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Abstract. A systematic analysis is made of the character of the

free and free abelian topological groups on metrizable spaces and com-

pact spaces, and on certain other closely related spaces. In the first

case, it is shown that the characters of the free and the free abelian

topological groups on X are both equal to the “small cardinal” d if

X is compact and metrizable, but also, more generally, if X is a non-

discrete kω-space all of whose compact subsets are metrizable, or if X is

a non-discrete Polish space. An example is given of a zero-dimensional

separable metric space for which both characters are equal to the car-

dinal of the continuum. In the case of a compact space X, an explicit

formula is derived for the character of the free topological group on X

involving no cardinal invariant of X other than its weight; in particular

the character is fully determined by the weight in the compact case.

This paper is a sequel to a paper by the same authors in which the char-

acters of the free groups were analysed under less restrictive topological

assumptions.
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1. Introduction

In a previous paper [11], we investigated the topological character of free
and free abelian topological groups. The results obtained were for the free
groups on uniform spaces, with applications to the free groups on topological
spaces deduced as appropriate. Also, the principal results were obtained with-
out the imposition of strong uniform or topological conditions on the given
spaces, though numerous corollaries were derived at various points for metriz-
able spaces, compact spaces and other classes of spaces.

In this sequel to [11], we specifically investigate the characters of the free and
free abelian topological groups on metrizable spaces and on compact spaces,
and on certain closely related spaces, obtaining more detailed information in
both cases than was available in [11].

In the metrizable case, we show that the equality χ(A(X)) = χ(F (X)) = d

holds if X is a compact metrizable space (as was already observed in [11]), but
also if X is a non-discrete kω-space all compact subsets of which are metrizable
(Theorem 2.9), or if X is a non-discrete Polish space (Corollary 2.12). On
the other hand, there exists a zero-dimensional separable metric space X such
that χ(A(X)) = χ(F (X)) = c (Example 2.18). If X is a metrizable space in
which the subset of all non-isolated points is compact and non-empty, then
χ(A(X)) = d (Theorem 2.7), but under the same hypotheses the character
χ(F (X)) may be arbitrarily large (Example 2.8).

In the case of a compact space X , our main result gives an explicit formula
for χ(F (X)) involving no cardinal invariant of X other than the weight (The-
orem 3.5), showing in particular that the character is fully determined by the
weight in the compact case. If the weight w(X) of X is at least c, then our
result implies that χ(A(X)) = χ(F (X)) = w(X)ℵ0 .

Our notation and terminology here are as in [11]. From time to time, results
from [11] will be used here, and again the reader is referred to the source for
these, though on occasion we quote them here for convenience.

2. Free groups on metrizable spaces

As usual, w(X,U) denotes the weight of the Hausdorff uniform space (X,U),
where by the weight we mean in all cases the least cardinal of a base of U , so that
w(X,U) = ℵ0 implies in particular that the family of all uniform entourages
of the diagonal in X2 does not have a minimal element. (A similar convention
applies to our usage of other cardinal invariants.)

The principal results of [11] on the characters of the free groups on (pseudo)
metrizable spaces are the following three (see Theorem 2.21 and Corollaries 2.22
and 3.16, respectively).

Theorem 2.1. Let (X,U) be an arbitrary uniform space with w(X,U) = ℵ0.

Then χ(A(X,U)) = d.

Corollary 2.2. If X is an infinite compact metrizable space, then χ(A(X)) =
d.
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Following [11], we call a spaceX ω-narrow (equivalently, pseudo-ω1-compact)
if every locally finite family of open sets in X is countable. It is clear that all
Lindelöf and all separable spaces are ω-narrow.

Corollary 2.3. χ(A(X)) = χ(F (X)) for every ω-narrow space X.

From Corollaries 2.2 and 2.3, we have:

Corollary 2.4. The equalities χ(F (X)) = χ(A(X)) = d hold for every infinite

compact metrizable space X.

Brief comments were made in [11] about the character of a free topological
group when equipped with the Graev topology rather than the free topol-
ogy. We make one further such observation. Recall that if X is a topological
space, then FG(X) denotes the abstract free group Fa(X) over X topologized
with Graev’s topology, that is, the finest invariant group topology on Fa(X)
coarser than the topology of F (X). From Corollary 2.6 of [11] it follows that
χ(FG(X)) = χ(A(X)), for every space X . This equality combined with our
Corollary 2.3 implies the following result.

Theorem 2.5. If X is an ω-narrow space, then χ(FG(X)) = χ(F (X)).

A further result from [11] is the following (Theorem 2.23). In it, we use
χ∆(X) to denote the character of the diagonal ∆ in X ×X .

Theorem 2.6. If a Tychonoff space X satisfies χ∆(X) ≤ ℵ0, then either X
and A(X) are discrete or χ(A(X)) = d.

Starting from the above results, we develop here a sequence of new results
which give more detailed information on the characters of the free and free
abelian topological groups on metrizable spaces and certain spaces closely re-
lated to metrizable spaces.

