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Sumario

En este trabajo vamos a estudiar el comportamiento caótico en espacios de
Banach de sistemas lineales de dimensión infinita, concretamente estudiaremos los
C0-semigrupos de operadores solución de estos sistemas. Nos centraremos en unos
modelos de la teoŕıa cinética como es el caso del proceso de muerte, su opuesto, el
proceso de nacimiento, y ambos a la vez, es en este último caso donde surgen más
problemas. Probablemente los primeros en estudiar estos procesos fueron Azmy y
Protopopescu en [AP92], más tarde se vieron algunas aplicaciones en los trabajos

de Kimmel, Stivers, Świerniak y Polański, como [KS94, KPS96, KPS98] y más
recientemente se generalizaron esos estudios en los trabajos de Banasiak, Lachowicz
y Moszyński, como [BL01, BLM07, BM11].

Primeramente, en el Caṕıtulo 1 daremos unas nociones básicas sobre espacios
métricos y espacios de Banach, aśı como sobre teoŕıa de operadores.

En el Caṕıtulo 2, describiremos brevemente el concepto de sistema dinámico
discreto y sus propiedades relacionadas con el concepto de caos en el sentido de
Devaney, [Dev89]. En el Caṕıtulo 3 introduciremos el concepto de C0-semigrupo,
de Problema de Cauchy Abstracto y diferentes nociones de estabilidad para C0-
semigrupos. Veremos también que la mayoŕıa de las nociones para el caso discreto
tienen su analoǵıa en el caso continuo, extenderemos el concepto de caos para C0-
semigrupos y daremos algunos criterios para saber si un C0-semigrupo es caótico.

En el Caṕıtulo 4 mostraremos una recopilación de los resultados obtenidos por
Banasiak y Lachowicz en [BL01] y una generalización por parte de Grosse-Erdmann
y Peris en [GP11, Chapter 7] sobre el estudio del caos en el proceso de nacimiento
y el proceso de muerte, por separado.

Finalmente en el Caṕıtulo 5, mostraremos algunos resultados nuevos para el
proceso de nacimiento-muerte, es decir, consideraremos los dos procesos anterio-
res como un proceso conjunto. Por una parte, consideraremos este proceso con
coeficientes constantes, presentando una versión alternativa basada en el art́ıculo
[BM11] de Banasiak y Moszyński, donde se intentó generalizar este resultado sin
éxito. Por otra parte, presentaremos el proceso anterior en su versión para coe-
ficientes variables donde estudiaremos dos situaciones diferentes sobre los coefi-
cientes, una basada en la versión anterior y otra de naturaleza totalmente diferente
que tiene como caso particular los resultados mostrados por Banasiak, Lachowicz
y Moszyński en [BLM07].
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Summary

In this work we will study the chaotic behaviour of infinite dimensional li-
near systems on Banach spaces, specially we will study the solution C0-semigroups
of operators of these systems. We will focus on the models of kinetic theory as
is the case of the death model, the birth model and both together. It is in the
last case when more problems appear. Azmy and Protopopescu studied these
processes for the first time in [AP92]. Later in the works of Kimmel, Stivers,

Świerniak and Polański, e.g. in [KS94, KPS96, KPS98]. In addition this sub-
ject has been recently studied for Banasiak, Lachowicz and Moszyński, e.g. in
[BL01, BLM07, BM11].

Firstly, in Chapter 1 we will give some basic notion of metric and Banach
spaces, as well as some concepts of operator theory.

In Chapter 2, we will briefly describe the concepts of discrete dynamical sys-
tems and the properties of these systems related to the concept of chaos in the
sense of Devaney, [Dev89]. In Chapter 3 We also introduce C0-semigroups, Abs-
tract Cauchy Problems, and several formulations of stability for C0-semigroups.
We will see that most of the ideas for the discrete case have their analogy in the
continuous case, and we will extend the definition of chaos in the sense of Devaney
for C0-semigroups. We also give some criteria to know if a C0-semigroup is chaotic.

Chapter 4 is mainly of expository character. Here we will show the results on
the study of chaos in the birth model and the death model, separately obtained by
Banasiak and Lachowicz in [BL01] and a generalization by Grosse-Erdmann and
Peris, [GP11, Chapter 7].

Finally, in Chapter 5, we will show some new results for a similar study to the
joined birth-and-death model. On the one hand, we will consider the birth-and-
death model with constant coefficients, presenting an alternative version, of the
chaotic behaviour of this model, based in the work of Banasiak and Moszyński in
[BM11], where it was attempted to generalize this result without success. On the
other hand, we will also study this model for the case of nonconstant coefficients.
These results generalize in part the owes obtained by Banasiak, Lachowicz and
Moszyński in [BLM07].
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CHAPTER 1

Preliminaries

In this section we will introduce basic definitions, facts and some tools that
it will be helpful in this work. The principal references are the books [Rud74,
MV97, HP57, EN00]. The reader can be found the definitions, theorems, and
their proofs in the above-mentioned books.

1. Metric and Banach spaces

We can start with a notion of metric and Banach spaces and this properties:

Definition 1.1 (Metric space). A real-valued function d : X ×X → R, defined for
each pair of elements x, y ∈ X is called a metric if it satisfies:

M1: d(x, y) ≥ 0, d(x, x) = 0 and d(x, y) > 0 if x 6= y;
M2: d(x, y) = d(y, x);
M3: d(x, z) ≤ d(x, y) + d(y, z), the triangle inequality.

A set X provided with a metric is called metric space and d(x, y) is called the
distance between x and y.

We will understand by neighborhood of a point p ∈ X a set U ⊂ X, which
contains an open set V containing p.

A point x in a metric space X is called isolated if some neighbourhood of x
contains no other point from X.

A metric space is said to be locally compact if each points has a compact
neighbourhood. Finally, we said that a metric space is complete if every Cauchy
sequence in X converges to an element of X.

Theorem 1.2 (Baire category theorem). Let (X, d) be a complete metric space

and {Gn}n a sequence of nonempty dense open sets. Then G :=

∞⋂
n=1

Gn, is a dense

Gδ-set in X.

Definition 1.3 (Normed space). A complex vector space X is said to be a normed
linear space if to each x ∈ X there is associated a nonnegative real number ‖x‖,
called the norm of x, such that:

N1: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X,
N2: ‖αx‖ = |α|‖x‖ if x ∈ X and α is a scalar,
N3: ‖x‖ = 0 implies x = 0.

Every normed linear space may be regarded as a metric space, being ‖x − y‖
the distance between x and y. A Banach space is a normed linear space which is
complete with the metric defined by its norm.
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2 1. Metric and Banach spaces

Proposition 1.4. Let X and Y be Banach spaces and let T : X → Y be a linear
operator. The following four statements are equivalent:

(i) T is continuous at 0.
(ii) T is continuous.
(iii) T is uniformly continuous.
(iv) T is bounded, i.e., there exists a constant C > 0 such that ‖Tx‖Y ≤

C‖x‖X for all x ∈ X.

Definition 1.5. Let X and Y be Banach spaces and T : X → Y be a continuous
linear operator. We define

‖T‖ := inf{C > 0 : ‖Tx‖Y ≤ C‖x‖X for all x ∈ X}

and refer to ‖T‖ as the operator norm of T .

Equivalent formulations are

‖T‖ = sup
‖x‖≤1

‖Tx‖Y = sup
‖x‖=1

‖Tx‖Y

Definition 1.6. An operator T on a complex Banach space X is called compact if
for every (xn)n in X with ‖xn‖ ≤ 1, n ≥ 1, the sequence (Txn)n has a convergent
subsequence. This is equivalent to say that the image of the closed unit ball under
T is relatively compact, that is, its closure is compact.

Theorem 1.7 (Banach-Steinhaus theorem). Let X,Y be Banach spaces and Tj :
X → Y , j ∈ I, operators. If for every x ∈ X we have sup

j∈I
‖Tjx‖ < ∞, then

sup
j∈I
‖Tj‖ <∞.

Definition 1.8. Let X and Y be Banach spaces we denote by L(X,Y ) the space
of continuous linear operators T : X → Y ; under the operator norm. This space
turns to be a Banach space whenever Y is a Banach space. If K denotes R or C,
the dual X∗ = L(X,K) of a Banach space X is the space of all continuous linear
functionals on X. If x∗ ∈ X∗ then we write,

x∗(x) = 〈x, x∗〉, x ∈ X.

The adjoint T ∗ : X∗ → X∗ of an operator T on X is defined by T ∗x∗ = x∗ ◦T ,
that is,

〈x, T ∗x∗〉 = 〈Tx, x∗〉, x ∈ X, x∗ ∈ X∗.

