(2006)).

Job
Operation

1 2 3 4
1 M1 (105) M3 (168) M5 (70) M2 (210)

M2 (126) M4 (140) M3 (140) M1 (175)
M6 (91) - - M4 (175)

2 M2 (140) M3 (70) M5 (245) M4 (175)
M3 (168) M2 (112) M2 (266) M5 (203)
M7 (154) - - -

3 M5 (200) M1 (125) M4 (150) M2 (75)
M1 (100) M2 (60) M3 (135) M4 (90)

- M7 (60) - -
4 M4 (150) M2 (150) M5 (100) M3 (125)

M2 (75) M5 (75) M4 (50) M1 (75)
- - M6 (100) -

5 M1 (50) M3 (100) M2 (75) M4 (150)
M3 (40) M4 (150) M5 (100) M3 (125)

- - M6 (125) -
6 M3 (175) M2 (84) M1 (175) M5 (70)

M5 (140) M4 (56) M4 (140) M3 (161)
- M5 (70) - -

7 M4 (245) M5 (70) M1 (70) M2 (105)
M1 (266) M4 (126) M4 (105) M5 (170)
M3 (245) - M7 (105) -

8 M5 (105) M4 (280) M3 (175) M1 (140)
M4 (70) M5 (210) M2 (140) M2 (56)

Appendix II  

Table II. Data of the problem proposed by Kumar et al. (2003) (source: Araujo(2006)).

Job
Operation

1 2 3 4
1 M1 (7) M2 (3) M1 (3) M1 (2)

M3 (4) - M3 (6) M2 (4)
2 M1 (8) M3 (4) M1 (7) M1 (8) 

M2 (12) - M2 (14) M3 (4)
3 M1 (10) M2 (2) M1 (2) M1 (6)

M2 (15) M3 (6) M3 (4) M2 (3)
M3 (8) - - -

4 M2 (9) M1 (6) M2 (7) M1 (9)
M3 (5) M3 (2) M3 (12) M2 (6)

- - - M3 (3)
5 M1 (10) M2 (7) M1 (5) M1 (4)

M3 (15) M3 (14) M2 (8) M2 (6)
- - - M3 (8)
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