Theorem 2.7. If X is a metrizable space and the set X ′ of all non-isolated

points of X is compact and non-empty, then χ(A(X)) = d.

Proof. We claim that χ∆(X) = ℵ0. Indeed, let d be a metric on X which
induces the topology of X . For every x ∈ X and ε > 0, denote by B(x, ε) the
open ball with center at x and radius ε with respect to d. If n ∈ N, we put

Un = ∆ ∪
⋃

{B(x, 1/n)×B(x, 1/n) : x ∈ X ′},

where ∆ is the diagonal in X × X . It is easy to see that the sets Un form a
base at the diagonal ∆ in X × X , which proves our claim. Now the desired
conclusion follows from Theorem 2.6. �

It is interesting to note that the non-abelian analog of Theorem 2.7 fails, as
the next example shows.

Example 2.8. The character of the free topological group F (X) on a metriz-
able space X with a single non-isolated point can be arbitrarily large (while
the character of A(X) is equal to d by Theorem 2.7).
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Indeed, let X = C ⊕ D be the topological sum of a non-trivial conver-
gent sequence C with limit point x0 ∈ C and a discrete space D of an infi-
nite cardinality τ . For every a ∈ D, put Ca = a−1x−1

0 Ca, and consider the
subspace Y =

⋃
a∈D Ca of F (X). As is shown in [1], Y is homeomorphic

to the Fréchet–Urysohn fan V (τ) of cardinality τ with vertex at the iden-
tity e of the group F (X). A straightforward diagonal argument shows that
τ < χ(e, Y ) ≤ χ(F (X)).

It turns out that Corollary 2.4 remains valid in a more general case. Let us
say that a space X with a kω-decomposition X =

⋃
n∈ωXn is a kmω-space if

each Xn is metrizable. Equivalently, a kmω-space is a kω-space all compact
subsets of which are metrizable.

Theorem 2.9. Let X be a non-discrete kmω-space. Then χ(A(X)) = d =
χ(F (X)).

Proof. By assumption, there exists a kω-decomposition X =
⋃

n∈ωXn, where
each Xn is compact and metrizable. Clearly Xn is non-discrete for some n ∈ ω,
for otherwise X would be discrete. Therefore, X contains infinite compact sub-
sets (convergent sequences), so Corollary 2.18 of [11] and our Corollary 2.3
together imply that d ≤ χ(A(X)) = χ(F (X)). It remains to verify that
χ(F (X)) ≤ d.

Denote by Y the one-point compactification of the topological sum X ′ =
⊕n∈ωX

′
n, where X

′
n = Xn × {n} for each n ∈ ω. It is easy to see that the

infinite compact space Y is metrizable, and so we have χ(F (Y )) = d by Corol-
lary 2.4. Choose an element a ∈ Y and put Z =

⋃
n∈ω a

n ·X ′
n ⊆ F (Y ). Then

Z ∩ Fn+1(Y ) =
⋃n

k=0 a
k · X ′

k, so the intersection Z ∩ Fn+1(Y ) is closed in
Fn+1(Y ) for each n ∈ ω. By Graev’s theorem in [4],

⋃
n∈ω Fn(Y ) is a kω-

decomposition of the group F (Y ), so Z is closed in F (Y ). Therefore, F (Y )
contains a subgroup topologically isomorphic to F (Z) (see [8, Th. 1]), and hence
χ(F (Z)) ≤ χ(F (Y )). Let f : X ′ → X be the mapping defined by f(y, n) = y
for all y ∈ Xn, n ∈ ω. Since X =

⋃
n∈ωXn is a kω-decomposition of X , the

mapping f is quotient. Clearly, f(X ′) = X . Define a mapping g : X ′ → Z by
g(x) = anx for each x ∈ X ′

n, n ∈ ω. It is easy to see that g is a homeomor-
phism, so that the mapping h = f ◦ g−1 : Z → X is a quotient. Hence the

extension of h to a homomorphism ĥ : F (Z) → F (X) is continuous and open.
We therefore conclude that χ(F (X)) ≤ χ(F (Z)) ≤ χ(F (Y )) = d. �

By Corollary 2.3, χ(F (X)) = χ(A(X)) for each separable metrizable spaceX .
Our next task is to calculate the values χ(A(Q)) = χ(F (Q)) and χ(A(Rω)) =
χ(F (Rω)). Here we show that all these cardinals are equal to d. This will
follow from a more general result: If X is a non-discrete separable metrizable
space which is absolutely Gδ, Fσ or Gδσ, then χ(A(X)) = χ(F (X)) = d (see
Theorem 2.11). In particular, χ(A(X)) = χ(F (X)) = d for every non-discrete
Polish space X .

Lemma 2.10. Let X be a non-discrete separable metrizable space such that

X × ω ∼= X. Then χ(A(X)) = χ(F (X)) = χ∆(X).