Definition 1.9. Suppose that f is a complex function defined on an open set S of
the plane. If z0 ∈ S and if

lim
z→z0

f(z)− f(z0)

z − z0

exists, we denote this limit by f ′(z0) and call it the derivative of f at z0. If f ′(z0)
exists for every z0 ∈ S, then we say that f is holomorphic (or analytic) in S.

Definition 1.10. Let U ⊂ X be an open set. We say that a function f : U → X is
weakly holomorphic if the vector-valued function 〈f, φ〉 : U → C, is holomorphic
for every φ ∈ X∗.
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Màster en investigació matemàtica
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1. Preliminaries 3

The space of all bounded linear operators on X is denoted by L(X). Apart
from the uniform operator topology on L(X), which is the one induced by the above
operator norm, we frequently consider the strong operator topology, Ls(X), which
is the topology of pointwise convergence on (X, ‖ · ‖).

2. Classical Banach spaces

Now we introduce the following classical sequence and function spaces that we
will use in this work. Here, K denotes R or C. The symbol X will always stand for
a Banach space.

If p ∈ [1,+∞), we denote by

`∞ := `∞(X) := {(xn)n∈N ⊂ X : sup
n∈N
‖xn‖X <∞}

with the norm ‖(xn)n∈N‖∞ := sup
n∈N
‖xn‖X ,

`p := `p(X) := {(xn)n∈N ⊂ X :
∑
n∈N
‖xn‖pX <∞}

with the norm ‖(xn)n∈N‖p :=

(∑
n∈N
‖xn‖pX

)1/p

and

Lp(Ω, µ) := {f : Ω→ K : f is p-integrable on a measurable space Ω respect to µ}

with the norm ‖f‖p :=

(∫
Ω

|f |p(s)dµ(s)

)1/p

.

The space
c0(X) := {(xn)n∈N ⊂ X : lim

n→∞
xn = 0} ⊂ `∞

and if Ω is a locally compact space then we denote by

C0(Ω) := {f ∈ C(Ω) : f vanishes at infinity},
i.e., the space such of f ∈ C(Ω) := {f : Ω → K : f is continuous} such that for
all ε > 0 there exists a compact Kε ⊂ Ω such that |f(s)| < ε for all s ∈ Ω\Kε,
endowed with the sup-norm ‖f‖∞ := sup

s∈Ω
|f(s)|.

3. Spectral theory

In this work is essential to deal differential equations and a good tool for the
study these equations is the spectral theory. In several occasions we find the eigen-
values and eigenvectors of these equations and we will use a criterion to conclude
if the system is chaotic or not.

Definition 1.11. Let X be a complex Banach space X and let T be an operator
on X. The spectrum σ(T ) of T is defined as

σ(T ) = {λ ∈ C ; λI − T is not invertible}.
Moreover, each 0 6= x ∈ X satisfying Tx = λx is an eigenvector for T corres-

ponding to λ.
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4 4. Jury test for quadratic polynomials

The point spectrum σp(T ) is the set of eigenvalues of T .
The number

r(T ) = sup
λ∈σ(T )

|λ|

is called the spectral radius of T .
For the spectral radius we have that

r(T ) = lim
n→∞

‖Tn‖1/n.

Theorem 1.12 (Spectral mapping theorem). Let f be a holomorphic function on
a neighbourhood of σ(T ). Then

σ(f(T )) = f(σ(T )).

Its version for C0-semigroups can be found in [EN00]. There is also a version
for the point spectrum.

Theorem 1.13 (Point spectral mapping theorem). Let f be a holomorphic function
on a open neighbourhood O of σ(T ) that is not constant on any component of O.
Then

σp(f(T )) = f(σp(T )).

4. Jury test for quadratic polynomials

Finally, the following lemma is a generalization of the so-called Jury test for
quadratic polynomials, originally formulated only for w ∈ R. A proof of this result
for w ∈ C can be find in [BM11]. In this section we give an alternative proof of
the above result:

Lemma 1.14. Consider the family of quadratic equations for z ∈ C

(1.1) z2 + wz + r = 0,

where w ∈ C and r ∈ R are parameters. For a fixed r let Er denote the set of
all complex w such that the absolute value of each root of (1.1) is less than 1. If
|r| < 1, then

(1.2) Er =

{
w ∈ C :

(
Re w

1 + r

)2

+

(
Im w

1− r

)2

< 1

}
Proof. With the assumptions r ∈ R such that |r| < 1 and the notation of z1,

z2 for the two roots of quadratic equation with |zi| < 1, i = 1, 2:

If r = 0, the equation is z2 +wz = 0 and the roots are z1 = 0 and z2 = w, thus
|z2| < 1←→ |w|2 = (Re w)2 + (Im w)2 < 1 and w ∈ Er.

On the other hand, if r 6= 0, we have z1 + z2 = −w and z1z2 = r. This implies
that if r = r1r2, with ri ∈ R, i = 1, 2, there exists θ ∈ [0, 2π[ such that we can
rewrite the roots as:

z1 = r1e
iθ and z2 = r2e

−iθ.

We consider the following cases:
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1. Preliminaries 5

Case 1: We consider that r ∈]0, 1[, without loss of generality we can assume
that r1 and r2 are real positive numbers, otherwise we can choose ano-
ther θ. Note that |zi| < 1 if, and only if, ri ∈]r, 1[, i = 1, 2. If
ri ∈]r, 1[, i = 1, 2 since −w = z1 +z2 = (r1 +r2) cos(θ)+ i(r1−r2) sin(θ),
and 1+r = 1+r1r2 = r1 +[(1−r1)+r1r2] > r1 +r2 holds, we obtain that:(
Re w

1 + r

)2

+

(
Im w

1− r

)2

=

(
r1 + r2

1 + r

)2

cos2(θ) +

(
r1 − r2

1− r

)2

sin2(θ) < 1.

Conversely, if

(
r1 + r2

1 + r

)2

cos2(θ) +

(
r1 − r2

1− r

)2

sin2(θ) < 1 holds,

without loss of generality we can suppose r1 ≤ r2. Aiming for a contradic-
tion, suppose that r2 > 1, then we have that r1 < r < 1, because r = r1r2.
This implies that r2− r1 > 1− r, and also 1 + r = r1 + [(1− r1) + r1r2] <
r1 + r2, and we obtain a contradiction.

Case 2: If r ∈]−1, 0[, this situation can be reduced to the first case if we consider
without loss of generality r1 = −k1 and r2 = k2 with ki > 0, i = 1, 2.

�
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CHAPTER 2

Linear Discrete Dynamical systems

In this chapter we will introduce basic definitions and some basic results of
the theory of linear dynamical systems. We suggest [BM09] and [GP11] for an
introduction to this topic.

The theory of dynamical systems study the behaviour of evolving systems. Let
X be a set of elements that described the admissible different states of a system.
If xn ∈ X is the state of the system at time n ≥ 0, then its evolution will be given
by a linear map T : X → X such that xn+1 = T (xn). In this sense we need that X
was a metric space and T was a continuous map.

Definition 2.1 (Discrete dynamical system). Let X be an infinite compact metric
space and let T be a continuous map T : X → X. A discrete dynamical system is
a pair (X,T ). We define the orbit of a point x ∈ X as the set O(x, T ) = {Tn(x) :
n ∈ N}, Tn denotes the nth iterate of a map T . Often we will simply call T or
T : X → X a dynamical system. Moreover we adopt the notation used in operator
theory to write Tx for T (x).

Definition 2.2. We say that x ∈ X is a fixed point for the dynamical system
T : X → X if Tx = x and we say that x ∈ X is a periodic point for the dynamical
system T if Tnx = x for some n ∈ N. The set of all periodic points of this system
is denoted by Per(T ). If x ∈ Per(T ) then the smallest positive integer n such that
Tnx = x is called a primary period of x.

Definition 2.3. A dynamical system T : X → X is:

(i) topologically transitive if for any pair of nonempty open sets U ,V ⊂ X
there exists an n ∈ N such that TnU ∩ V 6= ∅;

(ii) weakly mixing if the map T × T is topologically transitive;
(iii) mixing if for any pair of nonempty open sets U ,V ⊂ X there exists some

n0 ∈ N such that TnU ∩ V 6= ∅ for every integer n ≥ n0;

In 1989 Robert L. Devaney was the first to propose a good definition of chaos,
see [Dev89], this concept reflects the unpredictability of chaotic systems because
the definition contain a sensitive dependence on initial conditions, i.e.:

Definition 2.4. Let (X, d) be a metric space without isolated points. Then the
dynamical system T : X → X is said to have sensitive dependence on initial
conditions if there exists some δ > 0 such that, for every x ∈ X and ε > 0, there
exists some y ∈ X with d(x, y) < ε such that, for some n ≥ 0, d(Tnx, Tny) > δ.
The number δ is called a sensitivity constant for T .

