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Abstract: Regression methods are widely employed in forestry to predict and map structure and canopy fuel variables. 
We present a study where several regression models (linear, non-linear, regression trees and ensemble) were assessed. 
Independent variables were calculated using metrics extracted from full-waveform LiDAR data, while the reference 
data used to generate the dependent variables for the prediction models were obtained from fieldwork in 78 plots of 
16 m radius. Transformations of dependent and independent variables with feature selection were carried out to assess 
their influence in the prediction of response variables. In order to evaluate significant differences and rank regression 
models we used the non-parametric tests Wilcoxon and Friedman, and post-hoc analysis or post-hoc pairwise multiple 
comparison tests, such as Nemenyi, for Friedman test. Regressions using transformation of the dependent variable, 
like square-root or logarithmic, or the independent variable, increased R2 up to 6% with respect to linear regression 
using unprocessed response variables. CART (Classification and Regression Tree) method provided poor results, but 
it may be interesting for categorisation purposes. Square-root transformation of the dependent variable is the method 
having the best overall results, except for stand volume. However, not always has a significant improvement with 
respect to other regression methods.

Key words: regression models, Random Forest, CART, M5, Wilcoxon, Friedman, forest structure, canopy fuel, LiDAR 
full-waveform.

Estudio comparativo de métodos de regresión para la predicción de variables de estructura y 
combustibilidad a partir de datos LiDAR full-waveform
Resumen: Los métodos de regresión se utilizan ampliamente en el ámbito forestal para la predicción y el cartografiado 
de las variables de estructura y combustibilidad. En este artículo se evalúan diferentes modelos de regresión (lineal, 
no lineal, árboles de regresión y ensemble). Como variables independientes se utilizaron métricas extraídas de datos 
LiDAR full-waveform, mientras que los valores de las variables dependientes se generaron a partir de modelos basados 
en datos de campo obtenidos para 78 parcelas de 16 m de radio. Se llevaron a cabo transformaciones de las variables 
dependientes e independientes con selección de atributos para evaluar su influencia en la predicción de la variable 
respuesta. Con el fin de verificar diferencias significativas y ordenar los modelos de regresión se emplearon los tests 
no paramétricos de Wilcoxon y Friedman, y el análisis post-hoc o los tests de comparación post-hoc por pares, como 
el de Nemenyi, para el test de Friedman. Las regresiones basadas en la transformación de la variable dependiente, 
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1. Introduction

Regression analysis is a statistical process that 
tries to estimate a dependent variable from one 
or more independent variables. Regressions are 
widely used to estimate forest variables. Standard 
forest biometric measurements from some trees 
were used to generate allometric equations to 
predict forest variables, such as aboveground bio-
mass and other structure and canopy fuel variables 
across large areas (Skowronski et al., 2011).

Regressions have also been employed for variable 
estimation using metrics extracted from LiDAR 
data (e.g. Means et  al., 2000; Hermosilla et  al., 
2014). Previous studies have shown the very 
strong correlations between metrics extracted from 
LiDAR and data from forest biometric plots, what 
suggests that regression models can be calculated 
to estimate forest inventory parameters, and thus 
generate landscape-scale maps of these variables 
using a small number of field plots (Andersen 
et  al., 2005; Andersen and Breidenbach, 2007; 
Skowronski et  al., 2011). Airborne LiDAR 
collects a complete description of the forest ver-
tical structure allowing laser pulses to penetrate 
through the canopy (Erdody and Moskal, 2010). 
Discrete LiDAR has however restrictions to get 
the different vegetation layers. In the last 20 years, 
several studies have shown that full-waveform 
LiDAR systems, that register the full wave that 
interacts with the canopy, let a better description 
of the physical and forest vertical structure prop-
erties, and therefore achieve good estimations of 
canopy fuel metrics (Lefsky et al., 1999; Means 
et al., 2000; Hermosilla et al., 2014).

In forestry applications, a series of regression 
models have been implemented. The simplest 
but getting good fitting is the linear regression. 
Logarithmic and square-root transformations of 

the dependent variable are very widespread in 
studies related to canopy fuel parameters estima-
tion (equations 1 and 2).

( )ln Y a a X a X a Xn n0 1 1 2 2# # #g= + + + + � (1)

Y a a X a X a Xn n0 1 1 2 2# # #g= + + + + � (2)

In Means et al. (2000) a logarithmic transforma-
tion of the dependent variable is used, whereas in 
Andersen et al. (2005) and in Erdody and Moskal 
(2010) both transformations are employed to in-
crease accuracy. 

These transformations of the dependent variable 
improve estimations because residuals meet re-
gression models hypothesis: normally distributed, 
independent, homoscedastic (constant variance) 
and linear (Hannon and Knapp, 2003; Wang and 
Zhou, 2005). In these cases, since the dependent 
variable is modified and all the statistic results 
(coefficient of determination, root-mean-square 
error, etc.) are not calculated in the original, but 
in the transformed space, it is necessary to invert 
them to express the results in the units of the orig-
inal space (Andersen et al., 2005). There are some 
other non-linear methods used in ecological ap-
plication, such as exponential models (Temesgen 
et al., 2015), Random Forest (Baccini et al., 2008) 
and regression trees (García-Gutiérrez et  al., 
2011). These methods try to create groups or 
leaves of data keeping the homogeneity (De’Ath 
and Fabricius, 2013), and the regression trees are 
straightforward and easy to understand.

There exist a large number of regression methods 
in the literature, and no one is the most appropriate 
for all the cases, depending this choice on the 
particular application and data, this is why 

como raíz cuadrada o logaritmo, o en la transformación de las variables independientes, obtuvieron un incremento de 
la R2 de hasta un 6% con respecto a la regresión lineal. Mediante el método CART (Classification and Regression Tree) 
se obtuvieron resultados discretos, si bien su uso puede estar indicado para la categorización o estratificación. Con el 
método basado en la transformación de la variable dependiente mediante raíz cuadrada se consiguieron los mejores 
resultados comparativos en la predicción de variables forestales, excepto para el volumen. Sin embargo, su uso no 
siempre implica una mejora significativa con respecto a los otros métodos de regresión usados en este trabajo.