The character of free topological groups II 47

Proof. Since X is Lindelöf and X × ω ∼= X , Corollary 3.21 of [11] gives us
χ(F (X)) = χ(A(X)) = χ∆(X × ω) = χ∆(X), as required. �

We recall that a separable metrizable space X is called absolutely Gδ, Fσ or
Gδσ if X is of type Gδ, Fσ or Gδσ , respectively, in some (equivalently, every)
metrizable compactification of X .

Theorem 2.11. Let X be a non-discrete separable metrizable space. If X is

absolutely Gδ, Fσ or Gδσ, then χ(A(X)) = χ(F (X)) = d.

Proof. Since χ(F (X)) = χ(A(X)) by Corollary 2.3, it suffices to verify that
χ(A(X)) = d. If X is absolutely Gδ, then it is a perfect image of a closed sub-
space K of the irrationals P ∼= Nω, by (C) on page 144 of [2]. Let f : K → X
be the corresponding perfect mapping. Then f extends to a continuous open

homomorphism f̂ : A(K) → A(X), so that χ(A(X)) ≤ χ(A(K)). Since K is
closed in the separable metrizable space P, every continuous (pseudo)metric
on K extends to a continuous (pseudo)metric on P, and Theorem 1.2.9 of [10]
and Lemma 4 of [14] imply that A(K) is topologically isomorphic to a sub-
group of A(P). Hence χ(A(K)) ≤ χ(A(P)). Note that P ∼= P × ω. Since
P is absolutely Gδ, Theorem 8.13 of [2] implies that χ∆(P) = d, and hence
χ(A(P)) = d by Lemma 2.10. Since X is non-discrete (hence contains infinite
compact subsets), from Corollary 2.18 of [11] it follows that

d ≤ χ(A(X)) ≤ χ(A(K)) ≤ χ(A(P)) = d.

Similarly, if X is absolutely Fσ or Gδσ, then so is the product X×ω, and [2,
Th. 8.13] implies that χ∆(X×ω) = d. Since X×ω×ω ∼= X×ω, we can apply
Lemma 2.10 to conclude that χ(A(X×ω)) = d. Clearly, X is a continuous open
image of X ×ω, which immediately implies that χ(A(X)) ≤ χ(A(X ×ω)) = d.
Since X is non-discrete, an application of Corollary 2.18 of [11] finishes the
proof. �

The above theorem implies, in particular, that χ(F (Q)) = χ(F (K×Q)) = d

for every compact metrizable space K. Since complete separable metrizable
(≡Polish) spaces are absolutely Gδ, we obtain the following.

Corollary 2.12. If X is a non-discrete Polish space, then d = χ(A(X)) =
χ(F (X)).

We therefore have, for example, χ(F (P)) = χ(F (Rω)) = d. However, our
results leave the following open problems.

Problem 2.13. Does the inequality χ(F (X)) ≤ d hold for any absolutely Borel

(analytic) separable metrizable space X?

Problem 2.14. Let X be an ω-narrow space such that w(X,U) ≤ d, where U
is the fine uniformity of X. Is then χ(F (X)) ≤ d? What if X × ω ∼= X?

Since the group A(X) on a separable metrizable space X is separable, its
character does not exceed c. On the other hand, χ(A(X)) ≥ d for a non-discrete
metrizable space X by Corollary 2.18 of [11]. Our aim is to show that there
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exists in ZFC a separable metrizable spaceX satisfying χ(A(X)) = χ(F (X)) =
c. First, we study the character of X in its Čech–Stone compactification βX ,
and relate it with the character of the diagonal ∆X in the product X×X . The
straightforward proof of the next lemma is left to the reader.

Lemma 2.15. Let bX be an arbitrary compactification of a Tychonoff space

X. Then χ(X, bX) = χ(X, βX).

The following result generalizes Corollary 15 of [12].

Lemma 2.16. If a space X is paracompact, then χ(X, βX) ≤ χ∆(X).

Proof. Let B be a base for the diagonal ∆X in X2 such that |B| = χ∆(X). For
every U ∈ B, choose an open cover γ = γU of X such that

⋃
{V × V : V ∈ γ} ⊆ U.

For every open set V in X , put Ṽ = βX \ clβX(X \ V ). It is clear that Ṽ

is open in βX and Ṽ ∩ X = V . In particular, V is dense in Ṽ , and hence

Ṽ ⊆ clβX(V ). If U ∈ B, consider the family γ̃U = {Ṽ : V ∈ γU} and the set
WU =

⋃
γ̃U . Then WU is open in βX and X ⊆WU for each U ∈ B. We claim

that the family λ = {WU : U ∈ B} is a base for X in βX .
Let W be an arbitrary open neighborhood of X in βX . Put F = βX \W

and consider the closed subset P = X × F of X × βX . Denote by ∆βX the
diagonal in (βX)2. Evidently, ∆X = (X × βX) ∩ ∆βX is closed in X × βX
and P ∩∆X = ∅. Since the product X × βX is normal (see [3, Th. 5.1.38]),
we can find disjoint open sets O and O′ in X × βX such that ∆X ⊆ O and
P ⊆ O′. Then there exists U ∈ B such that U ⊆ O ∩ (X × X). Take an
arbitrary element V ∈ γU and pick a point x ∈ V . Since V × V ⊆ U ⊆ O, we
have {x}×V ⊆ O, and hence {x}× clβX(V ) ⊆ clX×βX(O). By our choice, the
sets O and O′ are disjoint and P = X ×F ⊆ O′. Therefore, clβX(V )∩F = ∅.

