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1. INTRODUCTION

Let (X,d) be a compact metric space and let f : X — X be a continuous
map. Denote by C(X, X) the set of continuous maps f : X — X. (X, f) is
called a discrete dynamical system. The map f is said chaotic in the sense of
Li-Yorke (or simply chaotic) if there is an uncountable set S C X such that
for any z,y € S, x # y, it holds that

(1.1) lim inf d(f"(x), [*(y)) = 0,
and
(1.2) liﬁsgpd(f”(w),f”(y)) > 0.

S is said a scrambled set of f (see [10]). When f is chaotic we say that (X, f)
is chaotic.

The notion of chaos plays an special role in the setting of discrete dynamical
systems. So, some topological invariants have been porposed to give a chara-
terization of chaos. Maybe, the most important topological invariant in this
setting is the topological entropy (see [1]). When X = [a,b], a,b € R it is
well-known that positive topological entropy implies that f is chaotic, while
the converse result is false (see [12]).

So, in order to characterize chaotic interval maps we need an extension of
topological entropy called topological sequence entropy (see [7]). Given an
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increasing sequence of positive integers A = (a;)52,, a number ha(f) can be
associated to each f € C(X,X). This number is also a topological invariant.
Then, defining hoo (f) = supy ha(f), chaotic interval maps can be characterized
by the following result.

Theorem 1.1. Let f € C([a,b],[a,b]). Then
(a) f is non—chaotic iff hoo(f) = 0.
(b) f is chaotic with zero topological entropy iff hoo(f) = log 2.
(c) f is chaotic with positive topological entropy iff hoo(f) = 0.

Theorem 1.1 establishes a complete classification of maps from the point of
view of topological sequence entropy. The part (a) was proved by Franzova
and Smital in [6]. (a) provides that any chaotic map holds hs(f) > 0. In [3]
was proved (b) and (c) in case of piecewise monotonic maps. This result was
extended to the general case in [4].

Following [7], amap f € C(X, X) is said null if hoo (f) = 0. f is said bounded
if hoo(f) < 00 and unbounded if hoo(f) = 0o. In the general case, it is unknown
when a continuous map is null, bounded or unbounded. It is easy to see that
when f is stable in the Lyapunov sense (f has equicontinuous powers) the map
is null (see [7]). Theorem 1.1 establishes a characterization of null, bounded
and unbounded continuous interval maps.

The aim of this paper is to prove Theorem 1.1 in the setting of continuous
circle maps. This will provide a classification of unbounded, bounded and null
continuous circle maps. Before starting with this classification, let us point out
that for any f € C(S!, S1), Hric proved in [8] that it is non—chaotic iff heo (f) =
0, which classifies chaotic circle maps from the point of view of topological
sequence entropy.

2. PRELIMINARIES

Let (X,d) be a compact metric space and let f : X — X be a continuous
map. Denote by C'(X, X) the set of continuous maps f : X — X. Let f° be the
identity on X, f' := f and f* = fo f»~! for all n > 1. Consider an increasing
sequence of positive integers A = (a;)2; and let Y C X and € > 0. We say
that a subset £ C Y is (A,e,n,Y, f)-separated if for any z,y € E, x # y, there
isan i € {1,2,...,n} such that d(f%(z), f*(y)) > e. Denote by s,(4,¢,Y, f)
the cardinality of any maximal (A, e,n,Y, f)-separated set. Define

1

(2.3) s(A,e,Y, f) :=limsup —log s,(4,¢,Y, f).

n—oo T
It is clear from the definition that if Y7 C Yy, C X, then
(24) 8(A767Y17f) < 8(A767Y27f)'
Let
(2.5) ha(f,Y) = lir% s(A,e,Y, f).

e—

The topological sequence entropy of f respect to the sequence A is defined by
(2.6) ha(f) = ha(f,X).
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When A = (4)2,, we receive the classical definition of topological entropy (see

[1]).

