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ABSTRACT

We prove that every vertically nearly separately continuous mapping
defined on a product of a strong PP-space and a topological space and
with values in a strongly o-metrizable space with a special stratification,
is a pointwise limit of continuous mappings.
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1. INTRODUCTION

Let X, Y and Z be topological spaces.

By C(X,Y) we denote the collection of all continuous mappings from X to
Y.

For a mapping f: X XY — Z and a point (z,y) € X x Y we write

) = fy(@) = f(2,y).

We say that a mapping f : X x Y — Z is separately continuous, f €
CC(XxY,Z),if f* € C(Y,Z)and f, € C(X, Z) for every point (z,y) € X xY.
A mapping f: X XY — Z is said to be vertically nearly separately continuous,
feCO(X xY,Z),if f, € C(X,Z) for every y € Y and there exists a dense
set D C X such that /7 € C(Y, Z) for all z € D.

Let Bo(X,Y) = C(X,Y). Assume that the classes B¢(X,Y) are already
defined for all £ < «, where @ < wy. Then f: X — Y is said to be of the a-th
Baire class, f € Bo(X,Y), if f is a pointwise limit of a sequence of mappings
fn € Be, (X.,Y), where &, < a. In particular, f € B1(X,Y) if it is a pointwise
limit of a sequence of continuous mappings.
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In 1898 H. Lebesgue [12] proved that every real-valued separately continuous
function of two real variables is of the first Baire class. Lebesgue’s theorem
was generalized by many mathematicians (see [4, 15, 17, 19, 18, 1, 2, 5, 6, 16]
and the references given there). W. Rudin[17] showed that CC(X x Y, Z) C
Bi1(X xY,Z)if X is a metrizable space, Y a topological space and Z a locally
convex topological vector space. Naturally the following question has been
arose, which is still unanswered.

Problem 1.1. Let X be a metrizable space, Y a topological space and Z a
topological vector space. Does every separately continuous mapping f : X XY —
Z belong to the first Baire class?

V. Maslyuchenko and A. Kalancha [5] showed that the answer is positive,
when X is a metrizable space with finite Cech-Lebesgue dimension. T. Banakh
[1] gave a positive answer in the case that X is a metrically quarter-stratifiable
paracompact strongly countably dimensional space and Z is an equiconnected
space. In [8] it was shown that the answer to Problem 1.1 is positive for
metrizable spaces X and Y and a metrizable arcwise connected and locally
arcwise connected space Z. It was pointed out in [9] that CC(X x Y, Z) C
Bi(X xY,Z)if X is a metrizable space, Y is a topological space and Z is an
equiconnected strongly o-metrizable space with a stratification (Z,)5%; (see
the definitions below), where Z,, is a metrizable arcwise connected and locally
arcwise connected space for every n € N.

In this paper we generalize the above-mentioned result from [9] to the case
of vertically nearly separately continuous mappings. To do this, we intro-
duce the class of strong PP-spaces which includes the class of all metrizable
spaces. In Section 3 we investigate some properties of strong PP-spaces. In Sec-
tion 4 we establish an auxiliary result which generalizes the famous Kuratowski-
Montgomery theorem (see [11] and [14]). Finally, in Section 5 we prove that the
inclusion CO(X x Y, Z) C By(X xY, Z) holds if X is a strongly PP-space, Y is
a topological space and Z is a contractible space with a stratification (Z,,)5° ;,
where Z,, is a metrizable arcwise connected and locally arcwise connected space
for every n € N.

2. PRELIMINARY OBSERVATIONS

A subset A of a topological space X is a zero (co-zero) set if A = f~1(0)
(A= £71((0,1])) for some continuous function f : X — [0, 1].

Let G and F§ be collections of all co-zero and zero subsets of X, respectively.
Assume that the classes G¢ and F{ are defined for all § < o, where 0 < a < wy.
Then, if « is odd, the class G (F}) is consists of all countable intersections
(unions) of sets of lower classes, and, if « is even, the class G} (F7) is consists
of all countable unions (intersections) of sets of lower classes. The classes F
for odd « and G for even « are said to be functionally additive, and the classes
Fu for even v and G for odd « are called functionally multiplicative. If a set
belongs to the a’th functionally additive and functionally multiplicative class,
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then it is called functionally ambiguous of the a’th class. Note that A € F if
and only if X \ A € G.