Since Ṽ ⊆ clβX(V ) and F = βX \W , we conclude that Ṽ ⊆W . This inclusion
holds for each V ∈ γU , so WU =

⋃
γ̃U ⊆W . This proves our claim.

Finally, from our definition of λ it follows follows that |λ| ≤ |B|, and hence
χ(X, βX) ≤ χ∆(X). �

Let X be a paracompact space. Then every open neighborhood of the di-
agonal ∆X in X2 belongs to the fine uniformity U on X . This implies, in
our notation, that w(X,U) = χ∆(X). Since the free abelian topological group
onX is precisely the free abelian topological group on the uniform space (X,U),
Corollary 2.11 of [11] implies the following result.

Corollary 2.17. Let X be a paracompact space. Then χ∆(X) ≤ χ(A(X)).

By Corollary 2.4, the character of the groups F (X) and A(X) on every
infinite compact metrizable space X is equal to the cardinal d, which is consis-
tently less than c (see [2, 15]). The equalities χ(F (X)) = χ(A(X)) = d remain
valid for every non-discrete Polish space X (see Corollary 2.12). In the general
case, the situation is different.
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Example 2.18. There exists a zero-dimensional separable metric spaceX such
that the groups F (X) and A(X) both have character equal to c.

Indeed, let X and Y be disjoint Bernstein subsets of the real line R such that
R = X ∪ Y and |X | = |Y | = c. Then compact subsets of X and Y are at most
countable and both X and Y are dense in R. Hence X is a zero-dimensional
separable metric space. Clearly, the groups F (X) and A(X) are also separable,
so their respective characters do not exceed c. Since χ(A(X)) = χ(F (X)), by
Corollary 2.3, it suffices to verify that χ(A(X)) = c.

Denote by Z the one-point compactification of R. Then Z is also a com-
pactification of X . Therefore, χ(X,Z) = χ(X, βX) ≤ χ∆(X), by Lemmas 2.15
and 2.16. Since Y is a Bernstein subset of R, we have |R \ U | ≤ ℵ0 for every
open set U in R containing X . In addition, the cardinality of Y is equal to c,
so we have

c ≤ ψ(X,R) = ψ(X,Z) ≤ χ(X,Z) ≤ χ∆(X),

where we use ψ to denote the pseudocharacter. This chain of inequalities and
Corollary 2.17 enable us to conclude that

c ≤ χ∆(X) ≤ χ(A(X)) ≤ c.

Thus we have χ(F (X)) = χ(A(X)) = c.

It may be worth remarking that if U ′ is the natural metric uniformity
on X inherited from R, then (X,U ′) is an ω-narrow uniform space of count-
ably infinite weight, and Theorem 2.1 together with Corollary 2.3 imply that
χ(F (X,U ′)) = χ(A(X,U ′)) = d.

3. Free groups on compact spaces

Let X be a compact Hausdorff space. Then by combining Corollary 2.12
of [11] and our Corollary 2.3, we obtain the inequality

w(X) ≤ χ(A(X)) = χ(F (X)) ≤ w(X)ℵ0 ,

which constitutes one of the main facts about the characters of the free groups
on compact Hausdorff spaces derived in [11].

In this section, we apply different methods to derive a great deal more de-
tailed information about these characters. As just noted, the difference between
F (X) and A(X) mentioned in Example 2.8 disappears in the case when X is
compact. In fact, we will show that the character of these groups depends only
on the weight of X in the compact case. Our proof of this fact requires several
auxiliary results. First, we recall some definitions and notation used in [11].

A pair (P,≤) is a quasi-ordered set if ≤ is a reflexive transitive relation on
the set P . If (P,≤) has the additional property of antisymmetry, then it is
a partially ordered set. A set D ⊆ P is called dominating or cofinal in the
quasi-ordered set (P,≤) if for every p ∈ P there exists q ∈ D such that p ≤ q.
Similarly, a subset E of P is said to be dense in (P,≤) if for every p ∈ P there
exists q ∈ E with q ≤ p. The minimal cardinality of a dominating family in
(P,≤) is denoted by D(P,≤) while we use d(P,≤) for the minimal cardinality
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of a dense set in (P,≤). The notions of dominating and dense sets are dual:
if a set S is dense in (P,≤), then it is dominating in (P,≥) and vice versa.
Therefore, d(P,≤) = D(P,≥) and D(P,≤) = d(P,≥).

