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Abstract: Synthetic biology exploits the of mathematical modeling of synthetic circuits both to predict
the behavior of the designed synthetic devices, and to help on the selection of their biological com-
ponents. The increasing complexity of the circuits being designed requires performing approximations
and model reductions to get handy models. Parameter estimation in these models remains a challenging
problem that has usually been addressed by optimizing the weighted combination of different prediction
errors to obtain a single solution. The single-objective approach is inadequate to incorporate different
kinds of experiments, and to identify parameters for an ensemble of biological circuit models.
We present a methodology based on multi-objective optimization to perform parameter estimation that
can fully harness to ensembles of local models for biological circuits. The methodology uses a global
multi-objective evolutionary algorithm and a multi-criteria decision making strategy to select the most
suitable solutions. Our approach finds an approximation to the Pareto optimal set of model parameters
that correspond to each experimental scenario. Then, the Pareto set was clustered according to the
experimental scenarios. This, in turn, allows to analyze the sensitivity of model parameters for different
scenarios. Finally, we show the methodology applicability through the case study of a genetic incoherent
feed-forward circuit, under different concentrations of the inducer input signal.
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1. INTRODUCTION

Biological circuits in synthetic biology are usually modeled
with systems of ordinary differential equations (ODEs) in order
to describe the time-evolution of the involved species con-
centrations, like mRNA or proteins. Starting from set of bio-
chemical reactions for the circuit, dynamic balances for the
biochemical species can be obtained using well established
methods, like the mass-action kinetics formalism (Chellaboina
et al., 2009; Picó et al., 2015). The resulting dynamic models
are high dimensional, even for small circuits. Therefore, model
reduction is carried out exploiting the different time scales
present in the system (Prescott and Papachristodoulou, 2014).
The resulting model depends on several parameters. On the
one hand, among these parameters, some of them like binding
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and unbinding rates, or production and degradation coefficients
have a physical meaning. On the other hand, it is possible to
obtain other parameters from model reductions and/or approxi-
mations, but making more difficult the biological interpretation
of its values. Nevertheless, in general both kind of parameters
have unknown values for a particular model. Thus, the prob-
lem of parameter identification, that is the indirect determina-
tion of the unknown parameters from measurements of other
quantities, is a key issue in computational and systems and
synthetic biology (Lillacci and Khammash, 2010). Accurate
parameter identification is crucial whenever one wants to obtain
quantitative, or even qualitative information from the models
(Lillacci and Khammash, 2010). Recently, much attention has
been given to this problem in the systems biology community,
using optimization techniques such as linear and nonlinear least
squares (Mendes and Kell, 1998), genetic algorithms (Srinivas
and Patnaik, 1994), and evolutionary computation (Ashyraliyev
et al., 2008; Moles et al., 2003). Evolutionary computation
is one of the suggested optimization techniques for the large
parameter estimation problems present in systems and synthetic
biology (Moles et al., 2003).

Parameter estimation in nonlinear dynamic models remains a
very challenging inverse problem due to its nonconvexity, and
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∗ I.U. de Automática e Informática Industrial (ai2), Universitat Politècnica de
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ill-conditioning caused by over-parametrization, experimental
measurement errors, data scarcity and uncertainty (Gábor and
Banga, 2015; Kaltenbach et al., 2009). Moreover, for nonlinear
models, the amount of information collected from an experi-
ment may strongly depend on the true value of the parameters
(Pronzato and Pázman, 2013). One of the main problems as-
sociated with standard optimization methods is that they may
not perform well in the case of significant difference in the
system response to different inputs. The main reason of this
deteriorated performance is that all these identification methods
rely on single objective optimization and try to find only one
solution (i.e. only one value for each parameter), the best fit.
This best solution can be good for one set of experiments and
bad for others, or it can be acceptable for all the experiments
but not really good for any one.

