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Abstract. We present an example of a compact Hausdorff self
T1-complementary space without isolated points. This answers Ques-
tion 3.11 from [A compact Hausdorff topology that is a T1-complement
of itself, Fund. Math. 175 (2002), 163–173] affirmatively.
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1. Introduction

We deal with the concept of complementarity in the lattice of T1-topologies
on a given infinite set. Two elements a, b of an abstract lattice {L,∨,∧,0,1}
with the smallest and greatest elements 0 and 1, respectively, are called com-

plementary if a ∨ b = 1 and a ∧ b = 0. Birkhoff noted in [1] that the family
L(X) of all topologies on a nonempty set X becomes a lattice when the infi-
mum τ1 ∧ τ2 of τ1, τ2 ∈ L(X) is defined to be the intersection τ1 ∩ τ2 and the
supremum τ1 ∨ τ2 is the topology on X with the subbase τ1 ∪ τ2. Clearly, the
smallest element 0 of L(X) is the coarsest topology {∅, X}, while the greatest
element 1 of L(X) is the discrete topology of X .

In the case of the lattice L1(X) of all T1-topologies on X , the smallest
element 0 of L1(X) is the cofinite topology

cfin(X) = {∅} ∪ {X \ F : F ⊆ X, F is finite}.

Therefore, two topologies τ1, τ2 ∈ L1(X) are complementary in L1(X) if τ1 ∩
τ2 = cfin(X) and τ1 ∪ τ2 is a subbase for the discrete topology on X . It is said
that τ1 and τ2 are T1-complementary in this case.

The study of complementarity in L1(X) was initiated by A. Steiner and
E. Steiner in [6, 8, 7]. Later on, S. Watson used an elaborated combinatorics in
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[10] to prove that a set X of cardinality c
+, where c = 2ω, admits a Tychonoff

self T1-complementary topology τ . Self T1-complementarity of τ means that
there exists a bijection f of X onto itself such that the topologies τ and σ =
{f−1(U) : U ∈ τ} are T1-complementary.

In [4], D. Shakhmatov and the author applied a recursive construction to
show that the Alexandroff duplicate A(βω \ ω) of βω \ ω is a T1-complement
of itself. A(βω \ ω) was the first example of an infinite compact Hausdorff
space with this property. It is clear that |A(βω \ ω)| = 2c > c, which looks
quite similar to the cardinality of Watson’s self T1-complementary space in
[10]. The necessity of working with topologies on big sets was explained in [4,
Corollary 3.6]—the existence of a compact Hausdorff self T1-complementary
space of cardinality less than or equal to c is independent of ZFC.

The concept of T1-complementarity of topologies is naturally split into trans-

versality and T1-independence. Following [5, 9], we say that topologies τ1, τ2 ∈
L1(X) are transversal if τ1 ∨ τ2 is the discrete topology, and T1-independent if
τ1∧τ2 is the cofinite topology on X . In addition, if the topologies τ1 and τ2 are
homeomorphic (i.e., τ2 is obtained from τ1 by means of a bijection of X), we
come to the notions of self-transversality and self T1-independence, respectively.

A usual way to produce self-transversal topologies is to work with a space
that has many isolated points. Indeed, suppose that X is a space with topology
τ , Y ⊆ X , |Y | = |X | = |X \Y |, and each point of Y is isolated in X . Take any
bijection f : X → X such that f(X \ Y ) = Y and put

σ = {f−1(U) : U ∈ τ}.

It is easy to see that every point of X is isolated either in τ or in σ, so τ ∨ σ is
the discrete topology on X . In other words, the space (X, τ) is self-transversal.
This approach was also adopted in [4, Corollary 3.8] to show that the compact
space A(βω \ ω) is self-transversal (as a part of the proof that the space is self
T1-complementary). This explains Question 3.11 from [4]: Does there exist a

self T1-complementary compact Hausdorff space without isolated points?

Theorem 2.1 answers this question in the affirmative. Our space (or, better
to say, a series of spaces) is A(βω \ ω) × Y , where Y is any dense-in-itself
compact Hausdorff space of cardinality c. It is worth mentioning that the idea
of the proof of Theorem 2.1 is a natural refinement of the arguments in [4] and
[2]. Taking Y to be the closed unit interval or the Cantor set, we obtain in ZFC
an example of a compact Hausdorff space without isolated points which is a
T1-complement of itself (see Corollary 2.2). Further, assuming that 2ℵ1 = c and
taking Y = {0, 1}ω1, we get an example of a compact Hausdorff space without
points of countable character which is again a T1-complement of itself (see
Corollary 2.3). We finish the article with three open problems about possible
cardinalities of compact Hausdorff self T1-complementary spaces.

