APPLIED GENERAL TOPOLOGY

© Universidad Politécnica de Valencia Volume 3, No. 1, 2002 pp. 65-76

Every finite system of T_1 uniformities comes from a single distance structure

Jobst Heitzig

ABSTRACT. Using the general notion of distance function introduced in an earlier paper, a construction of the finest distance structure which induces a given quasi-uniformity is given. Moreover, when the usual defining condition $xU_{\varepsilon}y :\Leftrightarrow d(y,x)\leqslant \varepsilon$ of the basic entourages is generalized to $nd(y,x)\leqslant n\varepsilon$ (for a fixed positive integer n), it turns out that if the value-monoid of the distance function is commutative, one gets a countably infinite family of quasi-uniformities on the underlying set. It is then shown that at least every finite system and every descending sequence of T_1 quasi-uniformities which fulfil a weak symmetry condition is included in such a family. This is only possible since, in contrast to real metric spaces, the distance function need not be symmetric.

2000 AMS Classification: Primary 54E15; Secondary 54E35, 54A10, 54E70. Keywords: distance function, free monoid, generalized metric, uniformity.

1. Introduction

Since Fréchet's invention of real metric spaces in [2], many generalizations of this concept have been studied in the literature. Much research has been done on *generalized metric spaces*, in which the distance functions are replaced by certain set systems (cf. [9]). On the contrary, many authors independently suggested more general types of *distance functions*, the references [8], [12], [7], [5], [6], [11], [10], and [1] are only a small selection. In [3] and [4], a common framework for most if not all of these general concepts of distance functions has been developed to a certain extent.

In this paper, the induction of quasi-uniformities on a distance space (X, d, \underline{M}, P) will be studied. In such a structure, $d: X \times X \to \underline{M}$ is a general distance function on X, that is, it fulfils the zero-distance condition d(x, x) = 0 and the triangle inequality $d(x, y) + d(y, z) \ge d(x, z)$, and takes its values in a quasi-ordered monoid (q. o. m.) $\underline{M} = (M, +, 0, \leqslant)$. The set $P \subseteq M$ must be a set of positives (or idempotent zero-filter) for \underline{M} , that is, a filter of (M, \leqslant) with

infimum 0 such that, for every $\varepsilon \in P$, there is $\delta \in P$ with $2\delta \leqslant \varepsilon$. The triple (d, \underline{M}, P) is called a *distance structure* on X. For examples and categorical aspects of distance functions on various mathematical objects, see [3, 4].

Using Kelley's metrization lemma, one can easily show that every quasiuniformity is induced by a suitable multi-quasi-pseudo-metric, that is, a "quasipseudo-metric" taking values in a real vector space instead of the non-negative reals. There is no doubt that this fact must have been noticed early. In this article however, we will see that also every finite family of T_1 uniformities (and many families of T_1 quasi-uniformities) on a fixed set X comes from a single distance structure. In Theorem 8, this is proved by constructing the finest such structure. This construction is a combinatorially more complex variant of the construction of a finest distance structure for a given quasi-uniformity, which is given in Theorem 2. In contrast to multi-quasi-pseudo-metric spaces, the "topological" information in the resulting spaces will be mostly contained in the set of positives P rather than in the distance function d itself. For example, each T_1 quasi-uniformity on some set X can be induced using one and the same distance function.

2. Preliminaries

In generalization of the usual definition of entourages in a metric space, let

$$U_n(\varepsilon) := \{ (x, y) \in X \times X : nd(y, x) \le n\varepsilon \}$$

for every $\varepsilon \in P$ and every positive integer n. As P is a filter, the set $\mathcal{E}_n := \{U_n(\varepsilon) : \varepsilon \in P\}$ is a base for a filter \mathcal{U}_n of reflexive relations on X for each n. Moreover, when M is commutative,

$$nd(y,x) \leq \delta \geqslant nd(z,y)$$
 implies $nd(z,x) \leq n(d(z,y) + d(y,x)) \leq 2\delta$,

so that, for every $\varepsilon \in P$, there is $\delta \in P$ with $U_n(\delta)^2 \subseteq U_n(\varepsilon)$, that is, \mathcal{U}_n is a quasi-uniformity.

Of course, there are certain relationships between the U_n , and in many cases most of them coincide. Obviously,

$$n = n_1 + \cdots + n_k \text{ implies} U_{n_1}(\varepsilon) \cap \cdots \cap U_{n_k}(\varepsilon) \subseteq U_n(\varepsilon).$$

Also, $nd(x,y) \leq nmd(x,y) + (m-1)nd(y,x)$, so that

$$(2m-1)n\delta \leqslant n\varepsilon \text{ implies} U_m(\delta) \cap U_n^{-1}(\delta) \subseteq U_n(\varepsilon).$$

For a positive d (that is, when $d(x,y) \ge 0$ for all x,y),

$$n \leq m \text{ and } m\delta \leq n\varepsilon \text{ imply } U_m(\delta) \subseteq U_n(\varepsilon).$$
 (†)

On the other hand, a symmetric d (that is, one with d(x,y) = d(y,x)) fulfils $2d(x,y) = d(x,y) + d(y,x) \ge d(x,x) = 0$, so that here the implication (†) holds at least when m-n is even. This proves the following

Lemma 2.1.

- (a) $n = n_1 + \cdots + n_k$ implies $\mathcal{U}_n \subseteq \mathcal{U}_{n_1} \vee \cdots \vee \mathcal{U}_{n_k}$, in particular, the map $n \mapsto \mathcal{U}_n$ is antitone with respect to divisibility.
- (b) For all $n, m, \mathcal{U}_n \subseteq \mathcal{U}_n^{-1} \vee \mathcal{U}_m$.
- (c) For a positive d, all U_n coincide.
- (d) For a symmetric d and all $k \ge 1$, $\mathcal{U}_{2k} = \mathcal{U}_2 \subseteq \mathcal{U}_1 = \mathcal{U}_{2k-1}$.

