
Hoyas, S., et al.: On the Onset of Instabilities in a Bénard-Marangoni Problem … 

THERMAL SCIENCE, Year 2016, Vol. 20, Suppl. 6, pp. S-S S1 
 

 

*  

* Corresponding author; e-mail: serhocal@mot.upv.es 

ON THE ONSET OF INSTABILITIES IN A  

BÉNARD-MARANGONI PROBLEM IN AN ANNULAR DOMAIN WITH 

TEMPERATURE GRADIENT 

by 

Sergio HOYAS
1*

, Andrea IANIRO
2
,  

María J. PEREZ-QUILES
1
, and Pablo FAJARDO

2
 

1
 Instituto Universitario de Matemática Pura y Aplicada, Universitat Politécnica de Valéncia. 

2
 Aerospace Engineering Group, Universidad Carlos III de Madrid. 

Original scientific paper 

DOI: ??? 

This manuscript addresses the linear stability analysis of a thermoconvective 
problem in an annular domain. The flow is heated from below, with a linear de-
creasing horizontal temperature profile from the inner to the outer wall. The top 
surface of the domain is open to the atmosphere and the two lateral walls are ad-
iabatic. The effects of several parameters in the flow are evaluated. Three differ-
ent values for the ratio of the momentum diffusivity and thermal diffusivity are 
considered: relatively low Prandtl number (Pr = 1), intermediate Prandtl num-
ber (Pr = 5) and high Prandtl number (ideally Pr  , namely Pr = 50). The 
thermal boundary condition on the top surface is changed by imposing different 
values of the Biot number, Bi. The influence of the aspect ratio (Γ) is assessed for 
through by studying several aspect ratios, Γ. The study has been performed for 
two values of the Bond number (namely Bo = 5 and 50), estimating the perturba-
tion given by thermocapillarity effects on buoyancy effects. Different kind of 
competing solutions appear on localized zones of the Γ -Bi plane. The boundaries 
of these zones are made up of co-dimension two points. Co-dimension two points 
are found to be function of Bond number, Marangoni number and boundary con-
dition but to be independent on the Prandtl number.  
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         Buoyancy Effects 

Introduction 

It is well known that two different effects are responsible of the thermoconvective 

instabilities in fluid layers: gravity and capillarity forces. The problem in which both effects 

are considered, known as Bénard-Marangoni (BM) convection, has become a classical 

problem in fluid mechanics [1]. In the classical BM problem, heat is uniformly applied from 

the bottom wall and the solution becomes unstable for increasing temperature gradients. A 

more general problem includes the effect of horizontal temperature gradients resulting in new 

thermoconvective instabilities. Broadly speaking, the problem described could be treated as 
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shallow water problem, see [2], but the objective of the current study is different since it relies  

on the analysis of the onset of instabilities. 

The practical importance of the BM problem is nowadays widely recognized since it 

appears in a wide variety of processes such as the flow inside distillation columns, silicon 

crystal growth, film coating processes or the drying process by evaporation [3]. Mercier et al. 

[4] showed that the transition to a stationary convective mode can take place even if an 

adiabatic boundary condition is replaced with a Newton’s law. 

These instabilities have been analyzed considering either rectangular domains 

containing the flow [5, 6], either annular geometries [7], or infinite liquid films [8]. Literature 

includes some attempts to develop a theoretical framework for these problems, as presented in 

[9] and references therein, but for the moment it seems that more effort is required to develop 

more powerful numerical and mathematical tools to fully understand the process. 

The following set of dimensionless numbers has been usually employed to 

characterize the different effects steering the behavior of the flow:   

1. Aspect ratio, Γ=δ/d. It is the geometrical parameter that characterizes the domain. 

2. Prandtl number, Pr: the ratio of momentum diffusivity (kinematic viscosity) to 

thermal diffusivity. In this manuscript several Pr values are considered, ranging from unity to 

very high value (   50) : /=Pr . 

3. Marangoni number, Ma. It accounts for surface tension effects: 

 /Td= TΔMa   

4. Rayleigh number, Ra. It is representative of the importance of the buoyancy 

effects:  /Tdg= 3ΔRa . 

