
PME

I
J

https://ojs.upv.es/index.php/IJPME

International Journal of
Production Management
and Engineering

doi:10.4995/ijpme.2016.5780

Received 2016-05-15 Accepted: 2016-06-09

Hybrid genetic algorithms: solutions in realistic dynamic and setup
dependent job-shop scheduling problems

 Rogério M. Brancoa*, Antônio S. Coelhob1, Sérgio F. Mayerleb2

 a Instituto Federal do Rio Grande do Sul – IFRS Campus Rio Grande,
Rua Alfredo Huch, 475, Centro, CEP 96201-460, Rio Grande, RS, Brasil.

b Universidade Federal de Santa Catarina,
Caixa Postal 476, Campus Universitário UFSC - Trindade, CEP 88040-900, Florianópolis, SC, Brasil.

a rogerio.branco@gmail.com
b1 a.s.coelho@ufsc.br

b2 sergio.mayerle@ufsc.br

Abstract: This paper discusses the application of heuristic-based evolutionary technique in search for solutions concerning the
dynamic job-shop scheduling problems with dependent setup times and alternate routes. With a combinatorial nature, these
problems belong to an NP-hard class, with an aggravated condition when in realistic, dynamic and therefore, more complex
cases than the traditional static ones. The proposed genetic algorithm executes two important functions: choose the routes
using dispatching rules when forming each individual from a defined set of available machines and, also make the scheduling
for each of these individuals created. The chromosome codifies a route, or the selected machines, and also an order to
process the operations. In essence , each individual needs to be decoded by the scheduler to evaluate its time of completion,
so the fitness function of the genetic algorithm, applying the modified Giffler and Thomson’s algorithm, obtains a scheduling
of the selected routes in a given planning horizon. The scheduler considers the preparation time between operations on the
machines and can manage operations exchange respecting the route and the order given by the chromosome. The best
results in the evolutionary process are individuals with routes and processing orders optimized for this type of problem.

Key words: Genetic algorithms, Dispatching rules, Realistic job-shop scheduling.

1.	 Introduction

The growing competition from companies , arising
from the globalized market, reinforces their
attention to quality and productivity, focusing in
the relationships in the supply chain and flexibility,
increasing the efficiency of manufacturing.

In this context, the Flexible Manufacturing System
(FMS) combines high flexibility, productivity and
low levels of stock: characteristics that accept the
alternative routes of production and make it more
agile and robust in face of failures. So, if a machine

breaks during a task, a reschedule to find an alternate
route is done to finish this job, respecting due dates
already planned (Porter et al., 1999; Chan, 2003).

In respect to manufacturing systems directly involved
with cells and FMS, Porter et al. (1999) and Matsuzaki
(2004) point to the job-shop class in the production
of small volumes and more variety of concurrent
processes. In general, the job-shops are process-
oriented production systems and obey a pre-defined
sequence of processing. The scheduling problems
are widely studied because they assume difficult
conditions to solve in polynomial time (NP-hard), due
to their combinatorial nature (allocating machines to

Int. J. Prod. Manag. Eng. (2016) 4(2), 75-85Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 75

http://dx.doi.org/10.4995/ijpme.2016.5780
mailto:rogerio.branco@gmail.com
mailto:a.s.coelho@ufsc.br
mailto:sergio.mayerle@ufsc.br
http://creativecommons.org/licenses/by-nc-nd/4.0/

produce parts). Also, the flexibility of alternate routes
increases the combinations of resources to compose
sequences and therefore, the problem complexity.

The literature presents researches involving the
SDST-JSSP - Sequence Dependent Setup Times Job-
Shop Problems, which are classic JSSP extensions
and in which a setup time between two consecutive
operations is required. These extensions make the
classic cases closer to realistic situations but more
complex.

In dynamic cases, another extension commonly seen
is the NDD-JSSP - Non Deterministic Dynamic Job
Shop Problems, which differs from classical because
the process does not start at time 0, with random
characteristics over starting times and thus, close to
realistic cases.

Regarding this perspective, this paper propounds
combined heuristics techniques and genetic
algorithms to solve the combination of these two
kind of problems, called NDD-SDST-JSSP. The
scheduling algorithm contemplates the goals of
shorter processing time and delivery due dates, late
start times, variations in processing times of tasks
and dependent setup times. Also, there’s another
one that forms routes and their internal sequencing,
integrated in the GA’s evaluation function.

2.	 The JSSP problem

The scheduling problems belong to the NP-hard
problems and exact methods are applied only for
relatively small examples of the problem (Araújo,
2006). Furthermore, real problems have additional
details which involve more combinations than the
classics (Herrmann et al., 1995).

