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Marina Murillo-Arcila

Institut Universitari de Matemàtiques i Aplicacions de Castelló (IMAC),
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Abstract. In this paper we focus on the study of coupled systems of ordinary

differential equations (ODE’s) describing the diffusion of messages between

mobile devices. Communications in mobile opportunistic networks take place
upon the establishment of ephemeral contacts among mobile nodes using direct

communication. SIR (Sane, Infected, Recovered) models permit to represent

the diffusion of messages using an epidemiological based approach.
The question we analyse in this work is whether the coexistence of a fixed

infrastructure can improve the diffusion of messages and thus justify the addi-
tional costs. We analyse this case from the point of view of dynamical systems,
finding and characterising the admissible equilibrium of this scenario. We show

that a centralised diffusion is not efficient when people density reaches a suffi-
cient value.

This result supports the interest in developing opportunistic networks for

occasionally crowded places to avoid the cost of additional infrastructure.

1. Introduction. In this paper, we are concerned with the study of coupled sys-
tems of ordinary differential equations (ODE’s) that describe the diffusion of mes-
sages between mobile devices. We base our model on Population Processes, a
method commonly used to model the dynamics of biological population [12], more
concretely, we use the so-called SIR (Susceptible, Infectious and Recovered) mod-
els which are used to describe the spreading of human epidemical diseases. The
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study of the symptotic stability of the disease-free and the endemic equilibrium is
an active recent area of research, see for instance [6, 10,14].

These biological models have a strong connection with message spreading and
they have been recently widely studied. Under the formulation of a system of ODE’s,
Haas and Small in [8] developed a model based on epidemiological processes for a
network that used animals (whales) as data carriers to store and transfer messages.
Zhang et al. [17] stated a rigorous, unified framework to study epidemic routing and
its variations. The authors of [5] introduced a mathematical approach for messages
diffusion in opportunistic networks using the Epidemic protocol. One of the main
conclusions of their analysis (mathematical model and its respective simulation) is
that SIR models are quite accurate for the average behaviour of Epidemical DTN
(Delay Tolerant Networks). In [16] the authors proposed a detailed analytical model
to study the epidemic information dissemination in mobile social networks. It was
based on SIR models including rules related to the user’s behaviour, especially when
their interests change according to the information type, and these changes can af-
fect the dissemination process. Other approaches for modeling P2P communications
can be found in [11].

Our research is motivated by the recent development of new contact-based mes-
saging applications. As a example, we can find, Firechat, a messaging applica-
tion meant for festivals which became popular in 2014 in Iraq due to the govern-
ment restrictions on Internet use1, and after that during the Hong Kong protests2.
There are other examples such as the secure messaging application Briar (see
https://briarproject.org) or CoCam [13], an application for image sharing in events.
The experience shows that these messaging applications seem to be operative in
open places with a moderate to high density of people. Nevertheless, it still has to
be tied to audits of cloud data storage [15].

In our paper, we propose new interesting models that describe a class of contact-
based messaging applications which are based on establishing a short-range com-
munication directly between mobile devices, and on storing the messages in these
devices to achieve their full dissemination. For these models we studied their equi-
librium and obtained analytical expressions for their resolution. Moreover, we per-
formed numerical simulation to validate our results. The evaluations show that
these models can reproduce the dynamics of message diffusion.

The paper is organised as follows: in Section 2 we introduce some preliminaries
about dynamical systems and the basic epidemic model. The diffusion of messages
following an epidemic model for an open area where the people can enter and leave
is described in Section 3. The case where the birth and death rates coincide is
discussed with full details. In Section 4, we introduce a fixed infrastructure that
contributes to the diffusion of the messages and a parallel study to the one in the
previous section is conducted. The performance evaluation of the previous two
models is shown in Section 5, and in Section 6 we summarise the main conclusions
of the work.

