
Received December 21, 2018, accepted January 14, 2019, date of publication January 31, 2019, date of current version February 14, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2895541

A Case for Malleable Thread-Level Linear
Algebra Libraries: The LU Factorization
With Partial Pivoting
SANDRA CATALÁN1, JOSÉ R. HERRERO 2, ENRIQUE S. QUINTANA-ORTÍ1,
RAFAEL RODRÍGUEZ-SÁNCHEZ3, AND ROBERT VAN DE GEIJN4
1Departarmento Ingeniería y Ciencia de Computadores, Universidad Jaume I, 12071 Castellón de la Plana, Spain
2Departamento d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
3Departamento de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, 28040 Madrid, Spain
4Department of Computer Science, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA

Corresponding author: José R. Herrero (josepr@ac.upc.edu)

This work was supported in part by the Spanish Ministerio de Economía y Competitividad under Project TIN2014-53495-R, Project
TIN2015-65316-P, and Project TIN2017-82972-R, in part by the H2020 EU FETHPC ‘‘INTERTWinE’’ under Project 671602, in part by
the Generalitat de Catalunya under Project 2017-SGR-1414, and in part by the NSF under Grant ACI-1550493.

ABSTRACT We propose two novel techniques for overcoming load-imbalance encountered when imple-
menting so-called look-ahead mechanisms in relevant dense matrix factorizations for the solution of linear
systems. Both techniques target the scenario where two thread teams are created/activated during the
factorization, with each team in charge of performing an independent task/branch of execution. The first
technique promotes worker sharing (WS) between the two tasks, allowing the threads of the task that
completes first to be reallocated for use by the costlier task. The second technique allows a fast task to
alert the slower task of completion, enforcing the early termination (ET) of the second task, and a smooth
transition of the factorization procedure into the next iteration. The two mechanisms are instantiated via a
new malleable thread-level implementation of the basic linear algebra subprograms, and their benefits are
illustrated via an implementation of the LU factorization with partial pivoting enhanced with look-ahead.
Concretely, our experimental results on an Intel-Xeon system with 12 cores show the benefits of combining
WS+ET, reporting competitive performance in comparison with a task-parallel runtime-based solution.

INDEX TERMS Solution of linear systems, multi-threading, workload balancing, thread malleability, basic
linear algebra subprograms (BLAS), linear algebra package (LAPACK).

I. INTRODUCTION
In the 1970s and 80s, the scientific community recognized
the value of defining standard interfaces for dense linear
algebra (DLA) operations with the introduction of the Basic
Linear Algebra Subprograms (BLAS) [1]–[3]. Ever since,
the key to performance portability in this domain has been
the development of highly-optimized, architecture-specific
implementations of the BLAS, either by hardware ven-
dors (e.g., Intel MKL [4], AMD ACML [5], IBM ESSL [6],
and NVIDIA CUBLAS [7]) or independent developers
(e.g., GotoBLAS [8], [9], OpenBLAS [10], ATLAS [11], and
BLIS [12]).

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

Multi-threaded instances of the BLAS for current
multi-core processor architectures take advantage of the sim-
ple data dependencies featured by these operations to exploit
loop/data-parallelism at the block level (hereafter referred
to as block-data parallelism, or BDP). For more complex
DLA operations, like those supported by LAPACK [13] and
libflame [14], exploiting task-parallelism with depen-
dencies1 (TP) is especially efficient when performed by
a runtime that semi-automatically decomposes the com-
putation into tasks and orchestrates their dependency-
aware scheduling [15]–[18]. For the BLAS kernels though,

1We view TP as the type of concurrency present in an operation that can
be decomposed into a collection of suboperations (tasks) connected by a
rich set of data dependencies. Compared with this, BDP is present when the
operation basically consists of a number of independent (inherently parallel)
suboperations, each acting on a disjoint block of data.

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

17617

https://orcid.org/0000-0002-4060-367X


S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

exploiting BDP is still the preferred choice, because it allows
tighter control on the data movements across the memory
hierarchy and avoids the overhead of a runtime that is unnec-
essary due to the (mostly) nonexistent data dependencies in
the BLAS kernels.

Exploiting both BDP and TP, in a sort of nested parallelism
can yield more efficient solutions as the number of cores
in processor architectures continues to grow. For example,
consider an application composed of two independent tasks,
TA and TB, both of which are inherently parallel and pre-
ceded/followed by synchronization points. In this scenario,
exploiting TP only is inefficient, because it can keep at most
2 threads busy. To address this, we could take advantage of
the BDP inside TA and TB via TP but, given their inherent
parallelism, this is likely to incur certain overhead compared
with a direct exploitation of BDP. Finally, extracting BDP
only is surely possible, but it may be less scalable than a
nested TP+BDP solution that splits the threads into two
teams, and puts them to work on TA and TB concurrently.
Let us consider now that the previous scenario occurs

during the execution of a complex DLA operation where
both tasks, TA and TB, can be computed via simple calls
to a multi-threaded instance of BLAS. Although the solu-
tion seems obvious, exploiting nested TP+BDP parallelism
here can still be suboptimal. In particular, all multi-threaded
instances of BLAS offer a rigid interface to control the thread-
ing execution of a routine, which only allows one to set the
number of threads that will participate before the routine is
invoked. Importantly, this number cannot be changed during
its execution. Thus, in case TA is completed earlier, the team
of threads in charge of its execution will remain idle waiting
for the completion of TB, producing a suboptimal execution
from a performance perspective.

The scenario that we have described is far from being
rare in DLA. To illustrate this, we will employ the LU
factorization with partial pivoting for the solution of linear
systems [19]. High-performance algorithms for this decom-
position consist of a loop-body that processes the matrix from
its top-left corner to the bottom-right one, at each iteration
computing a panel2 factorization and updating a trailing sub-
matrix via calls to BLAS. We will review this factorization as
a prototypical example to make the following contributions
in our paper:

• Malleable DLA libraries: We introduce a malleable
thread-level implementation of BLIS [12] that allows
the number of threads that participate in the execution
of a BLAS kernel to dynamically change at execution
time.

• Worker Sharing (WS): In case the panel factorization is
less expensive than the update of the trailing subma-
trix, we leverage the malleable instance of the BLAS
to improve workload balancing and performance, by
allowing the thread team in charge of the panel factor-

2In the following, we will refer to a block with more rows than columns
as a panel.

ization to be reallocated to the execution of the trailing
update.

• Early Termination (ET): To tackle the opposite case,
where panel factorization is more expensive than the
update of the trailing submatrix, we design an ET mech-
anism that allows the thread team in charge of the trailing
update to communicate the alternative team of this event.
This alert forces an ET of the panel factorization, and the
advance of the factorization into the next iteration.

• We perform a comprehensive experimental evaluation
on a 6-core Intel Xeon E5-2603 v3 processor, using exe-
cution traces to illustrate actual benefits of our approach,
and comparing its performance to those obtained with
a runtime-based solution using OmpSs [15]. Our study
includes results using a dual-socket (i.e., twelve-core)
configuration.

The key to our approach is that we depart from conventional
instances of BLAS to instead view the cores/threads as a pool
of computational resources that, upon completing the execu-
tion of a BLAS/LAPACK routine, can be tapped to participate
in the execution of another BLAS/LAPACK routine that is
already in progress. This WS supports a dynamic choice
of the algorithmic block size as the operation progresses.
Furthermore, the same idea carries over to all other major
matrix decompositions for the solution of linear systems, such
as the QR, Cholesky and LDLT factorizations [19].

In [20] we leverage the techniques presented in this
paper, focussing on the exploitation of hardware/frequency-
asymmetric multicore architectures, studying the optimal
mapping of the different types of tasks to the existing het-
erogenous resources in seach of faster global execution and
lower energy consumption.

II. THE BLIS IMPLEMENTATION OF BASIC LINEAR
ALGEBRA KERNELS
BLIS is a framework that allows developers to rapidly deploy
new high-performance implementations of BLAS andBLAS-
like operations on current and future architectures [12]. A key
property of the BLIS open source effort is that it exposes
the internal implementation of the BLAS kernels at a finer-
grain level than OpenBLAS or commercial libraries while
offering performance that is competitive with GotoBLAS,
OpenBLAS, Intel MKL, and ATLAS [21], [22]. We start by
reviewing the design principles that underlie BLIS, using the
implementation of gemm as a particular case study.

