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Abstract

In this paper, we prove that if K is a nonempty weakly compact set

in a Banach space X, T : K → K is a nonexpansive map satisfying
x+Tx

2
∈ K for all x ∈ K and if X is 3−uniformly convex or X has the

Opial property, then T has a fixed point in K.
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1. Introduction

Let K be a nonempty subset of a Banach space X. A mapping T : K → K
is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ K.

The following theorem was proved independently by Browder [2] and Göhde
[8] in the setting of uniformly convex Banach spaces.

Theorem 1.1 ([2]). Let K be a nonempty weakly compact convex subset of a

uniformly convex Banach space X and T : K → K be a nonexpansive map.

Then T has a fixed point in K.

Using the notion of normal structure, Kirk [10] proved the following theorem
which is more general than Theorem 1.1.
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Theorem 1.2 ([10]). Let K be a nonempty weakly compact convex subset hav-

ing normal structure in a Banach space X and T : K → K be a nonexpansive

map. Then T has a fixed point in K.

The convexity assumption cannot be dispense in the above theorems as can
be seen from the following simple example.

Let K = [−2,−1]∪ [1, 2] ⊆ R and T is a self map on K defined by Tx = −x
for all x ∈ K. Then T is nonexpansive, but T has no fixed points in K. This
implies that nonexpansive map on a non-convex set in a Banach space need
not have a fixed point.

Motivated by Theorem 1.1 and Theorem 1.2, Veeramani [20] introduced the
notion of T−regular set as follows:

Let T be a self map on a nonempty subset K of a Banach space X. Then K
is said to be a T−regular set if x+Tx

2 ∈ K for all x ∈ K.
Clearly, if K is a convex set and T : K → K, then K is T−regular. But a

T−regular set need not be a convex set(see Example 3.2). Further, Veeramani
[20] proved the following fixed point theorem.

Theorem 1.3 ([20]). Let K be a nonempty weakly compact subset of a uni-

formly convex Banach space X and T : K → K be a nonexpansive map. Fur-

ther, assume that K is T−regular. Then T has a fixed point in K.

Khan and Hussain [9] used the notion of T−regular sets to prove the ex-
istence of fixed points for nonexpansive mappings in the setting of metrizable
topological vector space. Also, Goebel and Schöneberg [6] proved the existence
of fixed point for a nonexpansive map on certain nonconvex sets in a Hilbert
space.

Sullivan [18] introduced the concept of k−uniform convexity, k−UC in short,
where k is any positive integer and proved that every k−uniformly convex
Banach space has normal structure. Note that for k = 1, it is uniformly
convex.

Sullivan [18] observed that every k−UC Banach space is a (k + 1)−UC.
But the converse is not true. For example, the Banach space lp,1(N) [1] for
1 < p < ∞ is 2−UC but not 1−UC where lp,1(N) is the lp(N) space with
suitable renorm.

Motivated by Theorem 1.2, Theorem 1.3 and the fact that k−UC Banach
spaces have normal structure [18], we raise the following question:

Does a nonexpansive map T on a nonempty weakly compact set K in a
k−UC Banach space have a fixed point if x+Tx

2 ∈ K for all x ∈ K?
In this paper, we give an affirmative answer to the above question, if X is a

3−UC Banach space. For the proof of this result, Lemma 3.3 and Lemma 3.4
(the geometric inequality on k−UC Banach space) are crucial.

In another direction, Opial [16] introduced a class of spaces for which the
asymptotic center of a weakly convergent sequence coincides with the weak
limit point of the sequence. Gossez and Lami Dozo [7] have observed that
all such spaces have normal structure. Hence, in view of Kirk’s theorem, ev-
ery nonempty weakly compact convex set in a Banach space which satisfy
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Opial’s condition has fixed point property for a nonexpansive mapping. Re-
cently, Suzuki [19] introduced a new class of mappings which also includes
nonexpansive maps and proved that every nonempty weakly compact convex
set in a Banach space which satisfy Opial’s condition also has fixed point prop-
erty for all such maps.

In this paper, we prove that if K is a nonempty weakly compact set in a
Banach space X having the Opial property, T : K → K is a nonexpansive
map and if K is T−regular set, then T has a fixed point point in K. Moreover,
the Krasnoseleskii’s [12] iterated sequence {xn} where xn+1 = xn+Txn

2 for all
n ∈ N and x1 ∈ K weakly converges to a fixed point.

2. Preliminaries

Now, we give some basic definitions and results which are used in this paper.
Let X be a Banach space. For a nonempty subset A of X, let

co(A) =

{

n
∑

i=1

λixi : xi ∈ A,λi ≥ 0, for i = 1, 2, . . . , n and
n
∑

i=1

λi = 1, n ∈ N

}

aff(A) =

{

n
∑

i=1

λixi : xi ∈ A,λi ∈ R, for i = 1, 2, . . . , n and

n
∑

i=1

λi = 1, n ∈ N

}

The sets co(A) and aff(A) are called the convex hull and the affine hull of A
respectively.