Definition 2.5 (Devaney chaos). A dynamical system T : X → X is called chaotic
in the sense of Devaney if it satisfies the following three properties:

7
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(i) T is topologically transitive,
(ii) Per(T ) is dense in X,
(iii) T has sensitive dependence on initial conditions.

However, it was proved in 1992 by Banks, Brooks, Cairns, Davis and Stacey
in [BBCDS92] that if X is an infinite set, the sensitivity is a consequence of
transitivity and dense periodicity.

Theorem 2.6 ([BBCDS92]). Let X be a non-finite metric space. If a dynamical
system T : X → X is topologically transitive and has a dense set of periodic points
then T has sensitive dependence on initial conditions with respect to any metric
defining the topology of X.

A link between chaos theory and linear operator theory has been established
in the Transitivity theorem by Birkhoff in 1920 when it was realized that the topo-
logical transitivity was equivalent to the notion of hypercyclicity established by
Beauzamy in 1986:

Definition 2.7 ([Bea86]). Let X be a topological vector space.
An operator T : X → X is said to be hypercyclic if there is an x ∈ X whose orbit
O(x, T ) is dense in X. In that case, x is called a hypercyclic vector for T . The set
of hypercyclic vectors is denoted by HC(T ).

Theorem 2.8 (Transitivity theorem, [Bir20]). Let X be a separable complete
metric space without isolated points and let T : X → X a continuous map. Then
the following assertions are equivalent:

(i) T is topologically transitive;
(ii) T is hypercyclic operator.

If one of these conditions holds then, by Theorem 1.2, the set HC(T ) of hypercyclic
vectors is a dense Gδ-set, i.e., HC(T ) is a countable intersection of open sets.

In 1991 Godefroy and Shapiro adopted Devaney’s definition also for linear
chaos.

Definition 2.9 ([GS91]). Let X be a complete metric vector space. An operator
T : X → X is called chaotic in the sense of Devaney, if:

(i) T is hypercyclic,
(ii) Per(T ) is dense in X.

The reader can find the proofs of following results e.g in [BM09]. In addition
the original proofs of some of these results can be found in [Kit82]:

Proposition 2.10. Let T be a hypercyclic operator on a (real or complex) Banach
space X. Then we have:

(i) T ∗ has no eigenvalues, that is, σp(T
∗) = ∅;

(ii) the orbit of every x∗ 6= 0 in X∗ under T ∗ is unbounded.

Theorem 2.11. Let T be a hypercyclic operator on a complex Banach space X.
Then every connected component of σ(T ) meets the unit circle T, i.e., σ(T )∩T 6= ∅.

Proposition 2.12. Let T be a linear map on a complex vector space X. Then the
set Per(T ) of periodic points of T is given by

span{x ∈ X ; Tx = λx for some λ ∈ C with λn = 1 for some n ∈ N}.
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2. Linear Discrete Dynamical systems 9

Proposition 2.13. Let T be a chaotic operator on a complex Banach space X.
Then its spectrum has no isolated points and it contains infinitely many roots of
unity; in particular, σ(T ) ∩ T is infinite.

Theorem 2.14. No compact operator is hypercyclic.
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CHAPTER 3

Linear Continuous Dynamical systems

Now, we will introduce the concepts of strongly continuous semigroups of
bounded linear operators (at now, C0-semigroups1) in Banach spaces. We suggest
[DSW97], [EN00] and also [GP11] for an introduction to this topic. If we con-
sider a single operator and his iterates in the discrete case of the dynamical systems
and the time tn > 0 with lim

n→∞
tn =∞ we can be viewed the C0-semigroups as the

case continuous case when t > 0.

Definition 3.1 (C0-semigroups of operators). Let X be an infinite-dimensional
separable Banach space. A one-parameter family T = {Tt : X → X ; t ≥ 0} is
a strongly continuous semigroup of operators, from now on C0-semigroup, if the
following three conditions are satisfied:

(i) T0 = I.
(ii) TtTs = Tt+s, for all t, s ≥ 0.
(iii) lim

t→s
Ttx = Tsx, for each x ∈ X and s ≥ 0.

Remark 3.2. The third condition is associated to the continuity of the operators
in the C0-semigroup respect to the strong operator topology. If we replace this third
condition by lim

t→s
Tt = Ts respect to the norm of operators associated to the one of

X then we say that the C0-semigroup is uniformly continuous. The Theorem 1.7
yields that the family {Tt}t≥0 is locally equicontinuous, that is,

∀M > 0 ∃C > 0 such that ‖Ttx‖ ≤ C‖x‖, ∀t ∈ [0,M ], ∀x ∈ X.
This fact easily implies that the map f : [0, +∞[×X → X given by f(t, x) =

Ttx, t ≥ 0, x ∈ X, is continuous. Moreover, one can establish an exponential bound
for the operator norm of the C0-semigroup.

Proposition 3.3. If {Tt}t≥0 is a C0-semigroup, then there exists ω ∈ R and M ≥ 1
such that ‖Tt‖ ≤Meωt, for each t ≥ 0.

Definition 3.4 (Continuous dynamical system). Let X be an infinite compact
metric space and let T = {Tt}t≥0 be a C0-semigroup. A continuous dynamical
system is a pair (X, T ). We define the orbit of a point x ∈ X as the set O(x, T ) =
{Ttx : t ≥ 0}.

The C0-semigroups have a infinitesimal generator, usually denoted by A, which
is an operator that can be a bounded (i.e., continuous) or an unbounded (densely
defined and with closed graph). Is in the second case when the chaos in linear C0-
semigroups is applicable to linear partial differential equations and as in the case
that we will study in this work, also in infinite linear systems of ordinary differential
equations.

1“C0” has its origin in the abbreviation of “Cesàro summable of order 0”
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C0-semigroups are, in a natural way, associated to Abstract Cauchy Problems
(ACP):

(3.1)


d
dtu(t) = Au(t) for t ≥ 0,

u(0) = x,

where x ∈ X is the initial value, and A is a linear map defined on a dense subspace
D(A) ⊂ X. If the above problem has a unique solution u(·, x), then Ttx := u(t, x),
t ≥ 0, x ∈ X, defines a solution C0-semigroup {Tt}t≥0. The pair (A,D(A)) is called
the generator of the solution C0-semigroup.

Conversely, given a C0-semigroup {Tt}t≥0, one can consider the derivative at 0

Ax := lim
t→0

1

t
(Ttx− x),

for those x ∈ X such that the above limit exists. It turns out that it exists for each
x in a dense subspace D(A) of X (the domain of A), and that

A : D(A) ⊂ X → X

is a linear map with closed graph, i.e., if lim
n→∞

xn = x and lim
n→∞

Axn = y, then

Ax = y. We have that {Tt}t≥0 is the solution C0-semigroup to the ACP problem
(3.1) associated to A. The generator determines the C0-semigroup uniquely.

A basic fact that will be used through this section concerns the eigenvectors of
the generator (A,D(A)). More precisely, by the Theorem 1.12,

Ax = λx for some λ ∈ K =⇒ Ttx = eitλx, for every t ≥ 0.

From the definition of the generator and the C0-semigroup properties we also
deduce Tt(D(A)) ⊂ D(A) and ATtx = TtAx for every t ≥ 0 and for each x ∈ D(A).

In the special case when D(A) = X and A is an operator, we obtain a explicit
formula for the operators of the C0-semigroup:

(3.2) Tt = etA :=

∞∑
k=0

tkAk

k!
, t ≥ 0.

In this case the C0-semigroup is called uniformly continuous and we have that
lim
t→s
‖Tt − Ts‖ = 0 for each s ≥ 0.

We recall that if A is bounded, then for each t ≥ 0 we have

(3.3) etAx =

∞∑
k=0

tkAkx

k!
, x ∈ X

and the C0-semigroup is continuous in the uniform operator topology.
The version of Point spectral mapping theorem for C0-semigroups can be found

in the book of Engel and Nagel, [EN00]:

Theorem 3.5 (Point spectral mapping theorem for C0-semigroups). Let (A,D(A))
be the generator of a C0-semigroup {Tt}t≥0 defined on a complex Banach space X.
Then we have the following identities:

(i) σp(Tt)\{0} = etσp(A), for t ≥ 0,
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3. Linear Continuous Dynamical systems 13

(ii) ker(A− λI) =
⋂
t≥0

ker(Tt − etλI), for λ ∈ C,

(iii) ker(Ts − esλI) = span
⋃
n∈Z

ker

(
A−

(
λ+

2πni

s

)
I

)
, for s ≥ 0.