The classical JSSP is a group of n jobs to be processed
into a set of m machines. Each task has a number of
operations and a technological sequence of process.
These operations require an uninterrupted processing
time over a designed machine. Therefore, it is a time-
completion problem that satisfies the constraints: the
goal is the minor total completion time - makespan
(Vazquez and Whitley, 2000).

In the SDST-JSSP, there is a setup time between
consecutive operations in the same machine. Thus,
once the operation Ojv leaves the machine Mv, before
the Okv process starts, a setup time Soiv,okv is added
(Gonzales et al., 2005).

3.	 Methods to solve JSSPs

In the literature, there is a great diversity of methods
applied to solve the JSSPs. Jain and Meeran (1998)
cite Johnson (1954) as one of the firsts significant
works in the theory of scheduling, which aimed to
minimize the makespan.

Several other studies have followed him, where
the variety of techniques involved and the forms
to modelling these problems greatly increased over
these nearly six decades.

Following, some methods applied to solve the JSSP
can be viewed, without the intention to terminate the
discussion about the subject, but only listing the most
expressive techniques quite evident in the literature
which belong to this state of the art.

3.1.	 Exact and aproximative methods
Several strategies are presented in the literature to
solve the classic JSSP. In decision problems as these
ones, the Critical Path Method - CPM is one of the
most mentioned. Also, formulations involving Linear
Programming (LP), Integer Linear Programming
(ILP) or Mixed Integer Programming (MIP) are
used. Furthermore, the enumerative methods such
as Branch and Bound (BB) are strong highlights
and the dynamic programming is evidenced in the
optimal solution of the classic JSSPs.

In general, many simplifications are required to
problems in order to find solutions, and they still
are little adaptable to variations in size, where
applications are restricted to a few small problems
(Wall, 1996).

It is not difficult to imagine that for real JSSPs, more
complex than the classic ones, these implementation
strategies will be aggravated.

So, a non exact method is now treated, due to its
potential in solving JSSPs: the metaheuristics.
They are able to search solutions, consisting in the
application, at each step, of a subordinate heuristic,
which has to be modeled for each specific problem.

For them, the principle adopted to explore the solution
in the space search can be local or populational. In
the first case the operation is performed by means
of movement applied to each step on the current
solution, generating another promising approach in

Int. J. Prod. Manag. Eng. (2016) 4(2), 75-85 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Branco, R. M., Coelho, A. S., Mayerle, S. F.

76

http://creativecommons.org/licenses/by-nc-nd/4.0/

its vicinity, like the Tabu Search or the Simulated
Annealing techniques. Already, the methods based
on population search, are to maintain a set of
good solutions and combine them in order to try
to produce even better solutions. Classic examples
are the Genetic and also, the Memetic Algorithms.
The following will be arranged some more detailed
operating information of these metaheuristics,
focusing on the problem dealt with in this work.

3.2.	 Tabu search
This metaheuristic is considered an iterative global
optimization technique. Having originated from the
search for integer programming problem solving,
it was later extended to almost all combinatorial
problems (Goldbarg and Luna, 2000).

In general, the Tabu Search (Tabu Search - TS) is
a procedure that restricts the search and tries to
find optimal solutions, storing the search history
in memory. It prohibits (tabu) movements in the
neighbourhood with certain attributes, in order to
guide the search process as well as solutions (based
on available information) have double or are similar
to previously stored solutions / obtained.

The work of Jain and Meeran (1998) takes the
TS as one of the most efficient search for good
solutions in classical job-shop systems. They note
that methods like branch and bound, if combined,
show improvements in search, yet with greater
computational cost. Like most local search
strategies, TS requires many parameters that must
be carefully adjusted. Considering the imminent
application of differences in actual cases studied,
this may be a difficult barrier to be overcome.

3.3.	 Simulated Annealing
Belonging to the random-guided search techniques,
Simulated Annealing - SA presents random
components, but also employ current status
information to guide the search of the solution of
the problem studied. It is a local search method that
accepts worsening movements to escape from local
optima.

It is based on an analogy with thermodynamics,
simulating the cooling of a heated set of atoms.
For the use of SA should be defined a priori,
a method for generating an initial solution s, a
method for generating the surrounding solutions S

(neighborhood structure) and an objective function
f(s) to be optimized (Mauri and Lorena, 2006).

Some contributions to neighborhood functions for
JSSP were showed by Jain and Meeran (1998).
Basically they consist of the reversal of processing
orders from a pair of adjacent critical operations
for the same machine. This method of SA proposed
appears to be quite robust to the JSSP, but Jain and
Meeran (1998) mentioned that the results are, also,
poor.

Only when incorporated into other techniques (eg .:
genetic algorithm) is that the quality of the results is
improved. The authors also mention the excessive
consumption of computational time for good solutions
can be found, and the high dependence of the
parameters to the algorithm’s nature. It adds that slow
colds also potentiate the best results, but also generate
a considerable computational time consumption.