Palabras clave: modelos de regresión, Random Forest, CART, M5, Wilcoxon, Friedman, estructura forestal, 
combustibilidad, LiDAR full-waveform.
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several comparative studies can be found in the 
literature. Naesset et  al. (2005) compared three 
estimation techniques (ordinary least-squares, 
seemingly unrelated regression and partial 
least-squares regression), revealing that none of 
these techniques were superior to the others in 
predicting biophysical properties of forest stands 
over all combinations of strata and variables. In 
García-Gutiérrez et al. (2011) a comparative study 
between multiple linear regression (MLR) and 
regression trees (M5P) was done to predict crown, 
stem and aboveground biomass using LiDAR 
data, concluding that M5P outperforms MLR. 
In Marabel-García and Álvarez-Taboada (2014) 
a comparison between two different methods 
(Partial Least Square Regression –PLSR– and 
linear regression) were applied in order to find 
the best estimate of the aboveground biomass, 
recommending the use of linear regression 
due to its simplicity with respect to PLSR. In 
Li et al. (2015) several regression models (linear, 
exponential growth, support vector regression and 
neural network) were compared for aboveground 
biomass estimation, concluding that linear 
regression achieved the best performance. In other 
cases (Hyyppä et al., 2000; Erdody and Moskal, 
2010), a comparison of regression methods 
using different data sources (imagery, LiDAR or 
imagery + LiDAR) is performed.  

In most of the abovementioned studies, the 
comparison is done only by analysing results 
attending to the coefficient of determination, 
the RMSE, etc. but in García-Gutiérrez et  al. 
(2011) Wilcoxon test is employed. However, 
usually a significance test is needed in order to 
know if those performance results make a real 
difference in practical results or not. Therefore, 
having n data sets we need to test which model 
would perform the best, and if it is statistically 
different from others (Luengo et al., 2012). Some 
parametric and non-parametric tests are available 
for this purpose. Among non-parametric tests, 
that are preferred over parametric ones (Demšar, 
2006), we can find Wilcoxon and Friedman tests. 
The Wilcoxon signed rank test compares two 
methods, whereas the Friedman test compares all 
the methods between them, being needed a post-
hoc test after rejecting null-hypothesis to make a 
pairwise comparison (Demšar, 2006).

Firstly, this paper aims to study several regression 
models to estimate structure and canopy fuel var-
iables, and looking for improving the prediction 
of these variables applying transformations of 
dependent and independent variables, and car-
rying out feature selections. Secondly, this study 
compares and analyse the suitability of the regres-
sion methods tested to obtain prediction models, 
using non-parametric tests such as Wilcoxon 
and Friedman. Finally, some conclusions about 
methods are mentioned, such as the importance 
of using an evaluation set especially for Random 
Forest algorithm, and the usefulness of regression 
trees for data stratification.

2. Study area and data

The study area is located in Panther Creek, in the 
state of Oregon (USA) (see Figure 1). Elevation 
ranges from 100 to 700  m (see shaded relief in 
Figure  1). The dominant species is Douglas-fir 
(Pseudotsuga menziesii), being present in more 
than half of the total forested area. Occasionally 
this species is mixed with other conifers. The 
height of the trees of the study area is sometimes 
higher than 60 m, although it is very variable due 
to timber production in the zone.

Figure 1. Location (left side), orthoimage (top right) and 
shaded relief (bottom right) of the study area.

Full-waveform data were collected in July 15th, 
2010, by Watershed Sciences, Inc. using a Leica 
ALS60 sensor incorporated in a Cessna Caravan 
208B. The system acquired data at a 105  kHz 
pulse rate, flown at an average altitude of 900 m 
above ground level, and a scanning angle of ±15° 
from nadir. The waveforms were recorded in 256 
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bins with a temporal sample spacing of 2 ns and 
beam footprint size of ~0.25  m, what yielded a 
pulse density of ≥8 points/m2. The study area was 
surveyed with opposing flight line side-lap ≥50% 
(≥100% total overlap). Aircraft position was 
recorded with a frequency of 2  Hz by on-board 
differential GPS unit, altitude was acquired with 
a frequency of 200 Hz as pitch, roll and yaw from 
on-board IMU. LiDAR data were provided in 
LAS 1.3 format. Moreover, the company provided 
a digital terrain model (DTM) generated with the 
last return pulses. After DTM evaluation using 
33  ground control points measured using RTK- 
GPS, the root-mean-square error was 0.19 m.

Field data were acquired in 78 circular plots 
(47 Douglas-fir and 31 mixed species) with 16 m 
radius. Plot positions were located with accuracy 
lower than 0.3 m in horizontal and vertical loca-
tions using Trimble R-8 GNSS and Leica TPS 
800 total stations. All trees within plots having a 
diameter at breast height (DBH) greater or equal 
than 2.5 cm were tagged.

Using field measurements (tree height, DBH, spe-
cies, and standard measurements) species-specific 
allometric equations derived by Standish et  al. 
(1985) were calculated so as to estimate structure 
and canopy fuel variables for each plot (Table 1). 
These values were used as dependent variables to 
be predicted for regression models from LiDAR 
full-waveform metrics.

LiDAR full-waveform metrics were extracted 
following those proposed by Duong (2010) and 
further described by Cao et al. (2014), and used 
as independent variables in regression models 
(Table 2).

3. Methods

3.1. Feature selection

Three different feature selection processes were 
followed (Figure 2) in order to reduce the number 
of variables: one for regression trees, a second one 
for Random Forest regression and a third one for 
multiple regression methods.