Consider the matrices A ∈ Rm×k , B ∈ Rk×n, and
C ∈ Rm×n. BLISmimics GotoBLAS to implement the gemm
kernel3

C += A · B (1)

3Actually, the kernel in the BLAS interface/BLIS implementation for
gemm computes C = αC + βop(A) · op(B), where α, β are scalars,
op(·) performs an optional transposition/Hermitian-conjugation, and op(A)
is m × k , op(B) is k × n, C is m × n. For simplicity, in the description we
address the case where α = β = 1 and the operator op(·) does not perform
any transformation on the input matrix.

17618 VOLUME 7, 2019



S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

FIGURE 1. High performance implementation of gemm in BLIS. In the code, Cc ≡ C(ic : ic +mc − 1, jc : jc + nc − 1) is just a notation artifact,
introduced to ease the presentation of the algorithm. In contrast, Ac , Bc correspond to actual buffers that are involved in data copies.

FIGURE 2. Distribution of the workload among t = 3 threads when Loop 4 of BLIS gemm is parallelized. Different colors in the output C distinguish the
panels of this matrix that are computed by each thread as the product of Ac and corresponding panels of the input Bc .

as three nested loops around a macro-kernel plus two packing
routines (see Loops 1–3 in FIGURE 1). The macro-kernel is
then implemented in terms of two additional loops around a
micro-kernel (Loops 4 and 5 in that figure). The loop ordering
embedded in BLIS, together with the packing routines and an
appropriate choice of the BLIS cache configuration parame-
ters (nc, kc, mc, nr and mr ), orchestrate a regular pattern of
data transfers across the levels of the memory hierarchy, and
amortize the cost of these transfers with enough computation
from within the micro-kernel [12] to attain near-peak perfor-
mance. In most architectures, mr , nr are in the range 4–16;
mc, kc are in the order of a few hundreds; and nc can be up to
a few thousands [12], [21].

The parallelization of BLIS’s gemm for multi-threaded
architectures has been analyzed for conventional sym-
metric multicore processors [21], modern many-threaded
architectures [22], and asymmetricmulticore processors [23].
In all these cases, the parallel implementation exploits the
BDP exposed by the nested five-loop organization of gemm,
at one or more levels (i.e., loops), using OpenMP or POSIX
threads.

A convenient option in most single-socket systems is to
parallelize either Loop 3 (indexed by ic), Loop 4 (indexed
by jr ), or a combination of both [21]–[23]. For exam-
ple, when Loop 3 is parallelized, each thread packs a

different macro-panel Ac into the L2 cache and executes
a different instance of the macro-kernel. In contrast, when
Loop 4 is parallelized, different threads will operate on inde-
pendent instances of the micro-kernel, but access the same
macro-panel Ac in the L2 cache.

Consider, for example, a version of BLIS gemm that
extracts BDP from Loop 4 only, to be executed on a multicore
architecture with t (physical) cores and one thread mapped
per core. The iteration space of Loop 4 is then statically dis-
tributed among the t threads in a round-robin fashion, equiv-
alent to the effect attained by adding an OpenMP directive
#pragma omp parallel for, with a static sched-
ule, around that loop; see Figure 2. To improve performance,
the packing is also performed in parallel so that, at each
iteration of Loop 3, all t threads collaborate to copy and
re-organize the entries of A(ic : ic+mc− 1, pc : pc+ kc− 1)
into the buffer Ac.

III. ALGORITHMS FOR THE LU FACTORIZATION ON
MULTI-THREADED ARCHITECTURES
Given a matrix A ∈ Rm×n, its LU factorization produces
lower and upper triangular factors, L ∈ Rm×n and U ∈ Rn×n

respectively, such that PA = LU , where P ∈ Rm×m defines
a permutation that is introduced for numerical stability [19].
In this section we first review the conventional unblocked

VOLUME 7, 2019 17619



S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

and blocked algorithms for the LU factorization, and then
describe how BDP is exploited from within them. Next,
we introduce a re-organized version of the algorithm that
integrates look-ahead in order to enhance performance in a
nested TP+BDP execution.
The experiments in the remainder of the paper were

obtained using ieee double-precision arithmetic on a server
equipped with Intel Xeon E5-2603 v3 technology. One socket
(six cores) at a nominal frequency 1.6 GHz were used in
all experiments except those in section V-C1, which use a
dual-socket configuration. The implementations were linked
with BLIS version 0.1.8 or a tailored version of this library
especially developed for this work. Unless otherwise stated,
BDP parallelism is extracted only from Loop 4 of the BLIS
kernels. All traces in this paper were obtained using Extrae
version 3.3.0 [24].

A. BASIC ALGORITHMS AND BDP
There exist a number of algorithmic variants of the LU factor-
ization that can accommodate partial pivoting [19]. Among
these, Figure 3 (top) shows an unblocked algorithm for the
so-called right-looking (RL) variant, expressed using the
FLAME notation [25]. For simplicity, we do not include piv-
oting in the following description of the algorithms, though
all our actual implementations, (and in particular those
employed in our experimental evaluation,) integrate standard
partial pivoting. The cost of computing the LU factorization
of an m × n matrix, via any of the algorithms presented in
this paper, is mn2−n3/3 floating-point arithmetic operations
(flops). Hereafter, we will consider square matrices of order n
for which, the cost boils down to 2n3/3 flops. For the RL
variants, themajor part of these operations are concentrated in
the initial iterations of the algorithm(s). For example, the first
25% iterations account for almost 58% of the flops; the first
half for 87.5%; and the first 75% for more than 98%. Thus,
the key to high performance mostly lies in the initial stages
of the factorization.

For performance reasons, dense linear algebra libraries
compute the LU factorization via a blocked algorithm that
casts most computations in terms of gemm. Figure 3 (bot-
tom) presents the blocked RL algorithm. For each iteration,
the algorithm processes panels of b columns, where b is
the algorithmic block size. The three operations in the loop

body factorize the ‘‘current’’ panel Ap =
[
A11
A21

]
, via the

unblocked algorithm (LU_unb, RL1); and next update the
trailing submatrix, consisting of A12 and A22, via a triangular
system solve (trsm, RL2) and a matrix multiplication (gemm,
RL3), respectively. In practice, the block size b is chosen so
that the successive invocations to the gemm kernel deliver
high FLOPS (flops per second) rates. If b is too small, the per-
formance of gemm will suffer, and so will that of the LU
factorization. On the other hand, reducing b is appealing as
this choice decreases the number of flops that are performed
in terms of the panel factorization, an operation that can be
expected to offer significantly lower throughput (FLOPS)

FIGURE 3. Unblocked and blocked RL algorithms for the LU factorization
(top and bottom, respectively). In the notation, n(·) returns the number of
columns of its argument, and trilu(·) returns the strictly lower triangular
part of its matrix argument, setting the diagonal entries of the result to
ones; furthermore, the arrows ‘‘←’’ and ‘‘→’’ are simply used to denote
partitioning/repartitionings of the operands. These algorithms
correspond to the well-known right-looking version of the factorization
and are included for reference.

than gemm. (Concretely, provided n � b, the cost required
for all panel factorizations is about n2b/2 flops.) Thus, there
is the tension between these two requisites.

When the target platform is a multicore processor, the con-
ventional parallelization of the LU factorization simply relies
on multi-threaded instances of trsm and gemm to exploit
BDP only. Compared with this, the panel factorization of
Ap, which lies in the critical path of the blocked RL factor-
ization algorithm, exhibits a reduced degree of concurrency.
Thus, depending on the selected block size b and certain
hardware features of the target architecture (number of cores,
floating-point performance, memory bandwidth, etc.), this
operation may easily become a performance bottleneck; see
Figure 4.

