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Between strong continuity and

almost continuity
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Abstract. As embodied in the title of the paper strong and weak
variants of continuity that lie strictly between strong continuity of
Levine and almost continuity due to Singal and Singal are considered.
Basic properties of almost completely continuous functions (≡ R-maps)
and δ-continuous functions are studied. Direct and inverse transfer of
topological properties under almost completely continuous functions
and δ-continuous functions are investigated and their place in the hier-
archy of variants of continuity that already exist in the literature is out-
lined. The class of almost completely continuous functions lies strictly
between the class of completely continuous functions studied by Arya
and Gupta (Kyungpook Math. J. 14 (1974), 131-143) and δ-continuous
functions defined by Noiri (J. Korean Math. Soc. 16, (1980), 161-166).
The class of almost completely continuous functions properly contains
each of the classes of (1) completely continuous functions, and (2) al-
most perfectly continuous (≡ regular set connected) functions defined
by Dontchev, Ganster and Reilly (Indian J. Math. 41 (1999), 139-146)
and further studied by Singh (Quaestiones Mathematicae 33(2)(2010),
1–11) which in turn include all δ-perfectly continuous functions initi-
ated by Kohli and Singh (Demonstratio Math. 42(1), (2009), 221-231)
and so include all perfectly continuous functions introduced by Noiri
(Indian J. Pure Appl. Math. 15(3) (1984), 241-250).
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1. Introduction

Several weak, strong and other variants of continuity occur in the lore of math-
ematical literature and arise in diverse situations in mathematics and applica-
tions of mathematics. In 1960, Levine [18] introduced the concept of a strongly
continuous function. Ever since then several strong variants of continuity have
been introduced and studied by host of authors, which in general are stronger
than continuity but weaker than strong continuity of Levine. One such vari-
ant of continuity is complete continuity due to Arya and Gupta [1]. In this
paper we elaborate on a generalization of complete continuity called ‘almost
complete continuity’ (≡ R-maps [3]) which is independent of continuity but
stronger than ‘δ-continuity’ initiated by Noiri [23]’. We study basic proper-
ties of almost completely continuous functions and δ-continuous functions and
discuss their interplay and interrelations with other variants of continuity that
already exist in the mathematical literature. We reflect upon their place in the
hierarchy of variants of continuity that lie strictly between strong continuity
and almost continuity [32]. It turns out that the class of almost completely
continuous functions properly contains the class of almost perfectly continuous
(≡ regular set connected) functions defined by Dontchev, Ganster and Reilly
([4] [36]), and so includes the class of δ-perfectly continuous functions [13]; and
is strictly contained in the class of δ-continuous functions, which in turn is
properly contained in the class of almost continuous functions introduced by
Singal and Singal [32].
The paper is organized as follows. Section 2 is devoted to basic definitions
and preliminaries. In Section 3, we elaborate on the place of almost complete
continuity in the hierarchy of variants of continuity that already exist in the
literature. Therein examples are given to reflect upon the distinctiveness of
the variants of continuity so discussed. Basic properties of almost completely
continuous functions and δ-continuous functions are discussed in Section 4,
and Section 5 is devoted to the study of preservance / interplay of topologi-
cal properties under almost completely continuous functions and δ-continuous
functions.

2. Preliminaries and basic definitions

A subset A of a space X is said to be regular open if it is the interior of

its closure, i.e., A = A
0
. The complement of a regular open set is referred to

as a regular closed set. A union of regular open sets is called δ-open [39].
The complement of a δ-open set is referred to as a δ-closed set. A subset
A of a space X is called a regular Gδ-set [19] if A is the intersection of a

sequence of closed sets whose interiors contain A, i.e., if A =
∞⋂

n=1

Fn =
∞⋂

n=1

F o
n ,

where each Fn is a closed subset of X . The complement of a regular Gδ-set
is called a regular Fσ-set. A subset A of a space X is said to be semiopen

if A 0 ⊂ A ⊂ A 0. A subset A of a space X is said to be cl-open [35] if for
each x ∈ A there exists a clopen set H such that x ∈ H ⊂ A, or equivalently,
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A is expressible as a union of clopen sets. The complement of a cl-open set is
referred to as a cl-closed set.