If a set A is of the first functionally additive (multiplicative) class, we say
that A is an F} (G}) set.

Let us observe that if X is a perfectly normal space (i.e. a normal space in
which every closed subset is Gs), then functionally additive and functionally
multiplicative classes coincide with ordinary additive and multiplicative classes
respectively, since every open set in X is functionally open.

Lemma 2.1. Let a > 0, X be a topological space and let A C X be of the a’th
Junctionally multiplicative class. Then there exists a function f € B, (X, [0,1])
such that A = f=1(0).

Proof. The hypothesis of the lemma is obvious if a = 0.
Suppose the assertion of the lemma is true for all £ < « and let A be a
set of the o’th functionally multiplicative class. Then A = (] A,, where A,

n=1
belong to the «,,’th functionally additive class with «,, < « for all n € N. By

assumption, there exists a sequence of functions f,, € By, (X, [0,1]) such that
Ay, = f,71((0,1]). Notice that for every n the characteristic function x 4, of A,
belongs to the a-th Baire class. Indeed, setting hy, m(z) = %/ fn(x), we obtain
a sequence of functions hy, ., € By, (X, [0,1]) which is pointwise convergent to
X4, - Now let

=1
— 22_

for all z € X. Then f € B,(X,[0,1]) as a sum of a uniform convergent series
of functions of the a’th class. Moreover, it is easy to see that A = f~1(0). O

A topological space X is called

e cquiconnected if there exists a continuous function A : X x X x [0,1] —
X such that
(1) )\(.ﬁ,jlj, O) =T
(2) Mz, y,1) =y
(3) Mz, z,1) ==
for all z,y € X and t € [0, 1].
e contractible if there exist * € X and a continuous mapping v : X X
[0,1] = X such that v(z,0) = z and y(z,1) = z*. A contractible space
X with such a point 2* and such a mapping 7 is denoted by (X, z*,~).

Remark that every convex subset X of a topological vector space is equicon-
nected, where A : X x X x [0,1] — X is defined by the formula A(z,y,t) =
(1—t)z +ty, z,y € X, t€0,1].

It is easily seen that a topological space X is contractible if and only if there
exists a continuous mapping A : X x X x [0,1] — X such that A(z,y,0) =z
and A(z,y,1) =y for all z,y € X. Indeed, if (X,z*,+) is a contractible space,
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then the formula

_ [ (,2), 0<t<4$,
A, y,t) = { Yy, —2t+2), 3<t<1.

defines a continuous mapping A : X x X x [0, 1] — X with the required proper-
ties. Conversely, if X is equiconnected, then fixing a point z* € X and setting
~v(z,t) = M, x*,t), we obtain that the space (X, z*,~) is contractible.

Lemma 2.2. Let 0 < a < wy, X a topological space, Y a contractible space,
Ay, ..., A, be disjoint sets of the a’th functionally multiplicative class in X and
fi € Bo(X,Y) for each 1 <i < n. Then there exists a mapping f € Bo(X,Y)
such that fla, = fi for each 1 <i <n.

Proof. Let n = 2. In view of Lemma 2.1 there exist functions h; € B, (X, [0, 1])

such that A4; = h; *(0) for i = 1,2. We set h(z) = _ Mm@ forallz € X.
' hi(z) + ha(x)
It is easy to verify that h € Bo(X,[0,1]) and A; = h~1(i —1),i=1,2.

Consider a continuous mapping A : Y XY x [0, 1] — Y such that A\(y, z,0) =y
and A(y,z,1) =z for all y,z € Y. Let

f(x) = )‘(fl(x)vf2($)a h(I))

forevery x € X. Clearly, f € Bo(X,Y). If x € Ay, then f(z) = A(f1(2), f2(z),0)
= fi(z). If © € Ay, then f(z) = A(f1(2), fa(),1) = fa(x).