To illustrate the performance relevance of the panel factor-
ization, Figure 5 displays a fragment of a trace corresponding
to the LU factorization of a 10, 000×10, 000matrix, using the
blocked RL algorithm in Figure 3, with partial pivoting and
‘‘outer’’ block size b = bo = 256. The code is linked with
multi-threaded versions of the BLIS kernels for gemm and

17620 VOLUME 7, 2019



S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

FIGURE 4. Exploitation of BDP in the blocked RL LU parallelization.
A single thread team executes all the operations, with less active threads
for RL1 due to the reduced concurrency of this kernel. In this algorithm,
RL1 stands in the critical path.

trsm. The panel factorization (panel) is performed via a call
to the same blocked algorithm, with ‘‘inner’’ block size b =
bi = 32, and also extracts BDP from the same two kernels.
With this configuration, the panel factorization represents less
than 2% of the flops performed by the algorithm. However,
the trace of the first four iterations reveals that its practical
cost is much higher than could be expected. (The cost of
factorizing a panel relative to the cost of an iteration becomes
even larger as the iteration progresses.) Here we note also the
significant cost of the row permutations, which are performed
via the sequential legacy code for this routine in LAPACK
(laswp). However, this second operation is embarrassingly
parallel and its execution time can be expected to decrease
linearly with the number of cores.

At this point, we note that the operations inside the loop
body of the blocked algorithm in Figure 3 (bottom) present
strict dependencies (denoted heafter with the symbol ‘‘⇒’’)
that enforce their computation in the order RL1 ⇒ RL2 ⇒
RL3. Therefore, there seems to be no efficient manner to
formulate a TP version of the blocked algorithm in that figure.

B. STATIC LOOK-AHEAD AND NESTED TP+BDP
A strategy to tackle the hurdle represented by the panel fac-
torization in a parallel execution consists in the introduction
of look-ahead [26] into the algorithm. Concretely, during
each iteration of the decomposition this technique aims to

overlap the factorization of the ‘‘next’’ panel with the update
of the ‘‘current’’ trailing submatrix, in practice enabling a
TP version of the algorithm with two separate branches of
execution, as discussed next.

Figure 6 illustrates a version of the blocked RL algorithm
for the LU factorization re-organized to expose look-ahead.
The key is to partition the trailing submatrix into two block
column panels: (

A12
A22

)
→

(
AP12 AR12
AP22 AR22

)
(2)

where AP22 corresponds to the block that, in the conventional
version of the algorithm (i.e., without look-ahead,) would be
factorized during the next iteration. This effectively separates
the blocks that are modified as part of the next panel fac-
torization from the the remainder updates, left and right of
the 2 × 2 partitioning in (2), respectively. Proceeding in this
manner creates two coarse-grain independent tasks (groups of
operations in separate branches of execution): TPF, consisting
of PF1, PF2, PF3; and TRU, composed of RU1 and RU2;
see Figure 6. The ‘‘decoupling’’ of these block panels thus
facilitate that, in a TP execution of an iteration of the loop
body of the look-ahead version, the updates on AP12, A

P
22 and

the factorization of the latter (operations on the next panel,
in TPF) proceed concurrently with the updates of AR12, A

R
22

(remainder operations, in TRU), as there are no dependencies
between TPF and TRU.

By carefully tuning the block size b and adjusting the
amount of computational resources (threads) dedicated to
each of the two independent tasks, TPF and TRU, a nested
TP+BDP execution of the algorithm enhancedwith this static
look-ahead can partially or totally overcome the bottleneck
represented by the panel factorization; see Figure 7.

Figure 8 illustrates a complete overlap of TRU with TPF
attained by the look-ahead technique. The results in that
figure correspond to a fragment of a trace obtained for the
LU factorization of a 10, 000 × 10, 000 matrix, using the
blocked RL algorithm in Figure 6, with partial pivoting, and
outer block size b = bo = 256. For this experiment, the
t = 6 threads are partitioned into two teams: PF with tpf = 1
thread in charge of TPF, and RUwith tru = 5 threads responsi-
ble for TRU. The panel factorization (panel) is performed via
a call to the same algorithm, with b = bi = 32, and this
operation proceeds sequentially (as PF consists of a single

FIGURE 5. Execution trace of the first four iterations of the blocked RL LU factorization with partial pivoting, using 6 threads, applied to a square
matrix of order 10,000, with bo = 256, bi = 32. The x-axis represents the execution timeline while the different colors correspond to the fraction of
the time that the threads spend in each of the different kernels appearing in the LU factorization: from left to right, panel factorization (PANEL), row
permutations (LASWP), triangular system solve (TRSM), matrix-matrix multiplication (GEMM), and idle.

VOLUME 7, 2019 17621



S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

FIGURE 6. Blocked RL algorithm enhanced with look-ahead for the LU
factorization. This algorithm is included for reference. Note that there is
an implicit schedule in the formulation of this algorithm, as the
operations corresponding to the panel factorization can be computed in
parallel with those for the remainder update.

thread). The application of the row permutations is distributed
between all 6 cores. As argued earlier, the net effect of the
look-ahead is that the cost of the panel factorization no longer
has a practical impact on the execution time of the (first
four iterations of) the factorization algorithm, which is now
basically determined by the cost of the remaining operations.

Given a static mapping of threads to tasks, b should balance
the time spent in the two tasks as, if the operations in TPF

take longer than those in TRU, or vice-versa, the threads in
charge of the less expensive part will become idle, caus-
ing a performance degradation. This was already visible in
Figure 8, which shows that, during the first four iterations,
the operations in TPF are considerably less expensive than
the updates performed as part of the remainder TRU. The
complementary case, where TPF requires longer than TRU,
is illustrated using the same configuration, for a matrix of
dimension 2, 000 × 2, 000, in Figure 9. Unfortunately, as
the factorization proceeds, the theoretical costs and execution
times of TPF and TRU vary, making it difficult to determine the
optimal value of b, which will need to be adapted during the
factorization process.

To close this section, note that there exist strict dependen-
cies that serialize the operations within each task: PF1 ⇒
PF2 ⇒ PF3 and RU1 ⇒ RU2. Therefore, there is no
further TP in the loop-body of this re-organized version.
However, the basic look-ahead mechanism of level/depth 1
described in this subsection can be refined to accommo-
date further levels of TP, by ‘‘advancing’’ to the current
iteration the panel factorization of the following d iter-
ations, in a look-ahead of level/depth d . This consider-
ably complicates the code of the algorithm, but can be
seamlessly achieved by a runtime system enhanced with
priorities.

IV. ADVOCATING FOR MALLEABLE THREAD-LEVEL
LA LIBRARIES
For simplicity, in the following discussion we will assume
that TPF and TRU consist only of the panel factorization involv-
ing AP22 (PF3) and the update of AR22 (RU2), respectively.
Furthermore, we will consider a nested TP+BDP execution

FIGURE 7. Exploitation of TP+BDP in the blocked RL LU parallelization with look-ahead. The execution is performed by teams TPF and
TRU, consisting of tpf = 3 and tru = 8 threads, respectively. In this algorithm, the operations on the (k + 1)-th panel, including its
factorization (PF3), are overlapped with the updates on the remainder of the trailing submatrix (RU1 and RU2).

17622 VOLUME 7, 2019



S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

FIGURE 8. Execution trace of the first four iterations of the blocked RL LU factorization with partial pivoting, enhanced with look-ahead, using 6 threads,
applied to a square matrix of order 10,000, with bo = 256, bi = 32.

FIGURE 9. Execution trace of the first four iterations of the blocked RL LU factorization with partial pivoting, enhanced with look-ahead, using 6 threads,
applied to a square matrix of order 2,000, with bo = 256, bi = 32.

using t = tpf + tru threads, initially with a team PF of tpf
threads mapped to the execution of PF3 and a team RU of tru
threads computing RU2.

Ideally, for the LU factorizationwith look-ahead, wewould
like to perform a flexible sharing of the computational
resources so that, as soon as the threads in team PF complete

VOLUME 7, 2019 17623



S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

PF3, they join team RU to help in the execution of RU2 or
vice-versa. We next discuss these two cases in detail.