For a space X , denote by MX the family of all continuous mappings of X
onto separable metrizable spaces. Equivalently, since every separable metriz-
able space is homeomorphic to a subspace of Iω, where I = [0, 1], we can
consider MX as a family of continuous mappings of X to Iω. If f : X → Y
and g : X → Z are elements of MX , we say that f refines g or, in symbols,
f ≺ g if there exists a continuous mapping ϕ : Y → Z such that g = ϕ◦f . Also,
following [11], denote by PX the family of all continuous pseudometrics on the
space X bounded by 1. For d1, d2 ∈ PX , we write d1 ≤ d2 if d1(x, y) ≤ d2(x, y)
for all x, y ∈ X . This gives us the quasi-ordered set (MX ,≺) and the partially
ordered set (PX ,≤).

Lemma 3.1. The equality D(PX ,≤) = d · d(MX ,≺) is valid for every infinite

compact Hausdorff space X.

Proof. By Corollary 2.4 of [11] and our Corollary 2.2, we have D(PY ,≤) =
χ(A(Y )) ≤ d for every compact metrizable space Y . Let d be a continu-
ous pseudometric on a given compact space X , with d ≤ 1. There exists a
continuous mapping f : X → Y onto a compact metrizable space Y and a
continuous metric ̺ on Y such that d(x, y) = ̺(f(x), f(y)) for all x, y ∈ X .
Since D(PY ,≤) ≤ d, we can find a dominating family Df in (PY ,≤) satisfying
|Df | ≤ d. For every κ ∈ Df , define a continuous pseudometric κ̃ on X by

κ̃(x, y) = κ(f(x), f(y)) for all x, y ∈ X . Then D̃f = {κ̃ : κ ∈ Df} ⊆ PX

for each f ∈ MX . Let N be a dense subset of (MX ,≺) satisfying |N | =

d(MX ,≺). It is easy to see that the family D =
⋃
{D̃f : f ∈ N} is dominating

in (PX ,≤), so that D(PX ,≤) ≤ |D| ≤ d · |N | = d · d(MX ,≺).
Conversely, let D be a dominating family in PX such that |D| = D(PX ,≤).

Since X is compact, for every d ∈ D we can find a continuous mapping f = fd
of X onto a compact metrizable space Y and a continuous metric ̺ on Y such
that d(x, y) = ̺(f(x), f(y)) for all x, y ∈ X . Then the set {fd : d ∈ D}
is dense in (MX ,≺). Indeed, let g ∈ MX be arbitrary. Then the image
Z = g(X) is a compact metrizable space. Choose a metric ̺ ∈ PZ which
generates the topology of Z and define a continuous pseudometric ˜̺ on X
by ˜̺(x, y) = ̺(g(x), g(y)) for all x, y ∈ X . Clearly ˜̺ ∈ PX , so there exists
d ∈ D such that ˜̺ ≤ d. An easy verification shows that fd ≺ g, and hence
the family {fd : d ∈ D} is dense in (MX ,≺). We conclude therefore that
d(MX ,≺) ≤ |D| = D(PX ,≤).

Finally, since d ≤ χ(A(X)) = D(PX ,≤) by Corollaries 2.4 and 2.18 of [11],
we apply the inequalities just proved to deduce that

D(PX ,≤) ≤ d · d(MX ,≺) ≤ d ·D(PX ,≤) = D(PX ,≤),

which implies the required equality. �

Now we present a theorem which summarizes several results established
earlier.
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Theorem 3.2. d ≤ χ(A(X)) = χ(F (X)) = D(PX ,≤) = d · d(MX ,≺) for

every infinite compact space X.

Proof. Combining Corollaries 2.4 and 2.18 of [11] and Lemma 3.1 of the present
paper, we obtain

d ≤ χ(A(X)) = D(PX ,≤) = d · d(MX ,≺).

Since χ(A(X)) = χ(F (X)) by Corollary 2.3, this proves the theorem. �

On occasion, the exact calculation of D(PX ,≤) or d(MX ,≺) for a compact
space X can be a non-trivial task. In Theorem 3.5, we give an explicit value
for the character of the groups F (X) and A(X) on an infinite compact space
X which avoids any reference to the quasi-ordered sets (PX ,≤) or (MX ,≺).
Nevertheless, our proof of Theorem 3.5 will involve the set (MX ,≺) in an
essential way, as well as the family CZ(X) of all cozero-sets in X . As usual,
we denote by [CZ(X)]≤ω the collection of all countable subfamilies of CZ(X).
Given γ, λ ∈ [CZ(X)]≤ω, we write γ ≪ λ if every element of λ is the union of
a subfamily of γ. This gives rise to the quasi-ordered set ([CZ(X)]≤ω,≪).

Lemma 3.3. If X is compact Hausdorff, then d([CZ(X)]≤ω ,≪) = d(MX ,≺).

Proof. If w(X) ≤ ℵ0, then X is metrizable, so that d([CZ(X)]≤ω ,≪) = 1 =
d(MX ,≺). Suppose therefore that w(X) > ℵ0.

