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Volume 5, No. 1, 2004

pp. 129- 136

Fuzzy quasi-metric spaces
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Abstract. We generalize the notions of fuzzy metric by Kramosil

and Michalek, and by George and Veeramani to the quasi-metric set-

ting. We show that every quasi-metric induces a fuzzy quasi-metric and,

conversely, every fuzzy quasi-metric space generates a quasi-metrizable

topology. Other basic properties are discussed.
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1. Introduction

In [9], Kramosil and Michalek introduced and studied an interesting notion
of fuzzy metric space which is closely related to a class of probabilistic met-
ric spaces, the so-called (generalized) Menger spaces. Later on, George and
Veeramani started, in [3] (see also [5]), the study of a stronger form of metric
fuzziness. In particular, it is well known that every metric induces a fuzzy
metric in the sense of George and Veeramani, and, conversely, every fuzzy
metric space in the sense of George and Veeramani (and also of Kramosil and
Michalek) generates a metrizable topology ([4], [6], [9], [11], [13]).

On the other hand, it is also well known that quasi-metric spaces constitute
an efficient tool to discuss and solve several problems in topological algebra,
approximation theory, theoretical computer science, etc. (see [10]).

In this paper, we introduce two notions of fuzzy quasi-metric space that
generalize the corresponding notions of fuzzy metric space by Kramosil and
Michalek, and by George and Veeramani to the quasi-metric context. Several
basic properties of these spaces are obtained. We show that every quasi-metric
induces a fuzzy quasi-metric and, conversely, every fuzzy quasi-metric generates
a quasi-metrizable topology. With the help of these results one can easily derive
many properties of fuzzy quasi-metric spaces.
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Our basic references for quasi-uniform and quasi-metric spaces are [2] and
[10].

Let us recall that a quasi-pseudo-metric on a set X is a nonnegative real
valued function d on X ×X such that for all x, y, z ∈ X : (i) d(x, x) = 0; (ii)
d(x, z) ≤ d(x, y) + d(y, z).

Following the modern terminology (see Section 11 of [10]), by a quasi-metric
on X we mean a quasi-pseudo-metric d on X that satisfies the following con-
dition: d(x, y) = d(y, x) = 0 if and only if x = y. If the quasi-pseudo-metric d
satisfies: d(x, y) = 0 if and only if x = y, then we say that d is a T1 quasi-metric
on X.

A quasi-(pseudo-)metric space is a pair (X, d) such that X is a (nonempty)
set and d is a quasi-(pseudo-)metric on X. The notion of a T1 quasi-metric
space is defined in the obvious manner.

Each quasi-pseudo-metric d on X generates a topology τd onX which has as
a base the family of open d-balls {Bd(x, r) : x ∈ X, r > 0}, where Bd(x, r) =
{y ∈ X : d(x, y) < r} for all x ∈ X and r > 0.

Observe that if d is a quasi-metric, then τd is a T0 topology, and if d is a T1

quasi-metric, then τd is a T1 topology.
A topological space (X, τ) is said to be quasi-metrizable if there is a quasi-

metric d on X such that τ = τd. In this case, we say that d is compatible with
τ, and that τ is a quasi-metrizable topology.

Given a quasi-(pseudo-)metric d on X, then the function d−1 defined on
X × X by d−1(x, y) = d(y, x), is also a quasi-(pseudo-)metric on X, called
the conjugate of d. Finally, the function ds defined on X × X by ds(x, y) =
max{d(x, y), d−1(x, y)} is a (pseudo-)metric on X.

2. Definitions and basic results

According to [13], a binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is a continuous
t-norm if ∗ satisfies the following conditions: (i) ∗ is associative and commu-
tative; (ii) ∗ is continuous; (iii) a ∗ 1 = a for every a ∈ [0, 1]; (iv) a ∗ b ≤ c ∗ d
whenever a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1].

Definition 2.1. A KM-fuzzy quasi-pseudo-metric on a set X is a pair (M, ∗)
such that ∗ is a continuous t-norm and M is a fuzzy set in X ×X × [0,+∞)
such that for all x, y, z ∈ X :

(KM1) M(x, y, 0) = 0;
(KM2) M(x, x, t) = 1 for all t > 0;
(KM3) M(x, z, t+ s) ≥ M(x, y, t) ∗M(y, z, s) for all t, s ≥ 0;
(KM4) M(x, y, ) : [0,+∞) → [0, 1] is left continuous.