A. WORKER SHARING: PANEL FACTORIZATION LESS
EXPENSIVE THAN UPDATE
Our goal is to enable, at each iteration of the algorithm for
the LU factorization with look-ahead, that the threads in
team PF that complete the panel factorization join the thread
team RU working on the update. The problem is that, if the
multiplication to update AR22 was initiated via an invocation
to a traditional gemm, this is not possible as none of the
existing high performance implementations of BLAS allow
the number of threads working on a kernel that is already in
execution to be modified.

1) SUBOPTIMAL SOLUTION: STATIC RE-PARTITIONING
A simple workaround for this problem is to split AR22 into mul-
tiple column blocks, for example, AR22 →

(
A1 A2 . . . Aq

)
,

and to perform a separate call to BLAS gemm in order to
exploit BDP during the update of each block. Then, just
before each invocation, the kernel’s code queries whether the
execution of the panel factorization is completed and, if that
is the case, executes the suboperation with the threads from
both teams (or only those of RU otherwise). Unfortunately,
this approach presents several drawbacks:

• Replacing a single invocation to a coarse gemm by mul-
tiple calls to smaller gemm may offer lower throughput
because the operands passed to gemm are smaller and/or
suboptimally ‘‘shaped’’. The consequence is that calling
gemm multiple times will internally incur re-packing
and data movement overheads, which are more difficult
to amortize because of the smaller problem dimensions.

• The burden of which loop to partition for parallelism
(note that AR22 could have alternatively been split by
rows, or into blocks), and the granularity of this parti-
tioning is then placed upon the programmer’s shoulders,
who may lack the information that is necessary to make
a good choice. For example, if the granularity is too
coarse, this will have negative effect because the inte-
gration of the single thread in the update will likely be
delayed. A granularity that is too fine, on the other hand,
may reduce the parallelism within the BLAS operation
or result in the use of cache blocking parameters that are
too small.

2) OUR SOLUTION: MALLEABLE THREAD-LEVEL BLAS
The alternative that we propose in this work exploits BDP
inside RU2, but allows to change the number of threads that
participate in this computation even if the task is already in
execution! In other words, we view the threads as a resource
pool of workers that can be shared between different tasks and
reassigned to the execution of a (BLAS) kernel that is already
in progress.

The key to our approach lies in the explicit exposure of
the gemm internals (and other BLAS-3 kernels) in BLIS.

Concretely, assume that RU2 is computed via a single invo-
cation to BLIS gemm, and consider that this operation is par-
allelized by distributing the iteration space of Loop 4 among
the threads in teamPF; (see Figures 1 and 2). Then, just before
Loop 4, we force the system to check if the execution of the
panel factorization is completed and, based on this informa-
tion, decides whether this loop is executed using either the
union of the threads from both teams or only those in RU; see
Figure 10.

Let us re-analyze the problems listed in Subsection IV-
A1 for the work-around that statically partitioned the update
of AR22, and compare them with our solution that implicitly
embeds this partitioning inside BLIS:
• The partitioning of gemm into multiple calls to smaller
matrix multiplications does not occur. Our solution per-
forms a single call to gemm only, so that there is no
additional re-packing nor data movements. For exam-
ple, in the case just discussed, Bc is already packed
and re-used independently of whether t or tru threads
participate in the gemm. The buffer Ac is packed only
once per iteration of Loop 3 (in parallel by both teams
or only RU).

• The decision of the best partitioning/granularity is left in
the hands of BLIS, which likely has more information to
do a better job than the programmer.

Importantly, the partitioning happens dynamically and is
transparent to the programmer.

Figure 11 validates the effect of integrating a malleable
version4 of BLIS into the same configuration that produced
the results in Figure 8. A comparison of both figures shows
that, with a malleable version of BLIS, the thread executing
the operations in TPF, after completing this task, rapidly joins
the team that computes the remainder updates, thus avoiding
the idle wait.

Compared with BLIS, the same approach cannot be inte-
grated into GotoBLAS because the implementation of gemm
in this library only exposes the three outermost loops of
FIGURE 1, while the remaining loops are encoded in assem-
bly. The BLAS available as part commercial libraries is not
an option either because hardware vendors offer black-box
implementations which do not permit the migration of
threads.

B. EARLY TERMINATION: PANEL FACTORIZATION MORE
EXPENSIVE THAN UPDATE
The analysis of this case will reveal some important insights.
In order to discuss them, let us consider that, in the LU
factorization with look-ahead, the panel factorization (PF3) is
performed via a call to the blocked routine in Figure 3 (right).
We assume two blocking parameters: b = bo for the outer
routine that computes the LU factorization of the complete
matrix using look-ahead, and b = bi for the inner routine
that factorizes each panel. (Note that, if bi = bo or bi = 1,

4The discussion on how to create this ‘‘malleable’’ instance of BLIS is an
implementation detail, which is not relevant for the discussion of the paper.

17624 VOLUME 7, 2019



S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

FIGURE 10. Exploitation of TP+BDP in the blocked RL LU parallelization with look-ahead and WS. The execution is performed by teams
TPF and TRU, consisting of tpf = 3 and tru = 8 threads, respectively. In this example, team TPF completes the factorization PF3 while team
TRU is executing the first iteration of Loop 3 that corresponds to RU2/gemm (ic = 0). Both teams then merge and jointly continue the
update of the remaining iterations of that loop (ic = mc , 2mc , . . .). With the parallelization of gemm Loop 4, one such ‘‘entry point’’ enables
the merge at the beginning of each iteration of loop ic .

the panel factorization is then simply done via the unblocked
algorithm.) Furthermore, we will distinguish these two levels
by referring to them as the outer LU (factorization with
look-ahead) and the inner LU (factorization via the blocked
algorithm without look-ahead). Thus, at each iteration of the
outer LU, a panel of bo columns is factorized via a call to
LU_blk (inner LU), and this second decomposition proceeds
to factorize the panel using a blocked algorithm with block
size bi; see Figure 12.

From Figure 3 (right), the loop body for the inner LU
consists of a call to the unblocked version of the algorithm
(RL1), followed by the invocations to trsm and gemm that
update A12 and A22, respectively (RL2 and RL3). Now, let
us assume that the update RU2 by the thread team RU is
completed while the threads of team PF are in the middle of
the computations corresponding to an iteration of the loop
body of the inner LU. Then, provided the versions of the
BDP versions trsm and gemm kernels that are invoked from
the inner LU are malleable (see subsection IV-A2), inside
them the system will perform the actions that are necessary to
integrate the thread team RU, which is now idle, into the cor-
responding (and subsequent) computation(s). Unfortunately,
the updates in the loop body of the inner LU involve small-
grained computations (A12 and A22 have at most bo − bi

columns, decreasing by bi columns at each iteration), and
little parallel performance can be expected from it especially
because of partial pivoting.

In order to deal with this scenario, a different option is to
force the inner LU to stop at the end of the current iteration,
to then rapidly proceed to the next iteration of the outer
LU. We refer to this strategy as the early termination (ET).
In order to do this though, the transformations computed
to factorize the current inner-panel must be propagated first
to the remaining columns outside this panel, introducing a
certain delay in this version of the ET strategy.

A third possibility is to rely on a left-looking (LL) ver-
sion of the LU factorization for the inner LU, as discussed
next. The blocked LL algorithm for the LU factorization
differs from the blocked RL variant (see the algorithm in
the right-hand side of Figure 3) in the operations performed
inside the loop-body, which are replaced by

LL1. A01 := trilu(A00)−1A01

LL2.
[
A11
A21

]
:=

[
A11
A21

]
−

[
A10
A20

]
A01

LL3.
[
A11
A21

]
:= LU_unb

([
A11
A21

])
VOLUME 7, 2019 17625



S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

FIGURE 11. Execution trace of the first four iterations of the blocked RL LU factorization with partial pivoting, enhanced with look-ahead and malleable
BLIS, using 6 threads, applied to a square matrix of order 10,000, with bo = 256, bi = 32.

Thus, at the end of a certain iteration, this variant has
only updated the current column of the inner-panel and
those to its left. In other words, no transformations are
propagated beyond that point (i.e., to the right of the cur-
rent column/inner-panel), and ET can be implemented in a
straight-forward manner, with no delay compared with an
inner LU factorization via the RL variant.