Finally, let

(27) hOO(f7 Y) = Sl/llp hA(f7 Y)
and
(2.8) hoo(f) = Sup ha(f).

An z € X is periodic if there is an n € N such that f"(z) = «. The smallest

positive integer holding this condition is called the period of x. The set of
periods of f, P(f), is defined by

P(f):={n € N:3Jz € X periodic point of periodn}.

3. RESULTS ON TOPOLOGICAL SEQUENCE ENTROPY

In this section we prove some useful results concerning topological sequence
entropy of continuous maps defined on arbitrary compact metric spaces.

Proposition 3.1. Let f € C(X,X). For all n € N it holds that heo(f™) =
hoo (f)-

Proof. First, we prove that heo(f™) < heo(f). In order to see this, let A =
(a;)$°, be an increasing sequence of positive integers and define nA = (na;)2;.
Then it is straightforward to see that ha(f™) = h,a(f) and hence

heo(f") = SgphA(fn):SgphnA(f)
< S%PhB(f):hoo(f)'

Now, we prove the converse inequality. Let A be an increasing sequence of
postive integers. By [8], there is another sequence B = B(A) such that ha(f) <
hs(f™). Then

hoo(f) = Sup ha(f) < Sup hpay(f™)
< sup ha(f") = hoo ("),
which ends the proof. O

Corollary 3.2. Under the conditions of Proposition 3.1, the following state-
ments hold:

(a) f is null iff f™ is null for all n € N.
(b) f is bounded iff f™ is bounded for all n € N.
(c) f is unbounded iff f™ is unbounded for all n € N.

Proposition 3.3. Let f € C(X,X) have positive topological entropy. Then
hoo(f) = o00.
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Proof. Since h(f) > 0 it follows by [7] that for any increasing sequence of
positive integers A = (a;)$°,, ha(f) = K(A)h(f), where

1
(3.9) K(A) = lim limsup —Card{a;,a; + 1,...,a; + k: 1 <i < n}.

k—o0 n—soo N
Taking A = (29)%°, it holds that K(A) = oo and hence h(f) = occ. O

Proposition 3.4. Let (X,d) and (Y,e) be compact metric spaces and let f :
X —>Xandg:Y — Y be continuous maps. Let w: X — Y be continuous and
surjective such that mo f = gomw. Let A be an increasing sequence of positive
integers A and let Y1 C Y. Then, for any € > 0 there is a § > 0 such that

(3.10) s(A,0,7 (1), f) > s(A,&,Y1,9).
In particular, hoo(f) > hoo(g).

Proof. Let E C Y] be a maximal subset (A4,n,¢,Y1,g)-separated. Let F C
7 1(Y1) be a set containing exactly one element from 7 !(y) for all y € E.
We claim that F is an (A,n,d, 7 (Y1), f)-separated subset for some § > 0.
Assume the contrary. Since 7 is uniformly continuous, there is a 6§ = §(g) > 0
such that d(z1,z2) < 0, z1,29 € X, implies e(n(z1),m(x2)) < e. Now let
z1,x2 € F be such that

(3.11) d(f*(z1), f" (w2)) <6
for all ¢ € {1,2,...,n}. Let yi,y2 € E be such that n(z;) = y; for j = 1,2.
Then, for all s € {1,2,...,n} we have that

e(9" (y1), 9" (y2)) = e(g™(m(z1)), 9" (7(y2)))
= e(mo fh(z1),mo fU(y2)) <,

which leads us to a contradiction. Then s,(A4,d, 7 (Y1), f) > su(4,e,Y1, f)
and hence

8(A7 577T_1(Y1)7 f) = hmsupl log Sn(Aa 57 7-‘-_1(Y1)7 f)

n—oo T
1

> limsup = log s,,(4,¢,Y1,9)
n—oo T

= S(A767Y17g)7

which ends the proof. O

Under the conditions of Proposition 3.4, if 7 is an homemorphism, then f
and ¢ are said to be conjugate. Then

Corollary 3.5. Under the conditions of Proposition 3.4, if f and g are conju-
gate, then hoo(f) = hoo(9)-
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4. MAIN RESULTS

In the sequel we will discuss the space of continuous circle maps denoted by
C(SY,S1). Let f € C(S',SY) and let [ : R — S! be defined by I(z) = exp(2miz)
for all z € R. Then, there are a countable number of continuous maps F : R —
R such that [o F' = fol. An F holding this condition is called a lifting of f.
If F' is another lifting of f, then

(4.12) F—F=keN
By |J| we denote the length of an interval J C R.