In the case of regression trees we chose the three 
variables that were closer to the root, because 
when a variable is closer to the root it has more 
relevance in the overall estimation of the data. 
Regarding Random Forest algorithm, a relevance 
ranking is created based on the number of times 
that a variable appears in the nodes of all the 
trees generated with the algorithm. Variables with 
higher values are more used and therefore perform 
better. In all these cases a maximum of three 
variables was included in the models in order to 
avoid overfitting and to create more robust models 
(Hermosilla et al., 2014).

A large variety of variable selection methods 
can be used, each of them motivated by various 

Table 1. Structure and canopy fuel variables (dependent variables) summary of study area plots.
Code (unit) Variable Description Mean s.d.
AGB (t·ha-1) Aboveground biomass Weight of all the living biomass aboveground per unit of area 309.57 202.23
BA (m2·ha-1) Basal area Area occupied by tree trunks per unit of area 46.14 22.62
V (m3) Volume Volume of canopy 362.89 174.39
CBD (kg·m-3) Canopy bulk density Ratio between canopy fuel load and canopy depth 0.136 0.086
CFL (t·ha-1) Canopy fuel load Total amount of biomass in the canopy fuel layer per unit of area 48.49 23.51

Table 2. Summary of metrics extracted from LiDAR full-waveform (independent variables).

Code Variable Description
HOME Height of median energy Height from ground to the waveform centroid
WD Waveform distance Height from ground to waveform beginning
NP Number of peaks Number of waveform peaks
ROUGH Roughness of outermost canopy Distance from beginning to the first peak
HTMR Height/median ratio Ratio between HOME and WD
VDR Vertical distribution ratio Difference between WD and HOME divided by WD
RWE Return waveform energy Area below waveform from the beginning to the ground
FS Front slope angle Vertical angle from beginning to the first peak
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theoretical arguments, but a unifying theoreti-
cal framework is lacking (Guyon and Elisseeff, 
2003). Genetic approaches have made, for in-
stance, a good variable selection in studies related 
to LiDAR for estimation of forest stand variables 
(García-Gutiérrez et  al., 2013). In our case, for 
multiple regression methods two criteria, the 
Akaike Information Criterion (AIC) (Akaike, 
1973) and the Bayesian Information Criterion 
(BIC) (Schwarz, 1978) were initially tested. These 
methods are robust in selecting variables, and very 
close results were reached with our data set and 
variables in the preliminary tests. Furthermore, 
using BIC method, a maximum of three variables 
was always obtained. Based on these results and 
following a methodological coherence with the 
Random Forest and regression trees algorithms, 
the models were restricted to a maximum of three 
variables. Since AIC minimise the risk function 
in finite sample sizes and when the true model is 
not among the candidate models or it is extremely 
complex, in the case of multiple regression meth-
ods we used the Akaike Information Criterion.

AIC is a relative estimator that represents the loss 
of information when a model is used to approxi-
mate a second one. It does not provide information 
about the quality of the model in absolute sense, 
but it is used for selecting the optimal number of 
variables. AIC value is calculated as follows:

AIC = –2l + 2K

where l is the maximised log-likelihood and K the 
number of parameters. This value is calculated for 
each model, selecting the one with the minimum 
AIC value, since it loses less information (Posada 
and Buckley, 2004).

In those cases that after applying AIC more than 
three variables still remained, we used forward 
stepwise selection using leave-one-out cross-val-
idation from the linear regression generated by the 
AIC until having a maximum of three variables.

3.2. Regression models

Once three or less variables were selected, we gen-
erated and compared seven different regression 
models: Linear, Ind-trans, Log-trans, Sqrt-trans, 
CART, M5 and Random Forest. In this section 
these models are briefly described.

Linear model (Linear): Model obtained after 
linear fitting using the variables extracted with the 
forward stepwise selection. 

Independent variable transformation (Ind-trans): 
Based on the initial linear regression, each in-
dependent variable is transformed (logarithmic, 
exponential, quadratic, cubic, inverse and S 

AIC Feature 
Selection

Regression Trees 
Feature Selection 

Criterion

Generate 
CART Model

Generate 
M5 Model

Generate 
Random Forest 

 Model

Random Forest 
Feature Selection Criterion

Forward 
Stepwise Selection

Generate Linear 
Model

Generate 
Independent Variable 
Transformed Model

Generate Sqrt 
and Log-transformed 

Model

Results Comparison 
with Non-parametric Tests

Figure 2. Diagram with the overall process followed for the comparison of regression methods.
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curve) with the goal to increase the adjusted R2. In 
order to know which transformation of each inde-
pendent variable to employ, the linear correlation 
coefficient between the transformed and the de-
pendent variable were compared, then a backward 
stepwise selection was carried out for these new 
transformed variables, verifying that the hypothe-
sis of the multiple regression model was met.

Dependent variable transformation (Log-trans and 
Sqrt-trans): Based on the transformation of the de-
pendent variable using logarithmic and square-root 
transformations, and following similar process as 
for the independent variable transformation. This 
transformation aims to obtain normal distribution, 
independence, homoscedasticity and linearity of 
residuals.

Regression trees: Classification and Regression 
Tree (CART) (Breiman et al., 1984): This method 
can generate classification or regression trees, de-
pending on the type of dependent variable. Rules 
are selected in order to better differentiate the data 
based on the variable to be estimated. This pro-
cess can be repeated for each branch of the tree, 
generating new nodes, until data from the same 
leaf are homogeneous, and therefore they cannot 
be further split. For regressions, a value is set to 
each leaf (see Figure 3).

M5 (Quinlan, 1992) is also a tree-based method, 
but instead of having estimation values at their 
leaves, they have linear regressions, so that all the 

instances belonging to one leaf can have different 
values. M5 constructs a piecewise constant tree 
and then generates a linear regression to the data 
of each leaf (see Figure 4).

Model:

Rule 1: [69 cases, mean 261.46231, range 30.76877 
to 597.8537, est err 50.96885]

if

WDmean <= 38.50956

then

outcome = 191.56349 + 24.7 HOMEmean - 568 HTMRmean

Rule 2: [9 cases, mean 678.41150, range 321.5639 
to 924.2084, est err 95.07365]

if

WDmean > 38.50956

then

outcome = -1905.33629 + 58.9 WDmean + 2.9 HOMEmean 
- 75 HTMRmean

Figure 4. Example of M5 tree-based rules for AGB varia-
ble in mixed forest.