A definitive advantage of the LL variant compared with
its RL counterpart is that the former implements a lazy algo-
rithm, which delays the operations towards the end of the
panel factorization, while the second corresponds to an eager
algorithm that advances as much computations as possible to
the initial iterations. Therefore, in case the panel factorization
has to be stopped early, it is more likely that the LL variant
has progressed in the factorization further.5 The appealing
consequence is that this enables the use of larger block sizes
for the following updates in the LL variant.

From an implementation point of view, the synchronization
between the two teams of threads is easy to handle. For
example, at the beginning of each iteration of the outer LU,
a boolean flag is set to indicate that the remainder update is
incomplete. The thread team RU then changes this value as
soon as this task is complete. In the mean time, the flag is

5Consider the factorization of an m× n matrix that is stopped at iteration
k < n. The LL algorithm will have performedm2k−m3/3 flops at that point
while, for the RL algorithm, the flop count raises to that of the LL algorithm
plus 2(n− k)(mk − k2/2).

queried by the thread team PF, at the end of every iteration
of the inner LU, aborting its execution when a change is
detected.With this operation mode, there is no need to protect
the flag from race conditions. This solution also provides
an adaptive (automatic) configuration of the block size as,
if chosen too large, it will be adjusted for the current (and,
possibly, subsequent) iterations by the early termination of
the inner LU. The process is illustrated in Figure 13.

C. RELATION TO ADAPTIVE LOOK-AHEAD VIA A RUNTIME
Compared with our approach, which only applies look-ahead
at one level, a TP execution that relies on a run-time for
adaptive-depth look-ahead exposes a higher degree of par-
allelism from ‘‘future iterations’’, which can amortize the
cost of the panel factorization over a considerably larger
number of flops. This can be beneficial for architectures with
a large number of cores, but can be partially compensated
by increasing the number of threads dedicated to the panel
factorization, combined with a careful fine-grain exploita-
tion of the concurrency [27], in our approach. On the other
hand, adaptive-depth look-ahead via a runtime suffers from
re-packing and data movement overheads due to multiple
calls to gemm. Moreover, it couples the algorithmic block
size that fixes the granularity of the tasks to that of the
suboperands in gemm. Finally, runtime-based solutions rarely
exploit nested TP+BDP parallelism and, even if they do

17626 VOLUME 7, 2019



S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

FIGURE 12. Outer vs inner LU and use of algorithmic block sizes.

so, taking advantage of a malleable thread-level BLAS from
within them may be difficult.

V. EXPERIMENTAL EVALUATION
In this section we analyze in detail the performance behavior
of several multi-threaded implementations of the algorithms
for the LU factorization:
• LU: Blocked RL (Figure 3). This code only exploits
BDP, via calls to the (non-malleable) multi-threaded
BLIS (version 0.1.8). This routine corresponds to a
direct translation into C of the legacy Fortran code
for routine dgetrf in LAPACK (available at http:
//www.netlib.org/lapack), linked with our
multi-threaded implementation of BLIS. The only dif-
ference is in the panel factorization which, for perfor-
mance reasons, in our LU routine is performed via a call
to the same routine, with a smaller block size, in order to
cast most of the flops in terms of level-3 BLAS. In con-
trast, the legacy code in LAPACK realizes the panel
factorization via routine dgetf2, thus casting most of the
flops as level-2 BLAS. In consequence, the performance
of the conventional implementation in LAPACK can be
expected to stay below that of our LU routine. Note that
LAPACK does not implement look-ahead.

• Variants enhanced with look-ahead (Figure 6). The fol-
lowing three implementations take advantage of nested
TP+BDP, with 1 thread dedicated to the operations on
the panel (team TPF) and t − 1 to the remainder updates
(team TRU).

– LU_LA (subsection III-B): Blocked RL with look-
ahead.

– LU_MB (subsection IV-A2): Blocked RL with
look-ahead and malleable BLIS.

– LU_ET (subsection IV-B): Blocked RL with look-
ahead, malleable BLIS, and early termination of the
panel factorization.

• LU_OS: Blocked RL with adaptive look-ahead extracted
via the OmpSs runtime (version 16.06). LU_OS decom-
poses the factorization into a large collection of tasks
connected via data dependencies, and then exploits TP
only, via calls to a sequential instance of BLIS. In more
detail, the OmpSs parallel version divides thematrix into
a collection of panels of fixed width bo. All operations
performed during an iteration of the algorithm on the
same panel (row permutation, triangular system solve,
matrix multiplication and, possibly, panel factorization)
are then part of the same task. This implementation

VOLUME 7, 2019 17627

http://www.netlib.org/lapack
http://www.netlib.org/lapack


S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

FIGURE 13. Exploitation of TP+BDP in the blocked RL LU parallelization with look-ahead and ET. The execution is performed by teams TPF
and TRU, consisting of tpf = 3 and tru = 8 threads, respectively. In this example, team TRU completes the update RU2 while team TPF is
executing an iteration of the panel factorization PF3. TRU then notifies of this event to TPF, which then skips the remaining iterations of
the loop that processes the panel.

includes priorities to advance the schedule of tasks
involving panel factorizations.

All codes include standard partial pivoting and compute the
same factorization. Also, all solutions perform the panel fac-
torization via the blocked RL algorithm, except for LU_ET
and LU_OS, which employ the blocked LL variant. The
performance differences between the LL and RL variants,
when applied solely to the panel factorization, were small.
Nonetheless, for LU_ET, employing the LL variant improves
the ET mechanism and unleashes a faster execution of the
global factorization. For LU_OS we integrated the LL variant
as well to favor a fair comparison between this implemen-
tation and our LU_ET. The block size is fixed to bo during
the complete iteration in all cases, except for LU_ET which
initially employs bo, but then adjusts this value during the
factorization as part of the ET mechanism.

In the experiments, we considered the factorization of
square matrices, with random entries uniformly distributed in
(0, 1), and dimension n = 500 to 12,000 in steps of 500. The
block size for the outer LU was tested for values bo = 32
to 512 in steps of 32. The block size for the inner LU was
evaluated for bi = 16 and 32. We employed one thread per
core (i.e., t = 6) in all executions.

A. OPTIMAL BLOCK SIZE
The performance of the blocked LU algorithms is strongly
influenced by the outer block size bo. As discussed in sub-
section III-A, this parameter should balance two criteria:

• Deliver high performance for the gemm kernel.
Concretely, in the algorithms in Figures 3 and 6, a value
of bo that is too small turns A21 and A12/AR12 into nar-
row column and row panels respectively, transforming
the matrix multiplication involving these blocks (RL3
in Figure 3 and RU2 in Figure 6) into a memory-bound
kernel that will generally deliver low performance. In the
following, we will refer to a gemm (1) with dimensions
m ≈ n � k , as a panel-panel multiplication (gepp) [8].
Note that, for the gepp arising in the LU factorizations,
k = bo.

• Reduce the amount of operations performed in the panel
factorization (about n2bo/2 flops, provided n � bo), in
order to avoid the negative impact of this intrinsically
sequential stage.

Figure 14 sheds further light on the roles played by these two
factors. The plot in the left-hand side reports the performance
of gepp, in terms of GFLOPS (billions of FLOPS), show-
ing that the implementation of this kernel in BLIS achieves

17628 VOLUME 7, 2019



S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

FIGURE 14. GFLOPS attained with gepp (left) and ratio of flops performed
in the panel factorizations normalized to the total cost (right).

an asymptotic performance peak for k(= bo) around 144.6

The right-hand side plot reports the ratio of flops performed
in the panel factorizations with respect to those of the LU
factorization.