2. Preliminaries. In this section we recall some notions of dynamical systems and
we formally introduce the basic epidemic model in which we base our approach. A

1Kuchler, Hannah; Kerr, Simon. ”Private Internet: FireChat app grows in popularity in Iraq”.
Financial Times, 2014-06-22

2Bland, Archie. ”FireChat the messaging app that’s powering the Hong Kong protests”. The
Guardian, 2014-09-29.
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time dynamical system is given by ẋ = f(x(t)) with a function f : Ω ⊆ Rn → Ω.
Given x0 ∈ Ω, we can define its orbit by the dynamical system as the solution to
the corresponding Cauchy Problem with initial condition x(0) = x0. We will pay
special attention to the case when f : [0, N ]→ [0, N ] is a continuous function which
is also differentiable in ]0, N [, with N > 0.

For the sake of completeness, we recall some basic fundamentals on dynamical
systems. We say that x∗ is a fixed point or an equilibrium point if f(x∗) = 0, which
yields a constant orbit for x∗, x(t) = x∗ for all t ≥ 0.

An equilibrium point is said to be stable if for all ε > 0 there exists δ > 0 such
that for all x0 ∈ [0, N ] such that |x0 − x∗| < δ we have that |x(t) − x∗| < ε for all
t ≥ 0. We say that x∗ is an attractor if there exists some δ > 0 such that for all
x0 ∈ [0, N ] such that |x0 − x∗| < δ we have that limt→∞ x(t) = x∗. Conversely, we
say that x∗ is a repulsor point if there exists δ > 0 such that for all x0 ∈ [0, N ]
satisfying |x0 − x∗| < δ we have |xn − x∗| > |x0 − x∗|.

We recall that an equilibrium point is hyperbolic if |f ′(x∗)| 6= 0, otherwise x∗ is
a non hyperbolic point. It is well-known that a hyperbolic equilibrium point is an
attractor if f ′(x∗) < 0 and it is a repulsor point if f ′(x∗) > 0. Further information
on dynamical systems can be found in [4].

First, we present our basic epidemic model in which we base our research, that
has been already introduced in the present frame in [9]. It is given by:

S′(t) = −λS(t)I(t)

I ′(t) = λS(t)I(t)
(1)

for all t ≥ 0, where I(t) denotes the class of infected nodes at time t and S(t)
the class of susceptible nodes to be infected, and λ > 0 stands for the rate growth
in which the number of infected nodes increases proportionally to the number of
infected and non-infected ones. This shows that the transmission of messages follows
epidemic diffusion, a concept similar to the spreading of infectious diseases, where
an infected node (the one that has a message) contacts another node to infect it
(transmit the message) [1]. Each node has a limited buffer where the messages in
transit can be stored and when two nodes establish a pair-wise connection, they
exchange the messages they have in their buffer, and check whether some of the
newly received messages are suitable for notification to the user. It is important
to point out that we assume that all nodes which have the messaging application
store and forward messages and that the contact between the two nodes lasts long
enough for transferring the whole message.

We will assume that the population remains constant under the time: N0 =
S(t) + I(t), t ≥ 0. This permits to reduce this system to the one-dimensional
logistic equation:

I ′(t) = λI(t)(N0 − I(t)), for all t ≥ 0 (2)

with I(0) ∈ [0, N0]. Once we discretized the derivative for some h > 0 small, we get
the following difference equation

In+1 − In = hλIn(N0 − In), for all n > 0, with I0 = I(0). (3)

A similar description can be given for the nodes which are susceptible of receiving the
message. The discretized models will be needed to perform numerical simulations.

3. Epidemic model for an open area. In this section, we extend the model
given in (1) to take into account that people can enter and leave an open area
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(e.g., a public square, a shopping mall, etc.). This model is further extended in the
following section to considering a dual message diffusion model, that is, a contact
based diffusion and centralised diffusion. Contact-based messaging applications
considered in this work are based on establishing a short-range communication
directly between mobile devices and storing the messages in these devices to achieve
their full dissemination.