5. The two previously defined numbers are combined as the Bond number, Bo, 

which is the ratio of Rayleigh to Marangoni numbers, and thus represents the buoyancy 

against surface tension effects: T
2 /dg=/= MaRaBo . 

6. Biot number, Bi, describes the heat transfer at the upper boundary condition 

between the fluid and the atmosphere. Values inside the range [0.2-3.2] have been considered 

in this work.  

 

In the previous definitions, δ and d  are the characteristic lengths of the domain that 

will be defined in the following section; T  stands for the rate of change of surface tension 

with temperature; ΔT is the temperature increment at the lower boundary with respect to the 

ambient temperature;  ,  ,   and   are the density, the thermal diffusivity, the thermal 

expansion coefficient and the kinematic viscosity of the fluid, respectively; and g  is the 

acceleration due to gravity. It is convenient to remark that the Bond number used in the 

present work is the thermal Bond number defined as the ratio between thermogravitational 

effects and thermocapillarity effects, which should not be confused with the Bond number 

commonly used in interfacial systems. Since the objective of present study is to analyze 

phenomena in which the buoyancy is dominant, the Bond number range of interest includes 

values greater than one. The importance of heat-related parameters on the development of 

instabilities was analyzed in [10, 11]. More recently, the problem was also studied in annular 

geometries [12, 13] but neglecting the effect of heat transfer from the top surface and 

considering conduction through the lateral walls of the cylinder. Literature includes also 

works dealing with localized heating [14], or containers heated by a non-uniform flux [3]. 

Hoyas et al. [15] analyzed the effect of the Biot number on the different bifurcations for the 

case of Pr =  . The computational method was validated by comparing the results obtained 
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with the experimental results by Garnier et al. [16]. The computational method was modified 

to deal with Prandtl numbers close to unity as shown in [17]. In [18], the authors investigated 

the existence of co-dimension three bifurcations that are the points where co-dimensions two 

curves intersect on the Prandtl-Biot plane, and a new kind of instability was predicted. Those 

latter works dealt with the influence of Biot number on the flow solutions. Also, the interest in 

understanding the influence of gravitational effects in thermo-convective phenomena has been 

rapidly growing [19, 20, 21]. Very recently the authors have studied the influence of the 

domains geometry on the onset of instabilities [22]. 

Depending on the symmetries of the growing perturbation, several bifurcations may 

appear. Up to six different competing solutions for the different wave numbers have been 

found, namely:   

 stationary rolls (SR), similar to the ones of the basic state [23]  

 hydrothermal wave of the first kind or oblique traveling waves (HWI) [23]  

 longitudinal rolls (LR) [15]  

 standing hydrothermal wave of second class or flower-like wave (HWII) [16, 24]  

 two new kinds of hydrothermal waves recently reported by Hoyas et al. [22] for low 

values of Γ. 

The present work is devoted to analyze the effect of the gravitational and capillarity 

forces of the onset of flow instabilities by means of flow computations. It is worth to keep in 

mind that an adequate understanding of the way in which this instabilities are developed will 

create new possibilities of controlling them. In this work the effect of 3 different Prandtl 

numbers, ranging from a viscosity dominated problem (Pr≈∞, namely equal to 50) to 

problems in which the nonlinear flow effects are important (Pr=1). An intermediate value of 

the Prandtl number representative of the conditions of water at ambient conditions (Pr=5) is 

also considered. Additionally, the work is performed for two different Bond number 

conditions Bo = 50 which means negligible thermocapillarity effects and Bo = 5 to evaluate 

the influence of the surface tension in perturbing the computed instabilities. 

The paper is structured as follows: in the second section the mathematical model of 

the flow behavior is proposed and in the third one the computational method implemented to 

obtain the solution is described. Then, in the fourth section the results are discussed. Finally, 

in the last section the main conclusions are presented. 

Model description and formulation 

The physical domain considered in this work consists of a horizontal fluid layer of 

depth d (z coordinate) contained in the annular ring limited by two concentric cylinders of 

radii a and a+δ (r coordinate). A sketch of the domain is presented in Fig. 1. The diameters of 

the two cylinders are chosen so that the bigger is the double of the smaller one, i.e., a=δ). The 

geometry of the fluid domain is characterized by the aspect ratio, Γ. 