The combined effect of these criteria seems to point in the
direction of choosing the smallest bo that attains the asymp-
totic GFLOPS rate for gepp. However, Figure 15 illustrates
the experimental optimal block size bo for the distinct LU
factorization algorithms, exposing that this is not the case.We
next discuss the behavior for LU, LU_LA and LU_MB, which
show different trends. (LU_ET and LU_OS are analyzed lat-
ter.) In particular, LU benefits from the use of larger values
of bo than the other two codes for all problem dimensions.
The reason is that a large block size operates on wide panels,
which turns their factorization into a BLAS-3 operation with
a mild degree of parallelism, and reduces the impact of this
computation on the critical path of the factorization. LU_LA
exhibits a similar behavior for large problems, but favors
smaller block sizes for small to moderate problems. The
reason is that, for LU_LA, it is important to balance the panel
factorization (TPF) and remainder update (TRU) so that their
execution approximately requires the same time.

6The performance drop observed for k slightly above 256 is due to the
optimal value of kc being equal to that number in this architecture.

FIGURE 15. Optimal block size of the blocked RL algorithms for the LU
factorization.

Compared with the previous two implementations,
LU_MB promotes the use of small block sizes, up to bo =
192, for the largest problems. (Interestingly, this corresponds
to the optimal value of k for gepp.) One reason for this behav-
ior is that, when the malleable version of BLIS is integrated
into LU_MB, the practical costs of the two branches/tasks do
not need to be balanced. Let us elaborate this case further,
by considering the effect of reducing the block size, for
example, from bo to b′o = bo/2. For simplicity, in the fol-
lowing discussion we will use approximations for the block
dimensions and their costs; furthermore, we will assume that
n � bo. The first and most straight-forward consequence
of halving the block size is that the number of iterations is
doubled. Inside each iteration with the original block size
bo, the loop body invokes, among others kernels, a gepp of
dimensions m × (m − bo) × bo (with m the number of rows
in the trailing submatrix AR22), for a cost of 2m2bo flops;
in parallel, the factorization involves a panel of dimension
m×bo, for a cost ofmb2o−b

3
o/3 ≈ mb2o flops. When the block

size is halved to b′o, the same work is basically computed in
two consecutive iterations. However, this reduces the amount
of flops performed in terms of panel factorizations to about
2m(b′o)

2
= mb2o/2 while it has a minor impact on the number

of flops that are cast as gepp (two of these products, at a
cost of 2m2b′o = 2m2bo/2 flops each). The conclusion
is that, by reducing the block size, we decrease the time
that the single thread spends in the panel factorization TPF,
favoring its rapid merge with the thread team that performs
the remainder update TRU. Thus, in case the execution time
of the LU is dominated by TRU, adding one more thread to
perform this task (in this scenario, in the critical path) as
soon as possible will reduce the global execution time of the
algorithm.

B. PERFORMANCE COMPARISON OF THE VARIANTS
WITH STATIC LOOK-AHEAD
The previous analysis on the effect of the block size exposes
that choosing the optimal block size is a difficult task. Either
we need a model that can accurately predict the performance
of each building block appearing in the LU factorization,

VOLUME 7, 2019 17629



S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

FIGURE 16. Performance comparison of the blocked RL algorithms for
the LU factorization (except LU_OS) with a fixed block size bo = 256.

or we perform an extensive experimental analysis to select the
best value. The problem is even more complex if we consider
that, in practice, an optimal selection would have to vary the
block size as the factorization progresses. Concretely, for the
factorization of a square matrix of order n via a blocked algo-
rithm, the problem is decomposed into multiple subproblems
that involve the factorization of matrices of orders n − bo,
n − 2 · bo, n − 3 · bo, etc. From Figure 15, it is clear that
the optimal value of bo will be different for several of these
subproblems. In the end, the value that we show in Figure 15
for each problem has to be considered as a compromise that
attains fair performance for a wide range of the subproblems
appearing in that case.

Figure 16 reports the GFLOPS rates attained by the distinct
implementations to compute the plain LU factorization and
the variants equipped with static look-ahead (i.e., all except
LU_OS), using bo = 256 as a compromise value for all of
them. Although this value is optimal for only a few cases,
the purpose of this experiment is to show the improvements
attained by gradually introducing the techniques enhancing
look-ahead. The figure reveals some relevant trends:
• Except for the smallest problems, integrating the
look-ahead techniques clearly improves the perfor-
mance of the plain LU factorization implemented in LU.

• The version with malleable BLAS (LU_MB) improves
the performance of the basic version of look-ahead
(LU_LA) for the larger problems. This is a consequence
of the cost of the panel factorization relative to that of
the global factorization. Concretely, for fixed bo, as the
problem size grows, the global flop-cost varies cubi-
cally in n, as 2n3/3, while the flop-cost of the panel
factorizations grows quadratically, with n2bo/2. Thus,
we can expect that, for large n, the remainder update TRU
becomes more expensive than the panel factorization
TPF. This represents the actual scenario that was targeted
by the variant with malleable BLIS.

• The version that combines the malleable BLAS with ET
(LU_ET) delivers the same performance of LU_MB for
large problems, but outperforms all other variants with
static look-ahead for the smaller problems. Again, this

could be expected by considering the relative cost of the
panel factorization for small n.

C. PERFORMANCE COMPARISON WITH OMPSS
We conclude the experimental analysis by providing a com-
parison of the best variant with static look-ahead, LU_ET,
with the implementation that extracts parallelism via the
OmpSs runtime, LU_OS. In this last experiment we depart
from the previous case, performing an extensive evaluation
in order report the performance for the optimal block size
for each problem dimension and algorithm. (See Figure 15
for the actual optimal values employed in the experiment.)
For LU_OS, we select a value for bo that is then fixed for the
complete factorization. As this variant overlaps the execution
of tasks from different iterations in time, it is difficult to vary
the block size as the factorization progresses. For LU_ET,
the selected value of bo applies to the first panel factorization
only. After that, the ET mechanism automatically adjusts this
value during the iteration.

Figure 17 shows the results for this comparison in the lines
labelled as ‘‘(b_opt)’’. LU_ET is very competitive, clearly
outperforming the runtime-based solution for most problems
and offering competitive performance for the largest three.

FIGURE 17. Performance comparison between the OmpSs
implementation and the blocked RL algorithm for the LU factorization
with look-ahead, malleable BLIS and ET. Two configurations are chosen
for each algorithm: optimal block size for each problem size; and fixed
block sizes bo = 192 for LU_ET and bo = 256 for LU_OS.

Manually tuning the block size to each problem dimension
is in general impractical. For this reason, the figure also
shows the performance curves when the block size is fixed to
bo = 192 for LU_ET and bo = 256 for LU_OS. These values
were selected because they offered high performance for a
wide range of problem dimensions (especially, the largest
ones; see Figure 15). Interestingly, the performance lines
corresponding to this configuration, labelled with ‘‘(b =
192)’’/‘‘(b= 256)’’, show that choosing a suboptimal value
for bo has a minor impact on the performance of our solution
LU_ET, because the ET mechanism adjusts this value on-the-
fly (for the smaller problem sizes). Compared with this, the
negative effect of a suboptimal selection on LU_OS is clearly
more visible.

17630 VOLUME 7, 2019



S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

FIGURE 18. Optimal block size of the blocked ET and OmpSs algorithms
for the LU factorization.

A comparison with other parallel runtime-based versions
of the LU factorization with partial pivoting is possible, but
we do not expect the results change the message of our paper.
In particular, Intel MKL includes a highly-tuned routine for
this factorization that relies in their own implementation of
the BLAS and some type of look-ahead. Therefore, whether
the advantages of one implementation over the other come
simply from the use of a different version of the BLAS,
or from the positive effects of our WS and ET mechanism,
will be really difficult to infer. The PLASMA library [17] also
provides a routine for the LU factorization with partial pivot-
ing supported by a runtime that implements dynamic look-
ahead. The techniques integrated in PLASMA’s routine are
not different from those in the OmpSs implementation eval-
uated in our paper. Therefore, when linked with BLIS, we do
not expect a different behaviour between PLASMA’s routine
and LU_OS. Similar conclusions apply to libflame [14].

1) MULTI-SOCKET PERFORMANCE COMPARISON
WITH OMPSS
We conclude the experimental analysis by including a multi-
socket experiment that compares different configurations of
the best variant with static look-ahead, LU_ET, with the
runtime approach via OmpSs, LU_OS.
In this last experiment we consider the two sockets present

in the platform, using 12 threads in our tests, and report, as in
the previous section, the performance for the optimal block
size for each problem dimension and algorithm. The optimal
values employed in this case are displayed in Figure 18.