Note that there are indeed natural distance functions which are neither positive nor symmetric, the most important being perhaps the distance $x^{-1}y$ on groups, introduced by Menger [8]:

Example 2.2. Let $G := [0, 2\pi)$ be the additive group of real numbers modulo 2π , $\underline{M} := (\mathcal{P}(G), +, \{0\}, \subseteq)$ the power set of G ordered by set inclusion and with the usual element-wise addition, $P := \{(-\delta, \delta) : \delta \in (0, 2\pi]\}$. Then $d(x, y) := \{y - x\}$ defines a *skew-symmetric* distance function (that is, one with d(x, y) + d(y, x) = 0), and \mathcal{U}_1 is the usual "Euclidean" uniformity on G, while \mathcal{U}_n is this uniformity "modulo $\frac{2\pi}{n}$ " since

$$x U_n(-\delta, \delta) y \iff x - y \in \bigcup_{k \in n} (-\delta + \frac{2k\pi}{n}, \frac{2k\pi}{n} + \delta).$$

Likewise, for $X := \mathbb{C} \setminus \{0\}$, $\underline{M}' := \underline{M} \otimes [0, \infty)$, $P' := P \times (0, \infty)$, and $d'(x, y) := (d'(\arg x, \arg y), ||y| - |x||)$, the uniformity \mathcal{U}_n of (d', \underline{M}', P') induces the Euclidean topology "modulo multiplication with nth roots of unity".

3. Finest distance functions

Like for other topological structures on a set X, we might compare two distance functions d, d' resp. distance structures $\underline{D} = (d, \underline{M}, P)$ and $\underline{D}' = (d', \underline{M}', P')$ on X with respect to their *fineness*. If the implication

$$d(x_1, y_1) + \dots + d(x_n, y_n) \leqslant d(z_1, w_1) + \dots + d(z_m, w_m)$$

$$\implies d'(x_1, y_1) + \dots + d'(x_n, y_n) \leqslant d'(z_1, w_1) + \dots + d'(z_m, w_m)$$

holds for all $x_i, y_i, z_i, w_i \in X$, we say that d is finer than d'. If, additionally, for all $\varepsilon' \in P'$, there is $\varepsilon \in P$ such that

$$d(x_1, y_1) + \dots + d(x_n, y_n) \leqslant \varepsilon \Longrightarrow d'(x_1, y_1) + \dots + d'(x_n, y_n) \leqslant \varepsilon'$$

for all $x_i, y_i \in X$, we say that \underline{D} is finer than \underline{D}' .

For a convenient notation, let me introduce the free monoid F of all words in X that have even length and define

$$d(x_1y_1\cdots x_ny_n) := d(x_1,y_1) + \cdots + d(x_n,y_n),$$

$$s R_d t :\Leftrightarrow d(s) \leqslant d(t) \quad (s,t \in F).$$

By definition, $(F, \circ, 0, R_d)$ is a q.o.m., where \circ is concatenation and 0 is the empty word. Given any quasi-order R on F which is compatible to \circ (that is, whenever $(F, \circ, 0, R)$ is a q.o.m.), the following construction leads to a distance function d_R if and only if

$$xx R 0 R xx$$
 and $xz R xyyz$ for all $x, y, z \in X$. (\star)

Let $(M_R, \subseteq) := \theta(F, R)$ be the lower set completion of (F, R), that is, the system of all lower sets $RA := \{s : sRt \text{ for some } t \in A\}$ of (F, R) with set inclusion as partial order. Define an associative operation $+_R$ on M_R and its neutral element 0_R by

$$RA +_R RB := R\{s \circ t : s \in A \text{ and } t \in B\}$$
 for all $A, B \subseteq F$

and $0_R := R\{0\}$. Then let

$$d_R: \left\{ \begin{array}{ccc} X\times X & \to & \underline{M_R} = (M_R, +_R, 0_R, \subseteq) \\ (x,y) & \mapsto & \overline{R\{xy\}}. \end{array} \right.$$

It was shown in [3] that d_{R_d} is equivalent to d, which motivates calling R_d the generating quasi-order of d. Moreover, when R_{\perp} is the smallest quasi-order on F which fulfils (\star) and is compatible with \circ then $d_{\perp} := d_{R_{\perp}}$ is a finest distance function on X. In this relation, the step from $s \in F$ to an upper neighbour w.r.t. R_{\perp} consists of inserting a pair yy at an arbitrary position in s or removing a pair yy after an even number of letters in s, while the step to a lower neighbour is made by removing a pair yy at an arbitrary position or inserting a pair yy after an even number of letters.

4. Induction of a single quasi-uniformity

We are now ready for the first main result of this paper:

Theorem 4.1. Every quasi-uniformity V admits a finest distance structure $(d_{\mathcal{V}}, \underline{M}_{\mathcal{V}}, P_{\mathcal{V}})$ for which $\mathcal{V} = \mathcal{U}_1$.