Assume that the lemma is true for all 2 < k < n and let kK = n. According

to our assumption, there exists a mapping g € B,(X,Y) such that g|a, = f;
n—1

forall 1 <i < n. Since A = |J A; and A, are disjoint sets which belong to
i=1

the a’th functionally multiplicative class in X, by the assumption, there is a
mapping f € B,(X,Y) with f|la = g and f|p, = f,. Then f|r, = f; for every
1<i<n. O

Let 0 < a < wy. We say that a mapping [ : X — Y is of the (functional)
a-th Lebesgue class, f € Ho(X,Y) (f € HX(X,Y)), if the preimage f~(V)
belongs to the a’th (functionally) additive class in X for any open set V C Y.

Clearly, H,(X,Y) = HX(X,Y) for any perfectly normal space X.

The following statement is well-known, but we present a proof here for con-
venience of the reader.

Lemma 2.3. Let X and Y be topological spaces, (fi)7>, a sequence of map-
pings fr: X — Y which is pointwise convergent to a mapping [ : X — Y,

o __
F CY be a closed set such that F = (| V., where (V)32 is a sequence of
n=1

open sets in'Y such that V41 CV,, for alln € N. Then

(2.1) FE) = U ).

n=1k=n
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Proof. Let z € f~1(F) and n € N. Taking into account that V;, is an open
neighborhood of f(z) and klim fr(z) = f(x), we obtain that there is k > n
— 00

such that fi(z) € V,,.

Now let = belong to the right-hand side of (2.1), i.e. for every n € N there
exists a number k > n such that fx(z) € V,,. Suppose f(z) € F. Then there
exists n € N such that f(z) € V,,. Since U = X \ V,, is a neighborhood of f(z),
there exists ko such that fi(xz) € U for all k > ko. In particular, fi(z) € U for
k = max{kg,n}. But then fy(z) ¢ Vi, a contradiction. Hence, x € f~1(F). O

Lemma 2.4. Let X be a topological space, Y a perfectly normal space and
0 < o <wi. Then Bo(X,Y) C HA(X,Y) if a is finite, and Bo(X,Y) C
H: (X,Y) if a is infinite.

Proof. Let f € B,(X,Y). Fix an arbitrary closed set F C Y. Since Y is

perfectly normal, there exists a sequence of open sets V,, C Y such that V,, 41 C
o JR—

Vi, and F = [\ V,. Moreover, there exists a sequence of mappings fx : X — Y

n=1
of Baire classes < « which is pointwise convergent to f on X. By Lemma 2.3,
o0

equality (2.1) holds. Now put A, = U £, (Vy).
k

If & = 0, then f is continuous and f~1(F) is a zero set in X, since F is a
zero set in Y.

Suppose the assertion of the lemma is true for all finite ordinals 1 < £ <
a. We show that it is true for . Remark that fi € B,—1(X,Y) for every
k > 1. By assumption, fr € H} {(X,Y) for every k € N. Then A4, is of
the functionally additive class a — 1. Therefore, f~(F) belongs to the a’th
functionally multiplicative class.

Assume the assertion of the lemma is true for all ordinals wy < £ < a. For
all & € N we choose oy, < « such that fr € B, (X,Y) for every k > 1. The
preimage f, Y(V;,), being of the (aj + 1)’th functionally additive class, belongs
to the a’th functionally additive class for all k,n € N, provided aj + 1 < «a.
Then A, is of the a’th functionally additive class, hence, f~!(F) belongs to
the (o + 1)’th functionally multiplicative class. (]

Recall that a family A = (A4, : i € I) of sets A; refinesa family B= (B, : j € J)
of sets B; if for every ¢ € I there exists j € J such that A; C B;. We write in
this case A < B.