We begin with a brief discussion about the notion of stability in a general
setting. For more details see [EN00]:

Definition 3.6. A C0-semigroup {Tt}t≥0 = (etA)t≥0 on a Banach space X is called:

(i) (uniformly) exponentially stable if there exists ε > 0 such that

(3.4) lim
t→+∞

eεt|||etA||| = 0, where ||| · ||| denotes the operator norm.

(ii) (uniformly) exponentially stable on a subspace Y ⊂ X if there exists ε > 0
such that for any y ∈ Y

(3.5) lim
t→+∞

eεt‖etAy‖X = 0.

(iii) uniformly stable if

(3.6) lim
t→+∞

|||etA||| = 0,

(iv) strongly stable if

(3.7) lim
t→+∞

‖etAx‖X = 0 for all x ∈ X,

(v) weakly stable if

(3.8) lim
t→+∞

〈etAx, z〉 = 0 for all x ∈ X, and z ∈ X∗.

Proposition 3.7. For a C0-semigroup {Tt}t≥0 = (etA)t≥0 on a Banach space X,
the following assertions are equivalent:

(i) (etA)t≥0 is uniformly exponentially stable.
(ii) (etA)t≥0 is uniformly stable.
(iii) There exists ε > 0 such that for any x ∈ X

(3.9) lim
t→+∞

eεt‖etAx‖X = 0.

The concepts of hypercyclicity, transitivity, mixing, weakly mixing and chaos
have a version for C0-semigroups. Now, we establish this relations for C0-semigroups
and for their discretizations. In this way, we will establish a feedback between con-
tinuous and discrete dynamical systems.

Definition 3.8. A discretization of {Tt}t≥0 is a sequence of operators (Ttn)n in
the C0-semigroup, where lim

n→∞
tn = ∞. If there is t0 6= 0 such that tn = nt0 for

each n ∈ N, then (Ttn)n = (Tnt0)n is called an autonomous discretization of {Tt}t≥0.

Definition 3.9. A C0-semigroup T = {Tt : X → X ; t ≥ 0} = {Tt}t≥0 on a
Banach space X is called hypercyclic if there is an x ∈ X whose orbit O(x, T ) =
{Ttx : t ≥ 0} under T is dense in X. In that a case, x is called a hypercyclic vector
for T . We denote by HC(T ) the set of hypercyclic vectors of the C0-semigroup.

An easy observation yields that a C0-semigroup is hypercyclic if, and only if,
it admits a hypercyclic discretization (Ttn)n.
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Definition 3.10. A C0-semigroup T is called topologically transitive if, for any
pair of nonempty open sets U ,V ⊂ X, there is t ≥ 0 such that Tt(U) ∩ V 6= ∅.

Definition 3.11. A C0-semigroup T is mixing if, for any pair of nonempty open
sets U ,V ⊂ X, there exists some t0 ≥ 0 such that Tt(U) ∩ V 6= ∅, for all t ≥ t0.
The C0-semigroup T is weakly mixing if, {Tt ⊕ Tt : X ⊕X → X ⊕X : t ≥ 0} is
transitive.

Definition 3.12. The set of periodic points of a C0-semigroup T = {Tt}t≥0 is
Per(T ) := {x ∈ X : Ttx = x for some t > 0}.
The C0-semigroup T is said to be chaotic if it satisfies the following properties:

(i) T is hypercyclic,
(ii) Per(T ) is dense in X.

The following results provide characterizations of mixing and weakly mixing
C0-semigroups in terms of their discretizations, see details in [CP09].

Proposition 3.13 ([CP09]). Let {Tt}t≥0 be a C0-semigroup on a separable Banach
space X. The following assertions are equivalent:

(i) {Tt}t≥0 is weakly mixing.
(ii) {Tt}t≥0 admits a mixing discretization.
(iii) {Tt}t≥0 admits a weakly mixing discretization.

Proposition 3.14 ([CP09]). Let {Tt}t≥0 be a C0-semigroup on a separable Banach
space X. The following assertions are equivalent:

(i) {Tt}t≥0 is mixing.
(ii) Every discretization of {Tt}t≥0 is mixing.
(iii) Every discretization of {Tt}t≥0 is weakly mixing.
(iv) Every discretization of {Tt}t≥0 is transitive.
(v) There exists a mixing autonomous discretization of {Tt}t≥0.

Theorem 3.15 ([OU41]). If {Tt}t≥0 is a hypercyclic C0-semigroup on a separable
Banach space X, and x ∈ X is a hypercyclic vector, then there is a dense Gδ-subset
J ⊂]0, ∞[ such that the vector x is hypercyclic for Tt, for each t ∈ J .

Theorem 3.16 ([CP09]). Let {Tt}t≥0 be a C0-semigroup in the space of all opera-
tors on X. The following assertions are equivalent:

(i) {Tt}t≥0 is weakly mixing.
(ii) All autonomous discretizations are weakly mixing.

The problem of hypercyclic discretizations of C0-semigroups asks if, given a
hypercyclic C0-semigroup {Tt}t≥0 on a Banach space, also every single operator Tt,
t ≥ 0, is hypercyclic. This problem was solved in [CMP07] by Conejero, Müller
and Peris in the following result:

Theorem 3.17. Let {Tt}t≥0 be a hypercyclic C0-semigroup on a Banach space X.
If x ∈ X is hypercyclic vector for {Tt}t≥0, then it is hypercyclic for each operator
Tt, t ≥ 0.

The following criterions will be the main tools for prove the chaos in this work,
for the details of proof see [DSW97], [Mou06] or [GP11].
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Chaos for dynamics of
birth-and-death models



3. Linear Continuous Dynamical systems 15

Proposition 3.18. Let X be a complex separable infinite-dimensional Banach
space and let (A,D(A)) be the generator of a C0-semigroup {Tt}t≥0 on X. Assume
that there exists an open connected subset U and a weakly holomorphic function
f : U → X such that:

(i) U ∩ iR 6= ∅,
(ii) f(λ) ∈ ker (λI−A) for every λ ∈ U ,
(iii) if for some φ ∈ X∗ the function h(λ) = 〈f(λ), φ〉 is identically zero on

U , then φ = 0.

Then the C0-semigroup {Tt}t≥0 is chaotic and mixing.

Proposition 3.19. Let X be a complex separable infinite-dimensional Banach
space and let (A,D(A)) be the generator of a C0-semigroup {Tt}t≥0 on X. Assume
that there exists a compact interval I ⊂ R and a continuous function f : I → X
such that:

(i) f(λ) ∈ ker (iλI−A) for every λ ∈ I,
(ii) span{f(λ);λ ∈ I} is dense in X.

Then the C0-semigroup {Tt}t≥0 is chaotic and mixing.

Theorem 3.20. Let {Tt}t≥0 be a hypercyclic C0-semigroup generated by A in a
Banach space X. Then the adjoint A∗ of A and the dual C0-semigroup {T ∗t }t≥0

have the following properties:

(i) if φ ∈ X∗, φ 6= 0, then the orbit {T ∗t }t≥0 is unbounded;
(ii) the point spectrum of A∗ is empty.

Proposition 3.21. If (A,D(A)) is the generator of a chaotic C0-semigroup on a
complex Banach space X, then σp(A) ∩ iR is infinite and, moreover,

X = span
⋃
λ∈iR

ker(A− λI).
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Chaos for dynamics of
birth-and-death models





CHAPTER 4

Applications of C0-semigroups to differential
equations

The main purpose of this chapter is to present some applications of C0-semigroups
to the asymptotic behavior of solutions to infinite linear systems of ordinary diffe-
rential equations associated with the evolution of a cell population discussed in
[BL01] by Jacek Banasiak and Miroslav Lachowicz, and generalized in [GP11] by
Karl-Goswin Grosse-Erdmann and Alfredo Peris.

In [AP92] the authors undertook a detailed study of the death part of the birth-
and-death process. Following the same line that [AP92] we consider an immobile
medium that host particles indexed by non-negative integers n ∈ N0, and related
to internal levels of energetic excitation. These particles collide and interact with
the host medium as follows. After collision, particles of internal energy level n ≥ 1
are absorbed by the medium at a rate α > 0 and re-emitted as particles of internal
energy level n−1 at a rate β ≥ α. Particles with internal energy n = 0 are absorbed
and cease to exist.