Figure 19 shows the results for this comparison in the lines
labelled as ‘‘(b_opt)’’. LU_ET is very competitive, clearly
outperforming the runtime-based solution for most problems
and offering competitive performance for the largest five,
except for the case that maps one thread in TPF and the rest of
resources in TRU.
As in the case where only one socket is employed, the per-

formance curves are obtained for a fixed block size and the
optimal block size for each problem dimension. The block
size is fixed to bo = 256 for all cases except for LU_ET when

FIGURE 19. Performance comparison between the OmpSs
implementation and the blocked RL algorithm for the LU factorization
with look-ahead, malleable BLIS and ET. Two configurations are chosen
for each algorithm: optimal block size for each problem size; and fixed
block size bo = 256 for all cases, except for LU_ET when mapping one
thread to TPF and eleven to TRU.

mapping one thread to TPF and eleven to TRU. For LU_ET,
according to Figure 18, the value that offers high performance
for a wide range of problem dimensions is bo = 224.
As in the previous study where only one socket was con-

sidered, the performance lines corresponding to the fixed
block size configuration, labelled with ‘‘(b = 256)’’/
‘‘(b = 224)’’, show how the ET mechanism is less affected
by the use of a suboptimal block size value. Note that for the
case where only one thread is in charge of TPF, the difference
between the optimal block size and the fixed block size is
larger than in the other cases. This behavior is due to the
reduced number of threads in charge of TPF which makes
the first iteration of the factorization costly. Consequently,
adjusting the block size for the next iterations is not enough
to overcome the effects of the suboptimal initial block size
election.

In addition, the impact of different thread mapping is
shown in Figure 19. While in the previous section using
one thread in the TPF and the rest in the TRU was enough,
here we observe the benefits of adding more threads to TPF.
Since more resources are available (2 socket vs. 1 sockets),
increasing the number of threads in TPF makes this task finish
earlier and, consequently, all the threads can join faster to
the execution of TRU. Interestingly, when all cores are in
use, employing only one thread in TPF harms performance,
since the time spent in the execution of TPF is increased (if
compared to the other cases) and we are missing resources in
TRU for longer time.
Again, a comparison with other parallel versions of the LU

factorization is possible but substantial changes in our results
are not expected for the same reason stated in the previous
section.

VI. CONCLUDING REMARKS AND FUTURE WORK
We have introduced WS and ET as two novel techniques to
avoid workload imbalance during the execution of matrix
factorizations, enhanced with look-ahead, for the solution

VOLUME 7, 2019 17631



S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

of linear systems. The WS mechanism especially benefits
from the adoption of a malleable thread-level instance of
BLIS, which allows the thread team in charge of the panel
factorization, upon completion of this task, to be reallocated
to the execution of the trailing update. The ET mechanism
tackles the opposite situation, with a panel factorization that
is costlier than the trailing update. In such scenario, the team
that performed the update communicates to the second team
that it should terminate the panel factorization, advancing the
factorization process into the next iteration.

Our results on a platform equipped with Intel Xeon
E5-2603 v3 (12 cores) show the performance benefits of our
version enhanced with malleable BLIS and ET compared
with a plain LU factorization as well as a version with look-
ahead. The experiments also report competitive performance
compared with an LU factorization that is parallelized by
means of a sophisticated runtime, such as OmpSs, that intro-
duces look-ahead of dynamic (variable) depth. Compared
with the OmpSs solution, our approach offers higher perfor-
mance for most problem dimensions, seamlessly tunes the
algorithmic block size, and features a considerably smaller
memory footprint as it does not require a sophisticated run-
time support. We believe that, with the proper scaling of the
problem dimension, these advantages carry over to architec-
tures with larger number of cores.

To conclude, our paper does not intend to propose an
alternative to runtime-based solutions. Instead, the message
implicitly carried in our experiments aims to emphasize the
benefits of malleable thread-level libraries, which we expect
to be crucial in order to exploit the massive thread paral-
lelism of future architectures. This work opens a plethora of
interesting questions for future research. In particular, how
to generalize the ideas to a multi-task scenario, what kind of
interfaces may ease thread-level malleability, and what kind
of support is necessary in the runtime for this purpose.

ACKNOWLEDGEMENTS
The authors would like to thank the other members of the
FLAME team for their support.
Any opinions, findings and conclusions or recommenda-

tions expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation (NSF).

REFERENCES
[1] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, ‘‘Basic linear

algebra subprograms for Fortran usage,’’ ACM Trans. Math. Soft., vol. 5,
pp. 308–323, Sep. 1979.

[2] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, ‘‘An extended
set of FORTRAN basic linear algebra subprograms,’’ ACM Trans. Math.
Softw., vol. 14, pp. 1–17, Mar. 1988.

[3] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff, ‘‘A set of level
3 basic linear algebra subprograms,’’ ACM Trans. Math. Softw., vol. 16,
pp. 1–17, Mar. 1990.

[4] Intel. (2015). Math Kernel Library. [Online]. Available: https://software.
intel.com/en-us/intel-mkl

[5] AMD. (2015). AMD Core Math Library. [Online]. Available:
http://developer.amd.com/tools-and-sdks/cpu-development/amd-core-
math-library-acml/

[6] (2015). Engineering and Scientific Subroutine Library. [Online]. Avail-
able: http://www-03.ibm.com/systems/power/software/essl/

[7] NVIDIA. (2016). cublas. [Online]. Available: https://developer.
nvidia.com/cublas

[8] K. Goto and R. A. van de Geijn, ‘‘Anatomy of high-performance matrix
multiplication,’’ ACM Trans. Math. Softw., vol. 34, p. 12, May 2008.

[9] K. Goto and R. van de Geijn, ‘‘High-performance implementation of the
level-3 BLAS,’’ ACM Trans. Math. Softw., vol. 35, p. 4, Jul. 2008.

[10] OpenBLAS. An Optimized BLAS Library. Accessed: Jan. 2019. [Online].
Available: http://www.openblas.net

[11] R. C. Whaley and J. J. Dongarra, ‘‘Automatically tuned linear algebra
software,’’ in Proc. SC, Nov. 1998, p. 38.

[12] F. G. Van Zee and R. A. van de Geijn, ‘‘BLIS: A framework for rapidly
instantiating BLAS functionality,’’ACMTrans. Math. Softw., vol. 41, no. 3,
p. 14, 2015.

[13] E. Anderson et al., LAPACKUsersŠ Guide, 3rd ed. Philadelphia, PA, USA:
SIAM, 1999.

[14] F. G. V. Zee. (2009). Libflame: The Complete Reference. [Online]. Avail-
able: www.lulu.com

[15] OmpSs Project Home Page. Accessed: Jan. 2019. [Online]. Available:
http://pm.bsc.es/ompss

[16] StarPU Project. Accessed: Jan. 2019. [Online]. Available:
http://runtime.bordeaux.inria.fr/StarPU/

[17] PLASMA Project Home Page. Accessed: Jan. 2019. [Online]. Available:
http://icl.cs.utk.edu/plasma

[18] FLAME Project Home Page. Accessed: Jan. 2019. [Online]. Available:
http://www.cs.utexas.edu/users/flame/

[19] G. H. Golub and C. F. Van Loan,Matrix Computations, 3rd ed. Baltimore,
MD, USA: The Johns Hopkins University Press, 1996.

[20] S. Catalán, R. Rodríguez-Sánchez, E. S. Quintana-Ortí, and J. R. Herrero,
‘‘Static versus dynamic task scheduling of the lu factorization on ARM
big. LITTLE architectures,’’ in Proc. IEEE Int. Parallel Distrib. Process.
Symp. Workshops (IPDPSW), May/Jun. 2017, pp. 733–742.

[21] F. G. Van Zee et al., ‘‘The BLIS framework: Experiments in portability,’’
ACM Trans. Math. Softw., vol. 42, p. 12, Jun. 2016.