The bottom surface is considered to be rigid and is heated with a linear decreasing 

(along the radius) temperature gradient with a temperature difference TG = 2 K, which is kept 

constant throughout this study. The reference temperature used in the definition of the 

Rayleigh and Marangoni numbers is the mean temperature difference between the bottom 

plate and the atmosphere, ΔT. The top surface is open to the atmosphere and the heat transfer 

to the atmosphere is expressed in terms of the Biot number (as shown in Table 1). The two 

lateral walls of the cylinder are considered as adiabatic. 
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Figure 1. Lateral walls are considered adiabatic. The fluid is heated from below and the top surface is 
open to the atmosphere 

 

The fluid layer behavior can be described by means of the momentum and mass 

balance equations and the energy conservation principle. These equations are non-

dimensionalized using d  as characteristic length, /d 2  as characteristic time and T  as 

characteristic temperature difference, as previously done in [10]. The equations become 

respectively:  
 

,0=u  (1) 

 
   ,RaPr= 2

zt p euuuu   (2) 

 
.= 2

t   u  (3) 

In the equations governing the system u  is the velocity field with the three 

components expressed in cylindrical coordinates r, φ and z, i.e., ur, uφ and uz.   is the flow 

temperature, and p  is the pressure. In these equations the operators are expressed in 

cylindrical coordinates and ez is the unit vector in the z  direction. The Boussinesq 

approximation is used for turbulence modeling as it is usual in this sort of problems [25]. 

Boundary conditions are similar to those of references [10, 17]. Non-slip wall condition 

(velocity equal to zero) is imposed on the lateral walls and on the bottom plate. A linearly 

varying temperature distribution is imposed on the bottom plate, while lateral walls are 
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considered as adiabatic. On the top surface, the thermo-capillarity forces are modeled through 

the Marangoni condition [10], whereas the heat transfer to the atmosphere is simulated by the 

Biot condition. Notice that the dimensionless numbers presented in the introduction (Sec.1) 

appear in eqs. (1)-(3) and in the boundary conditions summarized in Table 1.  

 

Table  1: Boundary conditions 

0=z  dz =  a,a=r  

0=ru  0=Ma  rrzu  0=ru  

0=u  0=Ma  ur z  0=u  

0=zu  0=u z  0=u z  

 r/TT= G    0Bi =z    0=n  

Numerical Method 

The temperature gradient on the bottom surface induces motion on the flow until a 

steady state, commonly know as basic state, is reached. Since the flow is laminar and due to 

the domain’s symmetries, the basic state will be obtained under the assumption of 2D 

axisymmetric solution, and thus the dependency with   can be neglected. Eqs. (1)-(3) 

developed for the cylindrical case then become:  
 

  0,=1
zzrr urur   (4) 

 

  ,=Pr
2

1

r

u
upuuuu r

rcrrzzrrr   (5) 

 
  ,up=uuuu zczzzzzrr

1  RaPr   (6) 

 
,=uu czzrr  Δ  (7) 

where   21Δ zrrc rr=   is the Laplacian operator in cylindrical coordinates, simplified 

according to the previously mentioned symmetries. 

The previous system of equations (4-7) can be solved in different ways, being 

spectral methods the most widely used [26]. Among the different spectral methods, the 

collocation method [27] is chosen in this work due to its accuracy and simplicity. The 

procedure is started by expanding the fluid variables in a truncated series of orthonormal 

Chebyshev polynomials, as 

     zraz,rX mn
i
nm

M

=m

N

=n

i 
00

 
(8) 

where ,41,= i  and iX  stands for the four different flow variables, i.e., p , ru , zu , and  , 

respectively. )(xj  is the Chebyshev polynomial of the first kind of degree j . The 

polynomial coefficients, i
nma , are now the unknowns of the problem with the superscript 

indicating the corresponding flow variables. The flow variables expanded expressions from 

eq.(8) are substituted into eqs. (1), (2) and (3) and in the boundary conditions (Table 1). The 



Hoyas, S., et al.: On the Onset of Instabilities in a Bénard-Marangoni Problem … 

S6  THERMAL SCIENCE, Year 2016, Vol. 20, Suppl. 6, pp. S-S 

 

collocation method continues by evaluating the resultant equations in the Chebyshev-Gauss-