Ensemble: Random Forest (Breiman, 2001) is an 
ensemble learning method for classification or 
regression. This algorithm is based on creating 
different subset of instances and variables ran-
domly in order to generate a number of trees. For 
regressions, the estimated value is the average of 
estimated values for the different trees. This leads 
to have different models despite having the same 
data.

3.3. Evaluation and comparison 
methods

As mentioned above, leave-one-out cross-valida-
tion was used to select variables (using forward 
stepwise selection) and to compare the regression 
models. This split is required for the purpose 
that model accuracy validation must be an inde-
pendent measure, and not to produce overfitting 
(Hernández-Orallo et al., 2004). Regression mod-
els were evaluated using adjusted coefficient 
of determination (R2), root-mean-square error 
(RMSE), normalised root-mean-square error 
(nRMSE) defined as the ratio of RMSE and the 
range of observed values, and coefficient of 

HOMEmean<26.1
309.6
n=78

WDmean<22.48
220.7
n=57

HOMEmean<10.87
110.6
n=22

HOMEstd<8.049
289.8
n=35

439.8
n=14

62.71
n=12

254.9
n=19

168.1
n=10

331.3
n=16

HOMEmean<31.42
550.9
n=21

773.1
n=71

Figure 3. CART regression tree built for AGB variable, 
where in each node is showed the condition of the left 
branch, the estimated value and the number of samples of 
that node, respectively.
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variation (CV), that is the RMSE divided by the 
mean of observed values.

After generating the seven different regression 
models and in order to analyse statistical differenc-
es between models, we used two non-parametric 
tests: Wilcoxon and Friedman (see Figure 2). The 
aim of applying these tests was to establish a 
rank of the methods and to demonstrate if their 
performance differences are statistically signifi-
cant. Since these tests need the algorithm results 
organised for each data set or fold, it is required 
to use cross-validation or different data sets. We 
used a leave-one-out cross-validation, so that each 
algorithm had 78 values for mixed species and 
47 for Douglas-fir. The evaluation measure used 
was the residual error of each plot obtained by 
cross-validation. 

The Wilcoxon signed-ranks test (Wilcoxon, 1945) 
compares two methods to show if the differences 
between them are significant or not. This test ranks 
absolute value of differences between results of 
methods for each data set, and compares the ranks 
for the positive and negative differences (Demšar, 
2006). After performing a pairwise comparison 
and testing the differences, a ranking method was 
applied according to the total wins and no defeats 
(wins and ties) (Luengo et al., 2012). The method 
with best results was the one that had more wins, 
and if two or more methods had the same number 
of wins, the one with a better rank was the method 
that had more wins and ties. If there was still a tie, 
an average rank was assigned to the tied methods.

In contrast to the Wilcoxon test, the Friedman 
test (Friedman, 1937; Friedman, 1940) is able 
to compare more than two methods. It consists 
on ranking methods for each data set separately, 
then considering the values of ranks by columns 
(Demšar, 2006), showing the general ranking and 
the statistical significance of the differences. In 
order to make a pairwise comparison about the 
significance of the differences between the meth-
ods, a post-hoc test like Nemenyi (Nemenyi, 1963) 
or p-value of Friedman test analysis was applied. 
These post-hoc tests can only be used when there 
is a significant difference considering all methods, 
i.e. after having rejected the null-hypothesis of the 
Friedman test.

Nemenyi test is equivalent to the Tukey test for 
ANOVA. According to this test, two methods 
are considered significantly different when their 
corresponding average ranks differ by at least the 
critical difference calculated with critical values 
based on the Studentized range statistic, number of 
data sets, and number of models (Demšar, 2006). 
There is also a post-hoc comparison for Friedman 
test (Zar, 1999) that calculates a z score using 
the rank difference between the two methods to 
be compared, number of data sets and number of 
total methods. Then, the p-value calculated for 
the z score must be greater than 0.05 (95% of con-
fidence level) to consider that the performance of 
these two methods is significantly different.

4. Results and Discussion

For every regression model and dependent var-
iables tested, a set of independent variables was 
selected. Table 3 shows the number of times each 
variable was selected and included in a prediction 
model. These variables represent the average (µ) 
and the standard deviation (σ) per plot of the dif-
ferent metrics displayed on Table 2. HOMEµ was 
used in almost all the regressions, whereas NPµ, 
NPσ, ROUGHσ, HTMRσ, RWEµ and FSµ were 
never selected. 

Table 3. Percentage of use of the independent variables af-
ter feature selection.
Variable Use
HOMEµ 97%
WDµ 34%
HOMEσ 22%
HTMRµ 15%
VDR 14%
WDσ 8%
RWEσ 6%
ROUGHµ 2%
FSσ 2%
NPµ 0%
NPσ 0%
ROUGHσ 0%
HTMRσ 0%
RWEµ 0%
FSµ 0%

After the evaluation of the regression models us-
ing cross-validation for two different strata, mixed 
forest and only Douglas-fir, the results shown in 
Table 4 were obtained.
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As shown in Table 4, AGB has the best performance 
for mixed forest plots (R2 = 0.88, nRMSE = 0.08, 
CV = 0.22), showing an important difference with 
respect to the rest of variables. Figure 5b and 5c 
show that AGB has the lowest values for nRMSE, 
while for other variables the values are similar. In 
contrast, CBD results are the poorest (R2 = 0.68, 
nRMSE = 0.12, CV = 0.35) (see Table 4), showing 
dissimilarity with respect to other variables (see 
Figure 5a), and meaning that the accuracy of this 
variable cannot be improved as well in Douglas-fir 
stratum as in the case of other dependent variables.