Proof. Let \mathcal{V} be some quasi-uniformity on X and $V_0 := \bigcap \mathcal{V}$. We will see that the essential information about \mathcal{V} is contained in the set of positives $P_{\mathcal{V}}$ which we must construct, while the generating quasi-order $R_{d_{\mathcal{V}}}$ is fully determined by the very weak condition that $xy R_{d_{\mathcal{V}}} zz$ must hold for any triple $x, y, z \in X$ which fulfils $y V_0 x$ (otherwise $d_{\mathcal{V}}(x,y) \not \leq \varepsilon$ for some $\varepsilon \in P_{\mathcal{V}}$, in contradiction to $V_0 \subseteq \mathcal{U}_1(\varepsilon)$). Therefore, let R be the smallest quasi-order on F that is compatible with \circ and fulfils

$$x'y'R0Rxx$$
 and $xzRxyyz$ for all $x, y, z, x', y' \in X$ with $y'V_0x'$. (\star')

If we find a suitable s. o. p. P such that (d_R, P) induces \mathcal{V} then R must obviously be the smallest relation (and thus d_R a finest distance function) with this property.

Now observe that each of the resulting entourages $U_1(\varepsilon)$ has to include some entourage $V_1 \in \mathcal{V}$, hence every $\varepsilon \in P$ must include some set $\{xy \in F : y V_1 x\}$ with $V_1 \in \mathcal{V}$. Since $0_R = R\{xx\}$ is a neutral element, ε must even include the set

$$\{xy \in F : y V_0 V_1 V_0 x\} \subseteq 0_R +_R \{xy \in F : y V_1 x\} +_R 0_R.$$

The same must be true for any $\delta \in P$ which fulfils $\delta +_R \delta \subseteq \varepsilon$, so that ε must also include a set $\{xyx'y' \in F : y V_0V_2V_0 x, y' V_0V_2V_0 x'\} \subseteq \delta +_R \delta$ for some $V_2 \in \mathcal{V}$. This process of replacing some ε by some 2δ can be continued, and in

order to describe it formally, let us define W to be the smallest set of tuples of positive integers that contains the 1-tuple (1) and fulfils

$$(n_1,\ldots,n_{i-1},n_i+1,n_i+1,n_{i+1},\ldots,n_k)\in W$$

whenever $(n_1, \ldots, n_k) \in W$ and $1 \leq i \leq k$. One can think of the elements of W as coding exactly those terms of the form ' $\varepsilon_{n_1} + \cdots + \varepsilon_{n_k}$ ' that can be obtained when we start with the term ' ε_1 ' and then successively replace an arbitrary summand ' ε_n ' by the term ' $\varepsilon_{n+1} + \varepsilon_{n+1}$ '. Accordingly, one shows by induction that for each element ε_1 of a set of positives P there is a sequence $\varepsilon_2, \varepsilon_3, \ldots$ in P such that

$$(n_1, \ldots, n_k) \in W \text{ implies } \varepsilon_{n_1} + \cdots + \varepsilon_{n_k} \leqslant \varepsilon_1.$$

In our situation, this observation implies that for each $\varepsilon \in P$ there must be a sequence $S = (V_1, V_2, \dots)$ in V with the property that ε includes the set A_S of all words $v_1w_1 \cdots v_kw_k \in F$ for which there is some $(n_1, \dots, n_k) \in W$ such that $w_i V_0 V_{n_i} V_0 v_i$ for $i = 1, \dots, k$. In particular, $\varepsilon_S := RA_S \subseteq R\varepsilon = \varepsilon$. It turns out that this is the only restraint on the set of positives P_V . More precisely, we will see that the system

$$B := \{ \varepsilon_{\mathbb{S}} : \mathbb{S} \text{ is a sequence in } \mathcal{V} \}$$

of lower sets of (F, R) is a base for a set of positives of $(M_R, +_R, 0_R, \subseteq)$, and that the distance structure (d_R, P) induces the quasi-uniformity \mathcal{V} . It is then clear that P is the largest set of positives with this property, so that $(d_{\mathcal{V}}, P_{\mathcal{V}}) := (d_R, P)$ is a finest distance structure inducing \mathcal{V} .

Since V is a filter and the map $S \mapsto \varepsilon_S$ is isotone in every component of S, B is a filter-base. In order to show that P is a s.o.p., we first observe that $(n_1, \ldots, n_k), (m_1, \ldots, m_l) \in W$ implies

$$(n_1+1,\ldots,n_k+1,m_1+1,\ldots,m_l+1) \in W.$$

Indeed, after increasing each index by one, the replacements that produce (n_1, \ldots, n_k) and (m_1, \ldots, m_l) from the tuple (1) can be combined to a sequence of replacements that produce $(n_1 + 1, \ldots, n_k + 1, m_1 + 1, \ldots, m_l + 1)$ from the tuple (2, 2).

Hence also $v_1w_1 \cdots v_kw_k, v_1'w_1' \cdots v_l'w_l' \in \varepsilon_{(V_2,V_3,V_4,\dots)}$ implies

$$v_1 w_1 \cdots v_k w_k v'_1 w'_1 \cdots v'_l w'_l \in \varepsilon_{(V_1, V_2, V_3, \dots)}$$

for each sequence (V_1,V_2,\dots) in \mathcal{V} . Secondly, we must prove that $\bigcap B=0_R$, which is the harder part. Let $s=x_1z_1\cdots x_mz_m\in\bigcap B$ and $V_1\in\mathcal{V}$. I will show that $z_j\,V_0V_1V_0\,x_j$ holds for all $j=1,\dots,m$. Choose a sequence $\mathcal{S}=(V_1,V_2,\dots)$ in \mathcal{V} such that $V_{i+1}V_0V_{i+1}\subseteq V_i$ for all $i\geqslant 1$ (such a sequence always exists in a quasi-uniformity). Note that $(n_1,\dots,n_k)\in W$ then implies $V_0V_{n_1}V_0V_{n_2}V_0\cdots V_0V_{n_k}V_0\subseteq V_0V_1V_0$. Now $s\in RA_{\mathcal{S}}$, that is, there exists a word $v_1w_1\cdots v_kw_k$ and a k-tuple $(n_1,\dots,n_k)\in W$ such that $w_i\,V_0V_{n_i}V_0\,v_i$ for $i=1,\dots,k$ and $s\,R\,v_1w_1\cdots v_kw_k$. The latter means that, starting with $v_1w_1\cdots v_kw_k$, one gets $x_1z_1\cdots x_mz_m$ in finitely many steps in each of which