Definitions 2.1. A function f : X → Y from a topological space X into a
topological space Y is said to be

(a) strongly continuous [18] if f(
−

A) ⊂ A for all A ⊂ X.
(b) perfectly continuous ([24], [16]) if f−1(V ) is clopen in X for every open

set V ⊂ Y .
(c) δ-perfectly continuous [13] if for each δ-open set V in Y, f−1(V ) is a

clopen set in X.
(d) almost perfectly continuous [36] (≡ regular set connected [4]) if

f−1(V ) is clopen in X for every regular open set V in Y .
(e) cl-supercontinuous [35] (≡ clopen continuous [27]) if for each x ∈ X

and each open set V containing f(x) there is a clopen set U containing x
such that f(U) ⊂ V .

(f) almost cl-supercontinuous [12] (≡ almost clopen continuous [7]) if
for each x ∈ X and each regular open set V containing f(x) there is a
clopen set U containing x such that f(U) ⊂ V .

(g) z-supercontinuous [9] if for each x ∈ X and for each open set V con-
taining f(x), there exists a cozero set U containing x such that f(U) ⊂ V .

(h) almost z-supercontinuous [17] if for each x ∈ X and each regular open
set V containing f(x), there exists a cozero set U containing x such that
f(U) ⊂ V .

(i) Dδ-supercontinuous [11] if for each x ∈ X and for each open set V
containing f(x), there exists a regular Fσ-set U containing x such that
f(U) ⊂ V .

(j) almost Dδ-supercontinuous [17] if for each x ∈ X and each regular open
set V containing f(x), there exists a regular Fσ-set U containing x such
that f(U) ⊂ V .

(k) D-supercontinuous [10] if for each x ∈ X and each open set V containing
f(x) there exists an open Fσ-set U containing x such that f(U) ⊂ V .

(l) D∗-supercontinuous [34] if for each x ∈ X and each open set V con-
taining f(x) there exists a strongly open Fσ-set U containing x such that
f(U) ⊂ V .

(m) strongly θ-continuous [23] if for each x ∈ X and for each open set V con-
taining f(x), there exists an open set U containing x such that f(U) ⊂ V .

(n) supercontinuous [22] if for each x ∈ X and for each open set V containing
f(x), there exists a regular open set U containing x such that f(U) ⊂ V .

(o) almost strongly θ- continuous [26] if for each x ∈ X and for each
regular open set V containing f(x), there exists an open set U containing
x such that f(U) ⊂ V .

(p) δ-continuous [23] if for each x ∈ X and for each regular open set V
containing f(x), there exists a regular open set U containing x such that
f(U) ⊂ V .
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(q) almost continuous [32] if for each x ∈ X and for each regular open
set V containing f(x), there exists an open set U containing x such that
f(U) ⊂ V .

(r) completely continuous [1] if f−1(V ) is a regular open set in X for every
open set V ⊂ Y .

Definitions 2.2. A space X is said to be endowed with a/an

(a) partition topology [37] if every open set in X is closed.
(b) δ-partition topology [13] if every δ-open set in X is closed or equivalently

every δ-closed set in X is open.
(c) almost partition topology [36] if every regular open set in X is closed.
(d) extremally disconnected topology if the closure of every open set in X

is open in X.

It turns out that the notions of almost partition topology and extremally dis-
connected topology are identical notions. Moreover,
partition topology ⇒ δ-partition topology ⇒ almost partition topology (≡
extremally disconnected topology)
However, none of the above implications is reversible. For, let X be an infinite
(uncountable) set equipped with a cofinite (cocountable) topology. Then the
topology of X is a δ-partition topology which is not a partition topology. For
an example of an almost partition topology which is not a δ-partition topology
consider a Hausdorff extremally disconnected crowded space (i.e., a space with
no isolated points) X (see for example Eric K. Van Douwen [5, Example 3.3]).
Then for each x ∈ X , the set X − {x} is a cl-open set and so δ-open but not
clopen. Thus the topology of X is an almost partition topology which is not a
δ-partition topology.

3. Almost completely continuous functions (≡ R-maps) 1

A function f : X→Y from a topological space X into a topological space Y
is said to be an almost completely continuous function if f−1(V ) is a
regular open set in X for every regular open set V in Y or equivalently f−1(F )
is a regular closed set in X for every regular closed set F in Y .
The following two diagrams well illustrate the place of almost complete conti-
nuity and δ-continuity in the hierarchy of variants of continuity that already
exist in the mathematical literature and are related to the theme of the present
paper.
However, none of the implications is reversible as is shown by examples in
([13] [14] [15] and [17]) or follow from the definitions or observations/examples
outlined in the following paragraphs.

