L — APPLIED GENERAL TOPOLOGY
N — © Universidad Politécnica de Valencia
—M —— Volume 5, No. 1, 2004

APPLIED GENERAL TOPOLOGY pp. 129- 136

Fuzzy quasi-metric spaces
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ABSTRACT. We generalize the notions of fuzzy metric by Kramosil
and Michalek, and by George and Veeramani to the quasi-metric set-
ting. We show that every quasi-metric induces a fuzzy quasi-metric and,
conversely, every fuzzy quasi-metric space generates a quasi-metrizable
topology. Other basic properties are discussed.
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1. INTRODUCTION

In [9], Kramosil and Michalek introduced and studied an interesting notion

of fuzzy metric space which is closely related to a class of probabilistic met-
ric spaces, the so-called (generalized) Menger spaces. Later on, George and
Veeramani started, in [3] (see also [5]), the study of a stronger form of metric
fuzziness. In particular, it is well known that every metric induces a fuzzy
metric in the sense of George and Veeramani, and, conversely, every fuzzy
metric space in the sense of George and Veeramani (and also of Kramosil and
Michalek) generates a metrizable topology ([4], [6], [9], [11], [13]).

On the other hand, it is also well known that quasi-metric spaces constitute

an efficient tool to discuss and solve several problems in topological algebra,
approximation theory, theoretical computer science, etc. (see [10]).

In this paper, we introduce two notions of fuzzy quasi-metric space that

generalize the corresponding notions of fuzzy metric space by Kramosil and
Michalek, and by George and Veeramani to the quasi-metric context. Several
basic properties of these spaces are obtained. We show that every quasi-metric
induces a fuzzy quasi-metric and, conversely, every fuzzy quasi-metric generates
a quasi-metrizable topology. With the help of these results one can easily derive

many properties of fuzzy quasi-metric spaces.
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Our basic references for quasi-uniform and quasi-metric spaces are [2] and
[10].

Let us recall that a quasi-pseudo-metric on a set X is a nonnegative real
valued function d on X x X such that for all x,y,z € X : (i) d(z,z) = 0; (ii)
d(z,z) < d(x,y) + d(y, 2).

Following the modern terminology (see Section 11 of [10]), by a quasi-metric
on X we mean a quasi-pseudo-metric d on X that satisfies the following con-
dition: d(x,y) = d(y,x) = 0 if and only if = y. If the quasi-pseudo-metric d
satisfies: d(z,y) = 0 if and only if x = y, then we say that d is a T} quasi-metric
on X.

A quasi-(pseudo-)metric space is a pair (X, d) such that X is a (nonempty)
set and d is a quasi-(pseudo-)metric on X. The notion of a 77 quasi-metric
space is defined in the obvious manner.

Each quasi-pseudo-metric d on X generates a topology 74 on X which has as
a base the family of open d-balls {B4(z,r) : x € X, r > 0}, where By(x,r) =
{ye X :d(z,y) <r}forall z € X and r > 0.

Observe that if d is a quasi-metric, then 7, is a Tj) topology, and if d is a T}
quasi-metric, then 7,4 is a T topology.

A topological space (X, 7) is said to be quasi-metrizable if there is a quasi-
metric d on X such that 7 = 74. In this case, we say that d is compatible with
7, and that 7 is a quasi-metrizable topology.

Given a quasi-(pseudo-)metric d on X, then the function d~! defined on
X x X by dY(z,y) = d(y,z), is also a quasi-(pseudo-)metric on X, called
the conjugate of d. Finally, the function d® defined on X x X by d*(z,y) =
max{d(z,y),d (z,y)} is a (pseudo-)metric on X.

2. DEFINITIONS AND BASIC RESULTS

According to [13], a binary operation * : [0,1] x [0, 1] — [0, 1] is a continuous
t-norm if * satisfies the following conditions: (i) * is associative and commu-
tative; (ii) * is continuous; (iii) a * 1 = a for every a € [0,1]; (iv) axb < cx*d
whenever a < ¢ and b < d, with a,b,c,d € [0, 1].