Nodes move freely in a given area with a given contact rate between pairs λ > 0,
and new nodes come to the place with an arrival rate β > 0 and a newly arrived
node is a susceptible node (it does not have the message). We suppose that nodes
leave the place with an exit rate of δ > 0. These are equivalent to the birth and
death rates of the epidemical models. Thus, the number of nodes (population) in
the place at time t, N(t), depends on the initial number of nodes in the place, N(0),
and the rates of arrival and exit. We assume a short-range communication scope
(for example, Bluetooth), so network congestion and interferences do not have a
strong impact.

In our model, we consider that either susceptible and infected nodes can leave
the area, as if it was a natural mortality in a SIR model, see for instance [2, 3].

Therefore, the final exit rate at each one of these classes is proportional to the
relative number of susceptible and infected nodes. Thus, the number of nodes is
not constant over the time and it can be obtained as N(t) = N0 + (β − δ)t where
N(t) = I(t) + S(t) and N(t) > 0, for all t ≥ 0. Summing up, the system has the
following transitions:

• (→ S, β): new nodes enter the place with β rate.
• (S → I, λSI): new nodes get the message when contacts occurs.
• (S →, δS/(I + S)): nodes with no message leave the place.
• (I →, δI/(I + S)): nodes with the message leave the place

The system can be expressed using a deterministic model based on the following
system of coupled ODE’s:

S′(t) = −λS(t)I(t) + β − δS(t)/N(t)

I ′(t) = λS(t)I(t)− δI(t)/N(t)

N ′(t) = β − δ
(4)

for all t ≥ 0, with initial conditions S(0) = S0, I(0) = I0, and N(0) = N0 tied to
S0 + I0 = N0.

3.1. Dynamics for the epidemic model in an open area. Figure 1 represents
the evolution of the infected nodes I(t) and the number of nodes N(t) as a function
of time for different values of the arrival and exit rates. They have been obtained by
using Euler method with step h = 0.001. All plots start with the same number of
nodes N0 = 100, one infected node I0 = 1, and contact rate λ = 0.001. Analyzing
the dynamics of this system, we see that, when there is no arrival and exit rate
(β = δ = 0) we have the basic epidemic model, so the system is stable and all nodes
get the message, as we can see in Figure 1a. In contrast, when the system has the
same arrival and exit rate (figure 1c with β = δ = 1), the system reaches a fixed
point, but not all the nodes get the message (I(t) < N(t)). If β > δ, then the
number of nodes increases indefinitely as shown in Figure 1b. Finally, when β < δ,
all the nodes leave the place, and N(t) falls to 0 as shown in Figure 1d.

We now proceed to study analytically the equilibrium points of the model. When
the system reaches an equilibrium point at time ts, this implies that S(t), I(t), N(t)
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Figure 1. Evolution of the infected nodes for different values of
β and δ: a) β = δ = 0; b) β = 1, δ = 0; c) β = δ = 1; d) β = 0,
δ = 1

are constant for t > ts, so their derivatives are 0. From equations (4), we get β = δ
and the number of nodes N(t) remains constant to N0 for all t ≥ 0. In this case,
there is a renewal of nodes, with rate β = δ. If we consider the I ′(t) equation
from (4), and replace N(t) by N0 and S(t) by N0 − I(t), we have the following
one-dimensional ODE:

I ′(t) = λ(N0 − I(t))I(t)− βI(t)/N0 = −λI2(t) + (λN0 − β/N0)I(t) (5)

The solution of this differential equation when I(0) = 1, i.e. a single device mobile
with the message, is:

I(t) =
bebt

λ(ebt − 1) + b
b = λN0 − β/N0 (6)

We can obtain the delivery time Td, that is the time when the message arrives to a
given number of nodes M . Using equation (6), setting I(t) = M and solving for t,
we have:

Td(M) =
1

b
log

(
bM − λM
b− λM

)
b = λN0 − δ/N0 (7)

We can also obtain the number of infected nodes when the system reaches the
equilibrium. From equation (4), we can study the equilibrium points (Se, Ie) of the
unidimensional dynamical system obtained when taking into account that in the
equilibrium β = δ and I(t) + S(t) = N0 for all t ≥ 0.
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In order to calculate the fixed points of equilibrium we solve the following qua-
dratic equation,

λS2
e +

(
−λN0 −

β

N0

)
Se + β = 0, (8)

with solution Se = N0 or Se = β
λN0

. If

f(S) = λS2 +

(
−λN0 −

β

N0

)
S + β, (9)

we can study the behaviour near the fixed points Se = N0 and Se = β
λN0

. Com-

puting the derivative of f we have f ′(S) = 2λS − λN0 − β
N0

. First, for Se = N0 we

have f ′(N0) = λN0
2−β
N0

. As a consequence, if the following condition holds

0 < λN2
0 − β (10)

then N0 is repulsor point, and if λN2
0 − β < 0, then N0 is an attractor. When

λN2
0 = β, then f ′(N0) = 0 and we cannot conclude anything based on the former

results. Nevertheless, a weaker criterion based on the values of the derivative can
be used, and since f ′(S) < 0 for all S < N0, then we also get that N0 is an attractor

in this case. On the other hand, for Se = β
λN0

we have f ′
(

β
λN0

)
= β−λN0

2

N0
. We

recall that this second fixed point only appears when (10) holds, and here we get
that it is an attractor. Thus, if (10) does not hold we have a unique fixed point at
N0 that is an attractor, and when λN2

0 = β it bifurcates into two fixed points: N0,

that is a repulsor, and β
λN0

that is now the attractor. In both cases, the basin of

attraction of the attractor point is the whole interval [0, N0].
From this one-dimensional analysis of the behaviour on the variable S, and due

to the tie S(t) + I(t) = N0 for all t ≥ 0, we can directly extend these results to the
two-dimensional case. As a consequence, (N0, 0) is the unique attractor if (10) does
not hold, and if it holds, we have that (N0, 0) is a repulsor and(

β

λN0
,
λN2

0 − β
λN2

0

)
(11)

is an attractor whose basin of attraction is all the points (S, I) ∈ [0, N0]2 satisfying
S + I = N0.

4. Epidemic model for an open area with fixed nodes. In this model we
assume the same hypothesis as in the previous one but we now add a new consid-
eration on it, the existence of fixed nodes with greater communication range (for
example, WiFi), that can store and send the messages in the place. The number
of fixed nodes will depend on the place area and nodes’ communication range. All
nodes sent the message with a given rate ρ, that will depend on message size and
bandwidth. The nodes that are in the place, can receive the message from these
fixed nodes, so the number of infected nodes increases with rate ρ.

To design our model we take into account the following transitions:

• (→ S, β): new nodes enter the place with β rate.
• (S → I, λSI): new nodes get the message when contacts occurs.
• (S → I, ρ): new nodes receive the message from the fixed nodes.
• (S →, δS/(I + S)): nodes with no message leave the place.
• (I →, δI/(I + S)): nodes with the message leave the place



SIR-BASED MODEL FOR CONTACT-BASED MESSAGING APPLICATIONS 7

and the system can be expressed using a deterministic model based on ODE’s:

S′(t) = −λS(t)I(t) + β − δS(t)/N(t)− ρ
I ′(t) = λS(t)I(t)− δI(t)/N(t) + ρ

N ′(t) = β − δ
(12)

We point out that coefficients β and δ can be obtained, for instance, from turn-
stiles or cameras at control access points. Clearly, all new nodes arriving at a rate
β will be included in the category of S(t). However, nodes leaving the place at rate
δ can either be carrying the message or not. The factors δS(t)/N(t) and δI(t)/N(t)
separate nodes leaving the place into both categories, proportionally to the number
of existing nodes of each category in the place.