1Carnahan [2] in his doctoral dissertation referred to almost completely continuous func-
tions as R-maps (also see Noiri [25], Kohli [8]). The present nomenclature appears to be
more appropriate as it represents a weak variant of complete continuity [1].
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Diagram 1

Diagram 2
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Observations and Examples:

3.1 Let X be endowed with a partition topology. Then every continuous func-
tion f : X → Y is perfectly continuous and hence completely continuous.

3.2 Let X be endowed with a partition topology. Then every almost contin-
uous function f : X → Y is almost perfectly continuous (≡ regular set
connected) and so almost completely continuous.

3.3 Let X be endowed with an almost partition topology. If f : X → Y is
almost completely continuous, then f is almost perfectly continuous.

3.4 Let X be endowed with a δ-partition topology. If f : X → Y is δ-
continuous, then it is δ-perfectly continuous and so almost perfectly con-
tinuous and hence almost completely continuous.

3.5 If X is equipped with a δ-partition topology and if f : X → Y is supercon-
tinuous, then f is perfectly continuous.

3.6 If X is a zero dimensional space, then every almost continuous function
f : X → Y is almost cl-supercontinuous but not necessarily almost com-
pletely continuous.

3.7 Let X = {a, b, c, d} and let the topology τ on X be given by τ = {φ, X, {a, b}}.
Let Y be the two points Sierpinski space {0, 1} with {0} as the only
non empty proper open subset of Y and let f : X → Y be defined by
f(a) = f(b) = 0 and f(c) = f(d) = 1. Then f is a continuous function
which is almost completely continuous but not completely continuous.

3.8 The function f : R → R given by f(x) = x2 is a z-supercontinuous function
which is not almost completely continuous, since V = (0, 1) is a regular
open set but is not a regular open set.

3.9 Let X be the real line endowed with the usual topology and let Y be the
real line with cofinite topology. Then the identity function from X onto
Y is δ-perfectly continuous and so almost completely continuous but not
completely continuous.

3.10 Let X = Y be the real line equipped with the usual topology. Then the
identity function defined on X is z-supercontinuous, almost completely
continuous but neither completely continuous nor almost perfectly contin-
uous.

3.11 Let X denote the set of rationals endowed with usual topology and f
denote the identity mapping defined on X . Then f is cl-supercontinuous
but not almost completely continuous. So f is δ-continuous but not almost
completely continuous.

3.12 Let X denote the space considered by Douwen [5, Example 3.3] which is
a Hausdorff extremally disconnected crowded space whose topology is not
a δ-partition topology. Then the identity function defined on X is almost
perfectly continuous but not δ-perfectly continuous.

We may recall that a space X is almost locally connected [20] if for each x ∈ X
and each regular open set U containing x there exists an open connected set
V containing x such that V ⊂ U . Vincent J. Mancuso in his studies on almost
locally connected spaces proved that an open, almost continuous function is
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almost completely continuous (see [20, Lemma 3.17]). In consequence, almost
local connectedness is preserved under open almost continuous surjections [20,
Theorem 3.18]. Moreover, since such functions map connected sets to connected
sets the assumption of connectedness of map in Theorem 3.18 of Mancuso [20]
is superfluous.

4. Basic properties of almost completely continuous and
δ-continuous functions.

Theorem 4.1. If f : X → Y and g : Y → Z are almost completely continuous
functions, then so is their composition.

Theorem 4.2. If f : X → Y is an almost completely continuous function and
g : Y → Z is a completely continuous function, then their composition g ◦ f is
completely continuous.

Proof. Let W be an open set in Z. Since g is completely continuous, g−1(W ) is
a regular open set in Y . In view of almost complete continuity of f, f−1(g−1(W ))
= (g ◦ f)−1(W ) is a regular open set and so g ◦ f is completely continuous. �

We may recall that a function f : X → Y is almost open [32] if the image of
every regular open set in X is open in Y .

Theorem 4.3. If f : X → Y is an almost open surjection and g : Y → Z
is a function such that g ◦ f is almost completely continuous, then g is almost
continuous. Further, if in addition f maps regular open sets to regular open
sets, then g is an almost completely continuous function.