Several approaches have been proposed to tackle these prob-
lems. Among them, ensembles of local models have received
much attention in the last years, when a single set of parameters
is not appropriate for all experimental scenarios. In Steuer et al.
(2006), local linear models at each point in parameter space
where used to circumvent lack of knowledge about the structure
of kinetics by a parametric representation of the Jacobian ma-
trix. Then, the authors used the ensemble of models to elucidate
the parameter regions associated with experimentally observed
specific dynamical behaviors. A similar approach was used by
Samee et al. (2015). Ensembles of models, i.e. sets of models
with different structures and/or parameter values have also been
used in Villaverde et al. (2015), where the final prediction is
obtained from a consensus one among the models.

In this work, we propose a methodology based on using multi-
objective optimization design (MOOD) to perform parame-
ter identification leading to nonlinear local models of biolog-
ical circuits. The methodology uses a global multi-objective
evolutionary algorithm (MOEA) and a multi-criteria decision
making (MCDM) strategy to select the most suitable solu-
tions (Reynoso-Meza et al., 2014). Although the identification
problem itself can be naturally expressed as a multi-objective
problem (MOP), this approach has been seldom used (Velasco-
Carrau et al., 2015; Bonilla-Petriciolet et al., 2013). Our ap-
proach uses a MOEA to find the best approximation to the
Pareto set (see Reynoso-Meza et al. (2010) for characterization
details and benchmarks of the algorithm) of model parameters
that correspond to each experimental scenario. The Pareto set
together with the Pareto front regions are correlated with the
experimental scenarios using kmeans clustering. This, in turn,
allows to perform a MCDM and analyze which model parame-
ters vary to explain each scenario. To show the applicability of
the methodology we performed the multi-objective optimiza-
tion based identification on a well-known biological circuit, a
genetic incoherent feed-forward loop showing adaptive behav-
ior, under different concentrations of the inducer input signal.

The rest of the paper is organized as follows: Section 2.1 de-
scribes the biological circuit used, the experimental implemen-
tation, and its model. In section 2.2 the proposed methodology
is described. The results achieved are shown in Section 3 where
the main findings are presented and, finally conclusions are
drawn in the last section.

2. MATERIALS AND METHODS

2.1 Incoherent type 1 feed-forward loop (I1-FFL)

Adaptation is an important property of biological systems,
linked to homeostasis (Alon, 2006). The incoherent type 1 feed-
forward loop (I1-FFL), depicted in Fig. 1, is one the most
common network motifs showing adaptation. Different imple-
mentations are possible, including enzyme reaction networks
(Ma et al., 2009; Chiang et al., 2014), gene networks (Basu
et al., 2004) and in vitro transcriptional networks (Kim et al.,
2014).

Experimental implementation Following the implementation
in (Basu et al., 2004), we engineered and implemented the
circuit in the lab using components taken from the Lux operon
in the V. fisheri quorum sensing system, the lambda cI repressor
and a green fluorescent protein as a reporter.

Figure 1 depicts the gene synthetic circuit. The extracellular
AHLe acts as input to the circuit. The protein LuxR binds to the
intracellular AHL, forming a monomer LuxR ·AHL. This one
dimerizes forming (LuxR ·AHL)2. The dimer (LuxR ·AHL)2
is the transcription factor that directly activates expression of
the gene gfp, and indirectly represses it via activation of the
repressor cI. As a result, when the signal AHL causes the LuxR
node to assume its active conformation, GFP is produced.
After some time cI accumulates and forms the dimer (cI)2,
which eventually attains the repression threshold for the hybrid
promoter of gfp gene and makes the level of GFP decrease.

Fig. 1. Representation of a cell incorporating the engineered
incoherent feed-forward loop synthetic circuit.

Two plasmids are used to build the circuit. On the one hand,
in the plasmid pCB14mut, the gene coding for the protein
LuxR (BBa C0062) is constitutively expressed under the con-
trol of a medium strength promoter (BBa J23106) and a strong
RBS (BBa B0034). Also, in the same plasmid, a pLux/cI hy-
brid promoter (BBa K415032) drives the expression of GFP
(BBa K082003) with a strong RBS (BBa B0034). This two
cassettes are placed in a pBR322 plasmid backbone. On
the other hand, the plasmid pCB11a contains the gene cI
(BBa K327018) controlled by the pLux repressible promoter
(BBa R0062) and a mild ribosome binding site (RBS part
BBa B0033) in the pACYC184 plasmid backbone. All parts
were taken from the Registry of Standard Biological Parts (Bio-
brick Foundation, 2006) and cloned using the 3 Antibiotic As-
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sembly method from Biobrick fundation (Biobrick Foundation,
2006). All coding sequences are followed by the terminator
BBa B0015.