some pair of letters is inserted or removed corresponding to the condition (\star') . Now take the k-tuple

$$\psi := (w_1 V_0 V_{n_1} V_0 v_1, \dots, w_k V_0 V_{n_k} V_0 v_k)$$

of formulae (which express true propositions about the word $v_1w_1 \cdots v_kw_k$) and modify it, analogously to those finitely many steps, in the following way: (i) if (because of xz R xyyz) a pair yy is being removed after an odd number of letters, replace the two consecutive formulae ... $V_0 y, y V_0 \cdots$ in ψ by one formula ... $V_0 \cdots$ (that is, erase the symbols ' $y, y V_0$ '); (ii) if (because of 0 R xx) a pair xx is being removed after an even number of letters, remove the corresponding formula $x \ldots x$ from ψ ; (iii) if (because of x'y' R 0) a pair x'y' is inserted, insert the formula $y' V_0 x'$ at the respective position in ψ . By definition of R, all these modifications preserve the truth of all formulae in the tuple, and each formula in the resulting tuple (ψ_1, \ldots, ψ_k) expresses a true proposition of the form

$$\psi_j = z_j V_0 V_{n_a} V_0 V_{n_{a+1}} V_0 \dots V_0 V_{n_b} V_0 x_j$$

with $1 \leq a, b \leq k$. Since all V_{n_i} are reflexive, ψ_i thus implies

$$z_i V_0 V_{n_1} V_0 V_{n_2} V_0 \dots V_0 V_{n_k} V_0 x_i$$

hence $z_j V_0 V_1 V_0 x_j$. Because V_1 was chosen arbitrarily, we conclude that $z_j V_0 x_j$ for all j, and therefore $x_1 z_1 \cdots x_m z_m R 0$.

Finally, we have to show that (d_R, P) induces the quasi-uniformity \mathcal{V} . For $V \in \mathcal{V}$, choose $V_1 \in \mathcal{V}$ such that $V_0V_1V_0 \subseteq V$, then choose a sequence \mathcal{S} as in the preceding paragraph. There we have shown that, in particular,

$$d_R(x,z) \subseteq RA_{\mathcal{S}}$$
 implies $(z,x) \in V_0V_1V_0 \subseteq V$.

On the other hand, for each $\varepsilon \in P$ there is some sequence $S = (V_1, \dots)$ in \mathcal{V} such that $\varepsilon_S \subseteq \varepsilon$, and

$$(z,x) \in V_1 \subseteq V_0 V_1 V_0 \text{ implies} d_R(x,z) \subseteq \varepsilon_{\mathcal{S}} \subseteq \varepsilon.$$

A somewhat astonishing consequence of this construction is that *one* distance function is compatible to all T_1 quasi-uniformities on X:

Corollary 4.2. The distance function d_{\perp} is the finest distance function d on X such that for each T_1 quasi-uniformity V on X there is a s. o. p. P such that (d_{\perp}, P) induces V (namely $P = P_V$).

5. Induction of systems of quasi-uniformities

I will now extend this result to certain systems of quasi-uniformities and show that, in particular, every finite system and every descending sequence of T_1 uniformities is part of some system $(\mathcal{U}_n)_{n\in\omega}$.

Some additional notation: Intervals of integers will be designated by [a, b]. A pair of letters $xy \in F$ is a *syllable* of a word $s \in F$ if and only if it occurs in s after an even number of letters. Let $\tilde{s} \in F$ be the word s after deletion of all syllables of the form xx ($x \in X$). The length of \tilde{s} in letters is designated by

 $\ell(s)$, and s_a is the *a*th letter of \tilde{s} for any position $a \in [1, \ell(s)]$. The subword of \tilde{s} from position a to b is $s_{a,b}$. Moreover, let $\lambda(x,s)$ and $\sigma(xy,s)$ denote the number of occurrences of the letter x resp. the syllable xy in \tilde{s} . Finally, $(xy)^r = xy \cdots xy$ is a word consisting of r equal syllables.

The next constructions mainly rely on four lemmata. For the moment, let us fix some words $s, t \in F$ with $s R_{\perp} t$, where

$$\tilde{t} = (v_1 w_1)^{r_1} \cdots (v_{\varrho} w_{\varrho})^{r_{\varrho}}, \quad v_i \neq w_i, \quad \text{ and all } r_i \text{ are even.}$$

Then \tilde{s} can be derived from \tilde{t} by a finite number of successive deletions of pairs of identical letters which are neighbours at the time of deletion. A guiding example: for $s = yy\,xy\,zz\,xy\,uz\,uz\,R_\perp\,xy\,xy\,zz\,zu\,uz\,uz\,xx\,uz = t$, the deletion steps could be this: in $\tilde{t} = xy\,xy\,zu\,uz\,uz\,uz$, first delete uu, giving $xy\,xy\,zz\,uz\,uz$, then delete zz, giving $xy\,xy\,zz\,uz\,uz = \tilde{s}$.