3.4.	 Evolutionary algorithms
The Evolutionary Algorithms (EAs) are heuristic
search techniques based on natural selection
mechanisms, computationally simulating the
environments which use the principles of evolution
and heredity. They operate with a population of
solutions (chromosomes, or individuals), applying
selection techniques guided by the ability of each
one and subsequently genetic operators such as
reproduction and mutation act on them, generating
new individuals, new solutions.

According to Linden (2008), there are several
proposed computational models based on the
concept of simulation of evolution through
selection and breeding and mutation operators,
all dependent on each individual’s fitness in their
species and the environment in which it’s inserted.
Barboza (2005) cite some of these methods, as the
Evolutionary Strategies (EE), Genetic Programming
(PG), Classifier Systems (CS) and Transgenetic
Computational (CT), among others, saying that
the most widespread and researched is the Genetic
Algorithm (GA), given their flexibility and
effectiveness in performing global search in different
environments.

4.	 Applied methods

In general, the solution method proposed for NDD-
SDST-JSSP is a combination of dispatching rules,

Int. J. Prod. Manag. Eng. (2016) 4(2), 75-85Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Hybrid genetic algorithms: solutions in realistic dynamic and setup dependent job-shop scheduling problems

77

http://creativecommons.org/licenses/by-nc-nd/4.0/

the genetic and the modified GT algorithms (Giffler
and Thompson, 1960). Thus, several considerations
were made, starting from the chromosome coding,
application of genetic operators and evaluation of
individuals.

4.1.	 The priority dispatching rules
The most popular heuristic techniques applied to
scheduling problems, the Priority Dispatching Rules
(PDR´s), have demonstrated their importance in
several works and even today, are still widely used
in combined methods. Some examples are the work
of Singh, Mehta and Jain (2006), El-Bouri and Shah
(2006), Branco (2010), among others.

Such importance lies in the easy implementation
and low computational cost required. In general,
the procedure is to choose a set of operations, not
scheduled yet. According to a criterion of choice, a
set formed by operations that can be processed in a
specific machine will have one of them selected by
this adopted criterion, which will be inserted into the
scheduling.

According to the tests, are used the following know
rules from the literature:

-- RND (random): Rule based in random uniformly
distributed variable;

-- SPT (shortest process time): gives greater priority
to the task that presents smaller processing time.

-- S/RPT (slack per remaining processing time):
gives priority to operations based on the
composite index by the ratio of the delivery date,
subtracts the task completion and remaining
processing time.

There are several other rules, such as SRPT,
LTWK and SPT/TWK, commented by Chiang and
Fu (2006). Extensions of SPT incorporate, under
combined conditions, other goals, also with good
efficiency and late operations.

Jain and Meeran (1998) apud Chang et al. (1996)
show a study evaluating 42 PDRs applied in an
integer linear programming model, where the SPT
rule showed the best performance.

Regarding work interests, it is important to consider
the due time when implementing processes, given
the characteristics of demand oriented to orders/
requests that the processes are subject to, but without
forgetting the relevant conditions concerning flow

time in processes, that leads to combined rules.
Thus, the aim is to combine some simpler rules to
promote better results in low computational time.
Therefore, SPTq (less time needed to complete a
process) is selected in Equation 1 and S/RPT, in
Equation 2, motivated by the success of the first, in
a wide variety of jobs and, for the latter, considering
the time needed to complete the ongoing processes.

mi

q
q j

iSPT piq
=

= ∑ � (1)

mi

i
q j i q

mi
q

q j

d t piq
d t iSPT

iSPRT
iSPTpiq

=

=

− −
− −

= =
∑

∑
� (2)

where:

di = jobi due date;

pij = processing time of the operation j in job i;

t = current time;

mi = number of operations remaining to finish jobi;
mi

q j
piq

=
∑ = iSPTq = process time remaining (jobi);

Both indexes are inversely proportional to the
priority value, i.e., higher priority to lower value and
lower priority to higher values, so the algorithm is
built to prioritize operations with lower rates.

The iCHR is given by the equations below:

. . i q
q q

q

d t iSPT
iCHR iSPT iSPRT iSPT

iSPT
− −

= = � (3)

i qiCHR d t iSPT= − − � (4)

4.2.	 The genetic algorithm

Solving a wide variety of problems in class NP -
complete, Evolutionary Algorithms (EAs) make
heuristic search techniques based on natural
mechanisms of selection, simulating computational
environments based on these principles of evolution
and heredity (Goldberg, 1989).

Int. J. Prod. Manag. Eng. (2016) 4(2), 75-85 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Branco, R. M., Coelho, A. S., Mayerle, S. F.