Definition 2.2. A KM-fuzzy quasi-metric on X is a KM-fuzzy quasi-pseudo-
metric (M, ∗) onX that satisfies the following condition:

(KM2’) x = y if and only if M(x, y, t) = M(y, x, t) = 1 for all t > 0.

If (M, ∗) is a KM-fuzzy quasi-pseudo-metric on X satisfying:

(KM2”) x = y if and only if M(x, y, t) = 1 for all t > 0,
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we say that (M, ∗) is a T1 KM-fuzzy quasi-metric on X.

Definition 2.3. A KM-fuzzy (pseudo-)metric on X is a KM-fuzzy quasi-
(pseudo-)metric (M, ∗) on X such that for each x, y ∈ X :

(KM5) M(x, y, t) = M(y, x, t) for all t > 0.

Remark 2.4. It is clear that every KM-fuzzy metric is a T1 KM-fuzzy quasi-
metric; every T1 KM-fuzzy quasi-metric is a KM-fuzzy quasi-metric, and every
KM-fuzzy quasi-metric is a KM-fuzzy quasi-pseudo-metric.

Definition 2.5. A KM-fuzzy quasi-(pseudo-)metric space is a triple (X,M, ∗)
such that X is a (nonempty) set and (M, ∗) is a KM-fuzzy quasi-(pseudo-
)metric on X.

The notions of a T 1 KM-fuzzy quasi-metric space and of aKM-fuzzy (pseudo-
)metric space are defined in the obvious manner. Note that the KM-fuzzy
metric spaces are exactly the fuzzy metric spaces in the sense of Kramosil and
Michalek.

If (M, ∗) is a KM-fuzzy quasi-(pseudo-)metric on a set X, it is immediate
to show that (M−1, ∗) is also a KM-fuzzy quasi-(pseudo-)metric on X, where
M−1 is the fuzzy set in X ×X × [0,+∞) defined by M−1(x, y, t) = M(y, x, t).
Moreover, if we denote by M i the fuzzy set in X × X × [0,+∞) given by
M i(x, y, t) = min{M(x, y, t),M−1(x, y, t)}, then (M i, ∗) is, clearly, a KM-fuzzy
(pseudo-)metric on X.

Proposition 2.6. Let (X,M, ∗) be a KM-fuzzy quasi-pseudo-metric space.
Then, for each x, y ∈ X the function M(x, y, ) is nondecreasing.

Proof. Let x, y ∈ X and 0 ≤ t < s. Then M(x, y, s) ≥ M(x, x, s − t) ∗
M(x, y, t) = M(x, y, t). �

Given a KM-fuzzy quasi-pseudo-metric space (X,M, ∗) we define the open
ball BM (x, r, t), for x ∈ X, 0 < r < 1, and t > 0, as the set BM (x, r, t) := {y ∈
X : M(x, y, t) > 1− r}. Obviously, x ∈ BM (x, r, t).

By Proposition 2.6, it immediately follows that for each x ∈ X, 0 < r1 ≤
r2 < 1 and 0 < t1 ≤ t2,we have BM (x, r1, t1) ⊆ BM (x, r2, t2). Consequently,
we may define a topology τM on X as

τM := {A ⊆ X : for each x ∈ A there are r ∈ (0, 1), t > 0, with
BM (x, r, t) ⊆ A}.

Moreover, for each x ∈ X the collection of open balls {BM (x, 1/n, 1/n) : n =
2, 3, ...}, is a local base at x with respect to τM . It is clear, that if (X,M, ∗) is a
KM-fuzzy quasi-metric (respectively, a T1 KM-fuzzy quasi-metric, a KM-fuzzy
metric), then τM is a T0 (respectively, a T1, a Hausdorff) topology.

The topology τM is called the topology generated by the KM-fuzzy quasi-
pseudo-metric space (X,M, ∗).

Similarly to the proof of Result 3.2 and Theorem 3.11 of [3], one can show
the following results.
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Proposition 2.7. Let (X,M, ∗) be a KM-fuzzy quasi-pseudo-metric space.
Then, each open ball BM (x, r, t) is an open set for the topology τM .