For every U ∈ CZ(X), fix a continuous function fU : X → I such that
X \ U = f−1

U (0). Given a countably infinite subfamily γ = {Un : n ∈ ω} of
CZ(X), we consider the corresponding diagonal product fγ = △n∈ωfUn

: X →
Iω. We also consider the analogously defined diagonal product into Ik for
some k ∈ N corresponding to any given finite subfamily of CZ(X). This
correspondence defines a mapping Φ from [CZ(X)]≤ω to MX , where Φ is
defined by Φ(γ) = fγ , if we agree to restrict the range space of fγ to fγ(X).
Choose a dense set Γ in ([CZ(X)]≤ω,≪) of the minimal cardinality. We claim
that the image Φ(Γ) is dense in the quasi-ordered set (MX ,≺).

Indeed, let g be a continuous mapping of X onto a second countable space Y .
Choose a countable base B for Y and put λ = {g−1(V ) : V ∈ B}. Then
λ ∈ [CZ(X)]≤ω, so we can find γ ∈ Γ with γ ≪ λ. Let us show that fγ = Φ(γ)
satisfies fγ ≺ g. Suppose that x, y ∈ X and g(x) 6= g(y). Then g(x) ∈ V 6∋ g(y)
for some V ∈ B. Since x ∈ g−1(V ) ∈ λ and γ ≪ λ, there exists U ∈ γ such
that x ∈ U ⊆ g−1(V ). Then y /∈ U . Clearly fU (x) 6= fU (y), and from
U ∈ γ it follows that fγ(x) 6= fγ(y). Therefore, fγ(x) = fγ(y) always implies
g(x) = g(y). This fact enables us to define a mapping h : fγ(X) → Y such that
g = h ◦ fγ . Since g, fγ are continuous mappings and fγ is closed, we conclude
that h is also continuous. Hence fγ ≺ g. This proves our claim, and hence
d(MX ,≺) ≤ |Φ(Γ)| ≤ |Γ| = d([CZ(X)]≤ω ,≪).

Conversely, let N be a dense set in (MX ,≺) of the minimal cardinality.
Choose a countable base B for Iω and put γf = {f−1(V ) : V ∈ B} for each f ∈
MX . Evidently, γf ∈ [CZ(X)]≤ω. Let us verify that the set Γ = {γf : f ∈ N}
is dense in ([CZ(X)]≤ω,≪). Consider an arbitrary element λ = {Un : n ∈ ω}
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of [CZ(X)]≤ω. As in the first part of the proof, for every n ∈ ω take the
function gn = fUn

and put g = △n∈ωgn. By our choice of N , there exists
f ∈ N with f ≺ g. Then f ≺ gn, and hence Un = f−1f(Un) for each n ∈ ω.
Since f is a closed mapping, the sets f(Un) are open in f(X). For n ∈ ω,
apply the fact that B is a base for Iω to choose a family µn ⊆ B such that
f(Un) = f(X)∩

⋃
µn. It follows that Un = f−1f(Un) =

⋃
{f−1(V ) : V ∈ µn},

and since {f−1(V ) : V ∈ µn} ⊆ γf for each n ∈ ω, we conclude that γf ≪ λ.
This proves that Γ is dense in ([CZ(X)]≤ω,≪), whence d([CZ(X)]≤ω,≪) ≤

|Γ| ≤ |N | = d(MX ,≺). The lemma is proved. �

The use of the quasi-ordered set ([CZ(X)]≤ω,≪) enables us to calculate the
character of the group F (X) on a compact space X in purely set-theoretical
terms. The result of this calculation turns out to be somewhat unexpected:
χ(F (X)) = χ(F (Y )) whenever the compact spaces X and Y have the same
weight (see Corollary 3.6).

Let τ be an infinite cardinal. A subset Y = {xα : α < τ} of a space X is
called right-separated [7] if the set {xβ : β < α} is open in Y for each α < τ .
The next fact is well known in the folklore, but is proved here for the reader’s
convenience.

Lemma 3.4. If X is compact, then X2 contains a right-separated subset of

cardinality τ = w(X).

Proof. Denote by ∆ the diagonal in X × X . Then χ∆(X) = χ(∆, X2) =
w(X) = τ . Let γ be an open cover of X2 \ ∆ such that the closure of each
U ∈ γ does not intersect ∆. Since ψ(∆, X2) = χ(∆, X2) = τ , the set X2 \∆
cannot be covered by less than τ elements of γ. Therefore, we can construct by
recursion a subset Y = {xα : α < τ} of X2 \∆ and a subfamily {Uα : α < τ}
of γ such that xα ∈ Uα and xβ /∈ Uα whenever α < β < τ . Then the set Y is
as required. �

Theorem 3.5. If X is an infinite compact space of weight τ , then χ(F (X)) =
χ(A(X)) = d ·D([τ ]≤ω ,⊆).

Proof. Note that D([ω]≤ω,⊆) = 1, so if w(X) = ℵ0, the required conclusion
follows from Corollary 2.4. Hence we assume that w(X) = τ > ℵ0.