Theorem 4.1. Let f € C(S',S'). Then
(a) f is non—chaotic iff heo(f) = 0.
(b) f is chaotic with zero topological entropy iff hoo(f) = log 2.
(c) [ is chaotic with positive topological entropy iff hoo(f) = 00.

Proof. According to Chapter 3 from [2], C(S', S') can be decomposed into the
following classes:

(4.13) Cy = {f € C(S*,S1) : f has no periodic points};

(4.14)
Cy={feC(S,SY: P(f") = {1} or P(f") ={1,2,2%,...} for some n € N};

(4.15) C3 = {f € C(S, S : P(f*) =N for some n € N}.

According to [8], any f € C is non—chaotic and holds that h(f) = 0. Let
f € Cs. Again by [8], it holds that f is chaotic and h(f) > 0. Then, by
Proposition 3.3 we have that hoo(f) = 00. So, we must consider only maps
from Cj.

Let f € Cy and let n € N be such that P(f") = {1} or P(f") = {1,2,22,...}.
It is well-known that f is chaotic iff f” is chaotic. So, applying Proposition 3.1,
it is not restrictive to assume that n = 1. Since f has a fixed point, by Lemma
2.5 from [9], there is a lifting F' : R — R and there is a compact interval J, with
|J| > 1, such that F(J) = J. For the rest of the proof call | = | ;. First assume
that f is non—chaotic. Then by [8] it holds that h(f) = 0. Secondly, assume
that f is chaotic. Hence F' is also chaotic (see [8]) and has zero topological
entropy (see [12]). By Proposition 3.4, for any € > 0 thereis a § = d(e) > 0
such that

(4.16) s(A,e, 8%, f) < s(4,8,17H(8Y), F) = (4,6, J, F).
On the other hand, by [4], there is a compact interval J; C J, holding that
F? (J;) = J; such that

(4.17) s(A,8,J,F) < s(A,8/6,U2 FI(J;), F) <log2.
By (4.16) and (4.17) we conclude that
(4.18) s(A,e, St f) <log2.

Since € was arbitrary chosen, we obtain

(4.19) ha(f) < log2,
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and
(4.20) hoo(f) =supha(f) <log2.
A

Now, we prove the converse inequality. By [12], there is a compact interval
Ji, with |J;] < 1 and F?'(J;) = J; such that F?'|,, is chaotic. By [6], there is

an increasing sequence of positive integers B such that s(B, e, J;, in) > log?2
for a suitable € > 0. Since {|;, : J; — [(J;) is an homemorphism, we can apply

Proposition 3.4 to {|;, = [ to obtain a § > 0 such that

(4.21) $(A,6,1(J;), f¥) > s(A,e, Ji, FZ) > log 2.

Hence

(4.22)  hoolf) 2 haia(f) = ha(f?) = s(A,8,1(Ji), f*) = log?2,

which concludes the proof. [l

Remark 4.2. When two-dimensional maps are concerned, Theorems 1.1 and
4.1 are false in general. More precisely, in [11] and [5] a chaotic map F €
C([0,1]2,[0,1]?) with hoo(F) = 0 and a non chaotic map G € C([0,1]2,]0,1]?)
holding he(G) > 0 have been constructed. It seems that the dimension of the
space X plays a special role in Theorems 1.1 and 4.1. We conjecture that
Theorem 1.1 remains true for continuous maps defined on finite graphs, that is,
in the special setting of one—dimensional dynamics.
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