4.1. Dynamics for the epidemic model for an open area with fixed nodes.
As in the previous model, we proceed to study (12) in depth. It is clear that when
the system reaches the equilibrium N(t) = N0, so β = δ. In this case, if we consider
the I ′(t) equation from (12), and replace N(t) with N0 and S(t) with N0− I(t), we
have:

I ′(t) = λ(N0 − I(t))I(t)− βI(t)/N0 + ρ = −λI2(t) +

(
λN0 −

β

N0

)
I(t) + ρ (13)

which is a Riccati differential equation. To simplify the notation we denote b =
λN0 − β

N0
.

The general solution of (13) will be given by I(t) = Ip(t)+ 1
z(t) , where Ip denotes

a particular solution of (13) defined as:

Ip(t) =
b−

√
b2 + 4λρ

2λ
, for all t ≥ 0. (14)

On the other hand, z(t) denotes the solution of the linear differential equation
z′(t) = (2λIp−b)z(t)+λ. Solving this equation and considering the initial condition
I(0) = 1 we get:

I(t) = Ip +
1

Cedt − λ
d

, for all t ≥ 0, (15)

with

C =
d− Ipλ+ λ

d− dIp
and d = 2λIp − b. (16)

Using this equation we can obtain the delivery time Td for M nodes setting
I(t) = M and solving for t:

Td(M) =
1

d
log

(
−d− Ipλ+ λM

CdIp − CdM

)
(17)

We now study the equilibrium of the model. From equation (13), we can find
the equilibrium points (Se, Ie) of the discrete unidimensional system obtained when
taking into account that in the equilibrium β = δ and I(t) + S(t) = N0. The
equilibrium points are given as solutions of

λS2 +

(
−λN0 −

β

N0

)
S + (β − ρ) = 0, (18)

that is,

S =
λN0 + β

N0
±
√(

λN0 − β
N0

)2

+ 4λρ

2λ
. (19)
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To simplify the notation let d =

√(
λN0 − β

N0

)2

+ 4λρ. Then the equilibrium

points are given by S1 =
λN0+ β

N0
+d

2λ and S2 =
λN0+ β

N0
−d

2λ . Let

f(S) = S + h

(
λS2 +

(
−λN0 −

β

N0

)
S + β − ρ

)
. (20)

Finally, we analyse the behaviour of the fixed points S1 and S2. The derivative of

f is given by f ′(S) = 1+h
(

2λS − λN0 − β
N0

)
. First, for S1 we have f ′(S1) = 1+hd.

As a consequence, |f ′(S1)| > 1 and then S1 is a repulsor point. On the other hand,
f ′(S2) = 1− hd. As a consequence, |f ′(S2)| < 1 and then S2 is an attractor.

As in the previous model and due to the fact that S(t) + I(t) = N0 for all t ≥ 0,
we can directly extend these results to the two-dimensional case. As a consequence
and since in our model S(t), I(t) ≥ 0, the only equilibrium point that will exist is
the one obtained from S1, that is the equilibrium point is given by:

(Se, Ie) =

(
λN0 + β

N0
− d

2λ
,
λN0 − β

N0
+ d

2λ

)
(21)

It is important to remark, that this point will only make sense when ρ ≤ β. We now
evaluate this equilibrium point depending on ρ > 0 comparing these results with
the dynamic evaluation of the system in Figure 2, that shows the evolution of the
infected nodes I(t) and the number of nodes N(t) as a function of time. All graphs
start with the same number of nodes, N0 = 100, and one infected node, I0 = 1. We
also plot in each graph, I(t) when ρ = 0 (that is, the model analysed in Section
3) and when λ = 0, that is, when there are no contacts and the diffusion of the
message is strictly performed by the fixed nodes. Thus, we have the following cases
(omitting the previously studied case ρ = 0):

• When 0 < ρ < β, the equilibrium point has Se > 0 and Ie > 0 and, as it can
be observed in Figure 2a, the number of infected nodes is always positive and
it stabilises in Ie.