We now also fix such a sequence of deletions and let $D \subseteq [1, \ell(t)]$ be the set of positions in \tilde{t} whose corresponding letters are deleted in one of these steps (in the example: D = [5,8]). For $a \in D$, let $\pi(a) \in [1,\ell(t)]$ be that position in \tilde{t} such that t_a and $t_{\pi(a)}$ build a deleted pair (in the example: $\pi(5) = 8$ and $\pi(6) = 7$). Finally, we write $a \curvearrowright b$ if and only if a and b-1 are even numbers in D such that $a < \pi(a) = b-1$ (in the example: $6 \curvearrowright 8$). Note that because t_c and $t_{\pi(c)}$ must first become neighbours before they can be deleted, $a \curvearrowright \cdots \curvearrowright b$ implies that (i) $[a, b-1] \subseteq D$, (ii) $\pi(c) \in [a, b-1]$ for all $c \in [a, b-1]$, and thus (iii) $\lambda(x, t_{a,b-1})$ is even for all $x \in X$.

Lemma 5.1. Assume $a \curvearrowright \cdots \curvearrowright b \curvearrowright \cdots \curvearrowright c$, $t_a = t_{b-1}$, and $t_b = t_{c-1}$. Then

- (a) $t_{a-1} = t_b$ or $t_{b-1} = t_c$.
- (b) If $t_{a-1} \neq t_b$ then $\lambda(t_a, t_{c,\ell(t)})$ is odd.
- (c) If $t_{b-1} \neq t_c$ then $\lambda(t_b, t_{1,a-1})$ is odd.

Proof. Let $e, f, e', f', e'', f'' \in [1, \ell(t)]$ with $e < a \le f < e' < b \le f' < e'' < c \le f''$ such that $t_{e,f}$, $t_{e',f'}$, and $t_{e'',f''}$ are three of the defining subwords $(v_i w_i)^{r_i}$ of \tilde{t} . Moreover, let $x := t_{a-1}$, $y := t_a = t_{b-1}$, $z := t_b = t_{c-1}$, and $w := t_c$, and assume $x \ne z$. The situation and the parity arguments that will follow are sketched in Figure 1.

Because of $x \neq z$, we have $\lambda(x, t_{e',b-1}) = 0$. Moreover, $\lambda(x, t_{f+1,e'-1})$ is even (since all r_i are even), and $\lambda(x, t_{a,b-1})$ is even because of (iii), so that also $\lambda(x, t_{a,f})$ is even and $\lambda(y, t_{a,f})$ is odd (since |[a, f]| is odd). As before, $\lambda(y, t_{f+1,e'-1})$ and $\lambda(y, t_{a,b-1})$ are even, thus $\lambda(y, t_{e',b-1})$ is odd. Because all r_i are even, $\lambda(y, t_{b,f'})$ is also odd. Again, $\lambda(y, t_{f'+1,e''-1})$ and $\lambda(y, t_{b,c-1})$ are even, hence $\lambda(y, t_{e'',c-1})$ is odd. In particular, $y \in \{z, w\}$, that is, y = w (as yz is a syllable of \tilde{t}), and $\lambda(y, t_{c,f''})$ is also odd. Finally, $\lambda(y, t_{c,\ell(t)})$ is odd because $\lambda(y, t_{f'',\ell(t)})$ is even. This proves (a) and (b), whereas (c) is strictly analogous to (b).

Figure 1. Situation in Lemma 5.1

Lemma 5.2.

72

- (a) Assume that a₀ \sigma_{b₀} \cap a₁ \sigma_{b₁} \cdots b_k \sigma c with t_{a₀} = ··· = t_{a_k} = y, and t_{b₀} = ··· = t_{b_k} = z. Then t_{a₀-1} = z or y = t_c.
 (b) Assume that a \sigma ··· \sigma b with t_a = t_{b-1}, and t_{a-1} ≠ t_b. Then both
- (b) Assume that $a \curvearrowright \cdots \curvearrowright b$ with $t_a = t_{b-1}$, and $t_{a-1} \neq t_b$. Then both $\lambda(t_a, t_{1,a-1})$ and $\lambda(t_a, t_{b,\ell(t)})$ are odd.

Proof. (a) Define e'', f'' as above. Similarly, for each $i \in [0, k]$, find positions $e_i, f_i, e'_i, f'_i \in [1, \ell(t)]$ with $e_i < a_i \le f_i < e'_i < b_i \le f'_i$ such that t_{e_i, f_i} and $t_{e'_i, f'_i}$ are two of the defining subwords of \tilde{t} . Assuming $t_{a_0-1} = x \ne z$, one proves that $\lambda(y, t_{b_0, f'_0})$ is odd exactly as before. Since, for $i \in [1, k]$, all of $\lambda(y, t_{b_{i-1}, a_{i-1}})$, $\lambda(y, t_{a_i, b_{i-1}})$, $\lambda(y, t_{f'_{i-1}+1, e_{i-1}})$, $\lambda(y, t_{e_i, f_i})$, $\lambda(y, t_{f_i+1, e'_{i-1}})$, and $\lambda(y, t_{e'_i, f'_i})$ are even, and since also $\lambda(y, t_{b_k, c-1})$ and $\lambda(y, t_{f'_k+1, e''-1})$ are even, we conclude that $\lambda(y, t_{e'', c-1})$ is odd, hence $y = t_c$.

(b) Again as in the previous lemma, one proves that, for $y:=t_a$, the number $\lambda(y,t_{b,f'})$ is odd, so that the first claim follows because $\lambda(y,t_{f',\ell(t)})$ is even. The second claim is just the dual.

Lemma 5.3. Assume that $s_{e-1}s_e = xz$ is the syllable of \tilde{s} that remains after all the deletions in a subword $t_{a-1,b}$ of \tilde{t} , with a < b, $t_{a-1} = x$, and $t_b = z$. Then there is $y \in X$ such that $\lambda(y,s) > 0$, $\sigma(xy,t_{a-1,b}) > 0$, and $\sigma(yz,t_{a-1,b}) > 0$.

