

pp. 225-226

Correction to: Some results and examples concerning Whyburn spaces

OFELIA T. ALAS, MAIRA MADRIZ-MENDOZA AND RICHARD G. WILSON

Abstract

We correct the proof of Theorem 2.9 of the paper mentioned in the title (published in Applied General Topology, 13 No.1 (2012), 11-19).

2010 MSC:Primary 54D99; Secondary 54A25; 54D10; 54G99

KEYWORDS: Whyburn space, weakly Whyburn space, submaximal space, scattered space, semiregular, feebly compact

There is an error in the proof of Theorem 2.9. A correct proof is as follows.

Theorem 2.9. If X is weakly Whyburn, then $|X| \leq d(X)^{t(X)}$.

Proof. If X is finite, the result is trivial; thus we assume that X is infinite. Suppose that $d(X) = \delta$, $t(X) = \kappa$ and $D \subseteq X$ is a dense (proper) subset of cardinality δ . Let $D = D_0$ and define recursively an ascending chain of subspaces $\{D_{\alpha} : \alpha < \kappa^+\}$ as follows:

Suppose that for some $\alpha \in \kappa^+$ and for each $\beta < \alpha$ we have defined dense sets D_{β} such that $|D_{\beta}| \leq \delta^{\kappa}$ and $D_{\gamma} \subseteq D_{\lambda}$ whenever $\gamma < \lambda < \alpha$. If α is a limit ordinal, then define $D_{\alpha} = \bigcup \{D_{\beta} : \beta < \alpha\}$ and then $|D_{\alpha}| \leq |\alpha| . \delta^{\kappa} \leq \kappa^+ . \delta^{\kappa} = \delta^{\kappa}$. If on the other hand $\alpha = \beta + 1$, and $D_{\beta} \subseteq X$, then since X is weakly Whyburn there is some $x \in X \setminus D_{\beta}$ and $B_x \subseteq D_{\beta}$ such that $|B_x| \leq \kappa$, $\operatorname{cl}(B_x) \setminus D_{\beta} = \{x\}$; thus necessarily, we have that $|\operatorname{cl}(B_x)| \leq \delta^{\kappa}$ and we define

$$D_{\alpha} = \bigcup \{ \operatorname{cl}(B) : B \subseteq D_{\beta}, \, |B| \le \kappa, \, |\operatorname{cl}(B)| \le \delta^{\kappa} \}.$$

Clearly $D_{\alpha} \supseteq D_{\beta}$ and since there are at most $(\delta^{\kappa})^{\kappa}$ such sets B it follows that $|D_{\alpha}| \leq \delta^{\kappa}$. If $D_{\alpha} = X$ for some $\alpha < \kappa^{+}$, then we are done. If not, then we define $\Delta = \bigcup \{D_{\alpha} : \alpha < \kappa^{+}\}$, and clearly $|\Delta| \leq \kappa^{+}.\delta^{\kappa} = \delta^{\kappa}$.

Thus to complete the proof it suffices to show that $\Delta = X$. Suppose to the contrary; then, since Δ is not closed and X is weakly Whyburn and has tightness κ , there is some $z \in X \setminus \Delta$ and some set $B \subseteq \Delta$ of cardinality at most κ , such that $\operatorname{cl}(B) \setminus \Delta = \{z\}$ and hence $|\operatorname{cl}(B)| \leq \delta^{\kappa}$. Since the sets $\{D_{\alpha} : \alpha < \kappa^+\}$ form an ascending chain and $\operatorname{cf}(\kappa^+) > \kappa$, it follows that for some $\gamma < \kappa^+$, $B \subseteq \bigcup \{D_{\alpha} : \alpha < \gamma\}$ and hence $z \in D_{\gamma+1} \subseteq \Delta$, a contradiction. \square

It should also be noted that Theorem 2.6 is not as claimed, an improvement on the cited result of Bella, Costantini and Spadaro, since a Lindelöf P-space is regular.

(Received October 2012 - Accepted October 2012)

O. T. ALAS (alas@ime.usp.br)

Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, 05311-970 São Paulo, Brasil.

M. Madriz-Mendoza, R. G. Wilson (seber@xanum.uam.mx, rgw@xanum.uam.mx) Departamento de Matemáticas, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco, #186, Apartado Postal 55-532, 09340, México, D.F., México.