We denote by fn(t) the distribution function corresponding to the particles of
internal energy n, that satisfies:

(4.1)
dfn
dt

= −αfn + βfn+1, n ∈ N0

From now on, X := `1
(
L1([0,+∞[)

)
denote the space such that

0 ≤ f = (fn)n≥0 ∈ X, with the norm ‖f‖ = ‖f‖X =

∞∑
n=0

‖fn‖L1([0,+∞[) =

∞∑
n=0

‖fn‖1

that represents the total number of particles and

Xp := `p
(
L1([0,+∞[)

)
, 1 ≤ p <∞.

Note that, if
1

p
+

1

q
= 1 then

X∗ = `∞ (L∞([0, +∞[)) and (Xp)∗ := `q (L∞([0,+∞[)) .

We denote by T = {Tt}t≥0 the C0-semigroup solution of (4.1) associated with
the bounded operator defined by the right-hand-side of the above equation. It
follows that the point spectrum of the operator is {−α+βµ : |µ| < 1}, because µ =
α+β
λ , with eigenvectors given by hµ = (µ, µ2, µ3, . . .). Note that the assumptions

of Proposition 3.18 are satisfied and T is chaotic in X.
In the next sections we consider a generalization of the model discussed earlier,

the same problem (the death model) but now with variable coefficients and birth
model with variable coefficients.
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18 1. Death model with variable coefficients: First approach

1. Death model with variable coefficients: First approach

In 2001, Jacek Banasiak and Miroslav Lachowicz generalized the result in
[AP92].

The generalization consists in allowing variable coefficients αn, βn, but keeping
the assumption 0 < αn < βn for any n ∈ N0. Moreover we assume that:

(4.2)
(A1) αn = α+ a′n, for some α ≥ 0 and with lim

n→∞
a′n = 0;

(A2) βn = βbn, for some β ≥ α and with lim
n→∞

bn = 1.

In X we consider the following system of equations:

(4.3)
dfn
dt

= (Lf)n = −αnfn + βnfn+1, n ∈ N0

Consider the problem for eigenvectors:

(4.4) λhn = −αnhn + βnhn+1, n ∈ N0.

We denote by h(λ) = {hn(λ)}n∈N0 the eigenfunctions:

(4.5)

h0(λ) = 1,

hn(λ) =

n−1∏
i=0

λ+ αi
βi

, for n ≥ 1.

Lemma 4.1 ([BL01]). Under the assumptions (4.2) the circle {λ ∈ C : |λ+α| < β}
belongs to the point spectrum σp(L) of the operator L, and λ = 0 belongs to the
interior of σp(L).

We will use the Proposition 3.18 with U = {λ ∈ C : |λ+ α| < β} for study the
chaos of the solution.

If (φn)n∈N ∈ X∗ is an arbitrary sequence and Hφ(λ) =

∞∑
k=0

φkhk(λ) is uniformly

convergent function (at least in the circle U).

We shall Hϕ(µ) = Hφ(λ) =

∞∑
k=0

ϕk

k−1∏
i=0

(µ+ ai) where:

ϕ0 = φ0, ϕk = φk∏k−1
i=0 bi

µ = λ+α
β , an =

a′n
β

The function Hϕ(µ) is analytic for |µ| < 1. By the assumption (4.2) (A2), if
(φn)n∈N ∈ X∗, then also (ϕn)n∈N ∈ X∗. Thus is sufficient showing that Hϕ(µ) ≡ 0
yields ϕn = 0 for n ∈ N0 for any bounded (ϕn)n∈N.

As the series is absolutely convergent, we shall write Hϕ(µ) as a power series
in µ.
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4. Applications of C0-semigroups to differential equations 19

If

Ajn =


0, for j > n
1, for n = j∑
0≤i1<···<in−j≤n−1

ai1 · · · ain−j
, otherwise

We have

Hϕ(µ) =

∞∑
j=0

µj
∞∑
n=j

ϕnAjn

To be able to use the Proposition 3.18 we have to show that the only bounded
solution of the infinite upper-triangular linear system is the zero solution:

ϕ0 +A01ϕ1 +A02ϕ2 + · · · = 0
ϕ1 +A12ϕ2 + · · · = 0

ϕ2 + · · · = 0
· · · = 0

Denote by A the operator generated by the matrix {Aij}0≤i,j≤∞ in X∗.

Lemma 4.2 ([BL01]). Assume that there exists: q < 1, and k0 such that |ak| ≤
qk+1 for k ≥ k0. Then A is a bounded operator in X∗.

Lemma 4.3 ([BL01]). There is q < 1 such that if |ak| ≤ qk+1 for k ∈ N0, then A
is an isomorphism in X∗.

Finally combining the above results:

Theorem 4.4 ([BL01]). Suppose that the sequences {αn}n∈N0
and {βn}n∈N0

sa-
tisfy the assumptions (4.2), and the assumptions of Lemma 4.3. Then the C0-
semigroup generated by system (4.3) is chaotic in any Xp, 1 ≤ p <∞, and c0.

2. Death model with variable coefficients: general approach

In this section we will see a generalization of the assumptions (4.2) in the same
problem, which was observed by K.-G. Grosse-Erdmann and A. Peris in [GP11,
Chapter 7].

We consider in X the system of equations:

(4.6)
dfn
dt

= −αnfn + βnfn+1, n ≥ 1

with fn ∈ L1([0, +∞[). If f = (fn)n∈N ∈ X, on X we define:

Af = (−αnfn + βnfn+1)n∈N ∈ X,

f = (fn)n∈N ∈ D(A) ⊂ X. We denote by {Tt}t≥0 the C0-semigroup solution of the
Cauchy problem (4.6), where A is a densely defined linear map on X with closed
graph.

Proposition 4.5 ([GP11]). Let αn ∈]0, +∞[ and βn ∈ R, n ∈ N, such that

(4.7) α := sup
k
αk < β := lim inf

k
βk.

Then the solution C0-semigroup to the Cauchy problem (4.6) is chaotic and mixing.
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Chaos for dynamics of
birth-and-death models



20 2. Death model with variable coefficients: general approach

Proof. Let α
2 < µ < β

2 . We fix U ⊂ C as the open disk centered at −α2 of
radius µ, which intersects the imaginary axis iR. We can calculate the eigenvectors
of A for each λ ∈ U :

Af = λf =⇒ λfn = −αnfn + βnfn+1, n ≥ 1.

Therefore,

fn(λ) = γnf1, with γ1 := 1, and γn :=

n−1∏
k=1

λ+ αk
βk

, n > 1.

Let λ ∈ U and fix δ ∈]2µ, β[. There is n0 ∈ N such that βn > δ for every
n ≥ n0. Thus, since our assumptions imply that −αn ∈ U for all n ∈ N, we have

|λ+ αn|
βn

≤ 2µ

δ
< 1,

for all n ≥ n0. That is,

f(λ) = (fn(λ))n = (γnf1)n ∈ X,

and Af(λ) = λf(λ). The map f : U → X is weakly holomorphic. Indeed, if

φ ∈ X∗ = `∞ (L∞([0, +∞[)) ,

then

h(λ) := 〈f(λ), φn〉 =
∑
n≥1

∫ ∞
0

fnφn = η1 +
∑
n≥2

ηn

n−1∏
k=1

(λ+ αk),

where η1 =
∫∞

0
f1φ1 and ηn =

(
n−1∏
k=1

1

βk

)∫ ∞
0

f1φn, n ≥ 2.

By the selection of {αn}n and {βn}n and U , we obtain that h is holomorphic
on U
(because the partial sums are a polynomial and the series is uniformly converge in
the compacts of U). Since we want to apply Proposition 3.18, it only remains to
show that, if φ ∈ X∗ vanishes on every f(λ), λ ∈ U , and for each f1 ∈ L1([0,+∞[),
then φ = 0. To do so, let

0 = h(λ) = η1 +
∑
n≥2

ηn

n−1∏
k=1

(λ+ αk).

We substitute h(−α1) = 0, which implies η1 = 0, and we can decompose h as
a product

h(λ) = (λ+ α1)

η2 +
∑
n≥3

ηn

n−1∏
k=2

(λ+ αk)

 .

The right part of the product vanishes on U , and a substitution of λ = −α2

into the right part gives η2 = 0. We can decompose

h(λ) = (λ+ α1)(λ+ α2)g(λ),

and g vanishes on U . We inductively obtain ηk = 0, k ∈ N, which yields
∫∞

0
f1φk =

0 for each k ∈ N, and for every f1 ∈ L1([0,+∞[). This implies φ = 0, and the
C0-semigroup is chaotic and mixing by Proposition 3.18. �
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4. Applications of C0-semigroups to differential equations 21

3. Birth model with variable coefficients

In the article of Jacek Banasiak and Miroslav Lachowicz in [BL01] the authors
also discuss the opposite process, the birth model, to the one considered above.

The rate equations are:

(4.8)

df0
dt = −α0f0,

dfn
dt = −αnfn + βn−1fn−1, n ∈ N.