Proposition 2.8. A sequence (xn)n in a KM-fuzzy quasi-pseudo-metric space
(X,M, ∗) converges to a point x ∈ X with respect to τM if and only if limn M(x,
xn, t) = 1 for all t > 0.

Definition 2.9. A GV-fuzzy quasi-pseudo-metric on a set X is a pair (M, ∗)
such that ∗ is a continuous t-norm and M is a fuzzy set in X ×X × (0,+∞)
such that for all x, y, z ∈ X, t, s > 0 :

(GV1) M(x, y, t) > 0;
(GV2) M(x, x, t) = 1;
(GV3) M(x, z, t+ s) ≥ M(x, y, t) ∗M(y, z, s);
(GV4) M(x, y, ) : (0,+∞) → (0, 1] is continuous.

Definition 2.10. A GV-fuzzy quasi-metric on X is a GV-fuzzy quasi-pseudo-
metric (M, ∗) onX such that for all t > 0:

(GV2’) x = y if and only if M(x, y, t) = M(y, x, t) = 1.

If (M, ∗) is a GV-fuzzy quasi-pseudo-metric on X such that for all t > 0:

(GV2”) x = y if and only if M(x, y, t) = 1,

we say that (M, ∗) is a T1 KM-fuzzy quasi-metric on X.

Definition 2.11. A GV-fuzzy (pseudo-)metric on X is a GV-fuzzy quasi-
(pseudo-)metric (M, ∗) on X such that for all x, y ∈ X, t > 0 :

(KM5) M(x, y, t) = M(y, x, t).

Remark 2.12. It is clear that every GV-fuzzy metric is a T1 GV-fuzzy quasi-
metric; every T1 GV-fuzzy quasi-metric is a GV-fuzzy quasi-metric, and every
GV-fuzzy quasi-metric is a GV-fuzzy quasi-pseudo-metric.

Definition 2.13. A GV-fuzzy quasi-(pseudo-)metric space is a triple (X,M, ∗)
such that X is a (nonempty) set and (M, ∗) is a GV-fuzzy quasi-(pseudo-)metric
on X.

The notions of a T 1 GV-fuzzy quasi-metric space and of a GV-fuzzy metric
space are defined in the obvious manner. Note that the GV-fuzzy metric spaces
are exactly the fuzzy metric spaces in the sense of George and Veeramani.

Remark 2.14. Note that if (M, ∗) is a GV-fuzzy quasi-(pseudo-)metric on X,
then the fuzzy sets in X ×X × (0,+∞), M−1 and M i given by M−1(x, y, t) =
M(y, x, t) and M i(x, y, t) = min{M(x, y, t),M−1(x, y, t)}, are, as in the KM-
case, a GV-fuzzy quasi-(pseudo-)metric and a GV-fuzzy (pseudo-)metric on X,
respectively.

Thus, condition (GV2’) above is equivalent to the following:
M(x, x, t) = 1 for all x ∈ X and t > 0, and M i(x, y, t) < 1 for all x 6= y and

t > 0.

Remark 2.15. Obviously, each GV-fuzzy quasi-(pseudo-)metric (M, ∗) can be
considered as a KM-fuzzy quasi-(pseudo-)metric by defining M(x, y, 0) = 0 for
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all x, y ∈ X. Therefore, each GV-fuzzy quasi-pseudo-metric space generates a
topology τM defined as in the KM-case, and Propositions 2.6, 2.7 and 2.8 above
remain valid for GV-fuzzy quasi-pseudo-metric spaces.

Example 2.16 (compare Example 2.9 of [3]). áLet (X, d) be a quasi-metric
space. Denote by a · b the usual multiplication for every a, b ∈ [0, 1], and let
Md be the function defined on X ×X × (0,+∞) by

Md(x, y, t) =
t

t+ d(x, y)
.

Then (X,Md, ·) is a GV-fuzzy quasi-metric space called standard fuzzy quasi-
metric space and (Md, ·) is the fuzzy quasi-metric induced by d. Furthermore,
it is easy to check that (Md)

−1 = Md−1 and (Md)
i = Mds . Finally, from

Proposition 2.8 and Remark 2.15, it follows that the topology τd, generated by
d, coincides with the topology τMd

generated by the induced fuzzy quasi-metric
(Md, ·).