[22] T. M. Smith, R. van de Geijn, M. Smelyanskiy, J. R. Hammond, and
F. G. Van Zee, ‘‘Anatomy of high-performance many-threaded matrix
multiplication,’’ in Proc. IEEE 28th Int. Parallel Distrib. Process.
Symp. (IPDPS), May 2014, pp. 1049–1059.

[23] S. Catalán, F. D. Igual, R. Mayo, R. Rodríguez-Sánchez, and
E. S. Quintana-Ortí, ‘‘Architecture-aware configuration and scheduling
of matrix multiplication on asymmetric multicore processors,’’ Cluster
Comput., vol. 19, no. 3, pp. 1037–1051, 2016.

[24] Extrae User Guide Manual for Version 2.5.1, Barcelona Supercomputing
Center, Barcelona, Spain, 2016.

[25] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn,
‘‘FLAME: Formal linear algebra methods environment,’’ ACM Trans.
Math. Softw., vol. 27, no. 4, pp. 422–455, 2001.

[26] P. Strazdins, ‘‘A comparison of lookahead and algorithmic blocking tech-
niques for parallel matrix factorization,’’ Dept. Comput. Sci., The Austral.
Nat. Univ., Canberra, ACT, Australia, Tech. Rep. TR-CS-98-07, 1998.

[27] A. M. Castaldo, R. C. Whaley, and S. Samuel, ‘‘Scaling LAPACK panel
operations using parallel cache assignment,’’ ACM Trans. Math. Soft.,
vol. 39, p. 22, Jul. 2013.

SANDRA CATALÁN received the B.Sc. andM.Sc.
degrees in intelligent systems and the Ph.D.
degree in computer science from Universidad
Jaume I, Castelló de la Plana, Spain, in 2012,
2013, and 2018, respectively. She joined the
Exa2Green Project, in 2012, and the INTER-
TWinE Project, in 2018. In 2018, she was a
Postdoctoral Researcher, where she joined the
Project Fujitsu-BSC: Porting and Optimization of
Math Libraries, Barcelona Supercomputing Cen-

ter (BSC). She has also been a Visiting Researcher with the Foundations
of Cognitive Computing Group, IBM Research–Zurich, Switzerland, also
with The University of Texas in Austin, USA, and also with the Parallel
ProgrammingModels Group, Barcelona Supercomputing Center, Barcelona,
Spain. Her current research interests include moderate-scale clusters and
low-power processors, and parallel algorithms for numerical linear algebra.

17632 VOLUME 7, 2019



S. Catalán et al.: Case for Malleable Thread-Level Linear Algebra Libraries: LU Factorization With Partial Pivoting

JOSÉ R. HERRERO has been teaching with
the Barcelona School of Informatics (FIB), since
1994, where he has taught 15 different courses
corresponding to several areas (computer archi-
tecture, operating systems, and parallel program-
ming). He has carried out the duties of the
Vice-Dean Head of academic studies and the Vice
Dean for Institutional and International Relations
with FIB. He has combined these management and
teaching tasks with research in HPC, mainly in

high performance scientific computing. This research work is made tangible
in dozens of articles published in scientific magazines and international
conferences. He has done research stays in several research centers (UCI,
USA; IST, Portugal; NTUA, Greece; BSC, Spain; QUB, UK; ECM, France;
and UJI, Spain). He regularly takes part in program committees and acts as an
Associate Editor and aReviewer for scientific publications. He is currently an
Associate Professor with the Computer Architecture Department, Universitat
Politècnica de Catalunya, BarcelonaTech.

ENRIQUE S. QUINTANA-ORTÍ received the
bachelor’s and Ph.D. degrees in computer sci-
ences from the Universidad Politecnica de Valen-
cia, Spain, in 1992 and 1996, respectively. He is
currently a Professor in computer architecture with
Universidad Jaume I, Castellón de la Plana, Spain.
He has published more than 200 papers in inter-
national conferences and journals, and has con-
tributed to software libraries like PLiC/SLICOT,
MAGMA, FLARE, BLIS, and libflame for control

theory and parallel linear algebra. Recently, he has participated/participates
in EU projects on parallel programming, such as TEXT, INTERTWinE,
and energy efficiency such as EXA2GREEN and OPRECOMP. His cur-
rent research interests include parallel programming, linear algebra, energy
consumption, transprecision computing and bioinformatics, and advanced
architectures and hardware accelerators. He has also been a member of the
programme committe for around 100 international conferences. In 2008,
he was a recipient of an NVIDIA Professor Partnership Award for his
contributions to the acceleration of dense linear algebra kernels on graphics
processors, and was also a recipient of two awards from NASA for his con-
tributions to fault-tolerant dense linear algebra libraries for space vehicles.

RAFAEL RODRÍGUEZ-SÁNCHEZ received the
M.S. and Ph.D. degrees in computer science
from the University of Castilla-La Mancha, Spain,
in 2010 and 2013, respectively. From 2008 to
2013, he was with the Albacete Research Insti-
tute of Informatics, University of Castilla-LaMan-
cha, Spain. In 2013, he joined the Department of
Engineering and Computer Sciences, University
Jaume I, Castellón de la Plana, Spain. In 2017,
he joined the Computer Architecture andAutomat-

ics Department, Universidad Complutense de Madrid, Spain. He has also
been a Visiting Researcher with the Multimedia Lab, Ghent University, Bel-
gium, and at ARM Ltd., Cambridge, U.K. He has more than 40 publications
in these areas in international refereed journals and conference proceedings.
His research interests include video coding, parallel programming, hetero-
geneous computing, optimization and adaptation of numerical libraries, and
power and energy consumption.

ROBERT VAN DE GEIJN received the Ph.D.
degree in applied mathematics from the Univer-
sity of Maryland at College Park, College Park.
He is currently a Professor of computer science
and a Core Member of the Institute for Compu-
tational Engineering and Sciences, The University
of Texas (UT) at Austin.

He heads the FLAME Project, a collabora-
tion between UT Austin, Universidad Jaume I,
Spain, RWTH Aachen University, Germany, and

Carnegie Mellon University, USA. This project pursues foundational
research in the field of linear algebra libraries and has led to the development
of the libflame and BLIS libraries, modern, and high-performance dense
linear algebra libraries. One of the benefits of these libraries lies with their
impact on the teaching of numerical linear algebra, for which he received
the UT President’s Associates Teaching Excellence Award. His research
interests include linear algebra, high-performance computing, parallel com-
puting, and formal derivation of algorithms.

VOLUME 7, 2019 17633


	INTRODUCTION
	THE BLIS IMPLEMENTATION OF BASIC LINEAR ALGEBRA KERNELS
	ALGORITHMS FOR THE LU FACTORIZATION ON MULTI-THREADED ARCHITECTURES
	BASIC ALGORITHMS AND BDP
	STATIC LOOK-AHEAD AND NESTED TP+BDP

	ADVOCATING FOR MALLEABLE THREAD-LEVEL LA LIBRARIES
	WORKER SHARING: PANEL FACTORIZATION LESS EXPENSIVE THAN UPDATE
	SUBOPTIMAL SOLUTION: STATIC RE-PARTITIONING
	OUR SOLUTION: MALLEABLE THREAD-LEVEL BLAS

	EARLY TERMINATION: PANEL FACTORIZATION MORE EXPENSIVE THAN UPDATE
	RELATION TO ADAPTIVE LOOK-AHEAD VIA A RUNTIME

	EXPERIMENTAL EVALUATION
	OPTIMAL BLOCK SIZE
	PERFORMANCE COMPARISON OF THE VARIANTS WITH STATIC LOOK-AHEAD
	PERFORMANCE COMPARISON WITH OMPSS
	MULTI-SOCKET PERFORMANCE COMPARISON WITH OMPSS


	CONCLUDING REMARKS AND FUTURE WORK
	REFERENCES
	Biographies
	SANDRA CATALÁN
	JOSÉ R. HERRERO
	ENRIQUE S. QUINTANA-ORTÍ
	RAFAEL RODRÍGUEZ-SÁNCHEZ
	ROBERT VAN DE GEIJN