2. The Alexandroff duplicate of βω \ ω and products

In what follows K denotes βω \ ω, the remainder of the Čech–Stone com-
pactification of the countable discrete space ω. It is clear that every nonempty



Compact T1-complementary spaces without isolated points 271

open subset of K has cardinality 2c. We will also use the fact that K contains
a pairwise disjoint family λ of open sets such that |λ| = c.

The Alexandroff duplicate of K is A(K). It is easy to verify that every
infinite closed subset of A(K) has cardinality 2c. The reader can find a detailed
discussion of the properties of A(X), for an arbitrary space X , in [3].

Theorem 2.1. For every compact Hausdorff space Y with |Y | ≤ c, the product

space A(K) × Y is self T1-complementary.

Proof. Let Z = A(K) × Y . Let also τ be the product topology of Z. By
recursion of length κ = 2c we will construct a bijection f : Z → Z such that

(1) f ◦ f = idZ ;
(2) the topology σ = {f(U) : U ∈ τ} is T1-complementary to τ .

Let K∗ = A(K) \ K. One of the main ideas of our construction is to use
open fibers {x} × Y ⊆ Z, with x ∈ K∗, to guarantee that each point z ∈ Z
will be isolated in (Z, τ ∨ σ). More precisely, we will construct the bijection f
to satisfy the following additional conditions:

(3) f(K × Y ) = K∗ × Y ;
(4) for every x ∈ K∗, the image f({x} × Y ) is a discrete subset of K × Y .

Let us show first that every bijection f satisfying conditions (1), (3), and (4)
produces the topology σ = f(τ) transversal to τ . Indeed, let π : A(K) × Y →
A(K) be the projection. Take a point z ∈ Z such that x = π(z) ∈ K∗. Clearly,
z ∈ {x}×Y and, by (4), f({x}×Y ) is a discrete subset of K ×Y . Hence there
exists an open set U in Z such that

(∗) {f(z)} = U ∩ f({x} × Y ).

Since the point x is isolated in A(K), the set {x} × Y is τ -open in A(K) × Y .
Hence (∗) implies that f(z) is an isolated point of the space (Z, τ ∨σ). Further,
it follows from (1) and (3) that K × Y = f(K∗ × Y ), and we conclude that
every point of K × Y is isolated in (Z, τ ∨ σ). Applying f to both parts of (∗)
and taking into account (1), we obtain the equality {z} = f(U) ∩ ({x} × Y ).
This means that every point of K∗ × Y is isolated in (Z, τ ∨ σ). We have thus
proved that the topology τ ∨ σ is discrete, i.e., τ and σ are transversal.

To guarantee the T1-independence of τ and σ is a more difficult task. We
can reformulate the latter relation between τ and σ by saying that f(F ) is not
τ -closed in Z, for every proper infinite τ -closed set F ⊆ Z. Let us describe the
recursive construction of the bijection f in detail. In what follows the space Z
always carries the topology τ unless the otherwise is specified.

We start with three observations that will be used in our construction of f .
The first and the third of them are evident.

Fact 1. If B is an infinite subset of A(K), then the set B ∩K has cardinality

κ = 2c, where B is the closure of B in A(K).

Fact 2. If C ⊆ Z and the set π(C) is infinite, then the projection π(C∩(K×Y ))
has cardinality κ, where C is the closure of C in Z.
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Indeed, since the projection π is a closed mapping, we have the equality
π(C) = π(C). It follows from |π(C)| ≥ ω and Fact 1 that the set π(C)∩K has
cardinality κ. Again, since the mapping π is closed, we see that π−1(x)∩C 6= ∅

for each x ∈ π(C) ∩ K. Hence |π(C ∩ (K × Y ))| = κ.

Fact 3. If U is open in Z and U ∩ (K × Y ) 6= ∅, then |U \ (K × Y )| = κ.

It is clear that χ(K) ≤ w(K) = c, χ(A(K)) = χ(K) ≤ c, and w(Y ) ≤ |Y | ≤
c. Therefore, χ(z, Z) ≤ c for every z ∈ Z. Since |K × Y | = |K| = κ, there
exists a base B for K × Y in Z with |B| ≤ κ. In other words, B is a family
of open sets in Z with the property that for every z ∈ K × Y and every open
neighbourhood O of z in Z, there exists U ∈ B such that z ∈ U ⊆ O. Clearly,
we can assume that U ∩ (K × Y ) 6= ∅ for each U ∈ B. Since κ = κω, we see
that |[Z]ω × B| = κ, where [Z]ω denotes the family of all countably infinite
subsets of Z. Let {(Cα, Uα) : α < κ} be an enumeration of the set [Z]ω × B
such that for every pair (C, U) ∈ [Z]ω ×B, the set {α < κ : (C, U) = (Cα, Uα)}
is cofinal in κ.