Definition 2.1. A KM-fuzzy quasi-pseudo-metric on a set X is a pair (M, )
such that % is a continuous t-norm and M is a fuzzy set in X x X x [0, 400)
such that for all z,y,z € X :
(KM1) M(z,y,0) = 0;
(KM2) M(z,z,t) =1 for all t > 0;
(KM3) M(z,z,t+s) > M(z,y,t) « M(y,z,s) for all t,s > 0;
(KM4) M(z,y,-) :[0,4+00) — [0,1] is left continuous.
Definition 2.2. A KM-fuzzy quasi-metric on X is a KM-fuzzy quasi-pseudo-
metric (M, *) on X that satisfies the following condition:
(KM2) x =y if and only if M(x,y,t) = M(y,x,t) =1 for all t > 0.
If (M, x) is a KM-fuzzy quasi-pseudo-metric on X satisfying:
(KM2”) z =y if and only if M(x,y,t) =1 for all t > 0,
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we say that (M, x) is a Ty KM-fuzzy quasi-metric on X.

Definition 2.3. A KM-fuzzy (pseudo-)metric on X is a KM-fuzzy quasi-
(pseudo-)metric (M, *) on X such that for each x,y € X :

(KM5) M(z,y,t) = M(y,z,t) for all t > 0.

Remark 2.4. It is clear that every KM-fuzzy metric is a 77 KM-fuzzy quasi-
metric; every T KM-fuzzy quasi-metric is a KM-fuzzy quasi-metric, and every
KM-fuzzy quasi-metric is a KM-fuzzy quasi-pseudo-metric.

Definition 2.5. A KM-fuzzy quasi-(pseudo-)metric space is a triple (X, M, )
such that X is a (nonempty) set and (M,x) is a KM-fuzzy quasi-(pseudo-
Jmetric on X.

The notions of a Ty KM-fuzzy quasi-metric space and of a KM-fuzzy (pseudo-
Jmetric space are defined in the obvious manner. Note that the KM-fuzzy
metric spaces are exactly the fuzzy metric spaces in the sense of Kramosil and
Michalek.

If (M, %) is a KM-fuzzy quasi-(pseudo-)metric on a set X, it is immediate
to show that (M~ %) is also a KM-fuzzy quasi-(pseudo-)metric on X, where
M~ is the fuzzy set in X x X x [0, +o0) defined by M~ (z,y,t) = M(y,z,1).
Moreover, if we denote by M® the fuzzy set in X x X x [0,400) given by
Mi(x,y,t) = min{M (z,y,t), M~ (z,y,t)}, then (M?, ) is, clearly, a KM-fuzzy
(pseudo-)metric on X.

Proposition 2.6. Let (X, M,x) be a KM-fuzzy quasi-pseudo-metric space.
Then, for each x,y € X the function M (z,y,_) is nondecreasing.

Proof. Let z,y € X and 0 < ¢t < s. Then M(z,y,s) > M(xz,z,8 — t) *
M(z,y,t) = M(z,y,t). O

Given a KM-fuzzy quasi-pseudo-metric space (X, M, x) we define the open
ball Bys(z,7,t), for z € X, 0 <r <1, and ¢t > 0, as the set Bys(x,r,t) :={y €
X : M(z,y,t) >1—r}. Obviously, z € By (z,r,t).

By Proposition 2.6, it immediately follows that for each z € X, 0 < r; <
ro < 1and 0 < t; < to,we have By (xz,71,t1) C By (x,72,t2). Consequently,
we may define a topology 73s on X as

7z = {A C X : for each z € A there are r € (0,1),¢ > 0, with
By (z,r,t) C A}

Moreover, for each x € X the collection of open balls { Bys(x,1/n,1/n) :n =
2,3, ...}, is a local base at « with respect to 7ps. It is clear, that if (X, M, %) is a
KM-fuzzy quasi-metric (respectively, a 71 KM-fuzzy quasi-metric, a KM-fuzzy
metric), then 7 is a Ty (respectively, a T1, a Hausdorff) topology.

The topology 7as is called the topology generated by the KM-fuzzy quasi-
pseudo-metric space (X, M, x).

Similarly to the proof of Result 3.2 and Theorem 3.11 of [3], one can show
the following results.
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Proposition 2.7. Let (X, M,x) be a KM-fuzzy quasi-pseudo-metric space.
Then, each open ball Bys(x,7,t) is an open set for the topology Tas.