The following experiments were performed. E.coli ells (Top
10, NEB) carrying the pCB11a and pCB16mut plasmids were
grown over night in LB medium with the appropriate antibi-
otics. Then, 96 well-plates were inoculated at OD600 ≈ 0.025
and incubated to reach an optical density of OD600 ≈ 0.2.
At this point, selected wells were induced with appropriate
concentrations of AHL (N-3-Oxohexanoyl-L-homoserine lac-
tone, Santa Cruz Biotecnology Catalog Number SC205396)
and incubated for 200 minutes. Measurements were taken with
a POLARstar Omega plate reader (BMG Labtech GmBh) with
the following protocol: 2’ shaking, OD measurement, then 15”
pause and Fluorescent measurement. Each condition was per-
formed in 4 replicates, and in 2 different days making a total of
8 datasets for each condition. From each experiment, we have
6 conditions (ranging from 0 nM to 55 nM AHL), 8 datasets,
absorbance and fluorescence measurements every 5 minutes
during 200 minutes of incubation after induction.

Mathematical model We use an ODE model adapted from
(Boada et al., 2016) with twelve states. The species in the
model are mLuxR, LuxR, AHL, (LuxR ·AHL)2, mcI, cI,
(cI)2, mGFP, GFP, aGFP, AHLe and the number of cells
in the culture respectively (see Table 1). The system of ODEs
describing the dynamics of the circuit is:

ẋ1 = kmluxR
Cp1 − dmluxR

x1 − µx1

ẋ2 = kpluxR
x1 − k2x2x3 + k−2M − dLuxRx2 − µx2

ẋ3 = −k2x2x3 + k−2M + kdx9 − k−dx3 − dAHLx3 − µx3

ẋ4 = k3M
2 − k−3x4 − µx4

ẋ5 = kmcI Cp2
x4

γ1 + x4
− dmcIx5 − µx5

ẋ6 = kpcI
x5 − 2k4x6

2 + 2k−4x7 − dcIx6 − µx6

ẋ7 = k4x6
2 − k−4x7 − µx7

ẋ8 =
kmGFP

Cp1(x4 + c0γ2 + β2γ5x4x7)

γ2 + γ3x4 + γ4x7 + γ5x4x7
− dmgfp

x8 − µx8

ẋ9 = kpgfp
x8 −

ln 2

kmat
x9 − dGFPx9 − µx9

ẋ10 =
ln 2

kmat
x9 − dGFPx10 − µx10

ẋ11 = Kcells(k−dx3 − kdx11)− dAHLex11

ẋ12 = µx12

(
1− x12

Kmax

)

(1)

with M =

√
(dM+k−2+µ)2+8k3(k2x2x3+2k−3x4)

4k3
+ dM+k−2+µ

4k3

being the monomer algebraic relation and Kcells =
Vcell·x11

Vmed
the

volumes relationship in order to correct concentrations outside
the cells. From the experimental set up we have Vcell = 10−15L
(volume of an E.coli cell) and Vmed = 180µL (the culture
medium used in the 96-well plate reader).

Model (1) was obtained after a reduction process from the
original equations resulting from the application of mass-action
kinetics on the biochemical reactions. During this reduction
process some simplifications are used, both by assuming fast
dynamics for the heterodimerization process yielding (LuxR ·

Table 1. List of variables used in the model

Variable Description Units
x1 LuxR mRNA nM
x2 LuxR protein nM
x3 Acyl-homoserine lactone (AHL) nM
M LuxR·AHL monomer nM
x4 (LuxR·AHL)2 dimer nM
x5 cI mRNA nM
x6 cI protein nM
x7 (cI)2 dimer nM
x8 GFP mRNA nM
x9 GFP protein nM
x10 Active GFP protein nM
x11 Extracellular AHL nM
x12 Number of cells in the culture Cells

AHL)2, and by considering a quasi-empirical simplification for
the activation function of the hybrid promoter. This simpler
model allows easier theoretical and computational analysis.
However, given the nonlinear behavior of the system, it is
not possible to pretend that a single set of parameters will be
appropriate for all experimental scenarios anymore.