Put κ = D([τ ]≤ω ,⊆). First we show that χ(F (X)) ≤ d ·κ. Let 2 = {0, 1} be
the discrete doubleton. Since w(X) = τ , we can find a closed subspace Y of the
Cantor cube Z = 2τ and a continuous onto mapping f : Y → X . Extend f to a

continuous homomorphism f̂ : F (Y ) → F (X). Since f is a closed mapping, the

homomorphism f̂ is open. Therefore, χ(F (X)) ≤ χ(F (Y )). In addition, Y is
compact, so F (Y ) is topologically isomorphic to the subgroup F (Y, Z) of F (Z)
generated by Y [4, §12], and hence χ(F (Y )) ≤ χ(F (Z)). From Theorem 3.2 it
follows that χ(F (Z)) = d·d(MZ ,≺), so it suffices to verify that d(MZ ,≺) ≤ κ.

For a non-empty A ⊆ τ , denote by πA the projection of Z = 2τ onto
2A. As is well known, every continuous mapping h : Z → M to a metrizable
spaceM depends on at most countably many coordinates [9, 6]. In other words,
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there exists a countable set A ⊆ τ such that if x, y ∈ Z and πA(x) = πA(y),
then h(x) = h(y). Hence we can define a mapping g : 2A → M satisfying
g ◦ πA = h. Since πA is an open mapping, we conclude that g is continuous.
Therefore, πA ≺ h. This means that the family {πA : A ∈ [τ ]≤ω} is dense
in (MZ ,≺). It is clear, further, that if a set A ⊆ [τ ]≤ω is dominating in
([τ ]≤ω ,⊆), then the family {πA : A ∈ A} is dense in (MZ ,≺). This proves
that d(MZ ,≺) ≤ D([τ ]≤ω ,⊆) = κ, so that χ(F (X)) ≤ χ(F (Z)) ≤ d · κ.

To show that χ(F (X)) ≥ d·κ, we argue as follows. The group F (X) contains
a closed subspace homeomorphic to X2, so F (X) also contains a subgroup
topologically isomorphic to F (X2) [8]. Hence χ(F (X2)) ≤ χ(F (X)). Put
Y = X2. Then χ(F (Y )) = d·d([CZ(Y )]≤ω ,≪) by Theorem 3.2 and Lemma 3.3.
Therefore, all we need to prove is that d([CZ(Y )]≤ω ,≪) ≥ κ.

Let D be a dense set in ([CZ(Y )]≤ω ,≪) of the minimal cardinality. It
follows from Lemma 3.4 that the space Y = X2 contains a right-separated
subset {xα : α < τ}. For every α < τ , choose a cozero set Uα in Y such that
xα ∈ Uα and xβ /∈ Uα if α < β < τ . If U is a non-empty element of CZ(Y ),
we define αU as the maximal element of the set {β < τ : xβ ∈ U} in the
case when it exists, and αU = 0 otherwise. Given a countable subfamily µ of
CZ(Y ), put Aµ = {αU : U ∈ µ}. We claim that the family A = {Aµ : µ ∈ D}
is dominating in ([τ ]≤ω ,⊆). Indeed, let A be a countable subset of τ . Then
γ = {Uα : α ∈ A} is an element of [CZ(Y )]≤ω , so there exists µ ∈ D such
that µ≪ γ. By definition of the quasi-order ≪, for every α ∈ A there exists a
subfamily µα ⊆ µ such that Uα =

⋃
µα. Hence µα contains an element V such

that xα ∈ V ⊆ Uα. In particular, α = αV , so that A ⊆ Aµ. This proves that
A is dominating in ([τ ]≤ω ,⊆). Therefore, we have

κ = D([τ ]≤ω ,⊆) ≤ |A| ≤ |D| = d([CZ(Y )]≤ω,≪).

This finishes the proof. �

Corollary 3.6. If infinite compact spaces X and Y satisfy w(X) = w(Y ), then
χ(A(X)) = χ(F (X)) = χ(F (Y )) = χ(A(Y )).

Proof. Let G(Z) be either A(Z) or F (Z), where Z ∈ {X,Y }. If w(X) =
w(Y ) = ℵ0, then χ(G(X)) = d = χ(G(Y )) by Corollary 2.4. If w(X) =
w(Y ) = τ > ℵ0, then we apply Theorem 3.5 to conclude that χ(G(X)) =
χ(G(Y )) = d ·D([τ ]≤ω ,⊆). �

Finally, one applies Lemma 4.1 of the next section and Theorem 3.5 to
deduce the following two corollaries.

Corollary 3.7. Let X be an infinite compact space satisfying w(X) < ℵω.

Then χ(A(X)) = χ(F (X)) = d · w(X).

Corollary 3.8. If a compact space X satisfies w(X) ≥ c, then χ(A(X)) =
χ(F (X)) = w(X)ℵ0 .

It is worth noting that if X and Y are infinite compact spaces satisfying
w(X) = ℵ0 and w(Y ) = ℵ1, then nevertheless χ(F (X)) = χ(F (Y )) = d. This
follows easily from Corollary 3.7 and the fact that d ≥ ℵ1.