Proof. Let V be any regular open set in Z. Since g ◦ f is almost completely
continuous, (g ◦ f)−1(V ) = f−1(g−1(V )) is regular open set in X . Again, since
f is an almost open surjection, f(f−1(g−1(V ))) = g−1(V ) is open in Y and
so g is almost continuous. The last assertion is immediate, since in this case
g−1(V ) is a regular open set and so g is almost completely continuous. �

The following lemma is due to Singal and Singal [32] and will be useful in the
sequel to follow.

Lemma 4.4 ([32]). Let {Xα : α ∈ Λ} be a family of spaces and let X =
∏

Xα

be the product space. If x = (xα) ∈ X and V is a regular open set containing x,
then there exists a basic regular open set

∏
Vα such that x ∈

∏
Vα ⊂ V , where

Vα is a regular open set in Xα for each α ∈ Λ and Vα = Xα for all except
finitely many α1, α2, . . . , αn ∈ Λ.

The next result shows that if a function into a product space is almost com-
pletely continuous, then its composition with each projection map is almost
completely continuous.

Theorem 4.5. Let {fα : X → Xα : α ∈ Λ} be a family of functions and let
f : X →

∏
α∈Λ Xα be defined by f(x) = (fα(x)) for each x ∈ X. If f is almost

completely continuous, then each fα is almost completely continuous. Further,
if each fα is almost completely continuous, then f is δ-continuous.
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Proof. For each α ∈ Λ, let Πα :
∏

Xα → Xα denote the projection map. To
show that each fβ is almost completely continuous, let V be any regular open

set in Xβ. Then for each β ∈ Λ, Π−1
β (V ) =

∏

α6=β

Xα × V is a regular open set

in
∏

Xα and so each Πβ is almost completely continuous. Now, since for each
β ∈ Λ, fβ = Πβ ◦ f , the result is immediate in view of Theorem 4.1.
Further, suppose that each fα is almost completely continuous. To show that f
is δ-continuous, it suffices to show that f−1(V ) is δ-open for every regular open
set V in the product space

∏
Xα. In view of Lemma 4.4, V is expressible as a

union of basic regular open sets of the form
∏

Vα, where each Vα is a regular
open set in Xα and Vα = Xα for all but finitely many α1, α2, . . . , an ∈ Λ.

So f−1(V ) = f−1(∪
∏

Vα) = ∪f−1(
∏

Vα) = ∪(
n⋂

i=1

f−1
αi

(Vαi
)). Since each fα is

almost completely continuous, each
n⋂

i=1

f−1
αi

(Vαi
) is regular open and so f−1(V )

being a union of regular open sets is δ-open. �

Theorem 4.6. Let f : X → Y be a function and g : X → X×Y , defined
by g(x) = (x, f(x)) for each x ∈ X, be the graph function. If g is almost
completely continuous, then f is almost completely continuous. Further, if f is
almost completely continuous, then g is δ-continuous.

Proof. Suppose that g is almost completely continuous. First we observe that
the projection map py : X × Y → Y is almost completely continuous. For if V
is a regular open set in Y , then p−1

y (V ) = X ×V is a regular open set in X ×Y
and so the projection py is almost completely continuous. Hence by Theorem
4.1 the composition py ◦ g = f is almost completely continuous.
Now suppose that f is almost completely continuous. Then in view of Lemma
4.4, every regular open set V in the product space X × Y is a union of basic
regular open sets of the form Uα × Vα, where each and Uα and Vα are regular
open sets in X and Y , respectively. Then g−1(V ) = g−1(∪(Uα × Vα)) =
∪ g−1(Uα × Vα) = ∪(Uα ∩ f−1(Vα)). Since f is almost completely continuous,
each Uα ∩ f−1(Vα) is regular open and so g−1(V ) being a union of regular
open sets is δ-open. �

Theorem 4.7. Let {fα : Xα → Yα : α ∈ Λ} be a family of functions. Let
f :

∏
Xα →

∏
Yα be defined by f((xα)) = (fα(xα)) for each (xα) in

∏
Xα. If f

is almost completely continuous, then each fα is almost completely continuous.
Further, if each fα is almost completely continuous, then f is δ-continuous.