A set A is affine if A = aff(A). Every affine set is a translation of a sub-
space and the subspace is uniquely defined by the affine set. The dimension
of an affine set is the dimension of the corresponding subspace. Further, the
dimension of a convex set A is defined as the dimension of the smallest affine
set which contains A. This shows that the dimension of co(A) is the dimension
of aff(A).

Sliverman [17] introduced the notion of volume of k+1 vectors, denoted by
V (x1, x2, . . . , xk+1), as follows:

Given x1, x2, . . . , xk+1 ∈ X,

V (x1, x2, . . . , xk+1) =
1

k!
sup



















∣

∣

∣

∣

∣

∣

∣

∣

∣

f1(x2 − x1) . . . f1(xk+1 − x1)
f2(x2 − x1) . . . f2(xk+1 − x1)

...
...

...
fk(x2 − x1) . . . fk(xk+1 − x1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

: f1, . . . , fk ∈ BX∗



















By the consequences of Hahn-Banach theorem, V (x1, x2) = ‖x1 − x2‖ for any
x1, x2 ∈ X. Note that V (x1, x2, . . . , xk+1) = 0 iff the dimension of the convex
hull of {x1, x2, . . . , xk+1} does not exceed k − 1.

Using the notion of volume of k+1 vectors, Sullivan [18] defined the concept
of k−uniform convexity.

We put µ
(k)
X = sup{V (x1, . . . , xk+1) : x1, . . . , xk+1 ∈ BX}.
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Definition 2.1 ([18]). The modulus of k−convexity is defined as

δ
(k)
X (ǫ) = inf

{

1−
1

k + 1

∥

∥

∥

∥

∥

k+1
∑

i=1

xi

∥

∥

∥

∥

∥

: x1, . . . , xk+1 ∈ BX and V (x1, . . . , xk+1) ≥ ǫ

}

where ǫ ∈ [0, µ
(k)
X ).

A Banach space X is said to be k−uniformly convex if δ
(k)
X (ǫ) > 0 for every

0 < ǫ < µ
(k)
X .

Note that all Banach spaces of dimension less than k + 1 are k−UC. For
more information on k−UC, one can refer to [11, 14, 15].

Lim [13] proved the continuity of modulus δ
(k)
X of k−convexity using the

following inequality.

Theorem 2.2 ([13]). Let X be a Banach space and k be any positive integer.

For every 0 < ǫ1 < c < ǫ2 < µ
(k)
X ,

δ
(k)
X (c)− δ

(k)
X (ǫ1)

c− ǫ1
≤

1

k(ǫ
1/k
2 − ǫ

1/k
1 )ǫ

1−1/k
1

Corollary 2.3 ([13]). Let X be a Banach space. Then δ
(k)
X (ǫ) is continuous

on [0, µ
(k)
X ).

Definition 2.4 ([16]). A Banach space X is said to have the Opial property
if {xn} is a weakly convergent sequence in X with limit z, then

lim inf
n→∞

‖xn − z‖ < lim inf
n→∞

‖xn − y‖

for all y ∈ X with y 6= z.

It is known that [5] Hilbert spaces, finite dimensional Banach spaces and
lp(N) (1 < p < ∞) have the Opial property.

Edelstein [3] introduced the notion of asymptotic center as follows:

Definition 2.5 ([3]). Let K be a nonempty subset of a Banach space X and
{xn} be a bounded sequence in X. For each x ∈ X, define r(x) = lim sup

n→∞

‖x−

xn‖. The number r = inf
x∈K

r(x) and the set A(K, {xn}) = {x ∈ K : r(x) = r}

are called the asymptotic radius and asymptotic center of {xn} with respect to
K respectively.

We use the next lemma in the sequel, which is proved by Goebel and Kirk
[4].

Lemma 2.6 ([4]). Let {zn} and {wn} be bounded sequences in a Banach space

X and let λ ∈ (0, 1). Suppose that zn+1 = λwn +(1−λ)zn and ‖wn+1 −wn‖ ≤
‖zn+1 − zn‖ for all n ∈ N. Then lim

n→∞

‖wn − zn‖ = 0.
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3. Main results

3.1. 3−UC Banach spaces. In this section, we first give the convergence
theorem for a nonexpansive map T defined on a compact T−regular set in a
Banach spaceX. Also, we prove the existence of fixed points for a nonexpansive
map T defined on a weakly compact T−regular set in a 3−UC Banach space
X.