78

http://creativecommons.org/licenses/by-nc-nd/4.0/

The proposed structure to chromosome has two
known parts: head and body. The “head” contains
the information of the route and the “body” will
act in the operation sequence, both with the same
dimensions and, for each operation, the locus
contains a machine index. The Figure 1 shows the
relationship between the operations and machines
available to process them and the structure of the
“head” of the chromosome.

	

Figure 1. Example of relation between the original
table of operations and the chromossome structure –
phenotype×genotype (source: own).

Also, the “body” contains whole alleles, not repeated,
in the interval ai=[0,total operations-1] and, in the
scheduling, it indexes the order of operations, as the
Figure 2 shows.

	

Figure 2. Example of scheduling process from a given
chromosome – phenotype×genotype (source: own).

4.3.	 Creating the initial population
Since the “head” must be built first, this is made us-
ing random numbers in the range of [0,nmij-1], where
nmij is the number of available machines to process
operation j of the process i. The Figure 1 above

shows this construction part, where resource alloca-
tion starts building the “body”, an ordered 0 to nmij-1
array.

4.4.	 Evaluation of the population

The function corresponding to the evaluation of
the population, individual by individual, is the
fitness function. Each of these values are the
quantification of its adaptations. In other words, it
means to apply the modified GT algorithm to make
the active scheduling for each chromosome. The
time completion can be the objective function of the
search. Where: n = number of tasks; oik = operation k
of job i; tik = time able to start operation k of job i;
pik = processing time of the operation k belonging to
the job i.

As follows, the modified GT algorithm schedulings:

Modified GT Algorithm:

Step 1: Place the first schedulable operation of each
task (of the active planning horizon) in the set of
candidate operations C={oi1|1 ≤ i ≤ n};

Step 2: Choose an operation o’ of C, with earliest
completion time;

Step 3: Determine the machine M’, in which o’ must
be processed and thus build the set G (the conflict
set of M’), consisting of all operations of C to be
executed in M’;

Step 4: Remove operations that do not start before o’
finish, G = {oik ∈ G | tik <t'+p'}

Step 5: Run the sub- algorithm to select an operation
o*ik of G;

Step 6: Remove o*
ik from C, where C=C\{oik}

Step 7: Insert the operation o*
ik in the schedule and

calculate start time;

Step 8: Insert the successor operation of the o*
ik in the

set C (if any);

Step 9: If C ≠ ∅ , go to Step 2, if not END.

End of sub-algorithm.

Int. J. Prod. Manag. Eng. (2016) 4(2), 75-85Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Hybrid genetic algorithms: solutions in realistic dynamic and setup dependent job-shop scheduling problems

79

http://creativecommons.org/licenses/by-nc-nd/4.0/

And, to calculate the step 5 (chosing the O*
ik of G),

the sub-algorithm is now presented:

Sub-algorithm Step 5

Create CR: set of operations using M’, unscheduled,
and with previous scheduled;

If G ∩ Cr ≠ {} then

Choose operation G∩Cr with higher priority
index (RHP’s)

Else

Create PG: set of processes belonging to the G
operations;

Create CrG: subset of Cr, with the operations ∈
to the processes of PG;

If CrG ≠ {} then

Find O: operation of CrG with higher priority
index;

Find J*: process that contains the task O;

Find O*: operation of G belonging to J*;

Else

Find O*: oper. of G with low priority;

End if;

End if;

End of sub-algorithm.

For the M’ machine, if the operation is to be the one
sequenced by thex “body” of the chromosome and
the one with highest priority index, it will also be the
operation O*, i.e., the candidate operation elected
to be scheduled. Otherwise, if the sequence does
not match with the job-shop problem, conflicts may
occur.

Because there are two conflicting interests, both of
them without the creation of unfeasible individuals
must be considered. The goal is to find, in G, an
operation that most closely matches to that suggested
by the chromosome’s “body”, i.e., to the machine
M’, it is tried to schedule an operation of G which
belongs to the same process of the highest indexed
operation from Cr.

If no intersection of G with the operation indicated
by the sequencing for M’ exists, then the one with
less priority is selected, relaxing in some choice
criterion.

4.5.	 Selecting individuals
The selection process must list individuals, which
will be part of the reproduction. The selection
method adopted was proposed by Mayerle (1994),
which consists in a ordered stochastic selection,
having, in maximization, individuals in decreasing
order according to their fitness, as follows).

()Sel R r R j m rnd m m1 2
1 4

j

2$
!= = + - - + +^ h; E) 3 � (5)

Where: R is the set of the m individuals; rj is the j-th
chromosome; rnd is random uniformly distributed
∈ [0,1); ⌈x⌉ is the smallest integer greater than x.

The method provides less selective pressure then
Monte Carlo’s selection (roulette), and also allows
the best individuals to have more chance of crossing
than the less able ones with the merit of recovering
the super-individual effect, which will possibly exist
due to the elitist strategy regarding the population
formation.