Regarding Douglas-fir stratum, in Table 5 
we observe that AGB has also the best ac-
curacy (R2  =  0.89, nRMSE = 0.09), but CV 
value (CV = 0.23) is not better than CV for BA 
(CV = 0.22), V (CV = 0.21) and CFL (CV = 0.22). 
CBD has again the poorest values for Douglas-fir 
plots (R2 = 0.68, nRMSE = 0.13, CV = 0.37).

The value of R2 is sometimes higher in Douglas-fir 
stratum than in mixed forest (see Table 4 and 5), 
or it has similar value, as in CBD. However, this 
behaviour is not reflected in RMSE, nRMSE and 

Table 4. Results of the different regression models for each estimated variable in stratum mixed forest.
Variables Statistical indicators Linear Ind-trans Log-trans Sqrt-trans CART M5 Random Forest
AGB R2 0.84 0.88 0.88 0.88 0.73 0.85 0.86

RMSE (t·ha-1) 78.80 67.54 70.88 67.07 101.76 78.30 74.36
nRMSE 0.09 0.08 0.08 0.08 0.11 0.09 0.08
CV 0.26 0.22 0.23 0.22 0.33 0.25 0.24

BA R2 0.74 0.74 0.74 0.75 0.60 0.74 0.66
RMSE (m2·ha-1) 11.36 11.36 11.36 11.14 14.02 11.35 12.94
nRMSE 0.11 0.11 0.11 0.11 0.14 0.11 0.13
CV 0.25 0.25 0.25 0.24 0.30 0.25 0.28

V R2 0.72 0.72 0.72 0.71 0.55 0.69 0.61
RMSE (m3) 89.66 90.69 89.66 92.54 114.95 95.52 106.33
nRMSE 0.11 0.11 0.11 0.11 0.14 0.12 0.13
CV 0.25 0.25 0.25 0.26 0.32 0.26 0.29

CBD R2 0.65 0.68 0.66 0.68 0.47 0.64 0.55
RMSE (kg·m-3) 0.05 0.05 0.05 0.05 0.06 0.05 0.06
nRMSE 0.13 0.12 0.13 0.12 0.16 0.13 0.14
CV 0.36 0.35 0.37 0.35 0.46 0.38 0.41

CFL R2 0.76 0.76 0.76 0.76 0.61 0.77 0.70
RMSE (t·ha-1) 11.30 11.30 11.30 11.14 14.50 11.28 12.61
nRMSE 0.11 0.11 0.11 0.11 0.14 0.11 0.12
CV 0.23 0.23 0.23 0.23 0.30 0.23 0.26

Table 5. Statistic results of the different regression models for each estimated variable for stratum Douglas-fir.
Variables Statistical indicators Linear Ind-trans Log-trans Sqrt-trans CART M5 Random Forest
AGB R2 0.83 0.88 0.86 0.89 0.69 0.83 0.83

RMSE (t·ha-1) 91.26 77.11 86.15 76.37 124.72 98.13 93.42
nRMSE 0.10 0.09 0.10 0.09 0.14 0.11 0.10
CV 0.27 0.23 0.26 0.23 0.37 0.29 0.28

BA R2 0.78 0.78 0.78 0.79 0.62 0.77 0.74
RMSE (m2·ha-1) 11.37 11.37 11.37 10.87 14.77 11.67 12.17
nRMSE 0.11 0.11 0.11 0.11 0.15 0.12 0.12
CV 0.23 0.23 0.23 0.22 0.30 0.24 0.25

V R2 0.80 0.80 0.72 0.76 0.72 0.74 0.79
RMSE (m3) 82.82 82.82 99.07 91.19 98.84 97.09 85.50
nRMSE 0.10 0.10 0.12 0.11 0.12 0.12 0.10
CV 0.21 0.21 0.25 0.23 0.25 0.24 0.21

CBD R2 0.66 0.66 0.68 0.68 0.42 0.57 0.51
RMSE (kg·m-3) 0.05 0.05 0.05 0.05 0.07 0.06 0.06
nRMSE 0.13 0.13 0.13 0.13 0.18 0.15 0.16
CV 0.38 0.37 0.37 0.37 0.50 0.43 0.45

CFL R2 0.78 0.78 0.78 0.79 0.62 0.78 0.75
RMSE (t·ha-1) 11.67 11.67 11.67 11.14 15.38 11.99 12.29
nRMSE 0.11 0.11 0.11 0.11 0.15 0.11 0.12
CV 0.23 0.23 0.23 0.22 0.30 0.24 0.24
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CV values and, in some cases, (e.g. AGB, CBD 
and CFL) results are not improved. For all the var-
iables but V, using the square-root transformation 
the best results are achieved (see Table 4, 5 and 
Figure 5), whereas using regression tree CART 
the lowest. Taking linear regression as reference, 
square-root transformation can improve R2 up to 
6% (AGB in Douglas-fir stratum) (Figure 5a).

Tables 4, 5 and Figure 5a show that using re-
gression methods such as independent variable 
transformation, logarithmic-transformed, square-
root-transformed, M5 and Random Forest, the R2 
values for variables AGB, BA, CBD and CFL im-
prove with respect to the linear regression method, 
whereas for estimation of V better results are 
achieved using linear regression. These differences 
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Figure 5. (a) Graph displaying differences in R2 with respect to linear regression: positive values when the regression model 
outperforms the linear regression and negative values when the linear regression performs better; radial graph of different 
regression models for each variable estimation displaying nRMSE (b) for mixed forest plots and (c) for Douglas-fir stratum.
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are only in the range of 1% to 6% (Figure 5a) and, 
in some cases, they are not significant, as we can 
see in Figure 6, as described below.

In order to better interpret the differences be-
tween methods, regression model residuals of the 
predicted variables for the two strata types are 
represented using boxplots in Figure 7.

Analysing this boxplot graph (Figure 7), CART 
boxes are different from the other methods 
tested, being the residuals and the range higher. 
Independent variable transformation and square-
root-transformed have smaller boxes (lower 
standard deviation range) than the rest. As ob-
served in Tables 4 and 5, results for V variable 
were very similar, and the square-root-transformed 
was not the most accurate model. 