Let {zα : α < κ} be a faithful enumeration of Z. By recursion on α < κ we
will construct sets Zα ⊆ Z and mappings fα : Zα → Zα satisfying the following
conditions:

(iα) |Zα| ≤ |α| · c;
(iiα) if γ < α, then Zγ ⊆ Zα;
(iiiα) zα ∈ Zα+1;
(ivα) fα is a bijection of Zα onto itself and fα ◦ fα = idZα

;
(vα) if γ < α, then fα↾Zγ

= fγ ;
(viα) if z′, z′′ ∈ Zα, π(z′) = π(z′′), and z′ 6= z′′, then π(fα(z′)) 6= π(fα(z′′));

(viiα) fα+1(Uα∩Zα+1)∩fα+1(Cα ∩ Zα+1) 6= ∅ provided that the set πfα(Cα∩
Zα) is infinite;

(viiiα) π−1(x) ⊆ Zα for each x ∈ π(Zα) ∩ K∗;
(ixα) if x ∈ π(Zα) ∩ K∗, then fα({x} × Y ) is a discrete subset of K × Y ;
(xα) fα(Zα ∩ (K × Y )) ⊆ K∗ × Y .

Put Z0 = ∅ and f0 = ∅. Clearly, Z0 and f0 satisfy (i0)–(x0). Let α < κ,
and suppose that a set Zβ ⊆ Z and a mapping fβ of Zβ to itself satisfying
conditions (iβ)–(xβ) have already been defined for all β < α. If α > 0 is limit,
we put Zα =

⋃
{Zβ : β < α} and fα =

⋃
{fβ : β < α}. Then the subset Zα of

Z and the mapping fα : Zα → Zα satisfy (iα)–(xα), except for (iiiα) and (viiα)
which are valid for all β < α.

Suppose now that α = γ+1. Let Z ′
γ = Zγ∪{zγ}. Since Uγ∩(K×Y ) 6= ∅, the

cardinality of the set Uγ\(K×Y ) is κ by Fact 3. It follows from |Z ′

γ | ≤ |Zγ |+1 ≤

|γ+1|·c < κ and |π−1π(Z ′

γ)| ≤ |Z ′

γ |·|Y | < κ that |(Uγ\(K×Y ))\π−1π(Z ′

γ)| = κ.

Therefore, we can pick a point sα ∈ Uγ \ π−1(K ∪ π(Z ′
γ)).

If πfγ(Cγ ∩ Zγ) is infinite, then fγ(Cγ ∩ Zγ) ∩ (K × Y ) is a closed subset
of Z whose projection to A(K) has cardinality κ by Fact 2. We then use the

inequalities |Z ′

γ | < κ and |Y | ≤ c to pick a point tα ∈ (K × Y )∩ fγ(Cγ ∩ Zγ) \
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π−1π(Z ′

γ). Otherwise pick an arbitrary point tα ∈ π−1(K \π(Z ′

γ)); again, such
a point exists because |π(Z ′

γ)| ≤ |Z ′
γ | < κ = |K|. In either case, tα ∈ K × Y .

Suppose that zγ = (xγ , yγ), sα = (x′

α, y′

α), and tα = (x′′

α, y′′

α). Notice that
x′

α ∈ K∗ \ π(Z ′
γ) and x′′

α ∈ K \ π(Z ′
γ). To define Zα, we consider the following

possible cases.

Case 1. zγ ∈ Zγ . Then Z ′

γ = Zγ and we choose a discrete set Dα ⊆ K × {y′′

α}
such that tα ∈ Dα, π(Dα) ∩ π(Zγ) = ∅, and |Dα| = |Y |. This is possible since
x′′

α = π(tα) /∈ π(Zγ) and K contains c pairwise disjoint nonempty open sets,
each of cardinality κ. Put

Zα = Zγ ∪ Dα ∪ ({x′

α} × Y ).

It follows from the definition that {zγ, sα, tα} ⊆ Zα. Since the sets Dα, {x′
α}×

Y , and Zγ are pairwise disjoint, there exists an idempotent bijection fα of Zα

onto itself such that fα extends fγ , fα({x′
α} × Y ) = Dα, and fα(sα) = tα.

Case 2. zγ /∈ Zγ . Again, we split this case into two subcases.