If we have the same assumptions (4.2), of the death model (first approach), on
the sequences {αn}n∈N0

and {βn}n∈N0
. Then it is clear that the matrix:

KT =


−α0 0 0 0 . . .
β0 −α1 0 0 . . .
0 β1 −α2 0 . . .
...

...
...

...
...


defines a bounded operator KT0 in c0, and KTp in Xp, 1 ≤ p ≤ ∞, respectively.

We define the C0-semigroup {Sp(t)}t≥0 generated by KTp , p ∈ {0} ∪ [1, +∞].
If the C0-semigroup is not hypercyclic then is not chaotic. Then we have:

Theorem 4.6 ([BL01]). The C0-semigroup {Sp(t)}t≥0 is not hypercyclic for any
p ∈ {0} ∪ [1, +∞)
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CHAPTER 5

Study for dynamics of birth-and-death processes

In this chapter we study stability and chaos of the C0-semigroup associated with
the infinite birth-and-death systems with proliferation (with constant and variable
coefficients).

In particular we discuss the stability and chaos results of [BK99] and ex-
tend in [BM11]. A recent model discussed in op. cit., concern development of
drug resistance in cancer cells. We consider as in the above chapter a medium
with a population of cells divided in subpopulations and this subpopulations are
characterised by the number of copies of a drug-resistant gene. If we consider a
subpopulation j in a population of cells and we assume that in a single event this
subpopulation can generate cells with the drug-resistance gene only in the neigh-
bouring subpopulations j − 1 or j + 1. Further, the rate of this events are bj and
dj . Moreover, in the same subpopulation j the rate of this event are aj . This is
the called birth-and-death processes with proliferation.

In this chapter the space and the norm are the same that Chapter 4:

X := `1
(
L1([0,+∞[)

)
, X∗ = `∞ (L∞([0, +∞[)) ,

0 ≤ f = (fn)n≥1 ∈ X, and ‖f‖ =

∞∑
n=1

‖fn‖1.

1. Birth-and-death model with constant coefficients

We can write the model with constant coefficients as following:

(5.1)

df1
dt = af1 + df2,

dfn
dt = bfn−1 + afn + dfn+1, n ≥ 2.

As discussed in [BM11] is essential that the system of equations have infinite
dimension, because in e.g. [KS94, KPS96, KPS98] the authors obtain a result in
the following case, when 0 < b < d and for a initial condition f1(0) = 1, fi(0) = 0

for i ≥ 2, the drug-resistant population

∞∑
i=1

fi decays exponentially to 0 if, and only

if,

(5.2) (
√
d−
√
b)2 ≥ a+ b+ d,

and as we will seen later in this conditions we have chaos. The conclusion are clear,
we can not use the results in the finite dimensional sampling in the behaviour of
an infinite-dimensional system.
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24 1. Birth-and-death model with constant coefficients

Following the work of Jacek Banasiak and Marcin Moszyński in [BM11], we
have a few observations of this model.

(5.3) If a, b, d ∈ R and b, d 6= 0,

let us denote by L the infinite matrix:

(5.4)



a d
b a d

b a d

b a
. . .

. . .
. . .

 .

Note that if X = X1, we also can use the spaces Xs := `1s
(
L1([0,+∞[)

)
which

are the spaces X with the weight sn, s > 0, and the norms are:

‖f‖s :=

∞∑
n=1

‖fn‖1sn.

Note also that Xs ⊆ X are dense because,

(5.5) ‖f‖ ≤ s−1‖f‖s, f ∈ Xs and for s ≥ 1,

The matrix L represents a bounded operator in Xs for any s > 0 which we

denote by L̃s and L := L̃1.

Following [BK99, BM11], we observe that Usf :=
(
fn
sn

)
n≥1

defines an isome-

try from X onto Xs hence we can transfer L̃s to X as Ls := U−1
s L̃sUs. Then we

have

(5.6) Ls = aI + Cs,

where Cs is an operator in X represented by

(5.7)



0 d/s
sb 0 d/s

sb 0 d/s

sb 0
. . .

. . .
. . .

 .

To shorten notation, we put C := C1, and note that also L = L1 = L̃1.

1.1. Stability. In this subsection we focus on stability of the C0-semigroups
related to (5.1). You can see some general notions in Definitions 3.3 and 3.6, and
details of this results in [BM11].

Observation 1 ([BM11]). Let us make an observation which will be used later.

1. If for some s ≥ 1 the C0-semigroup (etL̃s)t≥0 is exponentially stable then,
(etL)t≥0 is exponentially stable on the subspace Xs ⊂ X.

2. For any s > 0 the C0-semigroup (etL̃s)t≥0 is exponentially stable if, and
only if, (etLs)t≥0 is exponentially stable.
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5. Study for dynamics of birth-and-death processes 25

By (5.6) we have

(5.8) etLs = eatetCs ,

where etCs is given by (3.3). It is easy to see that

(5.9) |||etCs ||| ≤ et|||Cs||| ≤ et(|b|s+|d|/s).
The following lemma from [BM11] is a correction of [BK99]:

Lemma 5.1. We have

(5.10) (Cks f)n =

k∑
i=0

[(
k

i

)
−
(

k

k − (n+ i)

)]
(sb)k−i(

d

s
)ifn−k+2i,

where f = (f1, f2, . . .), fi = 0 for i ≤ 0 and the Newton symbol is also 0 for the
negative entries.

With this correction, the following theorem is valid with the original proof of
[BK99].

Theorem 5.2. Let b, d > 0. The C0-semigroup (etLs)t≥0 is exponentially stable if,

and only if, a < −2
√
bd and s ∈ (σ−, σ+) where

(5.11) σ± =
−a±

√
a2 − 4bd

2b
.

An extension of the above result are:

Theorem 5.3 ([BM11]). Let (5.3) holds, a < −2
√
|b||d| and s ∈ (s−, s+) where

(5.12) s± =
−a±

√
a2 − 4|b||d|
2|b|

,

then s > 0 and the C0-semigroup (etLs)t≥0 is exponentially stable.

We note that for any s > 0 we have Xfin ⊂ Xs, where Xfin is the space of
sequences with finitely many nonzero entries. And finally:

Theorem 5.4 ([BM11]). Suposse (5.3). If
(i) : a < −(|b|+ |d|)
or

(ii) : −(|b|+ |d|) ≤ a < −2
√
|b||d| and a < −2|b|,

then there is a dense subspace of X, containing Xfin, on which (etL)t≥0 is expo-
nentially stable.

In particular the assertion holds if

(5.13) a < −2
√
|b||d| and 0 < |b| ≤ |d|.

1.2. Chaos. In this subsection we will present an alternative version of the
article of Banasiak and Moszyński [BM11]. We will determine a range of the pa-
rameters a, b, d ∈ R for witch (etL)t≥0 is chaotic in the sense of Devaney, but the
final conditions are the same that in [BM11].

We consider λ ∈ C with λ 6= 0 an eigenvalue such that λf = Lf.

We will find the eigenvectors such that f = (fn)n≥1 ∈ X satisfies:
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26 1. Birth-and-death model with constant coefficients

(5.14) bfn−1 + (a− λ)fn + dfn+1 = 0, n ≥ 2,

and the initial condition

(5.15) f2 =
λ− a
d

f1.

Note that (5.14) is equivalent to:

(5.16) fn+1 =
λ− a
d

fn −
b

d
fn−1.

We rewrite the above equation:

(5.17)

(
fn
fn+1

)
=

(
0 1
− b
d

λ−a
d

)(
fn−1

fn

)
.

We denote by C =

(
0 1
− b
d

λ−a
d

)
.

We observe that the equation (5.17) is equivalent to:

(5.18)

(
fn
fn+1

)
= Cn−1

(
f1

f2

)
.

From now on, we will find the eigenvalues, the diagonal matrix such the C =
PDP−1 and the conditions for the coefficients such that Ck = PDkP−1, k ∈ N

converge, to have the elements of D =

(
z+ 0
0 z−

)
with absolute value strictly

smaller than 1.
If I is the identity matrix we consider the determinant of the characteristic

matrix

0 = det (C − zI) = det

(
−z 1
− b
d

λ−a
d − z

)
.

The characteristic equation is dz2 + (a− λ)z + b = 0, then

(5.19) z2 +
a− λ
d

z +
b

d
= (z − z+)(z − z−) = 0

From the characteristic equation, we have

(5.20) z+z− =
b

d
, and z+ + z− =

λ− a
d

.