In order to confirm that these differences between 
regression models were significant, non-para-
metric tests were used. Ranking and proof of 
significant differences between regression models 
using non-parametric and post-hoc tests, using the 
two plot types and for all the predicted variables 
tested, are displayed in Figure 6.

As shown in Figure 6, the ranking of regression 
methods for the different variables is very similar 
either using the Friedman or the Wilcoxon test. 
However, after applying Nemenyi post-hoc test, 
p-values of Friedman or Wilcoxon test to verify 
if the difference between methods is statistically 
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Figure 6. Regression models (Lin: linear, I-trans: inde-
pendent variable transformation, Sqrt: square-root-trans-
formed, Ln: logarithmic-transformed, CART, M5 and RF: 
Random Forest) ranking after applying Wilcoxon (W) and 
Friedman (F) tests and post-hoc p-value (p) and Nemen-
yi (N) tests using mixed forest (MF) and Douglas-fir (DF) 
for the different predicted variables. Regression no signi-
ficantly different regarding the method placed in rank 1 is 
green-coloured.

Figure 7. Boxplot of regression models residuals for AGB (t·ha-1) in Douglas-fir stratum.
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significant, then some differences are noticed due 
to the differences of test criteria.

For all the dependent variables, except V, square-
root transformed method is always the best in 
the ranking, although in most of the cases the 
difference with the next method is not significant. 
In these cases, the difference could be due to ran-
domness (Luengo et al., 2012).

Results of Figure 6 are graphically confirmed 
in Figure 7. In Figure 6, the results related to the 
existence of significant differences obtained from 
Friedman+Nemenyi with respect to those obtained 
from Friedman+p-value or Wilcoxon tests are dif-
ferent. While using the first there is not dissimilarity 
between square-root transformation, independent 
variable transformation, logarithmic transforma-
tion, linear and M5 regressions, using the latter 
tests there is no significant difference only between 
square-root and independent variable transforma-
tion methods. In Figure 6, Friedman+p-value and 
Wilcoxon test results show that square-root trans-
formation of the dependent variable performs better 
than the rest of models. As previously mentioned, 
non-parametric tests confirmed that regression 
models results for variable V in mixed forest are 
very similar and there is not a significant difference 
between them, except for CART.

As mentioned above, CART, which is a regression 
tree method (see Figure 3), does not achieve a high 

performance. When a decision tree is used for 
regressions, an average value is assigned to each 
leaf of the tree, so all the instances meeting the 
conditions of that leaf will have the same value, 
transforming a continuous variable to a discrete 
one. However, the generation of a regression tree 
can be sometimes interesting, because it is very 
easy to understand by no experts and, since each 
leaf is represented by homogenous data, it is possi-
ble to differentiate several strata using the variable 
to estimate. This stratification could be done de-
pending on the number of leaves, and each stratum 
would be represented by the value of the leaf.

M5 tree-based method improves CART algo-
rithm, but it does not achieve high performance 
results. This method generates as many linear 
regressions as rules (see Figure 4), as opposite to 
CART that just gets a unique predicted value for 
each leaf, being able to have different estimated 
values for a same leaf. M5 does not have a better 
accuracy, this can be due to the fact that the node 
condition to split the data is not doing a good data 
discrimination.

It is known that Random Forest overfits for 
some noisy data (Segal, 2004). As we can see in 
Figure 8, there is an important difference between 
results obtained with Random Forest by using or 
not using cross-validation for evaluation. This 
difference can vary between 10% and 37% for 
Random Forest algorithm, while for the rest of the 
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Figure 8. Differences between with cross-validation and without cross-validation in R2 for Random Forest regression.
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methods is only about 2%. Hence cross-validation 
or, in general, independent evaluation is crucial, 
and especially relevant when using Random 
Forest, due to overestimation. 

5. Conclusions

In this paper we analysed seven multiple re-
gression methods (linear, independent variable 
transformation, logarithmic-transformed, square-
root-transformed, CART, M5 and Random Forest) 
to assess their potential to predict forest structure 
and canopy fuel variables.

Sometimes a linear regression can be improved 
by transforming the dependent variable with 
a logarithmic, a square-root transformation or 
transforming some of the independent variables. 
This happens when data transformation makes the 
residuals meet the regression models hypotheses: 
normal distribution, independence, homoscedas-
ticity (constant variance) and linearity.

We observe (see Table 3) that HOMEµ (97%), 
WDµ (34%), HOMEσ (22%), HTMRµ (15%) 
and VDR (14%) are the most used variables in 
regression models, especially HOMEµ, that is 
present in almost all of them, showing a relevant 
performance of these features for forest structure 
and canopy variable prediction. However, NPµ, 
NPσ, ROUGHσ, HTMRσ, RWEµ and FSµ were 
never selected in our tests.

For all variables except for the volume, square-
root-transformed is the method that achieved 
better results. However, in most of the cases the 
difference between this method and the second 
method ranked is not statistically different, so 
mainly all the regression models (green-coloured 
in Figure 6) could be used to obtain similar re-
sults. Analysing Tables 4 and 5 we observe that 
square-root, logarithmic and independent variable 
transformations have the highest results, but in 
some cases the difference between these regres-
sion models and the rest are not significant (see 
Figure 6). This improvement of results using 
square-root and logarithmic transformation is also 
mentioned in Means et  al. (2000) and Andersen 
et al. (2005).

The CART method does not have good results for 
prediction, however, since it organises each leaf 
containing homogenous instances, it could be 
used for data stratification or categorization.

Finally, it is well known that is crucial to use 
cross-validation or independent evaluation data 
sets for training and evaluation, but it becomes 
indispensable when Random Forest algorithm is 
employed, so as not to overestimate results (see 
Figure 8).

Acknowledgments

This research has been funded by the Spanish 
Ministerio de Economía y Competitividad 
and FEDER, in the framework of the project 
CGL2013-46387-C2-1-R.