Case 2.1. zγ ∈ K × Y , i.e., xγ ∈ K. Then we choose a discrete subset Dα of
K × Y such that {zγ , tα} ⊆ Dα, Dα ∩ Zγ = ∅, the restriction of π to Dα is
one-to-one, and |Dα| = |Y |. Again, this is possible since neither zγ nor tα is in
Zγ and, by the choice of tα, xγ = π(zγ) 6= π(tα) = x′′

α. As in Case 1, we put

Zα = Zγ ∪ Dα ∪ ({x′

α} × Y ).

Then {zγ , sα, tα} ⊆ Zα. Since the sets Dα, {x′

α} × Y , and Zγ are pairwise
disjoint, there exists an idempotent bijection fα : Zα → Zα such that fα extends
fγ , fα(sα) = tα, and fα({x′

α} × Y ) = Dα.

Case 2.2. xγ ∈ K∗. We choose a discrete set Dα ⊆ K × {y′′
α} such that

tα ∈ Dα, π(Dα) ∩ π(Zγ) = ∅, and |Dα| = |Y |. Then we put

Zα = Zγ ∪ Dα ∪ ({xγ , x′

α} × Y ).

Clearly, {zγ , sα, tα} ⊆ Zα. Since {xγ , x′
α} ⊆ K∗ and {zγ, sα} ∩ Zγ = ∅,

it follows from (viiiγ) that ({xγ , x′

α} × Y ) ∩ Zγ = ∅. In addition, the set
Dα is disjoint from both Zγ and {xγ , x′

α} × Y , so there exists an idempotent
bijection fα of Zα onto itself such that fα extends fγ , fα({xγ , x′

α}× Y ) = Dα,
and fα(sα) = tα.

Clearly, conditions (iα), (iiα), (iiiγ), (ivα), (vα), and (viiiα)–(xα) hold true.
Let us verify conditions (viα) and (viiγ).

We verify (viα) only in Case 2.1—the argument in the rest of cases is anal-
ogous or even simpler. Suppose that z′ and z′′ are distinct elements of Zα

such that π(z′) = π(z′′). If {z′, z′′} ⊆ Zγ , then (vα) and (viγ) imply that
π(fα(z′)) = π(fγ(z′)) 6= π(fγ(z′′)) = π(fα(z′′)). If {z′, z′′} ⊆ {x′

α} × Y , then
π(fα(z′)) 6= π(fα(z′′)) since fα({x′

α}×Y ) = Dα and the restriction of π to Dα

is one-to-one. The case {z′, z′′} ⊆ Dα is clearly impossible. Finally, suppose
that z′ ∈ Zγ and z′′ ∈ Zα\Zγ (or vice versa). Since x′

α /∈ π(Zγ), if follows from
π(z′) = π(z′′) and the definition of Zα that z′′ ∈ Dα. Our choice of fα implies
that fα(Dα) = {x′

α} × Y because fα is an idempotent bijection of Zα onto
itself. Hence π(fα(z′′)) = x′

α /∈ π(Zγ) and, therefore, π(fα(z′′)) 6= π(fα(z′)).
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To check (viiγ), suppose that πfγ(Cγ ∩ Zγ) is infinite. It follows from our

construction that sα ∈ Uγ ∩ Zα and fα(sα) = tα ∈ fγ(Cγ ∩ Zγ) which yields

tα ∈ fα(Uγ ∩ Zα) ∩ fα(Cγ ∩ Zα) 6= ∅. The recursive step is completed.

We can now define the bijection f : Z → Z. From (iiiα) for all α < κ it
follows that Z =

⋃
{Zα : α < κ}. Let f =

⋃
{fα : α < κ}. Since (iiα), (ivα)

and (vα) hold for all α < κ, f is an idempotent bijection of Z onto itself. This
means that (1) holds. It also follows from (viiiα) and (ixα) for all α < κ that
f(K∗×Y ) ⊆ K ×Y , while (xα) implies that f(K ×Y ) ⊆ K∗×Y . Since f is a
bijection, we conclude that f(K∗ ×Y ) = K × Y and f(K ×Y ) = K∗ ×Y , i.e.,
(3) holds. Similarly, conditions (viiiα) and (ixα) for all α < κ together imply
the validity of (4).

It was shown before the recursive construction that for any bijection f : Z →
Z satisfying (1), (3), and (4), the topologies τ and σ = f(τ) on Z are transver-
sal. It only remains to prove that τ and σ = f(τ) are T1-independent, for
this special bijection f . In other words, we have to verify that for every proper
infinite closed subset Φ of Z, the image f(Φ) is not closed in Z. Let us consider
two cases.