Lobatto (CGL) points [28]. CGL points are defined as: 

,N...,=i,
N

i
cos=ri   1, 0,








   

M...,=i,
M

i
cos=zi   1, 0,








   

where N  and M  correspond to the order of the method in radial and axial direction, 

respectively. The use of CGL points is especially of interest when dealing with boundary 

effects [26] since the collocation points tend to concentrate near the boundaries. A specially 

developed procedure proposed by Mancho et al. [5], consisting on projecting the equations by 

the normal to the boundaries, is used to impose the boundary condition for the pressure. This 

procedure avoids the problem of the spurious modes as stated by Bernardi and Maday [29]. 

The pressure is determined with respect to an additive constant. 

The non-linearity of the problem is solved by using a Newton-like iterative method, 

taking as first approach either the solution of the linearized problem (neglecting the nonlinear 

part of eq. (5) and eq. (6)) or a previously known basic state “nearby”  the new one. 

Convergence is typically obtained in less than 20 iterations as shown in the convergence test 

performed by Hoyas et al. [10]. 

The basic state is stable for low Ra . As Ra  is increased (and thus the Ma  for a 

given Bo ), the basic state becomes unstable and several bifurcations arise. The purpose of 

this analysis is to determine the critical Ra and Ma  values and the shape of growing 

instabilities for fixed Biot, Prandtl and Bond numbers. 

The flow stability is analyzed by perturbing the solution for the basic state with 

perturbation fields depending on the three cylindrical coordinates, r, φ and z. Applying again 

the axial symmetry of the problem, and thus periodicity along the azimuthal direction, φ, fluid 

magnitudes may be expanded in Fourier modes over φ as: 
 

( , , , ) = ( , ) ( , ) ik t

b pX r z t X r z X r z e     (9) 

where subscripts b and p stand for the basic state and the induced perturbation, respectively; 

and 0k  is the wave number. It is important to remark again that the basic state does not 

depend on φ. 

The real part of the eigenvalue,  , characterizes the stability. For 0<)(Re   the 

solution is stable since the perturbation tends to dissipate. For 0)(Re   the solution is 

unstable. In this latter case, the bifurcation might be stationary (imaginary part of   equal to 

zero) or oscillatory (when the imaginary part of   is non-zero). 

Once the Fourier modes of the flow variables (eq.(9)) are substituted into the general 

equations (1-3) and the BCs from Table 1, the problem is linearized as shown by [17]. The 

system then becomes:  
 

   XB=XA   (10) 

Due to the boundary conditions the matrix [B] is singular and thus not all the 

eigenvalues have a finite value. This issue is solved by using a transformation technique, 

developed by Navarro et al. [30], specifically designed for thermo-convective problems. The 

largest eigenvalue obtained through this transformation corresponds to the largest finite 
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eigenvalue of the original problem. The computational code was validated experimentally in 

[15] and the generalization of the code to Pr < 50 was validated in [17], using the same 

procedure as in [10]. 

Results and discussion  

The analysis intends to determine the critical Rayleigh number (Rac) and critical 

Marangoni number (Mac) for different conditions depending on the Biot, Prandtl and Bond 

numbers and on the domain aspect ratio, Γ. The critical condition is found when the real part 

of the eigenvalue of eq. (10) is equal to 0 and is associated to a critical wave number, k. 

Solving the eigenvalue problem also allows obtaining the eigenvectors of the solution that 

represents the shape of unstable modes. 

Critical wave number 

Figure 2 shows the critical wave number for each of the 6 combinations of Prandtl 

and Bond numbers analyzed in this work. The figure reports contour plots of the wave 

number for varying , and Biot number. Two different colour scales are used: one for 

stationary modes going from light blue to yellow for increasing wave number and the other 

one for oscillatory modes going from light blue to dark blue for increasing wave number. 