The authors thank the Bureau of Land Management 
and the Panther Creek Remote Sensing and 
Research Cooperative Program for the data pro-
vided for this research.

References
Akaike, H. 1973. Information theory and an extension 

of the maximum likelihood principle. In: 2nd 
International Symposium on Information Theory. 
Akadémia Kiado, Budapest, Hungary. pp. 267-281.

Andersen, H.E., McGaughey, R.J., Reutebuch, S.E. 
2005. Estimating forest canopy fuel parameters 
using LiDAR data. Remote Sensing of Environment, 
94(4), 441-449. http://dx.doi.org/10.1016/j.
rse.2004.10.013

Andersen, H.E., Breidenbach, J. 2007. Statistical 
properties of mean stand biomass estimators in a 
lidar-based double sampling forest survey design. 
In: ISPRS Workshop on Laser Scanning 2007 and 
SilviLaser, 2007. Espoo, Finland, September 12-14. 
pp. 8-13.

Baccini, A., Laporte, N., Goetz, S.J., Sun, M., Dong, 
H. 2008. A first map of tropical Africa’s above-
ground biomass derived from satellite imagery. 
Environmental Research Letters, 3(4), 1-9. http://
dx.doi.org/10.1088/1748-9326/3/4/045011

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 
1984. Classification and regression trees. New York: 
Chapman and Hall.

http://dx.doi.org/10.1016/j.rse.2004.10.013
http://dx.doi.org/10.1016/j.rse.2004.10.013
http://dx.doi.org/10.1088/1748-9326/3/4/045011
http://dx.doi.org/10.1088/1748-9326/3/4/045011


SPANISH ASSOCIATION OF REMOTE SENSING

A comparative study of regression methods to predict forest structure and canopy fuel variables from LiDAR full-[…]

39

Breiman, L., 2001. Random Forests. 
Machine Learning, 45, 5-32. http://dx.doi.
org/10.1023/A:1010933404324

Cao, L., Coops, N.C., Hermosilla, T., Innes, J., Dai, 
J., She, G. 2014. Using small-footprint discrete 
and full-waveform airborne LiDAR metrics to 
estimate total biomass and biomass components in 
subtropical forests. Remote Sensing, 6, 7110-7135. 
http://dx.doi.org/10.3390/rs6087110

De’Ath, G., Fabricius, K.E. 2013. Classification and 
regression trees: a powerful yet simple technique 
for ecological data analysis. Ecology, 81(11), 
3178-3192. http://dx.doi.org/10.1890/0012-
9658(2000)081[3178:CARTAP]2.0.CO;2

Demšar, J. 2006. Statistical comparisons of classifiers 
over multiple data sets. Journal of Machine Learning 
Reasearch, 7, 1-30.

Duong, H.V. 2010. Processing and application of 
ICESat large footprint full waveform laser range 
data. Ph.D. Thesis, Delft University of Technology, 
Netherlands.

Erdody, T.L., Moskal, L.M. 2010. Fusion of LiDAR and 
imagery for estimating forest canopy fuels. Remote 
Sensing of Environment, 114(4), 725-737. http://
dx.doi.org/10.1016/j.rse.2009.11.002

Friedman, M. 1937. The use of ranks to avoid the 
assumption of normality implicit in the analysis 
of variance. Journal of the American Statistical 
Association, 32(200), 675-701. http://dx.doi.org/10
.1080/01621459.1937.10503522

Friedman, M. 1940. A comparison of alternative tests 
of significance for the problem of m rankings. The 
Annals of Mathematical Statistics, 11(1), 86-92. 
http://dx.doi.org/10.1214/aoms/1177731944

García-Gutiérrez, J., González-Ferreiro, E., Mateos-
García, D., Riquelme-Santos, J.C., Mirando, D. 
2011. A comparative study between two regression 
methods on LiDAR data: A case study. Lecture 
Notes in Artificial Intelligence, 6679, 311-318. 
http://dx.doi.org/10.1007/978-3-642-21222-2_38

García-Gutiérrez, J., González-Ferreiro, E., Riquelme-
Santos, J.C., Miranda, D., Diéguez-Aranda, U., 
Navarro-Cerrillo, R.M. 2013. Evolutionary feature 
selection to estimate forest stand variables using 
LiDAR. International Journal of Applied Earth 
Observation and Geoinformation, 26, 119-131. 
http://dx.doi.org/10.1016/j.jag.2013.06.005

Guyon, I., Elisseeff, A. 2003. An introduction to 
variables and feature selection. Journal of Machine 
Learning Research, 3, 1157-1182.

Hannon, L., Knapp, P. 2003. Reassessing nonlinearity 
in the urban disadvantage/violent crime relationship: 
an example of methodological bias from log 
transformation. Criminology, 41(4), 1427-1448. 
http://dx.doi.org/10.1111/j.1745-9125.2003.
tb01026.x

Hermosilla, T., Ruiz, L.A., Kazakova, A.N., Coops, 
N.C., Moskal, L.M. 2014. Estimation of forest 
structure and canopy fuel parameters from small-
footprint full-waveform LiDAR data. International 
Journal of Wildland Fire, 23(2), 224-233. http://
dx.doi.org/10.1071/WF13086

Hernández-Orallo, J., Ramírez, M.J., Ferri, C. 2004. 
Introducción a la minería de datos. Madrid: Pearson 
Educación S.A.