Theorem 3.1. Let K be a nonempty compact subset of a Banach space X and

T : K → K be a nonexpansive map. Further, assume that K is T−regular.

Define a sequence {xn} in K by xn+1 = xn+Txn

2 for n ∈ N and x1 ∈ K. Then
T has a fixed point in K and {xn} strongly converges to a fixed point of T.

Proof. Since xn+1 = xn+Txn

2 for n ∈ N, by Lemma 2.6, we have lim
n→∞

‖xn −

Txn‖ = 0.
Since K is compact and {xn} ⊆ K, there exists a subsequence {xnk

} of
{xn} and z ∈ K such that {xnk

} converges to z. Now, by the continuity of T ,
{Txnk

} converges to Tz.
But, note that lim

k→∞

‖xnk
− Txnk

‖ = 0. Hence {xnk
} also converges to Tz.

This implies that Tz = z.
Also, note that {‖xn − z‖} is a decreasing sequence. For,

‖xn+1 − z‖ ≤
1

2
‖xn − z‖+

1

2
‖Txn − z‖ ≤ ‖xn − z‖, for all n ∈ N

Therefore {xn} converges to z, as {xnk
} converges to z in norm. �

Example 3.2. LetK = {(x, 0, 1
2n ), (0, y,

1
2n ), (x, x,

1
2n ), (x, 0, 0), (0, y, 0), (x, x, 0) :

0 ≤ x, y ≤ 1 and n ∈ N} be a subset of (R3, ‖.‖2). Define a map T : K → K
by T (x, y, z) = (y, x, 0) for all (x, y, z) ∈ K.

It is easy to see that K is T−regular. Also, note that T is nonexpansive.
For, let x = (x1, y1, z1), y = (x2, y2, z2) ∈ K.

Then ‖Tx− Ty‖2 = ‖(y1 − y2, x1 − x2, 0)‖2

≤ ‖(x1 − x2, y1 − y2, z1 − z2)‖2 = ‖x− y‖2

By Theorem 3.1, T has a fixed point inK, sinceK is compact and T−regular.
Also, note that Fix(T ) = {(x, x, 0) : 0 ≤ x ≤ 1}.

Lemma 3.3. Let K be a nonempty weakly compact subset of a Banach space X
and T : K → K be a nonexpansive map. Further, assume that K is T−regular.

Define a sequence {xn} in K by xn+1 = xn+Txn

2 for n ∈ N and x1 ∈ K. Then
the asymptotic center A(K, {xn}) of {xn} with respect to K is also a nonempty

weakly compact T−regular subset of K. Moreover, if K is a minimal weakly

compact T−regular set, then A(K, {xn}) = K.

Proof. Since r(x) = lim sup
n→∞

‖x−xn‖ is a weakly lower semicontinuous function

on X and K is weakly compact, A(K, {xn}) = {x ∈ K : r(x) = inf
y∈K

r(y) = r}

is nonempty.
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Also {x ∈ X : r(x) ≤ inf
y∈K

r(y)} is a weakly closed set, this implies that

A(K, {xn}) = {x ∈ X : r(x) ≤ inf
y∈K

r(y)} ∩K is a weakly closed set.

Moreover, since T is nonexpansive and lim
n→∞

‖xn − Txn‖ = 0, A(K, {xn}) is

T−invariant.
Now, it is claimed that A(K, {xn}) is a T−regular set.
Let x ∈ A(K, {xn}). Then Tx ∈ A(K, {xn}) and

∥

∥

∥

∥

x+ Tx

2
− xn

∥

∥

∥

∥

≤
1

2
‖x− xn‖+

1

2
‖Tx− xn‖.

This implies that

lim sup
n→∞

∥

∥

∥

∥

x+ Tx

2
− xn

∥

∥

∥

∥

= r.

Therefore x+Tx
2 ∈ A(K, {xn}). Hence A(K, {xn}) is a nonempty weakly com-

pact T−regular subset of K.
Suppose that K is a nonempty minimal weakly compact T−regular set.

Then A(K, {xn}) = K, as A(K, {xn}) ⊆ K is also a nonempty weakly compact
T−regular set. �

Lemma 3.4. Let X be a k−UC Banach space, for some k ∈ N and x1, x2, . . . ,
xk+1 ∈ BX such that V (x1, x2, . . . , xk+1) = ǫ > 0.

Then ‖t1x1 + t2x2 + · · ·+ tk+1xk+1‖ ≤ 1− (k + 1)min{t1, t2, . . . , tk+1}δ
(k)
X (ǫ),

where
k+1
∑

i=1

ti = 1, ti ≥ 0 for i = 1, 2, . . . , k + 1.

Proof. Without loss of generality, we can assume that t1 = min{t1, t2, . . . , tk+1}.