3. PP-SPACES AND THEIR PROPERTIES

Definition 3.1. A topological space X is said to be a (strong) PP-space if (for
every dense set D in X)) there exist a sequence ((¢;n : ¢ € I,))52, of locally
finite partitions of unity on X and a sequence ((z;,,, : 7 € I,,))22 of families of
points of X (of D) such that

(3.1) (Vo € X)((Vn € N x € suppy;, n) = (zi, n — T))

Remark that Definition 3.1 is equivalent to the following one.
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Definition 3.2. A topological space X is a (strong) PP-space if (for every
dense set D in X)) there exist a sequence ((U;,, : i € I,,))52; of locally finite
covers of X by co-zero sets U, ,, and a sequence ((z;, : 4 € I,,))52 of families

of points of X (of D) such that

(3.2) Ve X)(VneN zeU, n) = (zi,n — 1))

n,M

Clearly, every strong PP-space is a PP-space.
Proposition 3.3. Every metrizable space is a strong PP-space.

Proof. Let X be a metrizable space and d a metric on X which generates its
topology. Fix an arbitrary dense set D in X. For every n € N let ,, be a cover
of X by open balls of diameter % Since X is paracompact, for every n there
exists a locally finite cover U,, = (U; p, : @ € I,) of X by open sets U, ,, such that
Uy, = B,,. Notice that each U, ,, is a co-zero set. Choose a point z; , € DNU; 5,
forallm € Nand i € I,,. Let x € X and let U be an arbitrary neighborhood
of x. Then there is ny € N such that B(z, %) C U for all n > ng. Fix n > ng
and take ¢ € I, such that x € U;,. Since diamU,,, < %, d(x,xin) < %,
consequently, z; , € U. (]
Example 3.4. The Sorgenfrey line LL is a strong PP-space which is not metri-
zable.

Proof. Recall that the Sorgenfrey line is the real line R endowed with the
topology generated by the base consisting of all semi-intervals [a,b), where
a < b (see [3, Example 1.2.2]).

Let D C L be a dense set. For any n € N and ¢ € Z by ¢;, we denote the

characteristic function of [%, %) and choose a point x; ,, € [%, %) ND. Then
the sequences ((¢i, @i € In))zozl and ((w;n 11 € In))zozl satisfy (3.1). O

Proposition 3.5. Fvery o-metrizable paracompact space is a PP-space.

o0
Proof. Let X = |J X,, where (X,)52, is an increasing sequence of closed
n=1

metrizable subspaces, and let d; be a metric on X; which generates its topology.
According to Hausdorff’s theorem [3, p. 297] we can extend the metric d; to
a metric do on X5. Further, we extend the metric do to a metric d3 on Xs.
Repeating this process, we obtain a sequence (d,, )22, of metrics d,, on X, such
that d,41|x, = d, for every n € N. We define a function d : X? = R by
setting d(z,y) = d,(z,y) for (z,y) € X2.

Fix n € N and m > n. Let B,,, be a cover of X,, by d-open balls of
diameter % For every B € B, ,, there exists an open set Vp in X such that

VeNX,, =B. Let Vo ={Ve: B€ By} and U, = |J V. Then U, is
m=1

an open cover of X for every n € N. Since X is paracompact, for every n € N
there exists a locally finite partition of unity (h;, : ¢ € I,,) on X subordinated
to Uy,. For every n € N and ¢ € I,, we choose x;,, € Xy(;,n) N supp hy,n, where
k(i,n) = min{m € N : X,,, Nsupp h; , # O}.
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Now fix z € X. Let (in)n=1 be a sequence of indexes i,, € I, such that
x € supphi, n. We choose m € N such that z € X,,. It is easy to see
that k(in,n) < m for every n € N. Then z;, , € Xp,. Since dp (24, n,x) <
diamsupp h;, .n < %, Zi, n —  in X;,. Therefore, z;, , — = in X. ]

Denote by R> the collection of all sequences with a finite support, i.e. se-
quences of the form (£1,&2,...,&,,0,0,...), where &,&,...,&, € R. Clearly,
R is a linear subspace of the space RY of all sequences. Denote by E the set
of all sequences e = (,,)22; of positive reals ¢, and let

Ue = {z = (§n)nly € R™ : (Vn € N)(|&n] < &n)}-

We consider on R* the topology in which the system Uy = {U, : e € E} forms
the base of neighborhoods of zero. Then R* equipped with this topology is a
locally convex o-metrizable paracompact space which is not a first countable
space, consequently, non-metrizable.

Example 3.6. The space R> is a PP-space which is not a strong PP-space.