Table 2. Parameters for the model
Fixed Parameter Description Value
kmluxR

luxR transcription rate 1 min−1

kpluxR
LuxR translation rate 50 min−1

kd, k−d AHL diffusion rate 2 min−1

k4, k−4 (cI)2 association, dissociation rate 0.0009, 0.6 min−1

Cp1 Plasmid pBR322 copy number 17
Cp2 Plasmid pACYC184 copy number 15
γ2 Hybrid pLuxR/cI promoter coefficient 0.02 nM
dmluxR

, dmcI
, dmgfp

mRNAs degradation rates 0.23 min−1

dLuxR LuxR degradation rate 0.0174 min−1

dAHL, dAHLe AHL degradation rates 0.01 min−1

dM Monomer degradation rate 0.0174 min−1

Kmax maximum growth capacity 1.62 · 108 cells
µ Specific growth rate 0.028 min−1

Unknown Parameter Description Range of values
dcI, dGFP cI, GFP degradation rate [0.01 0.3] min−1

γ1 pLux Promoter Hill constant [50 100] nM
γ3 Hybrid pLuxR/cI promoter coefficient [0.0001 0.5]
γ4 Hybrid pLuxR/cI promoter coefficient [0.0005 5]
γ5 Hybrid pLuxR/cI promoter coefficient [1 100]
kpcI

, kpgfp
cI, GFP translation rate [1 60], [1 100] min−1

c0 Hybrid promoter basal expression [0 0.01]
β2 Hybrid promoter leakiness [0 0.01]
kmcI

, kmgfp
cI, gfp transcription rate [0.1 75], [0.1 25] min−1

k−2 , k−3 Monomer and dimer dissociation rate [0.05 0.3], [0.1 1] min−1

k2 , k3 Monomer and dimer association rate [0.0006 0.06] min−1

kmat GFP maturation time [20 120] min

The model has 35 parameters. Out of them, 18 are know from
the literature and were kept fixed (see Table 2).

2.2 Multi-objective optimization approach

In order to successfully implement this approach, at least three
fundamental steps are required (Miettinen et al., 2008): the
multi-objective problem (MOP) definition, the optimization
process, and the multi-criteria decision making (MCDM) stage.
This overall multi-objective optimization design (MOOD) pro-
cedure enables to analyze current trade-offs between the objec-
tives to accordingly select a preferable solution (Reynoso-Meza
et al., 2014).

Multi-objective problem definition At this point the error
measures between the experimental data and the model pre-
dictions, for each inducer concentration, are formulated as ob-
jectives to be optimized. Thus, we optimize the mean square
error (MSE) of the active GFP fluorescence for each input
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AHLe = {5, 15, 25, 35, 55} nM. Several samples for each
inducer concentration were taken at every T = 5.65min during
approximately 200 min. The second part of Table 2, constitute
the parameters of model (1) to be identified and which will
be the decision variables of our optimization, denoted θ in the
following.

These design objectives can be expressed with the following
indexes:

J[i=1,...,5](θ) =
1

n

n∑
q=1

1

m

m∑
k=1

(
xm
10iq (k)− x10iq (kT )

)2

(2)

where xm
10 and x10 are the experimental and predicted observa-

tions of active GFP at the instant k respectively, i is the design
objective for each input value, n is the number of observation
copies measured at the point k for the same objective, m is the
total number of experimental observations. The input stimulus
is applied at t0 = 0.