Definition 2.17. We say that a topological space (X, τ) admits a compatible
KM (resp. GV)-fuzzy quasi-metric if there is a KM (resp. GV)-fuzzy quasi-
metric (M, ∗) on X such that τ = τM .

It follows from Example 2.16 that every quasi-metrizable topological space
admits a compatible GV-fuzzy quasi-metric. In Section 3 we shall establish
that, conversely, the topology generated by a KM-fuzzy quasi-metric space is
quasi-metrizable.

3. Quasi-metrizability of the topology of a fuzzy quasi-metric

space

A slight modification of the proof of Theorem 1 of [6], permits us to show
the following result.

Lemma 3.1. Let (X,M, ∗) be a KM-fuzzy quasi-metric space. Then {Un :
n=2, 3, ...} is a base for a quasi-uniformity UM on X compatible with τM , where
Un = {(x, y) ∈ X ×X : M(x, y, 1/n) > 1− 1/n}, for n = 2, 3, ...

Moreover the conjugate quasi-uniformity (UM )−1 coincides with UM−1 and
it is compatible with τM−1 .

From Example 2.16, Lemma 3.1 and the well-known result that the topolo-
gy generated by a quasi-uniformity with a countable base is quasi-pseudo-
metrizable ([2]), we immediately deduce the following.

Theorem 3.2. For a topological space (X, τ) the following are equivalent.

(1) (X, τ) is quasi-metrizable.
(2) (X, τ) admits a compatible GV-fuzzy quasi-metric.
(3) (X, τ) admits a compatible KM-fuzzy quasi-metric.

Remark 3.3. It is almost obvious that the uniformity UMi coincides with the
uniformity (UM )s := UM ∨ (UM )−1
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4. Bicomplete fuzzy quasi-metric spaces

There exist many different notions of quasi-uniform and quasi-metric com-
pleteness in the literature (see [10]). Then, by Lemma 3.1 and Remark 3.3,
one can define in a natural way the corresponding notions of completeness in
a fuzzy setting and easily deduce several properties taking into account the
well-known completeness properties of quasi-uniform and quasi-metric spaces
(compare with [6], where these ideas are used to study completeness in the
fuzzy metric case).

In this section we only consider the notion of bicompleteness because it
provides a satisfactory theory of quasi-uniform and quasi-metric completeness.

Let us recall that a quasi-metric space (X, d) is bicomplete provided that
(X, ds) is a complete metric space. In this case we say that d is a bicomplete
quasi-metric on X.

A metrizable topological space (X, τ) is said to be completely metrizable if
it admits a compatible complete metric. On the other hand, a fuzzy metric
space (X,M, ∗) is called complete ([5]) if every Cauchy sequence is convergent,
where a sequence (xn)n is Cauchy provided that for each r ∈ (0, 1) and each
t > 0, there exists an n0 such that M(xn, xm, t) > 1 − r for every n,m ≥ n0.
If (X,M, ∗) is a complete fuzzy metric space, we say that (M, ∗) is a complete
fuzzy metric on X.

It was proved in [6] that a topological space is completely metrizable if and
only if it admits a compatible complete fuzzy metric.

Definition 4.1. A KM (resp. GV)-fuzzy quasi-metric space (X,M, ∗) is called
bicomplete if (X,M i, ∗) is a complete fuzzy metric space. In this case, we say
that (M, ∗) is a bicomplete KM (resp. GV)-fuzzy quasi-metric on X.

Proposition 4.2.

(a) Let (X,M, ∗) be a bicomplete KM-fuzzy quasi-metric space. Then (X, τM )
admits a compatible bicomplete quasi-metric.

(b) Let (X, d) be a bicomplete quasi-metric space. Then (X,Md, ·) is a
bicomplete GV-fuzzy quasi-metric space.

Proof. (a) Let d be a quasi-metric on X inducing the quasi-uniformity UM .
Then d is compatible with τM . Now let (xn)n be a Cauchy sequence in (X, ds).
Clearly (xn)n is a Cauchy sequence in the fuzzy metric space (X,M i, ∗). So it
converges to a point y ∈ X with respect to τMi . Hence (xn)n converges to y
with respect to τds . Consequently d is bicomplete.