Proof. Remark that R* is a PP-space by Proposition 3.5.
We show that R* is not a strong PP-space. Indeed, let

An:{(€1a§2a"'a€na070a"') : |§k| S % (V]- Skgn)}a

Then D is dense in R*°, but there is no sequence in D which converges to
x=1(0,0,0,...) € R®. Hence, R*™ is not a strong PP-space. ]

4. THE LEBESGUE CLASSIFICATION

The following result is an analog of theorems of K. Kuratowski [11] and
D. Montgomery [14] who proved that every separately continuous function,
defined on a product of a metrizable space and a topological space and with
values in a metrizable space, belongs to the first Baire class.

Theorem 4.1. Let X be a strong PP-space, Y a topological space, Z a perfectly
normal space and 0 < o < wy. Then

CH(X xY,Z) C H*

«

(X xY, Z).

Proof. Let f € CH? (X xY,Z). Then for the set Xg- (f) there exist a sequence
(Un)o2, of locally finite covers Uy, = (Ui, = i € I,) of X by co-zero sets U,
and a sequence ((z;, : i € I,))p, of families of points of the set Xp-(f)
satisfying condition (3.2).

We choose an arbitrary closed set ' C Z. Since Z is perfectly normal,
F = () Gpn, where Gy, are open sets in Z such that Gmy1 € G,y for every

m=1
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m € N. Let us verify that the equality

oo [ee]
(4.1) FE = U U Ui x (77om) 1 (G).
m=1n>micl,

holds. Indeed, let (zo,y0) € f~1(F). Then f(zo,%0) € Gy for every m € N.
Fix any m € N. Since V,,, = y’ol(Gm) is an open neighborhood of xg, there
exists a number ng > m such that for all n > ng and i € I,, the inclusion
Zin € Vi holds whenever zg € U; ,,. We choose ig € I,,, such that xg € Uj, n,-
Then f(%igne,Y0) € Gm. Hence, (x0,yo) belongs to the right-hand side of
(4.1).

Conversely, let (xq,yo) belong to the right-hand side of (4.1). Fix m € N.
We choose sequences (ng)52, (my)pe, of numbers ny, my € N and a sequence
(ir)52, of indexes iy € I, such that

m=m; <ny <mg<no<---<mp<ngp<...,

o € Uiy my, and  f(2i, nyrY0) € Gy, € Gy for every k € N.

Since klim Ziy.ne = To and the mapping f is continuous with respect to the
— 00

first variable, klim (@i s v0) = f(zo,y0). Therefore, f(zo,yo) € Gy, for
—00

every m € N. Hence, (x9,yo) belongs to the left-hand side of (4.1).
Since f*n € HX(Y,Z), the sets (f¥)~1(G,,) are of the functionally addi-
tive class « in Y. Moreover, all U, ,, are co-zero sets in X, consequently, by [6,

Theorem 1.5] the set E,, = |J U, % (f%")"1(G,,) belongs to the a’th func-
icl,
tionally additive class for every n. Therefore, |J FE, is of the o’th functionally
n>m

additive class. Hence, f~1(F) is of the (o + 1)’th functionally multiplicative
classin X x Y. O

Definition 4.2. We say that a topological space X has the (strong) L-property
or is a (strong) L-space, if for every topological space Y every (nearly vertically)
separately continuous function f: X x Y — R is of the first Lebesgue class.

According to Theorem 4.1 every strong PP-space has the strong L-property.

Proposition 4.3. Let X be a completely reqular strong L-space. Then for any
dense set A C X and a point xg € X there exists a countable dense set A C A
such that xo € Ag.