Finally, we look for the set of values of the 17 decision variables
θ that minimize all objectives J(θ). These five objectives are in
conflict if one tries to identify a single ensemble of parameters.
So a trade-off must be reached. Our problem can be formulated
as a multi-objective problem:

min
θ∈�17

J(θ) = [J1(θ), ..., J5(θ)] ∈ �5

subject to: equation (1)
(3)

Multi-objective optimization process The multi-objective op-
timization process finds the best parameters θ∗P which produce
the best Pareto front approximation J∗

P . For problems with
a large number of decision variables, as our case, it is more
efficient to use an appropriate multi-objective optimization al-
gorithm to approximate this solution.

In this work we used a multi-objective evolutionary algorithm
based on differential evolution which uses a spherical pruning
to approximate the Pareto front. The implementation used in
this work is the sp-MODE 1 algorithm, which i) improves con-
vergence by using an external file to store solutions and include
them in the evolutionary process, ii) improves spreading by
using the spherical pruning mechanism (Reynoso-Meza et al.,
2010), and iii) improves pertinency of solutions by means of a
basic bound mechanism in the objective space, as described in
(Reynoso-Meza et al., 2012).

Multi-criteria decision making stage The selection of the
preferable solution according to designer’s criteria takes place
in an a-posteriori multi-criteria analysis of the Pareto front
approximation. It is desirable that these tools simplify the visu-
alization and the analysis of the trade-off among competing ob-
jectives. We use the visualization tool Level Diagrams (Blasco
et al., 2008), which has a freely available implementation for
designers LD-Tool 2 . LD-Tool allows to correlate design objec-
tives with decision variables by providing two graphs. The first
graph contains each objective, where its Y-axis is the p-norm
‖J(θ)‖p of the objectives vector, and the X-axis corresponds
to each objective value Ji(θ) (see Figure 2). The second graph
provided by the LD-Tool shows ‖J(θ)‖p with respect to each
1 Tool available in http://www.mathworks.com/matlabcentral/
fileexchange/39215
2 Tool available at http://www.mathworks.com/matlabcentral/
fileexchange/24042

decision variable (graph not shown). Thus, a given solution will
have the same y-value in all graphs. In addition, the solutions
were clustered using the kmeans algorithm and all the graphs
were colored by the resulting clusters.

3. RESULTS

We carried out a first optimization of (3) to get an initial es-
timate of the Pareto front and the unknown parameters in the
model. From this preliminary optimization we found appropri-
ate minimum and maximum limits for the MSE of each objec-
tive, the so called pertinency of each Ji(θ), which were used to
enhance the search of the Pareto front in a narrower region of
the parameters space. In both cases, the optimization was done
using sp-MODE starting with an initial population of candidate
solutions chosen randomly from a uniform distribution in the
parameters space.

Fig. 2. Identification results: LD-modified representation of the
Pareto Front for each objective colored with the three
resulting clusters. Each point represent a solution of the
MOP.

Fig. 3. Identification results: Pareto set representation with the
value of the varying parameters in each cluster.

In the next step, an approximation of the Pareto front with 17
solutions is obtained (Figure 2), together with the Pareto set
(Figure 3) containing their corresponding parameters. These
solutions are classified using the kmeans algorithm into three
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clusters showing a trade-off between the different objectives
corresponding to the different AHL induction levels. This clus-
tering helps to choose best parameters for different cases. For
instance, in this example we found that parameters in Cluster
1 (in red) present small errors for the 5 nM induction, but
they present larger errors for medium and/or higher induction
values. Meanwhile, solutions in clusters 2 and 3 (green and
blue respectively) perform better for medium (15 nM) and high
(from 25 to 55 nM) inductions than solutions in cluster 1.