‖t1x1 + t2x2 + · · ·+ tk+1xk+1‖ = ‖t1(x1 + · · ·+ xk+1) + (t2 − t1)x2 + (t3 − t1)x3

+ · · ·+ (tk+1 − t1)xk+1‖

≤ (k + 1)t1

∥

∥

∥

∥

x1 + x2 + · · ·+ xk+1

k + 1

∥

∥

∥

∥

+ (t2 − t1)‖x2‖

+(t3 − t1)‖x3‖+ · · ·+ (tk+1 − t1)‖xk+1‖

≤ (k + 1)t1(1− δ
(k)
X (ǫ)) + t2 + t3 + · · ·+ tk+1 − kt1

= (k + 1)t1 − (k + 1)t1δ
(k)
X (ǫ) + 1− (k + 1)t1

= 1− (k + 1)t1δ
(k)
X (ǫ)

Hence ‖t1x1+t2x2+· · ·+tk+1xk+1‖ ≤ 1−(k+1)min{t1, t2, . . . , tk+1}δ
(k)
X (ǫ). �

Remark 3.5. Now from Lemma 3.4, we have:

(1) If k = 2 and t1 = t2 = 1
4 , then

∥

∥

∥

x1

4
+

x2

4
+

x3

2

∥

∥

∥
≤ 1−

3

4
δ
(2)
X (ǫ).
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(2) If k = 3 and t1 = t2 = 1
8 , t3 = 1

4 then

∥

∥

∥

x1

8
+

x2

8
+

x3

4
+

x4

2

∥

∥

∥
≤ 1−

1

2
δ
(3)
X (ǫ).

(3) If k = 3 and t1 + t2 + t3 = 1
2 , then

∥

∥

∥

∥

t1x1 + t2x2 + t3x3 +
1

2
x4

∥

∥

∥

∥

≤ 1− 4min{t1, t2, t3}δ
(3)
X (ǫ).

We obtain the intuitive and geometric idea for the proof of our main result
Theorem 3.7 from the proof technique of the following theorem.

Theorem 3.6. Let K be a nonempty weakly compact subset of a 2−uniformly

convex Banach space X and T : K → K be a nonexpansive map. Further,

assume that K is T−regular. Then T has a fixed point in K.

Proof. Define F = {F ⊆ K : F is nonempty weakly compact T−regular set} .
It is easy to see that the set inclusion ⊆, defines a partial order relation on

F . By Zorn’s lemma, we get a minimal element in F .
Without loss of generality, we can assume that K is minimal in F .
Let x1 ∈ K and define xk+1 = xk+Txk

2 ∈ K, for k ∈ N.
By Lemma 3.3, we have A(K, {xk}) = K i.e., r(x) = lim sup

k→∞

‖x − xk‖ = r,

for all x ∈ K.
Note that r = 0 if and only if K is singleton.
For, if r = 0, then lim sup

k→∞

‖x − xk‖ = 0, for all x ∈ K. This gives {xk}

converges to every point in K. Hence K is singleton.
Conversely, suppose that K is singleton. Then it is easy to see that r = 0,

as {xk} ⊆ K.
We claim that r = 0. Suppose that r > 0. This implies that x 6= Tx, for all

x ∈ K.
It is claimed that Txn ∈ aff{x1, T x1} for all n ∈ N.
Suppose that there exists n ∈ N such that Txn /∈ aff{x1, T x1}.
Without loss of generality, we can assume that Tx2 /∈ aff{x1, T x1}.
This gives {x1, T x1, T x2} is affinely independent and dim(co{x1, T x1, T x2} =

2. Hence V (x1, T x1, T x2) = ǫ for some ǫ > 0.

Since X is 2−UC and δ
(2)
X is continuous, we have

lim
ρ→0

(r + ρ)

(

1−
3

4
δ
(2)
X

(

ǫ

(r + ρ)2

))

= r

(

1−
3

4
δ
(2)
X

( ǫ

r2

)

)

< r

This implies that there is a ρ0 > 0 such that

(r + ρ0)

(

1−
3

4
δ
(2)
X

(

ǫ

(r + ρ0)2

))

< r.
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Since A(K, {xk}) = K and for this ρ0 > 0, there exists N ∈ N such that for
k ≥ N, we have

‖x1 − xk‖ ≤ r + ρ0

‖Tx1 − xk‖ ≤ r + ρ0

‖Tx2 − xk‖ ≤ r + ρ0

As X is 2−UC, we have
∥

∥

∥

∥

x1 + Tx1 + Tx2

3
− xk

∥

∥

∥

∥

≤ (r + ρ0)

(

1− δ
(2)
X

(

ǫ

(r + ρ0)2

))

, for k ≥ N.