4.6.	 Strategy to form a population
The population is created considering four different
formation processes: cloning, random formation,
greedy formation and reproduction. Because there
is a sorting process, the best are cloned to the
current population, but in a small fraction of the
total population. Other small fraction is designed
to individuals generated by the original algorithm
of the first population. The fourth way of formation
consists in generating a very small population part
using dispatching rules (DRs) widely discussed
in the literature, as: SPT, S/PRT, CHR and RND
(shortest processing time, slack per remaining time,
combined heuristic rule and random, respectively).
The user also defines the number of individuals to
compete for reproduction. This strategy is based on
Gonçalves et al. (2005), whose intention is to avoid
a premature convergence of the population.

4.7.	 Genetic operators applied to GA
The operators applied in the GA are: crossover,
mutation and cloning.

Int. J. Prod. Manag. Eng. (2016) 4(2), 75-85 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Branco, R. M., Coelho, A. S., Mayerle, S. F.

80

http://creativecommons.org/licenses/by-nc-nd/4.0/

Starting with the crossover operator, the main
operator of genetic algorithm, perpetuates the
characteristics of the fittest individuals through the
exchange of parents’ information, passing it to the
offspring individuals. The application is different
to the “head” and to the “body”. To the first, their
alleles are copied to the offsprings. For this, the
uniform crossover is applied, based on a binary mask
formed by 0/1 digits.

Figure 3. Example of the “mask” used into the uniform
crossover operator (source: own).

In crossover process, a mask allele “zero” means,
to the offspring, that the gene’s donor is father
1. Otherwise, the donor is father 2. To another
offspring, the reversal of the mask is required before
the process. No harmonization is required.

After, individuals are subjected to the second phase of
the crossing, now using order-based operators. This
is necessary due to the desire to keep the sequence
proposed by the parents as faithful as possible. The
operator now is the PPX (precedence preservative
crossover), acting in the chromosomes’ “bodies”
and using the masks involved in the previous step.
Inheriting from his father 1 all the genes situated
in his respective locus of the “zero” allele mask, it
starts to complete the sequence based on the father 2.
If the allele obtained from the father 2 already exists
in some locus of offspring 1, it sought the next, until
the gap can be completed.

	

Figure 4. Example of the PPX crossover operator used to
from a new offspring (source: own).

This operator was applied based on the observations
of Gonçalves et al. (2005), such operators produce
good effects when applied to schedules, instead of
the traditional one or two cut points.

Moreover, during the crossover process, the mutation
operator will actuate changing the value sampled
by another one, randomly generated. In phenotype
terms, it’s a new route, meaning a new machine
assignment to that operation.

In the “body”, the mutation will exchange genes
between two randomly selected points, forcing task
sequence changes.

5.	 Applied tests

With interest in the analisys of how the algorithm
solves the proposed problems types and their
characteristics, the original data from Chan (2003)
and Kumar et al. (2003) (Appendix I and II,
respectively) were applied in the tests. Although,
some modified problems proposed by Araujo (2006)
were, also applied.

5.1.	 From simple routes or classic JSSPs
In these cases, the combined dispatching rule
presented in Equation 4 contributes to form the route
with specific criteria. This CHR is choosen based in
a previous survey of Branco (2010) among others,
when it is used in classic JSSPs with good results to
these problems which have the characteristic of just
one route to choose. Thus, the CHR is also applied to
the NDD-SDST-JSSP presented in this work.

5.2.	 Expansion of alternative routes
In order to evaluate the algorithm ability with
alternative routes combinations, Araujo (2006)
expanded the original Chan (2003) problem (data in
Appendix 1), introducing another machine and so,
turning some task processes more flexible.

The average makespan with the proposed conjuncture
was reduced, at minimum values from 931 ut to
786 ut, with average computational time close to
20 s using a dual core cpu with 2 Gbytes of RAM. It
was expected, since the increase of machine number
also increases the number of routes and thus the
processing options. Araujo (2006), observing it has
raised the issue that, since it increases the amount
of routes and thus reduces the total processing time,
reduces, at the same time, the frequency of use of
machines.

Int. J. Prod. Manag. Eng. (2016) 4(2), 75-85Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Hybrid genetic algorithms: solutions in realistic dynamic and setup dependent job-shop scheduling problems

81

http://creativecommons.org/licenses/by-nc-nd/4.0/

5.3.	 Non-Deterministic Dynamic
characteristics

For the tests involving NDD-JSSP (realistic)
simulation routines in the original algorithm
were introduced with the aim to generate random
variables, and the simulated times are: instant
start operation processing, transport time between
machines, operation processing time in the machine.
All these times are crucial for defining the end time
of each operation, in each job.