54 P. Nickolas and M. Tkachenko

4. The possible values of the character

It is of interest to discover which cardinal values the characters of free and
free abelian topological groups can assume. By Corollary 2.16 of [11], we know
that the character of the groups F (X) and A(X) on a non-P -space X is at
least d. As usual, we say that X is a P -space if every Gδ-set in X is open. One
can enquire whether there exists in ZFC a space X such that χ(A(X)) = ℵ1 or
χ(A(X)) = ℵ2, etc. We show below that the answer is affirmative. Since the
place of the cardinal d in the line of alephs is undefined in ZFC, such a space X
has necessarily to be a P -space.

We start with a simple auxiliary fact, the very beginning of the pcf theory
founded by Shelah [13].

Lemma 4.1. Let τ be a cardinal. Then:

(a) D([τ ]≤ω ,⊆) = τ if τ = ℵn for some integer n ≥ 1;
(b) If τ ≥ c, then D([τ ]≤ω ,⊆) = τω.

Proof. First we note that τ ≤ D([τ ]≤ω ,⊆) for every τ > ℵ0, because τ can
be partitioned into τ disjoint countably infinite subsets, and these cannot be
covered by any collection of fewer than τ countable subsets.

(a) It suffices to show that D([ℵn]
≤ω,⊆) ≤ ℵn. If n = 1, then the required

dominating family in ([ℵ1]
≤ω,⊆) is {α : α < ω1}. Suppose that the lemma

holds for some integer n ≥ 1. By assumption, for every uncountable ordinal
α < ℵn+1 there exists a dominating family γα in ([α]≤ω ,⊆) satisfying |γα| =
|α| ≤ ℵn. Put γ =

⋃
{γα : ω1 ≤ α < ℵn+1}. Then |γ| ≤ ℵn+1, and it is

easy to see that γ is dominating in ([ℵn+1]
≤ω,⊆). Indeed, if A is a countable

subset of ℵn+1, then A ⊆ α for some uncountable α < ℵn+1, and hence there
exists B ∈ γα with A ⊆ B. Since γα ⊆ γ, this proves that γ is dominating in
([ℵn+1]

≤ω,⊆). Therefore, D([ℵn+1]
≤ω,⊆) ≤ ℵn+1.

(b) The case τ = c is trivial, so we assume that τ > c. Suppose that
γ = {ti : i ∈ I} is a dominating subset of ([τ ]≤ω ,⊆) of the minimal cardinality.
It is clear that the number of elements t of [τ ]≤ω such that t ⊆ ti for any fixed
i ∈ I is at most c, and that the cardinality of [τ ]≤ω is τω. Therefore, we have
the inequality τω ≤ c · |I|. But using the assumption that τ > c, we have
τω ≥ τ > c, and hence c < c · |I|. It follows that |I| > c, and therefore that
c · |I| = |I|, from which we have |I| ≥ τω. Since we know already that |I| ≤ τω ,
we finally have |I| = τω , as required. �

Proposition 4.2. Let P ∗ be the one-point Lindelöfication of a discrete space P
of cardinality τ > ℵ0. Then χ(F (P ∗)) = χ(A(P ∗)) = D([τ ]≤ω ,⊆).

Proof. Put κ = D([P ]≤ω ,⊆) = D([τ ]≤ω ,⊆). Suppose that P ∗ = P ∪ {x∗},
where x∗ is the unique non-isolated point in P ∗. First, we consider the group
F (P ∗). For every countable subset K of P , denote by UK the minimal normal
subgroup of F (P ∗) containing the set P ∗ \K. By Lemma 2.9 of [5], the family
{UK : K ∈ [P ]≤ω} is a base at the identity in F (P ∗). Note that if K,L ∈ [P ]≤ω

and K ⊆ L, then UL ⊆ UK . Choose a dominating family γ in ([P ]≤ω,⊆) with



The character of free topological groups II 55

|γ| = κ. Then {UK : K ∈ γ} is again a base at the identity in F (P ∗),
and hence χ(F (P ∗)) ≤ |γ| = κ. In addition, P ∗ is a subspace of F (P ∗),
so κ = D([P ]≤ω,⊆)) = χ(x∗, P ∗) ≤ χ(F (P ∗)). We have thus proved that
χ(F (P ∗)) = κ. Since the Lindelöf space P ∗ is ω-narrow, Corollary 2.3 implies
that χ(A(P ∗)) = κ. �

Combining Lemma 4.1 and Proposition 4.2, we obtain:

Corollary 4.3. Let P ∗ be the one-point Lindelöfication of a discrete space P
of cardinality τ > ℵ0. Then χ(F (P ∗)) = χ(A(P ∗)) = τ if ℵ1 ≤ τ < ℵω, and

χ(F (P ∗)) = χ(A(P ∗)) = τω if τ ≥ c.

Note that it follows in particular that when the (uncountable) cardinality of
a discrete space P is sufficiently small, then it is consistent with ZFC that P ∗,
the one-point Lindelöfication of P , satisfies χ(F (P ∗)) = τ < τω , but that the
situation differs markedly if P has sufficiently large cardinality.
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