Note that x3 = x1

4 + Tx1

4 + Tx2

2 ∈ co{x1, T x1, T x2} and by Lemma 3.4, we get

‖x3 − xk‖ =

∥

∥

∥

∥

x1

4
+

Tx1

4
+

Tx2

2
− xk

∥

∥

∥

∥

≤ (r + ρ0)

(

1−
3

4
δ
(2)
X

(

ǫ

(r + ρ0)2

))

, for k ≥ N.

This implies that

r(x3) = lim sup
k→∞

‖x3 − xk‖

≤ (r + ρ0)

(

1−
3

4
δ
(2)
X

(

ǫ

(r + ρ0)2

))

< r.

This gives a contradiction to A(K, {xk}) = K.
Therefore Txn ∈ aff{x1, T x1}, for all n ∈ N. This implies that {xn} ⊆

aff{x1, T x1}.
Since {xn} is a bounded sequence and dim(aff{x1, T x1}) = 1, so it has a

convergent subsequence say {xnj
} of {xn} and z ∈ K such that xnj

→ z as
j → ∞. Since lim

j→∞

‖xnj
− Txnj

‖ = 0 and T is nonexpansive, Tz = z. Hence

r = 0.
This implies that K is singleton and T has a fixed point in K. �

Next we prove the main result of this paper.

Theorem 3.7. Let K be a nonempty weakly compact subset of a 3−uniformly

convex Banach space X and T : K → K be a nonexpansive map. Further,

assume that K is T−regular. Then T has a fixed point in K.

Proof. Note that by using Zorn’s lemma, we get a nonempty minimal weakly
compact T−regular subset of K.

Without loss of generality, we can assume that K is a nonempty minimal
weakly compact T−regular set.

Let x1 ∈ K and define xk+1 = xk+Txk

2 ∈ K, for k ∈ N.
By Lemma 3.3, we have A(K, {xk}) = K i.e., r(x) = lim sup

k→∞

‖x − xk‖ = r,

for all x ∈ K.
We claim that r = 0. Suppose that r > 0. This implies that x 6= Tx, for all

x ∈ K.
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Suppose that for every n ∈ N, Txn ∈ aff{x1, T x1}. Then {xn} is a bounded
sequence in aff{x1, T x1}, as K is bounded.

Hence {xn} has a convergent subsequence. This implies that T has a fixed
point in K.

Suppose that there exists n ∈ N such that Txn 6∈ aff{x1, T x1}.
Without loss of generality, we can assume that Tx2 6∈ aff{x1, T x1}.
It is claimed that Txn ∈ aff{x1, T x1, T x2}, for all n ∈ N.
We use mathematical induction to prove our claim.

Case 1. It is claimed that Tx3 ∈ aff{x1, T x1, T x2}. Suppose that Tx3 6∈
aff{x1, T x1, T x2}.

This gives {x1, T x1, T x2, T x3} is affinely independent and dim(co{x1, T x1,
T x2, T x3}) = 3. Hence V (x1, T x1, T x2, T x3) = ǫ, for some ǫ > 0.

Since X is 3−UC and δ
(3)
X is continuous, there is a ρ0 > 0 such that

(r + ρ0)

(

1−
1

2
δ
(3)
X

(

ǫ

(r + ρ0)3

))

< r.

Since A(K, {xk}) = K, there exists N ∈ N such that for k ≥ N, we have

‖x1 − xk‖ ≤ r + ρ0

‖Tx1 − xk‖ ≤ r + ρ0

‖Tx2 − xk‖ ≤ r + ρ0

‖Tx3 − xk‖ ≤ r + ρ0

As X is 3−UC, we have for k ≥ N
∥

∥

∥

∥

x1 + Tx1 + Tx2 + Tx3

4
− xk

∥

∥

∥

∥

≤ (r + ρ0)

(

1− δ
(3)
X

(

ǫ

(r + ρ0)3

))

.

Note that x4 = x3+Tx3

2 = x2+Tx2

4 +Tx3

2 = x1

8 +Tx1

8 +Tx2

4 +Tx3

2 ∈ co{x1, T x1, T x2, T x3}.
Now, by Lemma 3.4, we get

‖x4 − xk‖ =

∥

∥

∥

∥

x1

8
+

Tx1

8
+

Tx2

4
+

Tx3

2
− xk

∥

∥

∥

∥

≤ (r + ρ0)

(

1−
1

2
δ
(3)
X

(

ǫ

(r + ρ0)3

))

, for k ≥ N.

This implies that

r(x4) = lim sup
k→∞

‖x4 − xk‖

≤ (r + ρ0)

(

1−
1

2
δ
(3)
X

(

ǫ

(r + ρ0)3

))

< r.