Proof. Although t_a and t_{b-1} may be different, we find $k \geq 2, c_1, \ldots, c_k \in [1, \ell(t)]$, and $y_0, y_1, \ldots, y_k \in X$ such that

$$a = c_1 \land \cdots \land c_2 \land \cdots \land c_3 \cdots c_{k-1} \land \cdots \land c_k \leqslant b,$$

 $t_{c_i} = t_{c_{i+1}-1} = y_i$ for $i \in [1, k-1]$, $y_0 = x$, $y_k = z$, and $y_i \neq y_j$ for $i \neq j$ (Start with $a =: c'_1 \curvearrowright c'_2 \curvearrowright \cdots \curvearrowright c'_l := b$ and $y'_i := t_{c'_i}$. As long as there are indices j > i > 1 with $y'_i = y'_j$, remove all the indices $i + 1, \ldots, j$, so that finally all remaining y'_i are different. Since $y'_1 = t_a \neq z = y'_l$, at least $k \geq 2$ of the original indices are not removed, including the index 1, and the corresponding c'_i build the required positions c_1, \ldots, c_k).

Then k=2 since otherwise Lemma 5.1 (a) would imply that either $y_0=y_2$ or $y_1=y_3$. With y_1 for y and c_2 for b, Lemma 5.2 (b) implies that $\lambda(y,t_{1,a-1})$ is odd. Now, also $\lambda(y,s_{1,e-1})$ is odd, because $c\in[1,a-1]\cap D$ implies $\pi(c)\in[1,a-1]$ (since the letter x at position a-1 is not deleted). In particular, $\lambda(y,s_{1,e-1})>0$.

Lemma 5.4. Assume that $k \ge 2$, $c_0 \cap c_1 \cdots c_{k-1} \cap c_k$, $c_k \in D$, and $\pi(c_k) = c_0 - 1$, representing a number of deletions of the form

$$\overbrace{t_{c_0}}^{\pi} \underbrace{t_{c_1}}^{\pi} \cdots \underbrace{t_{c_{k-1}}}^{\pi} t_{c_k}$$

Let $t':=t_{c_0-1}t_{c_0}t_{c_1-1}t_{c_1}\cdots t_{c_k-1}t_{c_k}$ be the word consisting only of the "boundary letters", and $i\in[0,k]$. Then $\sigma(t_{c_i-1}t_{c_i},t')=\sigma(t_{c_i}t_{c_i-1},t')$.

Proof. Put $c_{-1} := c_k$. Obviously, $t_{c_{i-1}} = t_{c_i-1}$ for all $i \in [1, k]$, and $t_{c_k} = t_{c_0-1}$. If also $t_{c_{i-1}-1} = t_{c_i}$ for all $i \in [0, k]$ then k must be odd (since $t_{c_k} \neq t_{c_0}$), and $\sigma(t_{c_{i-1}}t_{c_i}, t') = \sigma(t_{c_i}t_{c_{i-1}}, t') = k/2$. Otherwise, there are $r \geq 1$ positions $i(1) < \cdots < i(r)$ in [0, k] with $t_{c_{i(j)-1}-1} \neq t_{c_{i(j)}}$. Then i(j+1) - i(j) is even for all j (otherwise, put $a_0 := c_{i(j)-1}, b_0 := c_{i(j)}, \ldots, c := c_{i(j+1)-1}$ and apply Lemma 5.2 (a)). In case that all i(j) are even, we have

$$t_{c_{h-1}} \neq t_{c_h} = t_{c_0-1} = t_{c_1} = t_{c_0}$$

for all odd i, so that k must be odd. On the other hand, if all i(j) are odd, we have

$$t_{c_k} = t_{c_0} - 1 \neq t_{c_0} = t_{c_i}$$

for all even i, so that again k must be odd. This shows that t' is of one of the following two forms:

$$t' = (yxxy)^{m_0} (yz_1z_1y)^{m_1} \cdots (yz_{r-1}z_{r-1}y)^{m_{r-1}} (yxxy)^{m_r}$$

or
$$t' = xy(yxxy)^{m_0} (yz_1z_1y)^{m_1} \cdots (yz_{r-1}z_{r-1}y)^{m_{r-1}} (yxxy)^{m_r} yx,$$

from which the claim follows immediately.

Now we are ready for the construction. Let p_i be the ith odd prime number, and $S(A) := \{a_1 + \dots + a_k : k \geq 1, a_i \in A\}$ for any set A of integers. In the next theorem, we need the following sets of even numbers: for any positive integer u, let $q_{uj} = \frac{2}{p_j} \prod_{i=1}^u p_i$ for all $j \in [1, u]$, $Q_u := \{q_{u1}, \dots, q_{uu}\}$, and $Q_{uj} := Q_u \setminus \{q_{uj}\}$. It is easy to see that then, for each $j \in [1, u]$ and $k \in S(Q_{uj}), k - q_{uj} \notin S(Q_{uj})$ (since p_j divides k but not q_{uj}).

Theorem 5.5.