Hyyppä, J., Hyyppä, H., Inkinen, M., Engdahl, M., 
Linko, S., Zhu, Y-H. 2000. Accuracy comparison 
of various remote sensing data sources in the 
retrieval of forest stand attributes. Forest Ecology 
and Management, 128(1-2), 109-120. http://dx.doi.
org/10.1016/S0378-1127(99)00278-9

Lefsky, M.A., Cohen, W.B., Acker, S.A., Parker, G.G., 
Spies, T.A., Harding, D. 1999. Lidar remote sensing 
of the canopy structure and biophysical properties 
of Douglas-fir western hemlock forests. Remote 
Sensing of Environment, 70(3), 339-361. http://
dx.doi.org/10.1016/S0034-4257(99)00052-8

Li, L., Guo, Q., Tao, S., Kelly, M., Xu, G. 2015. 
Lidar with multi-temporal MODIS provide a 
means to upscale predictions of forest biomass. 
ISPRS Journal of Photogrammetry and Remote 
Sensing, 102, 198-208. http://dx.doi.org/10.1016/j.
isprsjprs.2015.02.007

Luengo, J., García, S., Herrera, F. 2012. On the Choice 
of the best imputation methods for missing values 
considering three groups of classification methods. 
Knowledge and Information Systems, 32(1), 77-108. 
http://dx.doi.org/10.1007/s10115-011-0424-2

Marabel-García, M., Álvarez-Taboada, F. 2014. 
Estimación de biomasa en herbáceas a partir de datos 
hiperespectrales, regresión PLS y la transformación 
continuum removal. Revista de Teledetección, 42, 
49-59. http://dx.doi.org/10.4995/raet.2014.2286

Means, J.E., Acker, S.A., Fitt, B.J., Renslow, M., 
Emerson, L., Hendrix, C.J. 2000. Predicting forest 
stand characteristics with airborne scanning lidar. 
Photogrammetric Engineering & Remote Sensing, 
66(11), 1367-1371.

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.3390/rs6087110
http://dx.doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
http://dx.doi.org/10.1016/j.rse.2009.11.002
http://dx.doi.org/10.1016/j.rse.2009.11.002
http://dx.doi.org/10.1080/01621459.1937.10503522
http://dx.doi.org/10.1080/01621459.1937.10503522
http://dx.doi.org/10.1214/aoms/1177731944
http://dx.doi.org/10.1007/978-3-642-21222-2_38
http://dx.doi.org/10.1016/j.jag.2013.06.005
http://dx.doi.org/10.1111/j.1745-9125.2003.tb01026.x
http://dx.doi.org/10.1111/j.1745-9125.2003.tb01026.x
http://dx.doi.org/10.1071/WF13086
http://dx.doi.org/10.1071/WF13086
http://dx.doi.org/10.1016/S0378-1127(99)00278-9
http://dx.doi.org/10.1016/S0378-1127(99)00278-9
http://dx.doi.org/10.1016/S0034-4257(99)00052-8
http://dx.doi.org/10.1016/S0034-4257(99)00052-8
http://dx.doi.org/10.1016/j.isprsjprs.2015.02.007
http://dx.doi.org/10.1016/j.isprsjprs.2015.02.007
http://dx.doi.org/10.1007/s10115-011-0424-2
http://dx.doi.org/10.4995/raet.2014.2286


REVISTA DE TELEDETECCIÓN  (2016) 45, Special Issue, 27-40

Crespo-Peremarch et al.

40

Naesset, E., Bollandsas, O.M., Gobakken, T. 2005. 
Comparing regression methods in estimation of 
biophysical properties of forest stands from two 
different inventories using laser scanner data. 
Remote Sensing of Environment, 94(4), 541-553. 
http://dx.doi.org/10.1016/j.rse.2004.11.010

Nemenyi, P.B. 1963. Distribution-free multiple 
comparisons. Ph.D. Thesis, Princeton University, 
New Jersey, USA.

Posada, D., Buckley, T.R. 2004. Model selection and 
model averaging in Phylogenetics: advantages 
of Akaike Information Criterion and Bayesian 
Approaches over Likelihood Ratio tests. 
Systematic biology, 53(5), 793-808. http://dx.doi.
org/10.1080/10635150490522304

Quinlan, J.R. 1992. Learning with continuous classes. 
Machine Learning, 92, 343-348. 

Segal, M.R. 2004. Machine learning benchmarks and 
Random Forest regression. Technical report, Center 
for Bioinformatics & Molecular Biostatistics, 
University of California, San Francisco, USA.

Skowronski, N.S., Clark, K.L., Duveneck, M., Hom, 
J. 2011. Three-dimensional canopy fuel loading 
predicted using upward and downward sensing 
LiDAR systems. Remote Sensing of Environment, 
115(2), 703-714. http://dx.doi.org/10.1016/j.
rse.2010.10.012

Standish, J.T., Manning, G.H., Demaershalk, J.P. 1985. 
Development of biomass equations for British 
Columbia tree species. Canadian Forestry Service, 
Pacific Forest Research Center, Information Report 
BC-X-264, Victoria, BC, Canada.

Schwarz, G. 1978. Estimating the dimension of a model. 
The annals of statistics, 6(2), 461-464. http://dx.doi.
org/10.1214/aos/1176344136

Temesgen, H., Strunk, J., Andersen, H., Flewelling, J. 
2015. Evaluating different models to predict biomass 
increment from multi-temporal lidar sampling and 
remeasured field inventory data in south-central 
Alaska. Mathematical and computational forestry 
and natural resource sciences, 7(2), 66-80. 

Wang, L., Zhou, X-H., 2005. A fully nonparametric 
diagnostic test for homogeneity of variances. The 
Canadian Journal of Statistics, 33(4), 545-558. 
http://dx.doi.org/10.1002/cjs.5550330406

Wilcoxon, F., 1945. Individual comparisons by ranking 
methods. Biometrics Bulletin, 1(6), 80-83. http://
dx.doi.org/10.2307/3001968

Zar, J.H., 1999. Biostatistical analysis. Upper Saddle 
River, New Jersey: Prentice Hall.

http://dx.doi.org/10.1016/j.rse.2004.11.010
http://dx.doi.org/10.1080/10635150490522304
http://dx.doi.org/10.1080/10635150490522304
http://dx.doi.org/10.1016/j.rse.2010.10.012
http://dx.doi.org/10.1016/j.rse.2010.10.012
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1002/cjs.5550330406
http://dx.doi.org/10.2307/3001968
http://dx.doi.org/10.2307/3001968