Lemma 5.5. Given f0 ∈ L1([0, +∞[), if the roots of the characteristic equation
(5.19) are so that |z±| < 1, then the vector f = (fn)n≥1 ∈ X defined by

(5.21) fn = ((z+)n − (z−)n)f0, n ∈ N,

is an eigenvector of L to the eigenvalue λ.
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5. Study for dynamics of birth-and-death processes 27

Proof. Note that the roots z+ and z− are solution of the characteristic equa-
tion (5.19), then d(z±)2 + az± + b = λz± and we know that |z±| < 1, thus zn± → 0,
if n → ∞. Moreover, Lf = (Lnf)n≥1 and we observe that if f1 = (z+ − z−)f0 we
can use the initial condition (5.15) and we obtain that

(z2
+ − z2

−)f0 = (z+ + z−)(z+ − z−)f0 = (z+ + z−)f1 = f2.

If n = 1, then L1f = af1 + df2 and we get that L1f = af1 + df2 = af1 +

d

(
λ− a
d

)
f1 = λf1, in other case, for n ≥ 2 we get:

Lnf = bfn−1 + afn + dfn+1

= f1

[
b((z+)n−1 − (z−)n−1) + a((z+)n − (z−)n) + d((z+)n+1 − (z−)n+1)

]
= f1

[
(z+)n−1(d(z+)2 + az+ + b)− (z−)n−1(d(z−)2 + az− + b)

]
= f1

[
(z+)n−1λz+ − (z−)n−1λz−

]
= λ((z+)n − (z−)n)f1

= λfn

�

We will find now the conditions that ensure |z±| < 1, and that the criterion for
chaos is satisfied. Since

(5.22)

∣∣∣∣ bd
∣∣∣∣ = |z+z−| < 1 −→ |b| < |d|.

Also, we would like to find an open set U ⊂ C such that U intersects the
imaginary axis, an such that |z±(λ)| < 1 if λ ∈ U . We then use Lemma 1.14 for
w = a−λ

d , r = b
d and λ = iy with y ∈ R to get

(5.23)
a2

(b+ d)2
+

y2

(d− b)2
< 1.

Thus, on the one hand |a| < |b + d| is necessary, and the above condition is
satisfied if λ = iy is close enough to 0. We fix y1 > 0 with

(5.24)
a2

(b+ d)2
+

y2
1

(d− b)2
< 1,

let y0 :=
y1

2
. For every λ ∈ i[y0, y1] we then have |z±(λ)| < 1.

Let us consider the curve λ(s) := siy1 + (1− s)iy0, s ∈ [0, 1]. We observe that
γ(s) := (λ(s)− a)2 − 4bd, s ∈ [0, 1], is an injective curve and 0 /∈ γ∗, being γ∗ the
image of γ. In fact, if we consider x1, x2 ∈ [0, 1] and γ(x1) = γ(x2) then we have
that

(λ(x1)− λ(x2))(λ(x1) + λ(x2)) = 2a(λ(x1)− λ(x2)).

If λ(x1) 6= λ(x2) then we get a contradiction because λ(x1) + λ(x2) = 2a ∈ R
and λ(s) ∈ iR. In the case that a = 0 we also have a contradiction because as
y1 > 0, this implies that λ(x1) 6= −λ(x2). If λ(x1) = λ(x2), simplifying we get that

(x1 − x2)y1 = (x1 − x2)y0, if x1 6= x2 this is a contradiction with y0 :=
y1

2
and
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28 1. Birth-and-death model with constant coefficients

finally x1 = x2 and γ(s) is an injective curve. Note that λ(s) = 0←→ s = −1 but
−1 is not in the domain and this implies that 0 /∈ γ∗. In other case, if we suppose
that there exists s ∈ [0, 1] : γ(s) = 0 then λ(s) = a± 2

√
bd ∈ C\iR and we get a

contradiction because λ(s) ∈ iR.
This means that there is a branch of the logarithm on a neighbourhood U of

γ∗, that we suppose without loss of generality simply connected. As a consequence,
we find a holomorphic map ϕ : U → C such that ϕ(λ)2 = (λ − a)2 − 4bd for all
λ ∈ U . We then define, for λ ∈ U ,

(5.25) z+(λ) =
(λ− a) + ϕ(λ)

2d
and z−(λ) =

(λ− a)− ϕ(λ)

2d
,

which are holomorphic maps on U . Moreover, z+(λ) and z−(λ) are precisely the
roots of the characteristic equation (5.19).

Since we know that |z±(λ(s))| ∈
]
|b|
|d|
, 1

[
for all s ∈ [0, 1], without loss of

generality we suppose that U is small enough so that |z±(λ)| ∈
]
|b|
|d|
, 1

[
for all

λ ∈ U .
If we assume that for some φ = (φn)n≥1 ∈ X∗ the function h(λ) = 〈f(λ), φ〉

is identically zero on U , we will prove then φ = 0, and that the C0-semigroup is
chaotic and mixing by Proposition 3.18.

If we have 0 = h(λ) = 〈f(λ), φ〉 =
∑
n≥1

〈fn(λ), φn〉, then

0 =
∑
n≥1

〈f0, φn〉 ((z+(λ))n − (z−(λ))n)

=
∑
n≥1

〈f0, φn〉
(

(z+(λ))n −
(

b/d

z+(λ)

)n)

=

+∞∑
n=−∞

gn(z+(λ))n,

where

gn =


〈f0, φn〉 for n ≥ 1,

0 for n = 0,

−〈f0, φ−n〉
(
b
d

)−n
for n ≤ −1.

We define g : D −→ C by

g(z) =

+∞∑
n=−∞

gnz
n, z ∈ D :=

{
|b|
|d|

< |z| < 1

}
.

We know that

z ∈ D′ := {z+(λ) : λ ∈ U} ⊂ D, and

0 = h(λ) = g(z+(λ)), λ ∈ U .
Hence, by analyticity, g is the zero on D′, therefore in D and uniqueness of the

Laurent expansion yields gn = 0, ∀n ∈ Z. In particular, 〈f0, φn〉 = 0, ∀n ∈ N,
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5. Study for dynamics of birth-and-death processes 29

f0 ∈ L1[0, +∞[, which gives φn = 0, ∀n ∈ N. A direct consequence of these
arguments is:

Theorem 5.6. If 0 < |b| < |d| and |a| < |b+ d|, then (etL)t≥0 is chaotic in X.

Another results related with this problem are:

Corollary 5.7 ([BM11]). If 0 < |b| < |d| and |a| < |b+d|, then (etL)t≥0 is chaotic
in Xp and c0(L1 ([0 +∞[)).

Theorem 5.8 ([BM11]). If 1 < p ≤ ∞ and |d| < |b| (or if p = 1 and |d| ≤ |b|)
and |a| < |b+ d|, then (etL)t≥0 is not hypercyclic in Xp, and thus it is not chaotic.

2. Birth-and-death model with variable coefficients

In this section we will study the above problem but now with variable coeffi-
cients. We consider the same space X and the same norm with the following
problem:

(5.26)

df1
dt = a1f1 + d1f2,

dfn
dt = bnfn−1 + anfn + dnfn+1, n ≥ 2,

f = (fn)n≥1 ∈ X and if an, bn, dn ∈ R, with f0 = 0, and let us denote by L
the infinite matrix:

(5.27)



a1 d1

b2 a2 d2

b3 a3 d3

b4 a4
. . .

. . .
. . .


We will find conditions in the coefficient for witch the C0-semigroup solution

for the above problem generate chaos or sub-chaos in X. For this problem we have
a result since 2007 in [BLM07] by Banasiak, Lachowicz and Moszyński. They
prove the following results:

Theorem 5.9 ([BLM07]). If Lmax = L|D(Lmax), with D(Lmax) = {f ∈ Xp : Lf ∈
Xp} Suppose that 1 ≤ p <∞ and that there exists N0 ≥ 1 such that:

(5.28)
an = an+ α, dn = d(n− 1) + δ, bn = b(n+ 1) + β, for n ≥ N0,
with a = −(b+ d), b, d ≥ 0, α, β, δ ∈ R

holds with d > b and α+ β + δ − d−b
p > 0.

Then the C0-semigroup generated by Lmax in Xp is sub-chaotic.

Theorem 5.10 ([BLM07]). Suppose that assumptions (5.28) is satisfied, p ∈
[1, +∞), and either of two cases hold:

• b > d.
• dm0

= 0 for some m0 ≥ 1

Then the C0-semigroup generated by Lmax is not topologically chaotic.

Note that the C0-generated by Lmax is sub-chaotic, but not chaotic in the
sense of Devaney, see the Definition 5.11.
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30 2. Birth-and-death model with variable coefficients

Definition 5.11 ([BL05]). Let T = {Tt}t≥0 be a C0-semigroup in a Banach space
X (X 6= {0}). We call that T is sub-chaotic if there exists a closed subspace
Y 6= {0} invariant under T , such that S = {Tt |Y }t≥0 is topologically chaotic (as a
C0-semigroup in Y ).