- (a) Let $\mathcal{V}_1, \ldots, \mathcal{V}_u$ be a finite system of T_1 quasi-uniformities such that, for all $i, j \in [1, u], \ \mathcal{V}_j \subseteq \mathcal{V}_i^{-1} \vee \mathcal{V}_i$. Then there is a finest s. o. p. P such that, for $j \in [1, u]$, $\mathcal{V}_j = \mathcal{U}_{q_{uj}}$.
- (b) Let $V_1 \supseteq V_2 \dots$ be a descending sequence of T_1 quasi-uniformities such that, for all j and all $U \in \mathcal{V}_j$, there are $V_1 \in \mathcal{V}_1, V_2 \in \mathcal{V}_2, \ldots$ with $V_j^{-1} \cap \bigcup_{i \neq j} V_i \subseteq U$. Then there is a finest s. o. p. P such that $\mathcal{V}_j = \mathcal{U}_{2^j}$

Proof. For part (a), let I := [1, u], while for part (b), let I be the set of natural numbers. In both cases, P is defined quite analogously to the proof of Theorem 4.1: its filter-base is now the system

$$B := \{ \varepsilon_{\mathcal{S}} : \mathcal{S} \text{ is a sequence in } \mathcal{V} \}$$

of lower sets $\varepsilon_{\delta} = R_{\perp} A_{\delta}$ of R_{\perp} , where $\mathcal{V} := \prod_{i} \mathcal{V}_{i}$, and the definition of A_{δ} changes to this: for

$$S = ((V_{11}, V_{12}, \dots), (V_{21}, V_{22}, \dots), \dots),$$

 $A_{\mathbb{S}}$ is now the set of all words $(v_1w_1)^{r_1}(v_2w_2)^{r_2}\cdots(v_{\rho}w_{\rho})^{r_{\varrho}}\in F$ for which there is some $(n_1, \ldots, n_{\varrho}) \in W$ and some tuple of indices $(i_1, \ldots, i_{\varrho})$ such that, for all $a \in [1, \rho]$, $w_a V_{n_a i_a} v_a$ and either $r_a = q_{u i_a}$ (for the proof of (a)) or $r_a = 2^{i_a}$ (for the proof of (b)).

As before, P turns out to be a s.o.p., where the only major change is the proof of $\bigcap B = 0_R$: Let $s \in \bigcap B$, $\sigma(xz,s) > 0$, and $V = (V_{11}, V_{12}, \dots) \in \mathcal{V}$. Choose S so that $V_{k+1,i}V_{k+1,i} \subseteq V_{ki}$ for all $i \in I$ and all k, and some $t \in A_S$ with $s R_{\perp} t$. Assume that $\tilde{t} = (v_1 w_1)^{r_1} (v_2 w_2)^{r_2} \cdots (v_{\rho} w_{\rho})^{r_{\rho}}$. If $\sigma(xz, t) > 0$, put $y_V := x$, otherwise choose some $y_V \in X$ with $\lambda(y_V, s) > 0$, $\sigma(xy_V, t) > 0$, and $\sigma(y_V z, t) > 0$, according to Lemma 5.3. Since $\ell(s)$ is finite and \mathcal{V} is filtered, there is some y such that, for all $V \in \mathcal{V}$, there is $V' \in \mathcal{V}$ with $V' \leq V$ and $y_{V'} = y$, where \leq denotes component-wise set inclusion. Consequently, $x U_V y U_V z$ for all $V \in \mathcal{V}$, where $U_V = \bigcup_i V_{1i}$. This implies that $x, y \in \bigcap \mathcal{V}_i$ and $x, y \in \bigcap \mathcal{V}_{i'}$ for some $i, i' \in I$, hence x = y = z. Since this is a contradiction to $x \neq z$, we have shown that \tilde{s} is the empty word, that is, $s \in 0_R$.

Finally, let us show that $\mathcal{V}_j = \mathcal{U}_{q_{uj}}$ resp. $\mathcal{V}_j = \mathcal{U}_{2^j}$ for each $j \in I$. Fix some $j \in I$ and let $V_{0j} \in \mathcal{V}_j$. Because of the premises, the following choices can now be made. For part (a), choose for all $i \in I \setminus \{j\}$ some $V_{0i} \in \mathcal{V}_j$ and $V_{1i} \in \mathcal{V}_i$ such that $(V_{0i})^{-1} \cap V_{1i} \subseteq V_{0j}$. Then choose $V_{1j} \in \mathcal{V}_j$ such that $V_{1j} \subseteq V_{0i}$ for all of the finitely many $i \in I \setminus \{j\}$. For part (b), choose instead some $(V_{11}, V_{12}, \dots) \in \mathcal{V}$ with $V_{1h} = V_{1j} \subseteq V_{0j}$ for all $h \leq j$ and $(V_{1j})^{-1} \cap \bigcup_{i \neq j} V_{1i} \subseteq V_{0j}$. After that, choose the remaining components of a sequence

$$S = ((V_{11}, V_{12}, \dots), (V_{21}, V_{22}, \dots), \dots)$$

in \mathcal{V} so that $V_{k+1,i}V_{k+1,i}\subseteq V_{ki}$ for all $i\in I$ and all k, and assume that $rd_{R_{\perp}}(x,y) \leqslant \varepsilon_{S}$, that is, $s := (xz)^{r} R_{\perp} t \in A_{S}$ with (a) $r = q_{uj}$ resp. (b) $r=2^{j}$. We have to show that $z V_{0j} x$.

By definition of $A_{\mathbb{S}}$, we have $\tilde{t} = (v_1 w_1)^{r_1} (v_2 w_2)^{r_2} \cdots (v_{\rho} w_{\rho})^{r_{\rho}}$, and there is some corresponding tuple (i_1, \ldots, i_{ρ}) . Since the only letters in \tilde{s} are x and z, there are exactly r occurrences of the syllable xz in \tilde{t} which are not deleted (because otherwise Lemma 5.3 would imply the existence of a third letter y in \tilde{s}). All other occurrences of xz in \tilde{t} are deleted as part of some set of deletions of the form represented in Lemma 5.4, that is, there are c_0, \ldots, c_k with properties as in Lemma 5.4 and with $t_{c_i-1}t_{c_i}=xz$ for some $i \in [0,k]$. Then the lemma implies that $\sigma(xz,t)=r+\sigma(zx,t)=:k$.