Proof. For each α ∈ Λ, let pα :
∏

Xα → Xα and qα :
∏

Yα → Yα denote the
projection maps. Then in view of definition of f , it follows that qα ◦f = fα ◦pα

for each α ∈ Λ. To show that fα is almost completely continuous, let F be
a regular closed set in Yα. Then q−1

α (F ) = (
∏

β 6=α

Yβ) × F is a regular closed

set in
∏

Yα. Since f is almost completely continuous f−1(q−1
α (F )) is a regular

closed set in
∏

Xα. But f−1(q−1
α (F )) = (qα ◦ f)−1(F ) = (fα ◦ pα)−1(F ) =
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p−1
α (f−1

α (F )) = (
∏

β 6=α

Xβ)× f−1
α (F ) and so f−1

α (F ) is a regular closed set in Xα

and thus fα is almost completely continuous.
To prove the last part of the theorem, we observe that in view of Lemma 4.4
every regular open set V in the product space

∏
Yα is the union of basic regular

open sets of the form
∏

Vα, where each Vα ⊂ Yα is regularly open and Vα = Yα

for all except finitely many α1, α2, . . . , αn ∈ Λ. Thus f−1(V ) is the union of
sets of the form

∏
f−1

α (Vα), where each f−1
α (Vα) is a regular open set in Xα

and f−1
α (Vα) = Xα for all α except α1, α2, . . . , αn and so

∏

α

f−1
α (Vα) is a basic

regular open set in the product space
∏

Xα. Thus f−1(V ) being the union of
regular open sets is a δ-open set. �

Theorem 4.8. Let f, g : X → Y be δ-continuous functions from a space X
into a Hausdorff space Y . Then the equalizer E = {x ∈ X : f(x) = g(x)} of
the functions f and g is a δ-closed set in X.

Proof. To show that E is δ-closed, we shall show that its complement X \ E
is a δ-open subset of X . To this end, let x ∈ X \ E. Then f(x) 6= g(x). Since
Y is Hausdorff, there exist disjoint open sets V and W containing f(x) and

g(x), respectively. Then V1 = V
0

and W1 = W
0

are disjoint regular open sets
containing f(x) and g(x), respectively. Since f and g are δ-continuous func-
tions, U = f−1(V1) ∩ g−1(W1) is a δ-open set containing x which is contained
in X \ E and so X \ E is δ-open. �

Corollary 4.9. Let f, g : X → Y be an almost completely continuous functions
from X into a Hausdorff space Y . Then the equalizer E = {x ∈ X : f(x) =
g(x)} of the functions f and g is a δ-closed set in X.

Theorem 4.10. (Noiri [23, Theorem 5.2]): Let f : X → Y be a δ-continuous
function into a Hausdorff space Y . Then G(f) the graph of f is a δ-closed
subset of X × Y .

Corollary 4.11. Let f : X → Y be an almost completely continuous function
into a Hausdorff space Y . Then G(f) the graph of f is a δ-closed subset of
X × Y .

5. Preservation/interplay of topological properties

Connectedness is preserved by functions satisfying fairly mild continuity con-
ditions (see [12, p. 9]) and so it is preserved under δ-continuous functions and
hence under almost completely continuous functions. Next we consider the
transfer of separation properties under δ-continuous functions and almost com-
pletely continuous functions. First we quote the following definitions.



38 J. K. Kohli and D. Singh

Definition 5.1. A topological space X is said to be a

(i) δT1-space ([7]2, [12]) if for each pair of distinct points x and y in X there
exist regular open sets U and V containing x and y, respectively such that
y 6∈ U and x 6∈ V .

(ii) δT0-space [12] if for each pair of distinct points x and y in X there exists
a regular open set containing one of the points x and y but not the other.

The following implications are either well known (see [40]) or immediate from
definitions.

Hausdorff space ⇒ δT1-space ⇒ δT0-space
⇓ ⇓ ⇓

KC ⇒ US ⇒ T1-space ⇒ T0-space

However, none of the above implications is reversible (see [12], [40]).

Proposition 5.2. Let f : X → Y be a δ-continuous injection. If Y is a
δT0-space or a δT1-space or a Hausdorff space, then so is X.

Definition 5.3. A topological space X is said to be

(a) almost regular [30] if every regular closed set and a point outside it are
contained in disjoint open sets.