This gives a contradiction to A(K, {xk}) = K. Hence Tx3 ∈ aff{x1, T x1, T x2}.
Case 2. It is claimed that Tx4 ∈ aff{x1, T x1, T x2}. Suppose that Tx4 /∈
aff{x1, T x1, T x2}.

This gives {x1, T x1, T x2, T x4} is affinely independent and dim(co{x1, T x1,
T x2, T x4}) = 3.

Since Tx3 ∈ aff{x1, T x1, T x2}, we have the following cases:
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(a). Tx3 ∈ aff{x2, T x2}
(b). Tx3 6∈ aff{x2, T x2}.

Subcase 2(a). Suppose that Tx3 ∈ aff{x2, T x2}. Then Tx3 = (1 − µ3)x2 +
µ3Tx2, for some µ3 ∈ R. By the nonexpansiveness of T, we have

1
2‖Tx2 − x2‖ = ‖x3 − x2‖ ≥ ‖Tx3 − Tx2‖ = |1− µ3|‖Tx2 − x2‖.

This gives 1
2 ≤ µ3 ≤

3

2
. Note that µ3 6= 1

2 . For, if µ3 = 1
2 , then Tx3 = x3.

Now x4 =
x3 + Tx3

2
=

1

2

(

x2 + Tx2

2
+ Tx3

)

=
x2

4
+

1

4

(

Tx3 − (1 − µ3)x2

µ3

)

+
Tx3

2

=

(

2µ3 − 1

4µ3

)

x2 +

(

2µ3 + 1

4µ3

)

Tx3

=

(

2µ3 − 1

8µ3

)

x1 +

(

2µ3 − 1

8µ3

)

Tx1 +

(

2µ3 + 1

4µ3

)

Tx3

= t1x1 + t1Tx1 + (1− 2t1)Tx3 where t1 =
2µ3 − 1

8µ3
.

Since µ3 > 1
2 , we have t1 > 0 and 1− 2t1 > 0. This gives x4 lies in the interior

of co{x1, T x1, T x3}.
Since {x1, T x1, T x2, T x4} is affinely independent and Tx3 ∈ aff{x2, T x2}, we

have {x1, T x1, T x3, T x4} is affinely independent and dim(co{x1, T x1, T x3, T x4}) =
3. Hence V (x1, T x1, T x3, T x4) = ǫ for some ǫ > 0.

Since δ
(3)
X is continuous and X is 3−UC, there is a ρ0 > 0 such that

(r + ρ0)

(

1− 2min{t1, 1− 2t1}δ
(3)
X

(

ǫ

(r + ρ0)3

))

< r

As A(K, {xk}) = K, there exist N ∈ N such that for k ≥ N, we have
∥

∥

∥

∥

x1 + Tx1 + Tx3 + Tx4

4
− xk

∥

∥

∥

∥

≤ (r + ρ0)

(

1− δ
(3)
X

(

ǫ

(r + ρ0)3

))

.

Note that x5 = x4+Tx4

2 = 1
2 (t1x1 + t1Tx1 + (1 − 2t1)Tx3 + Tx4) .

This implies that x5 lies in the interior of co{x1, T x1, T x3, T x4}. Now, by
Lemma 3.4, for k ≥ N we have

‖x5 − xk‖ =

∥

∥

∥

∥

1

2
(t1x1 + t1Tx1 + (1− 2t1)Tx3 + Tx4)− xk

∥

∥

∥

∥

≤ (r + ρ0)

(

1− 2min{t1, 1− 2t1}δ
(3)
X

(

ǫ

(r + ρ0)3

))

.

This implies that

r(x5) = lim sup
k→∞

‖x5 − xk‖

≤ (r + ρ0)

(

1− 2min{t1, 1− 2t1}δ
(3)
X

(

ǫ

(r + ρ0)3

))

< r.
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This gives a contradiction to A(K, {xk}) = K. Hence Tx4 ∈ aff{x1, T x1, T x2}.
Subcase 2(b). Suppose that Tx3 /∈ aff{x2, T x2}. Then {x2, T x2, T x3} is
affinely independent and dim(co{x2, T x2, T x3}) = 2.

Since Tx3 ∈ aff{x1, T x1, T x2} and Tx3 6∈ aff{x2, T x2}, we have Tx3 =
ax1 + bTx1 + (1 − (a+ b))Tx2, for a, b ∈ R with a 6= b.

Since {x1, T x1, T x2, T x4} is affinely independent and Tx3 = ax1 + bTx1 +
(1 − (a + b))Tx2, we have {x2, T x2, T x3, T x4} is affinely independent and
dim(co{x2, T x2, T x3, T x4}) = 3. This implies that V (x2, T x2, T x3, T x4) = ǫ,
for some ǫ > 0.