Case A. The projection π(Φ) is finite. Since Φ ⊆ π−1π(Φ) and each fiber
π−1(x) has cardinality |Y | ≤ c, we see that |Φ| ≤ c. Also, since κc = κ, the
cofinality of the cardinal κ is greater than c. Applying the equality Z =

⋃
{Zα :

α < κ} and (iiα) for α < κ, we see that Φ ⊆ Zβ for some β < κ. It is also
clear that π−1(x)∩Φ is infinite for some x ∈ A(K). Then (viβ) yields that the
set π(f(Φ)) = π(fβ(Φ)) is infinite. In its turn, it follows from Fact 2 that the
closure of f(Φ) in Z has cardinality κ and, since |Φ| ≤ c, the set f(Φ) cannot
be closed in Z.

Case B. The set π(Φ) is infinite. Then |Φ| = κ, by Fact 2. Again, we split
this case into two subcases.

Case B.1. (K × Y ) \ Φ 6= ∅. Since cf(κ) > c > ω, the set πfβ(Φ ∩ Zβ)
must be infinite for some β < κ. Indeed, otherwise πf(Φ) is finite and hence
|Φ| = |f(Φ)| ≤ c, a contradiction. Choose a countable set C ⊆ Φ ∩ Zβ such
that πf(C) is infinite. Take a point z ∈ (K × Y ) \ Φ and an element U ∈ B
such that z ∈ U ⊆ Z \ Φ. This is possible because B is a base for K × Y in
Z. Note that (C, U) ∈ [Z]ω × B. Since the set {α < κ : (C, U) = (Cα, Uα)} is
cofinal in κ, (C, U) = (Cα, Uα) for some α with β ≤ α < κ. From Zα ⊇ Zβ

and Cα = C ⊆ Zβ we get Cα ∩Zα ⊇ Cα ∩Zβ = C and, since πf(C) is infinite,
so is πf(Cα ∩Zα) = πfα(Cα ∩Zα). Then (viiα) shows that fα+1(Uα ∩Zα+1)∩

fα+1(Cα ∩ Zα+1) 6= ∅. Since f extends fα and Φ ⊇ C = Cα, it follows that

f(Uα) ∩ f(Φ) ⊇ f(Uα) ∩ f(Cα) ⊇ fα+1(Uα ∩ Zα+1) ∩ fα+1(Cα ∩ Zα+1) 6= ∅.

Therefore, there exists z∗ ∈ Uα such that f(z∗) ∈ f(Φ). It follows from Uα =
U ⊆ Z \ Φ that z∗ /∈ Φ. Since f is a bijection of Z, this yields f(z∗) /∈ f(Φ).

Thus f(z∗) ∈ f(Φ) \ f(Φ), that is, the set f(Φ) is not closed in Z.
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Case B.2. K × Y ⊆ Φ. Suppose to the contrary that f(Φ) is closed in
Z. Since f(K × Y ) = K∗ × Y and the latter set is dense in Z, we see that
K∗ ×Y ⊆ f(Φ) = Z. This contradicts our choice of Φ as a proper subset of Z.

We have thus proved that f(Φ) fails to be closed in Z, i.e., the topologies
τ and σ = f(τ) are T1-independent. Since we already know that τ and σ are
transversal, this finishes the proof of the theorem. �

Taking Y in Theorem 2.1 to be the Cantor set or the closed unit interval
I = [0, 1], we obtain the following result which answers Question 3.11 from [4]
in the affirmative:

Corollary 2.2. There exists an infinite compact Hausdorff self T1-complement-

ary space without isolated points.

Under additional set-theoretic assumptions, one can refine Corollary 2.2 as
follows:

Corollary 2.3. Let κ be a cardinal with ω ≤ κ < c. It is consistent with ZFC
that there exists a compact Hausdorff self T1-complementary space Z such that

χ(z, Z) ≥ κ for each z ∈ Z.

Proof. One can assume that 2κ = 2ω = c and take Y = I
κ in Theorem 2.1. �

The following questions remain open.

Problem 2.4. Let K = βω \ ω. Is the product space A(K) × K self T1-

complementary?

Problem 2.5. Is it true that for every cardinal λ, there exists a compact

Hausdorff self T1-complementary space Z with |Z| ≥ λ?

Here is a stronger version of the above problem:

Problem 2.6. Is it true that for every cardinal λ, there exists a compact

Hausdorff self T1-complementary space Z such that χ(z, Z) ≥ λ for all z ∈ Z?
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