Proposition 2.8. A sequence (xy,), in a KM-fuzzy quasi-pseudo-metric space
(X, M, x) converges to a point x € X with respect to Ty if and only if lim,, M (z,
Tn,t) =1 for all t > 0.

Definition 2.9. A GV-fuzzy quasi-pseudo-metric on a set X is a pair (M, )
such that = is a continuous t-norm and M is a fuzzy set in X x X x (0, 400)
such that for all xz,y,z € X, t,s >0

(GV1) M(z,y,t) > 0;

(GV2) M(z,z,t) =1,

(GV3) M(z,z,t+s) > M(z,y,t) * M(y, z, s);

(GV4) M(z,y,-): (0,+00) = (0,1] is continuous.

Definition 2.10. A GV-fuzzy quasi-metric on X is a GV-fuzzy quasi-pseudo-
metric (M, *) onX such that for all t > 0:
(GV2') z =y if and only if M (z,y,t) = M(y,z,t) = 1.

If (M, *) is a GV-fuzzy quasi-pseudo-metric on X such that for all t > 0:
(GV2") z =y if and only if M(z,y,t) =1,
we say that (M, *) is a Ty KM-fuzzy quasi-metric on X.

Definition 2.11. A GV-fuzzy (pseudo-)metric on X is a GV-fuzzy quasi-
(pseudo-)metric (M,*) on X such that for all x,y € X, t >0 :

(KM5b) M (z,y,t) = M(y,z,t).

Remark 2.12. It is clear that every GV-fuzzy metric is a T GV-fuzzy quasi-
metric; every T7 GV-fuzzy quasi-metric is a GV-fuzzy quasi-metric, and every
GV-fuzzy quasi-metric is a GV-fuzzy quasi-pseudo-metric.

Definition 2.13. A GV-fuzzy quasi-(pseudo-)metric space is a triple (X, M, x)
such that X is a (nonempty) set and (M, *) is a GV-fuzzy quasi- (pseudo-)metric
on X.

The notions of a T1 GV-fuzzy quasi-metric space and of a GV-fuzzy metric
space are defined in the obvious manner. Note that the GV-fuzzy metric spaces
are exactly the fuzzy metric spaces in the sense of George and Veeramani.

Remark 2.14. Note that if (M, *) is a GV-fuzzy quasi-(pseudo-)metric on X,
then the fuzzy sets in X x X x (0,+00), M~! and M? given by M ~Y(z,y,t) =
M(y,z,t) and M%(x,y,t) = min{M (z,y,t), M 1(x,y,t)}, are, as in the KM-
case, a GV-fuzzy quasi-(pseudo-)metric and a GV-fuzzy (pseudo-)metric on X,
respectively.

Thus, condition (GV2’) above is equivalent to the following;:

M(x,z,t) =1forall z € X and t > 0, and M(x,y,t) < 1 for all x # y and
t>0.

Remark 2.15. Obviously, each GV-fuzzy quasi-(pseudo-)metric (M, *) can be
considered as a KM-fuzzy quasi-(pseudo-)metric by defining M (z,y,0) = 0 for
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all z,y € X. Therefore, each GV-fuzzy quasi-pseudo-metric space generates a
topology Tjs defined as in the KM-case, and Propositions 2.6, 2.7 and 2.8 above
remain valid for GV-fuzzy quasi-pseudo-metric spaces.

Example 2.16 (compare Example 2.9 of [3]). dLet (X,d) be a quasi-metric
space. Denote by a - b the usual multiplication for every a,b € [0, 1], and let
My be the function defined on X x X x (0, +00) by

Ma(z,9,1) = t+d(z,y)

Then (X, My, -) is a GV-fuzzy quasi-metric space called standard fuzzy quasi-
metric space and (Mg, -) is the fuzzy quasi-metric induced by d. Furthermore,
it is easy to check that (My)~! = My1 and (My)* = Mys. Finally, from
Proposition 2.8 and Remark 2.15, it follows that the topology 74, generated by
d, coincides with the topology 7as, generated by the induced fuzzy quasi-metric
(Mg, ).