For (a): If $(v_a w_a)^{r_a} = (xz)^{q_{uj}}$ for some $a \in [1, \rho]$, then $i_a = j$ and

$$(z,x) \in V_{n_a,i_a} \subseteq V_{1j} \subseteq V_{0j}.$$

Otherwise, we know that $k \in S(Q_{uj})$, that is, $\sigma(zx,t) = k - q_{uj} \in S(Q_u) \setminus S(Q_{uj})$, so that $(v_a w_a)^{r_a} = (zx)^{q_{uj}}$ and $i_a = j$ for some $a \in [1, \rho]$. Also, $(v_b w_b)^{r_b} = (xz)^{q_{ui}}$ and $i_b = i$ for some $b \in [1, \rho]$ and some $i \in I \setminus \{j\}$, so that $(z, x) \in (V_{1j})^{-1} \cap V_{1i} \subseteq V_{0j}$.

For (b) instead: If $(v_a w_a)^{r_a} = (xz)^{2^i}$ for some $a \in [1, \rho]$ and $i \leq j$, then $i_a = i$ and $(z, x) \in V_{n_a, i_a} \subseteq V_{1i} \subseteq V_{0j}$. Otherwise, k is a multiple of 2^{j+1} so that $\sigma(zx, t) = k - 2^j$ is not such a multiple. Therefore, $(v_a w_a)^{r_a} = (zx)^{2^{i_a}}$ and $i_a \leq j$ for some $a \in [1, \rho]$. Also, $(v_b w_b)^{r_b} = (xz)^{2^{i_b}}$ and $i_b \neq j$ for some $b \in [1, \rho]$, so that again $(z, x) \in (V_{1i_a})^{-1} \cap V_{1i_b} \subseteq V_{0j}$.

Unfortunately, this proof highly depends on the fact that $\underline{M}_{R_{\perp}}$ is not commutative, so that the conjecture that there is also a suitable distance structure with a commutative value monoid is yet unproved.

The most familiar example for a descending sequence of uniformities is perhaps the following. Let $X := C_b[0,1]$ be the (infinite-dimensional) vector space of bounded, continuous, and real-valued functions on the unit interval [0,1], and, for positive integers p, let \mathcal{V}_p be the uniformity on X induced by the usual p-norm.

For a second example, take u different primes p_1, \ldots, p_u and let \mathcal{V}_i be the p_i -adic uniformity on the rationals. As these are transitive uniformities with countable bases, we may use a slightly simpler construction. More precisely, a base for \mathcal{V}_i is the set of equivalence relations $U_{i,m} := \{(x,y) : p_i^m \text{ divides } \nu(|x-y|)\}$, where m is a positive integer, and $\nu(z/n) := z$ whenever z, n have no common divisor (that is, $\nu(q)$ is the nominator of q). Therefore, it suffices to use only those $\varepsilon_{\mathcal{S}}$ where all tuples in \mathcal{S} are equal, that is, $V_{h+1,i} = V_{hi}$ for all i,h. In this case, the resulting s.o. p. P has a countable base $B = \{\varepsilon_m : m \text{ a positive integer}\}$, where

$$\varepsilon_m := \bigcup_{n=0}^{\infty} \left(n \cdot \bigcup_{\substack{j \in [1,u], \\ (x,y) \in U_{j,m}}} q_{uj} d_{\perp}(x,y) \right).$$

As a concluding remark, I note that with similar methods, one can show that, for each pair of comparable T_1 uniformities $\mathcal{V}_2 \subseteq \mathcal{V}_1$, there is some *symmetric* distance structure (d, P) such that $\mathcal{U}_i = \mathcal{V}_i$, which gives a complete characterization of the symmetric T_1 case.

References

- M. M. Bonsangue, F. van Breugel, and J. J. M. M. Rutten, Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding, Theoret. Comput. Sci. 193 (1998), no. 1-2, 1-51.
- [2] Maurice Fréchet, Sur les classes V normales, Trans. Amer. Math. Soc. 14 (1913), 320–325.
- [3] Jobst Heitzig, Partially ordered monoids and distance functions, Diploma thesis, Universität Hannover, Germany, July 1998.
- [4] _____, Many familiar categories can be interpreted as categories of generalized metric spaces, Appl. Categ. Structures (to appear) (2002).
- [5] Ralph Kopperman, All topologies come from generalized metrics, Amer. Math. Monthly 95 (1988), no. 2, 89–97.
- [6] Djuro R. Kurepa, General ecart, Zb. Rad. (1992), no. 6, part 2, 373–379.
- [7] Boyu Li, Wang Shangzi, and Maurice Pouzet, Topologies and ordered semigroups, Topology Proc. 12 (1987), 309–325.
- [8] Karl Menger, Untersuchungen über allgemeine Metrik, Math. Annalen 100 (1928), 75– 163.
- [9] J. Nagata, A survey of the theory of generalized metric spaces, (1972), 321-331.
- [10] Maurice Pouzet and Ivo Rosenberg, General metrics and contracting operations, Discrete Math. 130 (1994), 103–169.
- [11] Hans-Christian Reichel, Distance-functions and g-functions as a unifying concept in the theory of generalized metric spaces, Recent developments of general topology and its applications (Berlin, 1992), Akademie-Verlag, Berlin, 1992, p. 279–286.
- [12] B. Schweizer and A. Sklar, Probabilistic metric spaces, North-Holland, New York, 1983.

RECEIVED SEPTEMBER 2001 REVISED JANUARY 2002

Jobst Heitzig Institut für Mathematik Universität Hannover Welfengarten 1 D-30167 Hannover Germany

E-mail address: heitzig@math.uni-hannover.de