The simulation of turbulent environment scheduling
consists in to generate random variables with defined
average and standard deviation. The average is equal
to the original time and standard deviation will be
between 5, 10 and 20%.

These indeterminisms created during the scheduling,
they vary setup times (dependent), processing times,
start and traveling time are important to evaluate the
behavior of the solution NDD-JJSP proposed, since
it reacts at the time when the change is detected,
adapting itself.

Considering the objective function and the Chan
(2003) original problem, the minimum and average
data obtained for each case are: 960 and 990,
1013 and 1045, 995 and 1022, respectively, for the
turbulence simulations with 5, 10 and 20%. It is
noticed that they vary little from one class to another,
according to the disturbances generated, which
presents good scheduling in dynamic environments,
as can be viewed in Table 1.

Table 1. Results of mean makespans from the solved
problems, considering disturbances of 0, 5, 10 and 20%
and 1 and 5% mutations rates.

Mean makespan
Kumar Chan Chan (expand.)

Disturb 1% 5% 1% 5% 1% 5%
0% 385 383 944 949 842 830
5% 431 432 997 996 859 840
10% 457 459 1049 1051 899 909
20% 527 523 1168 1167 1048 1032

In a non turbulent environment and, the makespan
obtained by Chan (2003) is close to 1000 ut,
Araujo (2006) a mean of 1070 ut and this work
reached 931/944 of minimal/mean values. The same
performance analysis is done to the Kumar et al.
(2003) problem (Appendix 2), where the closeness of
the makespans results is also observed, which were:
381, 424, 501 ut. The adopted conjuncture is robust

with regard to schedules in turbulent environments.
Araujo (2006) has obtained 410 ut for the same
demand of pieces. Comparing and considering
no disturbances, this work got a 350/383 ut of
minimum/mean makespans values, meaning good
response even with disturbances.

5.4.	 Test of dependent setup times
To evaluate the dependent setup times in the JSSPs,
the problem in Table 2, is approached with the goal
to analise the solutions to this classic problem with
and without setup times.
Table 2. Data from a randomly formed 3x3 JSSP (source:
Yamada and Nakano (1997)).

Job Oper. Machine Order TSTART TSTOPl Pij

3 3 3 0 0 1 1
3 1 2 1 0 3 3
1 1 1 2 0 3 3
2 3 2 3 0 4 4
2 2 3 4 0 3 3
1 3 3 5 0 3 3
1 2 2 6 0 3 3
2 1 1 7 0 2 2
3 2 1 8 0 2 2

Unique of each chromosome, a processing order
is established for each operation (“body”), as the
machines that will process each task.

This test shows how the scheduler creates a agenda
from a given chromosome and a table of dependent
setup times among operations, where the scheduler
can obtain a result as the Figure 5, with 15 ut to be
finished.

With a setup dependent time between operations
(1,1,1) and (2,1,1), in the assigned sequence of the
machine 1 (iteration 3), a second scheduling can be
obtained (Figure 6).

Figure 5. Example of solution of Yamada and Nakano 3×3
JSSP (source: own).

Int. J. Prod. Manag. Eng. (2016) 4(2), 75-85 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Branco, R. M., Coelho, A. S., Mayerle, S. F.

82

http://creativecommons.org/licenses/by-nc-nd/4.0/

It is observed that the depend setup time made the
scheduler choose, in its 3rd iteration, the operation
(3,2,1), instead of (2,1,1). Being dependent on a
predecessor operation, the processing time will
increase from 2 ut to 5 ut, leading the the completion
time to increase from 5 ut to 8 ut

	

Figure 6. Example of solution of Yamada, Nakano 3×3
JSSP considering dependent setup time (source: own).

The scheduler has taken the best choice, considering
de cost to accept, as in the Figure 3, the (2,1,1) after
the (1,1,1). This choice saved 1 ut in this special
case, so the goal was achieved when the scheduler
did this exchange of tasks aimed at performing
the best schedule, avoiding the time costs of the
operations for the same order established by the
same chromosome.

6.	 Discussions of results

This paper proposes a scheduling technique using
combined heuristic rule (CHR) in schedules based in
a modified version of the GT algorithm. The focus is
to promote efficient scheduling in realistic job-shop
problems (no determinism in times of operations),
and, at the same time, consider the dependent setup
times between operations in the same machine.

With the implemented algorithms in object-pascal
language was possible to observe the general behavior
in turbulent environments (varying time of operations
process), with good scheduling capabilities without
exceeding the proposed completion times. Also the

good results found when compared to those obtained
by other authors made further encouraging the
implementation in future decision-making process.

The heuristic rule CHR was efficient in the test
results, which usually get good solutions with time
quite satisfactory, probably due to components based
on rules: SPT and S/PRT. Regardless, the adopted
situation for the genetic algorithm, which inserts
individuals formed by other heuristics, could “dope”
at low rates the population that was being built at
each iteration.