Figure 2 shows the great variation of critical wave numbers and of the type of growing 

perturbation depending on the parameters object of the study. Moving along a constant Bi line 

for increasing Γ at low aspect ratios the modes are typically found to be steady then for a 

range of aspect ratios the modes are oscillatory and finally at higher aspect ratios the modes 

become again stationary. The wave number is found to increase with the aspect ratio 

suggesting that the characteristic wavelength of the disturbances is positively correlated with 

the domain depth. The precession of the modes along the domain for a limited range of Γ 

suggests that these aspect ratios should enable a better mixing and enhanced heat transfer 

performances. 

Both increasing Pr and Bo, the Γ range which results in oscillatory solutions is 

reduced while the characteristic wavelength is slightly affected. The Prandtl number effect 

can be explained with the increase of damping due to viscous forces, while the Bo effect is 

related to the decrease of thermocapilarity forces at a given Ra. Increasing the Bi for all the 

other parameters fixed, results in a small decrease of the wave number and in the possible 

suppression of oscillations due to the decrease of the vertical temperature gradient through the 

domain. 

Evolution of the critical Rayleigh number 

Figure 3 reports the values of the critical Rayleigh number versus the domain aspect 

ratio Γ at Bi equal to 0.8 for three different cases. Going through Figure 3 from top to bottom, 

the cases are: Pr = 1, Bo = 5 (corresponding to the case shown in Fig. 2(e)), Pr = 1, Bo = 50 

(Fig. 2(f)), and Pr = 50, Bo = 50 (Fig. 2(b)). It is worth to remark that the value of the wave 

number along the curve is not continuous. Hollow circles stand for stationary bifurcations, 

whereas bold ones indicate oscillatory ones. 
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Figure 2: Critical wave number for the different numerical experiments analyzed in this 

work, the results are divided in stationary (Imag(λ)=0) and oscilaroty cases (Imag(λ)≠0). Left column 

cases with Bo= 5 and for decreasing values of the Prandtl number. Right column cases with Bo = 50 
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Figure  3: Evolution of the critical Ra with Γ for Bi = 0.8, and (a) Pr = 1 and Bo = 5, (b) Pr = 1 and Bo = 

50, (c) Pr = 50 and Bo = 50. Empty circles stand for stationary bifurcations, whereas bold ones indicate 
oscillatory ones. The size of the circle indicates the wave number in a scale from k=0 (the smallest 

circle) to k=24 (the largest one) 
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Additionally, the size of the marker is related with the value of the wave number, the smallest 

circle represents a value of k=0 and the largest one a value of k=24. The wave number 

increases with the aspect ratio of the domain, Γ (as also shown in Figure 1), while the critical 

Rayleigh number decreases. This same tendency was previously found by the authors in [22]. 

Figure 3 also includes representative top r-φ plane isotherms plotted above the curves. The 

temperature field is non-dimensionalized with respect to the maximum . Below the line the 

corresponding z-r planes are also reported. Several types of instabilities are found along the 

constant Bi curves. As an example in Fig. 3(b), for low aspect ratios, 43=  , Stationary 

rolls (SR) are found; passing through a region of oscillatory Hydrothermal Wave of the first 

kind (HWI), 6.24=  ; and finally, for large aspect ratios, 86.2=   Longitudinal Rolls 

(LR) appear as a result of the temperature gradient along the bottom wall which provides a 

stronger effect in the inner part of the domain.  

 

Figure 3(a) reports in the same fashion as in Figure 3(b) the information for the case of Pr = 1 

and Bo = 5 (Fig. 2(c)). For small aspect ratios a flower-like perturbation (as the ones obtained 

in [22]) appears instead of the stationary rolls of the former case. Following the curve, the 

arising perturbations are the same, passing through a region of oscillatory Hydrothermal 

Wave of the first kind (HWI), and finally for large aspect ratios, Longitudinal Rolls. It has to 

be remarked from comparison of Fig. 3(a) and Fig. 3(b) that the critical wave number in the 

regions of HWI and LR is smaller in the former case. This means that the critical wave 

number is increased when the Marangoni number decreases, while the critical Rayleigh 

number follows the opposite tendency.  