The Pareto front analysis shows on the one hand the clasical
trade-offs. For instance, the red point, which the best solution
for J1 (5 nM) is the worst solution for all the other objectives.
Green solutions in cluster 2, are better for J2 (15 nM) but not
that good for J1. Finally, blue solutions in cluster 3 are good
for J3, J4 and J5 (from 25 to 55 nM) , but not so good for
J2, and bad for J1. On the other hand, the Pareto front looks
quite similar for objectives J3, J4 and J5, corresponding to
inputs ranging from 25 nM to 55 nM respectively, as seen in
Figure 2. Moreover the minimum values for these objectives
are slightly larger than those obtained for objectives J1 and J2.
Recall also that these three objectives all fell within the same
cluster. This similarity may be related to the high dependence
of promoter activity on the concentration of the AHL induction.
Although it has been shown this dependence can saturate and
reduce the pLux and pLux/cI promoter activity at levels of
AHL > 40 nM, there is no much difference in promoter activity
for inductions larger than 20 nM (Egland and Greenberg, 2000).
This saturation is observed in the experimental data (see Fig.
4), and captured by the model. Yet, also a delayed peak is
observed in the experimental results for large concentrations of
the inducer, which is not captured by the model.

Out of the 17 estimated parameters, 5 parameters had the same
value in all clusters: γ4 = 1.42, c0 = 0.008, β2 = 0.0014,
k3 = 0.0006 min−1 and k−2 = 0.2 min−1. Figure 3 shows the
range of values obtained for 12 parameters with different values
in each cluster. Notice that parameter values in clusters 2 (15
nM) and 3 (from 25 to 55 nM) are quite alike, and distinctively
different from parameter values in cluster 1 (5 nM). As said
before, this is a consequence of the saturation with increasing
AHL inducer concentration.

A few parameters account for the difference between the model
for low inducer concentration (5nM), and for medium-high one
(clusters 2 and 3). Note, in particular, the difference in the
monomer association rate k2 and the dimer dissociation rate
k−3. The LuxR-family of transcription factors are believed to
be largely disordered (i.e., unfolded) in the monomeric form,
becoming folded only upon dimerization in the presence of the
inducer (Buchler et al., 2005). Thus, for low values of inducer
one may expect larger formation of monomer (larger k2), and
dissociation of dimer (lower k−3), as seen in Fig. 3.

In addition, the results presented also enables us to see that there
is a big difference between values of the degradation rate dGFP

in the different clusters. The turnover of GFP clearly decreases
in presence of inducer. This may be related to the maximal
capacity of the proteases that are present in a bacterial cell
(Leveau and Lindow, 2001). Beyond a certain concentration of
GFP, their combined proteolytic activity is not enough to reduce
the increment of the GFP content.

Finally, from the resulting clusters we selected the median value
as a representative of each parameter in each cluster. Fig. 4
shows the comparison between predictions from the model and

Fig. 4. Comparison of predicted and experimental data for
different inductions. Dots correspond to mean values of
experimental data (different data sets that the ones used
for identification), with its variance as vertical bars. Pre-
dictions (continuous line) obtained to the three cluster
representatives.

experimental data for different inductions and the identified
parameters selected. The validation was performed with data
sets not previously used for identification. Note that responses
to induction levels from 25nM to 55nM are very similar among
them, as it was mentioned in the Pareto front analysis before.

4. CONCLUSION

We have proposed a methodology based on multi-objective
optimization to perform parameter identification leading to an
ensemble of local models for biological circuits. Our approach
finds an approximation to the Pareto set of model parameters
that correspond to each experimental scenario. Then, the Pareto
front regions are associated with different performances for the
each experimental scenario. The solutions obtained might be
post-processed with a multivariate analysis statistical tool such
as kmeans, in order to get further insight into the role of the
different parameters. This methodology allows to add diverse
objectives in the identification process thus enabling to confront
different experiments of the same kind.

The proposed methodology benefits was shown for the parame-
ter identification of the incoherent feed-forward loop circuit im-
plementation. In particular, the approach allowed to identify the
most relevant parameters for each scenario. We also found that
the parameters associated with the formation of the monomer
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and dimer, and the degradation rate of GFP vary, as already sug-
gested by other studies. A difference in the peak time between
the experimental and estimated circuit output is observed for
large concentrations of the inducer. The experimental delayed
response may be due to saturation effects not taken into account
in the model, and deserve further work. Although the estimated
maturation time of GFP was large, it cannot fully account for
the peak delay. Some extra dynamics seem to be at play. The
overall agreement between experimental and predicted data is
remarkable.
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