(b) almost completely regular [31] if for every δ-closed set F in X and a
point x 6∈ F there exists a continuous function f : X → [0, 1] such that
f(x) = 0 and f(F ) = 1.

(c) mildly normal [33] if every pair of disjoint regular closed sets are con-
tained in disjoint open sets.

(d) nearly paracompact [29] if every regular open cover of X has a locally
finite open refinement.

(e) nearly compact [28] if every open cover of X admits a finite subcollection
the interiors of the closures of whose members cover X.

(f) S-closed [38] if every semi open cover of X has a finite subcollection whose
closures cover X or equivalently, every regular closed cover of X has a finite
subcover (see [2]).

Proposition 5.4. Every (almost) completely continuous function defined on a
Hausdorff (or almost regular) S-closed space is (almost) perfectly continuous.

Proof. : Let f : X → Y be an (almost) completely continuous function from a
Hausdorff (or almost regular) S-closed space X into a space Y and let V be any
(regular) open subset of Y . Since f is (almost) completely continuous, f−1(V )
is a regular open set in X . Now, since a Hausdorff (or almost regular) S-closed
space is extremally disconnected (see [38, Theorem 7] and [21, Theorem 3])
and since in an extremally disconnected space every regular open set is clopen,
f−1(V ) is a clopen set in X and so f is (almost) perfectly continuous. �

2Ekici calls δT1-spaces as r-T1-space in [7].
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Theorem 5.5. Let f : X → Y be a δ-continuous closed surjection defined on
an almost regular space X. If either f is open or f−1(y) is compact for each
y ∈ Y , then Y is an almost regular space. If in addition Y is a semiregular
space, then Y is regular.

Proof. Case I: f is open. Let F be a regularly closed set in Y such that y 6∈ F .
Then f−1(F )∩f−1(y) = φ and in view of δ-continuity of f, f−1(F ) is a δ-closed
set. Let x ∈ f−1(y). In view of almost regularity of X , there exist disjoint
open sets U and V containing x and f−1(F ), respectively. Then since f is a
closed surjection, f(U) and Y \ f(X \ V ) are disjoint open sets containing y
and F , respectively.
Case II: f−1(y) is compact for each y ∈ Y . Since X is almost regular, there
exist disjoint open sets U and V containing f−1(y) and f−1(F ), respectively.
Since f is closed, the sets Y \ f(X \U) and Y \ f(X\V ) are disjoint open sets
containing y and F , respectively. The last assertion is immediate in view of the
fact that a space is regular if and only if it is semiregular and almost regular
[30]. �

Corollary 5.6. Let f : X → Y be an almost completely continuous closed
surjection defined on an almost regular space X. If either f is open or f−1(y)
is compact for each y ∈ Y , then Y is an almost regular space.

Theorem 5.7. Let f : X → Y be an open, closed, δ-continuous surjection.
If X is an almost completely regular space, then so is Y . Further, if Y is a
semiregular space, then Y is completely regular.

Proof. To prove that Y is almost completely regular, let F be a regular closed
set in Y such that y 6∈ F . Since f is δ-continuous, f−1(F ) is a δ-closed set
in X . Let x ∈ f−1(y). In view of almost complete regularity of X , There
exists a continuous real valued function ϕ : X → [0, 1] such that ϕ : X → [0, 1]
such that ϕ(f−1(F )) = 0 and ϕ(x) = 1. Define ϕ̂ : Y → [0, 1] by taking
ϕ̂(y) = sup{ϕ(x) : x ∈ f−1(y)} for each y ∈ Y . Then ϕ̂(y) = 1, ϕ̂(F ) = 0 and
by [6, p.96, Exercise 16] ϕ̂ is continuous. Hence Y is almost completely regular.
The last assertion is immediate in view of the fact that a space is completely
regular if and only if it is semiregular and almost completely regular [31]. �

Corollary 5.8. Let f : X → Y be an open, closed, almost completely contin-
uous surjection. If X is an almost completely regular space, then so is Y .

Theorem 5.9. Let f : X → Y be an almost completely continuous closed
surjection. If X is a mildly normal space, then so is Y .