(b) This part is almost obvious because (Md)
i = Mds (see Example 2.16),

and thus each Cauchy sequence in (X, (Md)
i, ·) is clearly a Cauchy sequence in

(X, ds). �

Extending the classical metric theorem, it was independently proved in [1]
and [12], that every quasi-metric space admits a (quasi-metric) bicompletion
which is unique up to isometry. Although the problem of completion of fuzzy
metric spaces in the sense of Kramosil and Michalek has a satisfactory solution
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([14]), the corresponding situation for fuzzy metric spaces in the sense of George
and Veeramani is quite different. In fact, it was obtained in [7] an example of
a fuzzy metric space (X,M, ∗) that does not admit completion, i.e. there
no exist any complete fuzzy metric space having a dense subspace isometric
to (X,M, ∗). A characterization of those fuzzy metric spaces (in the sense of
George and Veeramani) that admit a fuzzy metric completion has recently been
obtained in [8].

Although the problem of bicompletion for GV-fuzzy quasi-metric spaces will
be discussed elsewhere, we next present some concepts and facts that are basic
in solving this problem.

Definition 4.3. Let (X,M, ∗) and (Y,N, ⋆) be two KM (resp. GV)-fuzzy quasi-
metric spaces. Then

(a) A mapping f from X to Y is called an isometry if for each x, y ∈ X
and each t > 0, M(x, y, t) = N(f(x), f(y), t).

(b) (X,M, ∗) and (Y,N, ⋆) are called isometric if there is an isometry from
X onto Y.

Definition 4.4. Let (X,M, ∗) be a KM (resp. GV)-fuzzy quasi-metric space.
A KM (resp. GV)-fuzzy quasi-metric bicompletion of (X,M, ∗) is a bicom-
plete KM (resp. GV)-fuzzy quasi-metric space (Y,N, ⋆) such that (X,M, ∗) is
isometric to a τNi-dense subspace of Y .

Proposition 4.5. áLet (X,M, ∗) be a KM-fuzzy quasi-metric space and (Y,N, ⋆)
a bicomplete KM-fuzzy quasi-metric space. If there is a τMi-dense subset A of
X and an isometry f : (A,M, ∗) → (Y,N, ⋆), then there exists a unique isom-
etry F : (X,M, ∗) → (Y,N, ⋆) such that F |A= f.

Proof. áIt is clear that f is a quasi-uniformly continuous mapping from the
quasi-uniform space (A,UM |A×A) to the quasi-uniform space (Y,UN ). By
Theorem 3.29 of [2], f has a unique quasi-uniformly continuous extension
F : (X,UM ) → (Y,UN ). We shall show that actually F is an isometry from
(X,M, ∗) to (Y,N, ⋆). Indeed, let x, y ∈ X and t > 0. Then, there exist two
sequences (xn)n and (yn)n in A such that xn → x and yn → y with respect
to τMi . Thus F (xn) → F (x) and F (yn) → F (y) with respect to τNi . Choose
ε ∈ (0, 1) with ε < t. Therefore, there is nε such that for n ≥ nε,

M(x, xn, ε/2) > 1− ε, M(yn, y, ε/2) > 1− ε,

N(F (xn), F (x), ε/2) > 1− ε, N(F (y), F (yn), ε/2) > 1− ε.

Thus

M(x, y, t) ≥ M(x, xn, ε/2) ∗M(xn, yn, t− ε) ∗M(yn, y, ε/2)

≥ (1− ε) ∗N(F (xn), F (yn), t− ε) ∗ (1− ε)

≥ (1− ε) ∗ [(1− ε) ⋆ N(F (x), F (y), t − 2ε) ⋆ (1− ε)] ∗ (1 − ε).

By continuity of ∗ and ⋆ and by left continuity of N(F (x), F (y), ) it follows
that M(x, y, t) ≥ N(F (x), F (y), t). Similarly we show that N(F (x), F (y), t) ≥
M(x, y, t). Consequently F is an isometry from (X,M, ∗) to (Y,N, ⋆). �
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Corollary 4.6. Let (X,M, ∗) be a GV-fuzzy quasi-metric space and (Y,N, ⋆) a
bicomplete GV-fuzzy quasi-metric space. If there is a τMi-dense subset A of X
and an isometry f : (A,M, ∗) → (Y,N, ⋆), then there exists a unique isometry
F : (X,M, ∗) → (Y,N, ⋆) such that F |A= f.
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