Therefore by case 1, we get r(x5) < r.
This gives a contradiction toA(K, {xk}) = K.Hence Tx4 ∈ aff{x1, T x1, T x2}.

Case 3. Now, we assume that Txn ∈ aff{x1, T x1, T x2}, for 1 ≤ n ≤ m− 1.
To prove that Txm ∈ aff{x1, T x1, T x2}.
Suppose not. Then {x1, T x1, T x2, T xm} is affinely independent.
Since Txk ∈ aff{x1, T x1, T x2} for 3 ≤ k ≤ m − 1, we have the following

cases:

(a). Txk ∈ aff{x2, T x2} for k = 3, 4, . . . ,m− 1
(b). Txk 6∈ aff{x2, T x2} for some k ∈ {3, 4, . . . ,m− 1}.

Subcase 3(a). Suppose that Txk ∈ aff{x2, T x2} for 3 ≤ k ≤ m − 1. Then

xk ∈ aff{x2, T x2} for 3 ≤ k ≤ m, as xk =
xk−1+Txk−1

2 .
Let xk = (1 − λk)x2 + λkTx2 for some λk ∈ R, 2 ≤ k ≤ m and Txk =

(1−µk)x2 +µkTx2 for some µk ∈ R, 2 ≤ k ≤ m− 1. Note that λk+1 = λk+µk

2 ,

for 2 ≤ k ≤ m− 1, as xk+1 = xk+Txk

2 . Hence λ3 = 1
2 , as λ2 = 0, µ2 = 1.

Since we work with the aff{x2, T x2}, we can identify the aff{x2, T x2} with
the real line R by assuming x2 = 0 and Tx2 = 1. In this way, we get that
xk = λk and Txk = µk for 2 ≤ k ≤ m− 1.

As Txk 6= xk, we have λk 6= µk and λk 6= λk+1 for 2 ≤ k ≤ m− 1.
Note that, from case 2(a), we have λ3 < µ3. This implies that λ3 < λ4 < µ3,

as λk+1 = λk+µk

2 .
It is claimed that λk < λk+1 and λk < µk, for 4 ≤ k ≤ m− 1.
Since T is nonexpansive, we have
|µ4 − µ3|‖x2 − Tx2‖ = ‖Tx3 − Tx4‖ ≤ ‖x3 − x4‖ = (λ4 − λ3)‖x2 − Tx2‖.

This implies that −λ4 +λ3 ≤ µ4 −µ3 ≤ λ4 −λ3. Now, since λ4 = λ3+µ3

2 , we
have λ4 < µ4. This gives λ4 < λ5 < µ4.

Continuing in this way, we get λk < λk+1 < µk for 3 ≤ k ≤ m− 1.
Hence 0 = λ2 < λ3 < λ4 < · · · < λm−1 < λm < µm−1.
This implies that λk lies in the interior of co{λ2, µm−1} for 3 ≤ k ≤ m.
Hence xk lies in the interior of co{x2, T xm−1} for 3 ≤ k ≤ m.
This implies that xm lies in the interior of co{x1, T x1, T xm−1}, as x2 =

x1+Tx1

2 .
Now, since aff{x1, T x1, T x2} =aff{x1, T x1, T xm−1} and Txm 6∈ aff{x1, T x1, T x2},

we have {x1, T x1, T xm−1, T xm} is affinely independent and dim(co{x1, T x1,
T xm−1, T xm}) = 3.
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Hence xm+1 lies in the interior of co{x1, T x1, T xm−1, T xm}, as xm+1 =
xm+Txm

2 .
Now, by using the arguments as in case 2(a), it is easy to see that r(xm+1) =

lim sup
k→∞

‖xm+1 − xk‖ < r.

This gives a contradiction toA(K, {xk}) = K.Hence Txm ∈ aff{x1, T x1, T x2}.
Subcase 3(b). Suppose that there exists k ∈ N such that 3 ≤ k ≤ m− 1 and
Txk 6∈ aff{x2, T x2}.

Let k0 be the least integer satisfying Txk0
6∈ aff{x2, T x2}. This implies

Tx3, T x4, . . . , T xk0−1 ∈ aff{x2, T x2}.
Then {xk0−1, T xk0−1, T xk0

} is affinely independent and aff{xk0−1, T xk0−1,
T xk0

} = aff{x1, T x1, T x2}.
Now, we consider the set {xk0−1, T xk0−1, T xk0

}.
Suppose that Txk ∈ aff{xk0

, T xk0
} for k0 + 1 ≤ k ≤ m− 1.

Then using the arguments as in case 3(a), it is easy to see that xm+1 lies in
the interior of co{xk0−1, T xk0−1, T xm−1, T xm} and {xk0−1, T xk0−1, T xm−1, T xm}
is affinely independent. Now, it is apparent that r(xm+1) < r, as X is 3−UC.