The super-individual absence was important to
the good performance of the GA, as a result of the
selection proposed by Mayerle (1994).

With focus on problems with multiple route options,
as the problems posed by Kumar et al. (2003)
and Chan (2003), algorithms for route selection
(using coding “head/body” of the chromosome and
equipment tables available on the shop floor, as well
as their processing times for each operation and
setup times) and scheduling (inserted into the GA as
the fitness function based on the modified algorithm
GT), the results reached makespan, in some cases,
better than the original solution problems. The
expectations have not changed when the results were
contrasted with those obtained by Araujo (2006),
solved by other circumstances, also based on genetic
algorithms.

Considering the problems demonstrates the proposal
ability to organize, for a given planning horizon,
the tasks to be scheduled, whether belonging to a
physical or virtual manufacturing cell, which may
form an alternate route, also considering dependent
setup times.

About dependent setup times, the tests can show
good results, exchanging operations in order to
find best completion times, scapping from the costs
imposed by the times among operations, respecting
the order predefined by the chromosome.

References
Araujo, L. O. (2006). Método de Programação de Sistemas de Manufatura do Tipo Job Shop Dinâmico Não Determinístico. Tese (doutorado),

Universidade de São Paulo, São Paulo.

Barboza, A. O. (2005). Simulação e técnicas da computação evolucionária aplicadas à problemas de programação linear inteira mista, Tese
(doutorado), Universidade Tecnológica Federal do Paraná. Paraná.

Branco, R. M. (2010). Agendamento de tarefas em sistemas de manufatura job-shop realista com demanda por encomenda: solução por
algoritmo genético, Tese (doutorado), Universidade Federal de Santa Catarina.

Chan, F. T. S. (2003). Effects of dispatching and routeing decisions on the performance of flexible manufacturing system. International
Journal of Advanced Manufacturing Technology, 21(5), 328-338. doi:10.1007/s001700300038

Int. J. Prod. Manag. Eng. (2016) 4(2), 75-85Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Hybrid genetic algorithms: solutions in realistic dynamic and setup dependent job-shop scheduling problems

83

http://dx.doi.org/10.1007/s001700300038
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chiang, T-C., Fu, L-C. (2006). Using Dispatching Rules for Job Shop Scheduling with Due Date-based Objectives, Proceedings of the 2006
IEEE International Conference on Robotics and Automation, Orlando, Florida. doi:10.1109/ROBOT.2006.1641909

El-Bouri, A., Shah, P. (2006). A neural network for dispatching rule selection in a job shop. The International Journal of Advanced
Manufacturing Technology, 31(3), 342-349. doi:10.1007/s00170-005-0190-y

Giffler, B., Thompson, G. (1960). Algorithms for solving production scheduling problems. Operations Research, 8(4), 487-503. doi:10.1287/
opre.8.4.487

Goldbarg, M. C., Luna, H. P. L. (2000). Otimização Combinatória e Programação Linear. 2 Ed. Editora Campus.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. US: New York

Gonçalves, J. F., de Magalhães Mendes, J. J., Resende, M. G. (2005). A hybrid genetic algorithm for the job shop scheduling problem.
European journal of operational research, 167(1), 77-95. doi:10.1016/j.ejor.2004.03.012

Herrmann, J. W., Lee, C.-Y., Hinchman, J. (1995). Global job shop scheduling with a genetic algorithm. Production and Operations
Management, 4(1), 30-45. doi:10.1111/j.1937-5956.1995.tb00039.x

Jain, A. S., Meeran, S. (1998). A state-of-the-art review of job-shop scheduling techniques, Technical Report, Department of Applied
Physics, Electronics and Mechanical Engineering, University of Dundee, Scotland.

Johnson, S. M., (1954). Optimal two and three-stage production schedules with setup times included. Naval Research Logistics Quarterly,
1(1), 61-68. doi:10.1002/nav.3800010110

Kumar, R., Tiwari, M. K., Shankar, R. (2003). Scheduling of flexible manufacturing systems: an ant colony optimization approach.
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217(10), 1443-1453.
doi:10.1243/095440503322617216

Linden, R. (2008). Algoritmos genéticos. Brasport, 2 edição. 2008.

Mauri, G. R., Lorena, L. A. N. (2006). Simulated Annealing Aplicado a um Modelo Geral do Problema de Roteirização e Programação de
Veículos. XXXVIII SBPO - Simpósio Brasileiro de Pesquisa Operacional. Goiânia, GO.