Proof. Fix an arbitrary everywhere dense set A C X and a point zg € A. Let
Y be the space of all real-valued continuous functions on X, endowed with
the topology of pointwise convergence on A. Since the evaluation function
e: X xY =R, e(z,y) = y(x), is nearly vertically separately continuous, e €
Hi(X x Y,R). Then B = e 1(0) is Gs-set in X x Y. Hence, By = {y € Y :
y(zp) = 0} is a Gs-set in Y. We set yg = 0 and choose a sequence (V,,)52
o0
of basic neighborhoods of yo in Y such that [\ V,, € By. For every n there

n=1
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exist a finite set {z;, : i € I,,} of X and &, > 0 such that V;, = {y € Y :
néalux|y(aczn)| < eé&n}. Let
1Cin

AO = U U {Ii,n}-

neNiel,
Take an open neighborhood U of zy in X and suppose that U N Ag = @. Since
X is completely regular and xzyp ¢ X \ U, there exists a continuous function

y : X — R such that y(z9) = 1 and y(X \ U) C {0}. Then y € ﬂ Vi, but

n=1

y & By, a contradiction. Therefore, U N Ay # @, and zg € Ap. O

5. BAIRE CLASSIFICATION AND 0-METRIZABLE SPACES

We recall that a topological space Y is B-favorable for a space X, if H1(X,Y") C
Bi(X,Y) (see [10]).

Definition 5.1. Let 0 < o < w;. A topological space Y is called weakly
By -favorable for a space X, if HX(X,Y) C Bo(X,Y).

Clearly, every B-favorable space is weakly B;-favorable.

[ee]
Proposition 5.2. Let 0 < a < wi, X a topological space, Y = |J Y, a
n=1

contractible space, f : X — Y a mapping, (X, )0‘11 a sequence of sets of the
a’th functionally additive class such that X = U X, and f(X,) C Y, for

every n € N. If one of the following conditions holds
(i) Yy, is a nonempty weakly B, -favorable space for X for all n and f €
H:(X,Y), or
(ii) « > 0 and for every n there exists a mapping fn € Ba(X,Ys) such that
fulx, = flx.,
then f € Bo(X,Y).

Proof. If o = 0 then the statement is obvious in case (i).
Let @ > 0. By [6, Lemma 2.1] there exists a sequence (E,)5; of disjoint
functionally ambiguous sets of the «’th class such that F,, C X,, and X =

oo
U E,.
In case (i) for every n we choose a point y,, € Y, and let

| f(z), fzeE,,
fn(x) { Yn, if 2 € X\ E,.

Since f € H(X,Y) and E, is functionally ambiguous set of the «’th class,
fn€ HE(X,Y,). Then f, € By(X,Y,) provided Y, is weakly B,-favorable
for X.
For every n there exists a sequence of mappings g, : X — Y, of classes < «
such that gnm(z) — fun(z) for every x € X. In particular, lim g, ,(z) =
m—0o0 m—0o0
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o)

f(z) on E,. Since E, is of the a-th functionally additive class, Ey, = |J Bpm,
m=1
where (B, m)20_, is an increasing sequence of sets of functionally additive
classes < a. Let F,,, = O if n > m, and let F,,,, = By, if n < m.
According to Lemma 2.2, for every m € N there exists a mapping g, : X = Y
of a class < « such that gi|F, ,, = gn,m, since the system {F, ., : n € N} is
finite for every m € N.

It remains to prove that g, (x) — f(x) on X. Let x € X. We choose a
number n € N such that € E,,. Since the sequence (F), ,,)5°_; is increas-
ing, there exists a number mg such that = € F,, ,, for all m > mg. Then
gm () = gn,m(x) for all m > mg. Hence, lim gn(z) = lm g, n(z) = f(z).

m—r oo m—r oo
Therefore, f € Bo(X,Y). O

Definition 5.3. Let {X,, : n € N} be a cover of a topological space X. We say
that (X, (X,,)n21) has the property (x) if for every convergent sequence (z4)52
in X there exists a number n such that {xj : k € N} C X,.

Proposition 5.4. Let 0 < o < wy, X a strong PP-space, Y a topological
space, (Z,(Z,)521) have the property (%), let Z, be closed in Z (and let Z,
be a zero-set in Z if a = 0) for everyn € N, and f € CBo(X x Y, Z). Then
there exists a sequence (Bp)S2, of sets of the a’th /(o + 1)’th/ functionally
multiplicative class in X XY, if « is finite /infinite/, such that

UBn=XxY and  f(Bn) CZ,
n=1

for every n € N.