Proof. Let A and B be any two disjoint regular closed subsets of Y . In view of
almost complete continuity of f, f−1(A) and f−1(B) are disjoint regular closed
subsets of X . Since X is mildly normal, there exist disjoint open sets U and
V containing f−1(A) and f−1(B), respectively. Again, since f is closed, the
sets f(X \ U) and f(X \ V ) are closed sets. It is easily verified that the sets
Y \ (X \ U) and Y \ f(X \ V ) are disjoint open sets containing A and B,
respectively and so Y is mildly normal. �
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Theorem 5.10. Let f : X → Y be a δ-continuous surjection from a nearly
compact space X onto Y . Then Y is nearly compact. Further, if in addition Y
is semiregular, then Y is compact.

Proof. Let U = {Uα|α ∈ ∆} be a regular open cover of Y . Since f is δ-
continuous, the collection V = {f−1(Uα)|α ∈ ∆} is a δ-open cover of X . In
view of near compactness of X there exists a finite subcollection {f−1(Uαi

) : i =
1, . . . , n} of V which covers X . Since f is a surjection, the finite subcollection
{Uα1

, . . . , Uαn
} of U covers Y and so Y is nearly compact. A semiregular

nearly compact space is compact [28]. �

Theorem 5.11 ([21, Theorems 3 and 4]). An almost regular (or Hausdorff)
space is S-closed if and only if it is nearly compact and extremally disconnected.

Theorem 5.12. Let f : X → Y be an almost completely continuous closed
surjection from a nearly compact (S-closed) space X. Then Y is nearly compact
(S-closed). Further, if in addition Y is almost regular (or Hausdorff), then Y
is nearly compact and extremally disconnected.

Proof. Near compactness of Y is immediate in view of Theorem 5.10. To prove
that Y is S-closed whenever X is S-closed, let U = {Uα|α ∈ ∆} be a regular
closed cover of Y . Since f is almost completely continuous, the collection
V = {f−1(Uα)|α ∈ ∆} is a regular closed cover of X . Again, since X is S-
closed there exists a finite subcollection {f−1(Uαi

) : i = 1, . . . , n} of V which
covers X . Since f is a surjection, the finite subcollection {Uα1

, . . . , Uαn
} of U

covers Y and so Y is S-closed. Moreover, if Y is almost regular (or Hausdorff),
then in view of Theorem 5.11, Y is an extremally disconnected space. �

Theorem 5.13. Let f : X → Y be a closed, δ-continuous, almost open surjec-
tion such that f−1(y) is compact for each y ∈ Y . If X is a nearly paracompact
space, then so is Y . Moreover, if Y is semiregular, then Y is paracompact.

Proof. Let V = {Vα : α ∈ Λ} be a regular open cover of Y . In view of δ-
continuity of f,A = {f−1(Vα) : α ∈ Λ} is a δ open cover of X . Let B = {Uβ :
β ∈ Γ} be the natural regular open refinement of A covering X . Since X is
nearly paracompact, there exists a locally finite open refinement {Wδ : δ ∈ Ω}
of B. Since each Uβ is regularly open, it is easily verified that each Wδ may be
chosen to be regularly open and so in view of almost openness of f , each f(Wδ)
is open. Again, since f is a closed function such that f−1(y) is compact for
each y ∈ Y , it maps every locally finite collection to a locally finite collection
and hence {f(Wδ) : δ ∈ Ω} is a locally finite open refinement of V . Thus Y
is nearly paracompact. The last assertion is immediate, since a semiregular
almost paracompact space is paracompact [29]. �

Corollary 5.14. Let f : X → Y be a closed, almost completely continuous,
almost open surjection such that f−1(y) is compact for each y ∈ Y . If X is a
nearly paracompact space, then so is Y .
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Theorem 5.15. Let f : X → Y be an almost completely continuous surjection
which maps clopen sets to clopen sets. If X is an extremally disconnected space,
then so is Y . Further, if in addition Y is nearly compact, then Y is S-closed
and almost regular.

Proof. Suppose X is extremally disconnected. To show that Y is extremally
disconnected, it suffices to prove that every regular open set in Y is clopen. To
this end, let V be a regular open set in Y . In view of almost complete conti-
nuity of f, f−1(V ) is a regular open in X . Since X is extremally disconnected,
f−1(V ) is a clopen set in X . Again, since f is a surjection which maps clopen
sets to clopen sets, V = f(f−1(V )) is a clopen set in Y and so Y is extremally
disconnected. For what remains we need only note that every extremally dis-
connected space is almost regular and so the space Y is S-closed in view of
Theorem 5.11. �
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