 

Comparing the curves from Fig. 3(b) and Fig. 3(c) the effect of the Prandtl number can be 

assessed. The increase of the Prandtl number has a remarkable effect on the substantial 

increase of the critical Rayleigh number at which the modes become unstable due to the 

increase of viscous effects. The aspect ratio at which the different regimes appear is modified 

for 1>Pr ; in fact the region of HWI is delayed (in aspect ratio) and becomes narrower, being 

the transition to LR also anticipated. Moreover, the viscous effect are found to be responsible 

of the arising of a flower-like perturbation for low aspect ratios.   

Co-dimension two points 

As Fig. 2 and Fig. 3 illustrate, different kind of competing solutions appear on 

localized regions of the Γ-Bi plane. The boundaries of these zones are made up of co-

dimension two points, where two of the competing solutions may appear at the same time. 

The evolution of the critical Marangoni number and of the Biot number of all the co-

dimension two points found in the present work is shown in Fig. 4. Notice that all these points 

are obtained for different values of the aspect ratio Γ. 

The main result shown in the figure is that most of the co-dimension two points have 

little dependence on the Prandtl number since the points seem to lay along two curves of 

equal Bond number: one for Bo = 5 and the other for Bo = 50. Of course at higher Bond 

number the critical Marangoni number is lower and practically constant since the instabilities 

are mostly triggered by the buoyancy effects and a slight increase of the critical Marangoni 

number is required to compensate the instabilizing effect of the decrease of the Biot number. 
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Some outliers with respect to the Ma-Bi curves are found among the low Bond cases 

for domains with high aspect ratio, where the Biot number is the dominant parameter as seen 

in previous works as [22]. On the other hand for high Bond numbers (Bo = 50), the flow is 

dominated by the thermoconvective phenomena, and Biot number is not representative there. 

Figure 4: Representation of the critical Marangoni number and Biot number of all the codimension 
two points found in the present analysis 

Conclusions  

This paper assesses the influence of the gravitational and capillarity forces of the 

onset of flow instabilities in a Bérnard-Marangoni convection problem. Numerical 

simulations have been conducted in an annular domain with a temperature gradient imposed 

at its lower wall. This gradient induces a velocity field in the flow, that evolves until a basic 

state is reached. The analysis is performed for 3 different values of the Prandtl numbers, 

ranging from a viscosity dominated problem (Pr=50) to problems in which the nonlinear flow 

effects are important (Pr=1), and addressing an intermediate problem representative of the 

conditions of water at ambient conditions (Pr=5). This work also addresses the influence of 

the surface tension and the thermocapillarity in perturbing the computed instabilities by 

analyzing two different ranges of the Bond numbers (5 and 50). 

The critical wave number for each combination of Biot number on the free surface 

and domain aspect ratio has been studied. The perturbations are divided in stationary and 

oscillatory depending on the imaginary part of the eigenvalue. The increase of Γ allows to 

pass from a stationary unstable mode to an oscillatory one, then further increasing Γ to 
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stationary again. The wave number is found to be positively correlated with the domain aspect 

ratio. 

It has been showed that different perturbation types share a common boundary in the 

Bi- Γ plane, these points where two competing solutions are found are known as co-

dimension two points. 

For a constant value of the Biot number (Bi=0.8), the critical Rayleigh number 

generally decreases with the domain aspect ratio, while the critical wave number tends to 

increase. Different instabilities are found along the constant Bi line, mixing both oscillatory 

and stationary ones. The increase of Pr has a stabilizing effect on the flow which becomes 

unstable for higher Rayleigh numbers; as well the increase of Bo has an unstabilizing effect, 

resulting in higher wave numbers. The range of aspect ratios which interested by oscillatory 

solutions also increases with increasing Bo. For low Prandtl number, the type of the arising 

instabilities are different in the cases of Bo=5 and Bo=50 , in particular for low aspect ratios, 

Γ between 3 and 4 where higher bond number promotes the appearance of Stationary Rolls. 

The co-dimension two points present a tendency that does not depend on the Prandtl 

number since most of the points lay along two curves (one for each value of the Bond number 

considered during this work) in the Biot-Marangoni plane. It is shown that for high Bond 

number (Bo = 50), the thermocaliparity effects are negligible and the Biot number plays a 

small role in the flow description. On the other hand for smaller Bond numbers (Bo = 5) some 

points lay out the the curve. These cases are related with a high aspect ratio of the flow 

domain. 
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