Matsusaki, C. T. M. (2004). Modelagem de Sistemas de Controle Distribuídos e Colaborativos De Sistemas Produtivos. Tese (doutorado),
Universidade de São Paulo, São Paulo. doi:10.11606/t.3.2004.tde-20122004-112454

Mayerle, S. F. (1994). Um algoritmo genético para a solução do caixeiro viajante. Tecnical Report, Departamento de Engenharia de Produção
e Sistemas, UFSC.

Porter, K., Little, D., Peck, M., Rollins, R. (1999). Manufacturing classifications: relationship with production control systems. Integrated
Manufacturing Systems, 10(3-4): 189-198. doi:10.1108/09576069910280431

Singh, A., Mehta, N. K., Jain, P. K. (2007). Multicriteria dynamic scheduling by swapping of dispatching rules. International Journal of
Advanced Manufacturing Technology, 34(9), 988-1007. doi:10.1007/s00170-006-0674-4

Vázquez, M., Whitley, D. (2000). A comparison of Genetic Algorithms in solving the Dynamic Job Shop Scheduling Problem. GECCO.
Available in https://docs.google.com/file/d/0B0xb4crOvCgTMXpKRnp6NFo3bTQ/edit

Wall, M. B. (1996). A Genetic Algorithm for Resource-Constrained Scheduling, Tesis, Departament of Mechanical Engineering, Massachusetts
Institute of Technology.

Int. J. Prod. Manag. Eng. (2016) 4(2), 75-85 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Pérez Perales, D., Alemany, M.M.E.

84

http://dx.doi.org/10.1109/ROBOT.2006.1641909
http://dx.doi.org/10.1007/s00170-005-0190-y
http://dx.doi.org/10.1287/opre.8.4.487
http://dx.doi.org/10.1287/opre.8.4.487
http://dx.doi.org/10.1016/j.ejor.2004.03.012
http://dx.doi.org/10.1111/j.1937-5956.1995.tb00039.x
http://dx.doi.org/10.1002/nav.3800010110
http://dx.doi.org/10.1243/095440503322617216
http://dx.doi.org/10.11606/t.3.2004.tde-20122004-112454
http://dx.doi.org/10.1108/09576069910280431
http://dx.doi.org/10.1007/s00170-006-0674-4
https://docs.google.com/file/d/0B0xb4crOvCgTMXpKRnp6NFo3bTQ/edit
http://creativecommons.org/licenses/by-nc-nd/4.0/

Appendix I

Table I. Data from the original (without gray data) and modified problem of Chan (2003) (source: Araujo(2006)).

Job
Operation

1 2 3 4
1 M1 (105) M3 (168) M5 (70) M2 (210)

M2 (126) M4 (140) M3 (140) M1 (175)
M6 (91) - - M4 (175)

2 M2 (140) M3 (70) M5 (245) M4 (175)
M3 (168) M2 (112) M2 (266) M5 (203)
M7 (154) - - -

3 M5 (200) M1 (125) M4 (150) M2 (75)
M1 (100) M2 (60) M3 (135) M4 (90)

- M7 (60) - -
4 M4 (150) M2 (150) M5 (100) M3 (125)

M2 (75) M5 (75) M4 (50) M1 (75)
- - M6 (100) -

5 M1 (50) M3 (100) M2 (75) M4 (150)
M3 (40) M4 (150) M5 (100) M3 (125)

- - M6 (125) -
6 M3 (175) M2 (84) M1 (175) M5 (70)

M5 (140) M4 (56) M4 (140) M3 (161)
- M5 (70) - -

7 M4 (245) M5 (70) M1 (70) M2 (105)
M1 (266) M4 (126) M4 (105) M5 (170)
M3 (245) - M7 (105) -

8 M5 (105) M4 (280) M3 (175) M1 (140)
M4 (70) M5 (210) M2 (140) M2 (56)

Appendix II

Table II. Data of the problem proposed by Kumar et al. (2003) (source: Araujo(2006)).

Job
Operation

1 2 3 4
1 M1 (7) M2 (3) M1 (3) M1 (2)

M3 (4) - M3 (6) M2 (4)
2 M1 (8) M3 (4) M1 (7) M1 (8)

M2 (12) - M2 (14) M3 (4)
3 M1 (10) M2 (2) M1 (2) M1 (6)

M2 (15) M3 (6) M3 (4) M2 (3)
M3 (8) - - -

4 M2 (9) M1 (6) M2 (7) M1 (9)
M3 (5) M3 (2) M3 (12) M2 (6)

- - - M3 (3)
5 M1 (10) M2 (7) M1 (5) M1 (4)

M3 (15) M3 (14) M2 (8) M2 (6)
- - - M3 (8)

Int. J. Prod. Manag. Eng. (2016) 4(2), 75-85Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

A Mathematical Programming Model for Tactical Planning with Set-up Continuity in a Two-stage Ceramic Firm

85

http://creativecommons.org/licenses/by-nc-nd/4.0/