Proof. Since Xp, (f) is dense in X, there exists a sequence (Up, = (Uim :
i € I,))oo_; of locally finite co-zero covers of X and a sequence ((z;m : i €
I,))50_, of families of points of Xp_(f) such that condition (3.2) holds.

In accordance with [16, Proposition 3.2] there exists a pseudo-metric on
X such that all the set U; ., are co-zero with respect to this pseudo-metric.
Denote by T the topology on X generated by the pseudo-metric. Obviously,
the topology T is weaker than the initial one. Using the paracompactness of
(X, T), for every m we choose a locally finite open cover V,,, = (Vs 0 s € Sp)
which refines U,,. By [3, Lemma 1.5.6], for every m there exists a locally finite
closed cover (Fs ., @ s € Sy,) of (X, T) such that Fs,, C Vs, for every s € S,,.
Now for every s € S,,, we choose i(s) € I, such that Fj ,, C Ui(s),m-

For all m,n € N and s € S, let

As,m,n = (fa;i(s)’m)_l(zn); Bm,n = U (Fs,m X As,m,n); B, = ﬂ Bm,n-
SESm m=1

Since f is of the o’th Baire class with respect to the second variable, for every

n the set A, », belongs to the o’th functionally multiplicative class /a+1/ in

Y for all m € N and s € S,,, if « is finite /infinite/ by Lemma 2.4. According

to [6, Proposition 1.4] the set B,,, is of the a’th /(a + 1)’th/ functionally
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multiplicative class in (X,7) x Y. Then the set B, is of the o’th /(a+ 1)’th/
functionally multiplicative class in (X, 7) x Y, and, consequently, in X x Y for
every n.

We prove that f(B,) C Z, for every n. To do this, fix n € N and (z,y) €
B,,. We choose a sequence (sp)p—; such that x € F, ., C Uy is,,) and

J (@ i(s)> ¥) € Zn. Then x,,, 46,y ST Since f is continuous with respect
to the first variable, f(mm,i(sm),y)mjoof(m,y). The set Z, is closed, then
f(z,y) € Z,.

Now we show that fj B, = X xY. Let (z,y) € X xY. Then there exists a

n=1
sequence (5, )55y such that x € Fip, s, € Uy ics,) and (% (5,15 Y) e flz,y).
Since (Z,(Z,)52 ) satisfies (%), there is a number n such that {f(@m. 4, ,y) :
m € N} is contained in Z,, i.e. y € Ayn, for every m € N. Hence,
(x,y) € By. O

Theorem 5.5. Let X be a strong PP-space, Y a topological space, {Z, : n €
N} a closed cover of a contractible perfectly normal space Z, let (Z,(Z,)52 ;)
satisfy (x) and Z,, be weakly Bi-favorable for X xY for every n € N. Then

CO(X xY,Z)C Bi(X x Y, 2Z).

Proof. Let f € CO(X x Y, Z). In accordance with Theorem 4.1, f € H;{ (X x

Y, Z). Moreover, Proposition 5.4 implies that there exists a sequence of zero-

sets B, € X xY such that |J B, =X xY and f(B,) C Z, for every n € N.
n=1

Since for every n the set B, is an Ff-set and H; (X xY, Z,,) C B1(X xY, Z,),

f € Bi(X xY,Z) by Proposition 5.2. O

Definition 5.6. A topological space X is called strongly o-metrizable, if it is o-
metrizable with a stratification (X,,)5 ; and (X, (X,,)22 ) has the property ().

Taking into account that every regular strongly o-metrizable space with
metrizable separable stratification is perfectly normal (see [13, Corollary 4.1.6])
and every metrizable separable arcwise connected and locally arcwise connected
space is weakly B,-favorable for any topological space X for all 0 < o < wy [7,
Theorem 3.3.5], we immediately obtain the following corollary of Theorem 5.5.

Corollary 5.7. Let X be a strong PP-space, Y a topological space and Z a
contractible reqular strongly o-metrizable space with a stratification (Z,)22,
where Z, is a metrizable separable arcwise connected and locally arcwise con-
nected space for every n € N. Then

CO(X xY,Z)C Bi(X x Y, Z).
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