Definition 2.17. We say that a topological space (X, T) admits a compatible
KM (resp. GV)-fuzzy quasi-metric if there is a KM (resp. GV)-fuzzy quasi-
metric (M, *) on X such that T = 7).

It follows from Example 2.16 that every quasi-metrizable topological space
admits a compatible GV-fuzzy quasi-metric. In Section 3 we shall establish
that, conversely, the topology generated by a KM-fuzzy quasi-metric space is
quasi-metrizable.

3. QUASI—METRIZABILITY OF THE TOPOLOGY OF A FUZZY QUASI-METRIC
SPACE

A slight modification of the proof of Theorem 1 of [6], permits us to show
the following result.

Lemma 3.1. Let (X, M,x) be a KM-fuzzy quasi-metric space. Then {U, :
n=2,3,...} is a base for a quasi-uniformity Up; on X compatible with Tpr, where
Up={(z,y) € X x X : M(z,y,1/n) >1—1/n}, forn=2,3, ...

Moreover the conjugate quasi-uniformity Uy )™t coincides with Uy -1 and
it is compatible with Tpr-1.

From Example 2.16, Lemma 3.1 and the well-known result that the topolo-
gy generated by a quasi-uniformity with a countable base is quasi-pseudo-
metrizable ([2]), we immediately deduce the following.

Theorem 3.2. For a topological space (X, 1) the following are equivalent.
(1) (X,7) is quasi-metrizable.
(2) (X,7) admits a compatible GV-fuzzy quasi-metric.
(3) (X,7) admits a compatible KM-fuzzy quasi-metric.

Remark 3.3. It is almost obvious that the uniformity Uy, coincides with the
uniformity (Unr)® = Un V (Upr) ™t
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4. BICOMPLETE FUZZY QUASI-METRIC SPACES

There exist many different notions of quasi-uniform and quasi-metric com-
pleteness in the literature (see [10]). Then, by Lemma 3.1 and Remark 3.3,
one can define in a natural way the corresponding notions of completeness in
a fuzzy setting and easily deduce several properties taking into account the
well-known completeness properties of quasi-uniform and quasi-metric spaces
(compare with [6], where these ideas are used to study completeness in the
fuzzy metric case).

In this section we only consider the notion of bicompleteness because it
provides a satisfactory theory of quasi-uniform and quasi-metric completeness.

Let us recall that a quasi-metric space (X,d) is bicomplete provided that
(X, d?) is a complete metric space. In this case we say that d is a bicomplete
quasi-metric on X.

A metrizable topological space (X, 7) is said to be completely metrizable if
it admits a compatible complete metric. On the other hand, a fuzzy metric
space (X, M, ) is called complete ([5]) if every Cauchy sequence is convergent,
where a sequence (), is Cauchy provided that for each r € (0,1) and each
t > 0, there exists an ng such that M(x,,x,,,t) > 1 —r for every n,m > ny.
If (X, M, «) is a complete fuzzy metric space, we say that (M, %) is a complete
fuzzy metric on X.

It was proved in [6] that a topological space is completely metrizable if and
only if it admits a compatible complete fuzzy metric.

Definition 4.1. A KM (resp. GV)-fuzzy quasi-metric space (X, M, x) is called
bicomplete if (X, M, %) is a complete fuzzy metric space. In this case, we say
that (M, ) is a bicomplete KM (resp. GV)-fuzzy quasi-metric on X.

Proposition 4.2.

(a) Let (X, M,x) be a bicomplete KM-fuzzy quasi-metric space. Then (X, Tpr)
admits a compatible bicomplete quasi-metric.

(b) Let (X,d) be a bicomplete quasi-metric space. Then (X, Mgy,-) is a
bicomplete GV-fuzzy quasi-metric space.

Proof. (a) Let d be a quasi-metric on X inducing the quasi-uniformity Uy,.
Then d is compatible with 7as. Now let (z,,), be a Cauchy sequence in (X, d®).
Clearly (z,,)n is a Cauchy sequence in the fuzzy metric space (X, M, ). So it
converges to a point y € X with respect to 737:. Hence (), converges to y
with respect to 74s. Consequently d is bicomplete.