This gives a contradiction toA(K, {xk}) = K.Hence Txm ∈ aff{x1, T x1, T x2}.
Suppose that there exists k ∈ N such that k0 + 1 ≤ k ≤ m − 1 and Txk 6∈

aff{xk0
, T xk0

}.
Let k1 be the least integer satisfying Txk1

6∈ aff{xk0
, T xk0

}. This implies
that Txk0+1, T xk0+2, . . . , T xk1−1 ∈ aff{xk0

, T xk0
}.

Then {xk1−1, T xk1−1, T xk1
} is affinely independent and aff{xk1−1, T xk1−1,

T xk1
} = aff{xk0−1, T xk0−1, T xk0

}.
Now, we consider the set {xk1−1, T xk1−1, T xk1

}.
Continuing in this way, we can find n0 is the largest integer such that

k1 ≤ n0 ≤ m − 1 and Txn0
6∈ aff{xn0−1, T xn0−1}. This implies that Txn ∈

aff{xn0
, T xn0

} for n0 ≤ n ≤ m− 1.
Then using the arguments as in case 3(a), it is easy to see that xm+1

lies in the interior of co{xn0−1, T xn0−1, T xm−1, T xm} and {xn0−1, T xn0−1,
T xm−1, T xm} is affinely independent. Now, it is apparent that r(xm+1) < r,
as X is 3−UC.

This gives a contradiction toA(K, {xk}) = K.Hence Txm ∈ aff{x1, T x1, T x2}.
Hence, by mathematical indution Txn ∈ aff{x1, T x1, T x2}, for all n ∈ N.

This implies that {xn} ⊆ aff{x1, T x1, T x2}.
Since {xn} is a bounded sequence and dim(aff{x1, T x1, T x2}) = 2, so it has

a convergent subsequence i.e., there exists a subsequence {xnj
} of {xn} and

z ∈ K such that xnj
→ z as j → ∞.

Since lim
j→∞

‖xnj
−Txnj

‖ = 0 and T is nonexpansive, we have Tz = z. Hence

r = 0. This implies that K is singleton and T has a fixed point in K. �

Remark 3.8. In the light of Theorem 3.6 and Theorem 3.7, it is natural to
expect that if K is a nonempty weakly compact subset of a k−UC Banach
space X, for k > 3 and if T : K → K is a nonexpansive map satisfying
x+Tx

2 ∈ K for all x ∈ K, then T has a fixed point in K.
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3.2. Banach space with Opial property.

Theorem 3.9. Let K be a nonempty weakly compact subset of a Banach space

X having the Opial property and T : K → K be a nonexpansive map. Further,

assume that K is T−regular. Define a sequence {xn} in K by xn+1 = xn+Txn

2
for n ∈ N and x1 ∈ K. Then T has a fixed point in K and {xn} converges

weakly to a fixed point of T.

Proof. By Lemma 2.6, we have lim
n→∞

‖xn − Txn‖ = 0. Since K is weakly com-

pact, there exists a subsequence {xnk
} of {xn} and z ∈ K such that {xnk

}
converges weakly to z. Also, we have

‖xnk
− Tz‖ ≤ ‖xnk

− Txnk
‖+ ‖Txnk

− Tz‖, for all k ∈ N.

Hence

lim inf
k→∞

‖xnk
− Tz‖ ≤ lim inf

k→∞

‖xnk
− z‖.

Since X has the Opial property, we obtain Tz = z. Also note that, {‖xn − z‖}
is a decreasing sequence.

It is claimed that {xn} converges weakly to z. Suppose that {xn} does not
converge weakly to z.

Then there exists a subsequence {xn̂j
} of {xn} which does not converge

weakly to z. Since K is weakly compact and {xn̂j
} ⊆ K, there exists a subse-

quence of {xn̂j
} whose weak limit is w ∈ K and z 6= w.

Without loss of generality, we can assume that {xn̂j
} converges weakly to

w. It is easy to see that Tw = w, as lim
j→∞

‖xn̂j
−Txn̂j

‖ = 0. Also, it is apparent

that {‖xn − w‖} is a decreasing sequence, as Tw = w.
Since X has the Opial property, {xn̂j

} converges weakly to w and {xnk
}

converges weakly to z, we have

lim
n→∞

‖xn − z‖ = lim
k→∞

‖xnk
− z‖ < lim

k→∞

‖xnk
− w‖ = lim

n→∞

‖xn − w‖

= lim
j→∞

‖xn̂j
− w‖ < lim

j→∞

‖xn̂j
− z‖ = lim

n→∞

‖xn − z‖.

This is a contradiction. Hence {xn} weakly converges to z. �
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