Remark 5.12 ([BL05]). Each topologically chaotic C0-semigroup is also sub-
chaotic. The dimension of any space of sub-chaotic is infinite.

The finality of this work is find a generalization of this problem. Is possible find
chaos on X := `1

(
L1([0,+∞[)

)
in general? I don’t have answer for this question,

but now we will study another possibilities for find answers for this problem in the
future.

We consider λ ∈ C\{0} an eigenvalue such that λf = Lf.
We will find the eigenvectors such that f = (fn)n≥1 ∈ X satisfies:

(5.29) bnfn−1 + (an − λ)fn + dnfn+1 = 0, n ≥ 2,

with, f1 ∈ L1([0,+∞[), d1 6= 0 and the initial condition

(5.30) f2 =
λ− a1

d1
f1.

Note that, providing that dn 6= 0, (5.29) is equivalent to:

(5.31) fn+1 =
λ− an
dn

fn −
bn
dn
fn−1, n ≥ 2.

Without loss of generality we can assume that dn 6= 0, ∀n.
We rewrite the above equation as follow:

(5.32)

(
fn
fn+1

)
=

(
0 1

− bn
dn

λ−an
dn

)(
fn−1

fn

)
.

We denote by An =

(
0 1

− bn
dn

λ−an
dn

)
.

We note that the equation (5.32) is equivalent to:

(5.33)

(
fn
fn+1

)
=

[
n∏
i=2

Ai

](
f1

f2

)
.

Following the notation of the previous section, we have that the characteristic
equation is: det(An − zI) = dnz

2 + (an − λ)z + bn = 0, i.e.,

(5.34) z±n (λ) =
(λ− an)±

√
(λ− an)2 − 4bndn
2dn

.

It should be noted that the roots are simple if the discriminant is non zero, i.e.,
λ 6= an ± 2

√
bndn and |z±n (λ)| 6= 0 if bn 6= 0. In that case, we have different roots

and we can decompose An as An = PnDnP
−1
n where,

(5.35) Pn =

(
1 1

z+
n (λ) z−n (λ)

)
, P−1

n =
1

z−n (λ)− z+
n (λ)

(
z−n (λ) −1
−z+

n (λ) 1

)
,
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5. Study for dynamics of birth-and-death processes 31

and

(5.36) Dn =

(
z+
n (λ) 0
0 z−n (λ)

)
.

A basic reasonable assumption is that lim
n→∞

Pn = P (and lim
n→∞

P−1
n = P−1), in

other words,

(5.37) lim
n→∞

z±n (λ) = z±(λ).

Another assumption is 0 < |z±(λ)| < 1.
Note that, the convergence of P−1 implies that the roots z±n (λ) are different

and also z−(λ) 6= z+(λ).
The above equation implies two natural cases to consider:

If 0 6= d ∈ R and a, b, α, β ∈ R,

(5.38)


Case 1: lim

n→∞
an = a, lim

n→∞
bn = b, lim

n→∞
dn = d,

Case 2: lim
n→∞

an
dn

= α, lim
n→∞

bn
dn

= β, lim
n→∞

dn =∞.

A fast observation is that:

• In the Case 1, z±(λ) =
(λ−a)±

√
(λ−a)2−4bd

2d with λ 6= a± 2
√
bd,

• and in the Case 2, z±(λ) =
−α±
√
α2−4β

2 is a constant and also α2 6= 4β.

This simple observation implies that in Case 1 we have that z+(λ) and z−(λ)
are either simple reals roots or complex roots with depending of λ and in the Case 2
we have the same case, but now these roots do not depend of λ. These observations
are essential for the results because if we do not have simple roots, the matrix P−1

does not exist.
The first problem to solve chaos of (5.26) is if f ∈ X whenever Lf = λf.

Lemma 5.13. Assume lim
n→∞

z±n (λ) = z±(λ) with |z±(λ)| < 1, then∑
n≥2

‖An · · ·A2‖ < +∞.

Consequently, if Lf = λf then f ∈ X.

Proof. We recall that z±n (λ) → z±(λ) then, we fix δ > 0 such that 0 <
|z±n (λ)| < δ < 1.

We have there exists n0 ∈ N such that ∀n ≥ n0, ‖Dn‖ ≤ max{|z+
n (λ)|, |z−n (λ)|} <

δ. As Pn and P−1
n converge to P and P−1 respectively, then ∃ M > 0 such that

‖Pm‖ < M and ‖P−1
m ‖ < M , for all m ∈ N, and if we fix j >

δ2

1− δ
we obtain:

exists n1 ≥ n0 such that for every m ≥ n1, ‖P−1
m+1Pm − I‖ < δ

j < 1.

Thus ‖P−1
m+1Pm‖ − ‖I‖ ≤ ‖P

−1
m+1Pm − I‖ < δ

j and this implies that:

(5.39) ‖P−1
m+1Pm‖ < 1 +

δ

j
.
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32 2. Birth-and-death model with variable coefficients

Finally, if we denote by N := ‖An1−1 · · ·A1‖ and k := (n − n1) then exists

δ1 :=

(
δ +

δ2

j

)
< 1 such that:

‖An · · ·A1‖ ≤ N‖PnDn(P−1
n Pn−1)Dn−1 · · · (P−1

n1+1Pn1
)Dn1

P−1
n1
‖

≤ ‖Pn‖‖P−1
n1
‖

(
n∏

m=n1

‖Dm‖

)(
n−1∏
m=n1

‖P−1
m+1Pm‖

)

< M2Nδk
(

1 +
δ

j

)k
= M2Nδk1 .

�

Note that, exists m0 ∈ N such that, for every n ≥ m0, 0 < |z±n (λ)| < 1.
In this assumption, for every n ≥ m0, by above discussion in the previous

section, we consider the following cases:

• In the Case 1, we define K1 := λ∗, being λ∗ the image of λ, defined in the
previous section. We observe that K1 is a compact interval and K1 ⊂ iR.

• In the Case 2, the limit case implies that z±(λ) is a constant respect to
λ and, if |z±(λ)| < 1, we choose K2 := B(0, 1) the unit ball. Note that if
we apply the Lemma 1.14 with w = α and r = β then |z±(λ)| < 1 if, and
only if, |β| < 1 and α2 < (1 + β).

In order to obtain sub-chaos, we choose the subspace Y in X as follows,

Y := span{f(λ) : Lf(λ) = λf(λ), λ ∈ Ki}, where i = 1, 2, depend of the case.

Obviously, {0} 6= Y and Y is a closed subspace of X. Moreover, Y is clearly a
invariant subspace under T = {Tt}t≥0 (i.e., TtY ⊂ Y , if t ≥ 0), because if f(λ) ∈ Y
we can rewrite Ttf(λ) = λTtf(λ).

Theorem 5.14. Assume lim
n→∞

z±n (λ) = z±(λ) with |z±(λ)| < 1, and the subspace

Y := span{f(λ) : Lf(λ) = λf(λ), λ ∈ Ki}, where i = 1, 2, depend of the case.

Then the C0-semigroup S = {Tt |Y }t≥0 is chaotic and mixing on Y , i.e., T is
sub-chaotic in X.

Proof.

• In the Case 1, if we consider the continuous function λ → f(λ) =
(fn(λ))n≥1 for λ ∈ K1, begin fn is the same function that in the equation
(5.32). We conclude that the C0-semigroup S = {Tt |Y }t≥0, is chaotic
and mixing in Y by the Proposition 3.19.

• In the Case 2, if we consider the same function for λ ∈ K2. Note that we
can write fn(λ) = Pn(λ)f1, where Pn(λ) is a polynomial. This implies that
h(λ) = 〈f(λ), φ〉 is a holomorphic function on K2 and as f1 ∈ L1([0,+∞[),
if h(λ) = 0 then φ = (φn)n≥1 = 0. We conclude that the C0-semigroup S
is also chaotic and mixing in Y by the Proposition 3.18.

�
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birth-and-death equations in lp spaces. Semigroup Forum 73 (2006), no. 2, 175–193.

[EN06] Engel, Klaus-Jochen; Nagel, Rainer. A short course on operator semigroups. Universitext.
Springer, New York, 2006.

[Mou06] El Mourchid, Samir. The imaginary point spectrum and hypercyclicity. Semigroup Forum

73 (2006), no. 2, 313–316.
[BLM07] Banasiak, Jacek; Lachowicz, Miroslaw; Moszyński, Marcin. Chaotic behavior of semi-
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