(b) This part is almost obvious because (My)* = Mys (see Example 2.16),
and thus each Cauchy sequence in (X, (My)?,-) is clearly a Cauchy sequence in
(X, d?). O

Extending the classical metric theorem, it was independently proved in [1]
and [12], that every quasi-metric space admits a (quasi-metric) bicompletion
which is unique up to isometry. Although the problem of completion of fuzzy
metric spaces in the sense of Kramosil and Michalek has a satisfactory solution
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([14]), the corresponding situation for fuzzy metric spaces in the sense of George
and Veeramani is quite different. In fact, it was obtained in [7] an example of
a fuzzy metric space (X, M,*) that does not admit completion, i.e. there
no exist any complete fuzzy metric space having a dense subspace isometric
to (X, M, ). A characterization of those fuzzy metric spaces (in the sense of
George and Veeramani) that admit a fuzzy metric completion has recently been
obtained in [8].

Although the problem of bicompletion for GV-fuzzy quasi-metric spaces will
be discussed elsewhere, we next present some concepts and facts that are basic
in solving this problem.

Definition 4.3. Let (X, M, *) and (Y, N, ) be two KM (resp. GV)-fuzzy quasi-
metric spaces. Then
(a) A mapping [ from X toY is called an isometry if for each x,y € X
and each t >0, M(z,y,t) = N(f(z), f(y),1).
(b) (X, M, %) and (Y, N,*) are called isometric if there is an isometry from
X onto Y.

Definition 4.4. Let (X, M, x) be a KM (resp. GV)-fuzzy quasi-metric space.
A KM (resp. GV)-fuzzy quasi-metric bicompletion of (X, M, x) is a bicom-
plete KM (resp. GV)-fuzzy quasi-metric space (Y, N,x) such that (X, M, ) is
isometric to a Tni-dense subspace of Y.

Proposition 4.5. dLet (X, M, x) be a KM-fuzzy quasi-metric space and (Y, N, *)
a bicomplete KM-fuzzy quasi-metric space. If there is a T)si-dense subset A of
X and an isometry f : (A, M,*) — (Y, N,x), then there exists a unique isom-
etry F: (X, M,*) — (Y, N, *) such that F |a= f.

Proof. alt is clear that f is a quasi-uniformly continuous mapping from the
quasi-uniform space (A,Un; |axa) to the quasi-uniform space (Y,Uy). By
Theorem 3.29 of [2], f has a unique quasi-uniformly continuous extension
F: (X,Uy) — (Y,Un). We shall show that actually F' is an isometry from
(X, M, %) to (Y, N,*). Indeed, let z,y € X and ¢ > 0. Then, there exist two
sequences (zy), and (y,)n in A such that z, — z and y,, — y with respect
to Tppi. Thus F(z,) — F(z) and F(y,) — F(y) with respect to 7y:. Choose
¢ € (0,1) with & < t. Therefore, there is n. such that for n > n.,

M(z,xn,e/2) > 1—e, M(yn,y,e/2)>1—c¢,
N(F(xy), F(z),e/2) > 1—¢, N(F(y),F(yn),e/2)>1—c¢.
Thus

M(z,y,t) M(z,xp,e/2) % M(xp, yn,t —€) * M (yn,y,£/2)
(1—¢e)*« N(F(zpn), Flyn),t —e)* (1 —¢)
(1—e)x[(1—¢e)x N(F(z),F(y),t —2e) % (1 —¢)] (1 —¢).

By continuity of * and x and by left continuity of N(F(z), F(y), -) it follows
that M (z,y,t) > N(F(z), F(y),t). Similarly we show that N(F(z), F(y),t) >
M (z,y,t). Consequently F is an isometry from (X, M, ) to (Y, N, %). O

(A\VARAVARIYS
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Corollary 4.6. Let (X, M, *) be a GV-fuzzy quasi-metric space and (Y, N, %) a
bicomplete GV-fuzzy quasi-metric space. If there is a Tpsi-dense subset A of X
and an isometry f : (A, M,x) — (Y, N, ), then there exists a unique isometry
F:(X,M,*)— (Y,N,*) such that F |a= f.
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