• When ρ = β, the equilibrium point is (Se, Ie) = (0, N0), that is, all nodes are
infected, confirming the experimental evaluation of the equation (see Figure
2b).

• If ρ > β then (Se, Ie) will not appear but S′(t) < 0 and then S(t) is a strictly
decreasing function. Then the number of infected nodes will increase until it
attain the value N0 as it can be observed in Figure 2c. When ρ is higher (as in
Figure 2c), we can see that the diffusion is mainly performed by fixed nodes.

Summing up, we can see two important effects when ρ increases: first, a reduction
on the diffusion time, and, second, the final number of nodes that get the message
is increased. Moreover, when ρ ≥ β, all nodes finally receive the message. Thus,
introducing fixed nodes in a place we can get a full diffusion of a message even when
nodes can enter and leave the place.

5. Performance evaluation. The models introduced in Section 3 and 4 allow us
to evaluate the dynamics of messages diffusion in a bounded area. When the system
reaches an equilibrium point we can obtain characteristic parameters such as the
number of infected nodes and the diffusion time. Here, our evaluation considers
that the system is in an equilibrium state, that is, we assume that the arrival and
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Figure 2. Evolution of the infected nodes in the open model with
fixed nodes. In all cases β = δ = 1. a) ρ = 0.5; b) ρ = 1; c) ρ = 2;
d) ρ = 4;

exit rates are the same. From now on, we will jointly refer to both rates as the
renewal rate.

We consider a bounded rectangular area with size l = 100m with N0 initial
individuals that can move freely, entering and leaving the place with a renewal rate
β = δ and carrying a mobile device that can establish pair-to-pair connection using
short-range communications. In order to make the experiments independent of both
the number of nodes and the area size, we chose to use the factor people density
obtained as N0/l

2.

In a bounded area, as shown in [7], the contact rate λ ≈ 2.7366rE[V ]
l2 when r << l,

where r denotes the communication range and E[V ] the mean speed of the nodes.
In our model, we will consider r = 7.5m and E[V ] = 0.5m/s obtaining a contact
rate λ = 0.001s−1, that is, a pairwise contact rate of about 3.6 contacts/h. The
diffusion rate of the fixed notes is set to ρ = 1 messages per second.

We first evaluate the message coverage of the diffusion. We define message cov-
erage as the final percentage of nodes that receive the message when the system
reaches the equilibrium. This value is obtained evaluating the factor 100 · Ie/N0
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(a) (b)

Figure 3. Message coverage depending on people density and re-
newal percentages. a) contact-based only diffusion; b) contact-
based and fixed nodes diffusion for ρ = 1.

using expressions (11) and (21). Figure 3 includes two contour plots of the mes-
sage coverage depending of people density and renewal percentage. The (relative)
renewal percentage (RR) is defined as the percentage of nodes that are renewed in
the place every second RR = 100 · β/N0. In Figure 3a where we plot the results
for contact-based distribution only, we can clearly see the impact of people density.
When density increases, the percentage of nodes that receive the message increases,
as the effect that the fixed renewal percentage is reduced, reaching practically 100%
of nodes when density is very high. For low densities and higher renewal percentages
the diffusion is reduced to values below 50% of nodes.

In Figure 3b we can see the results for contact-based and fixed nodes diffusion
for ρ = 1. We observe the effect of fixed nodes diffusion when people density is low,
increasing the coverage of the diffusion compared to the results of the only contact-
based diffusion. Nevertheless, this effect is vanished when people density increases.
We can see that, when the renewal percentage is less than ρ = 1, the message
reaches 100% of the nodes. Summing up, a centralized diffusion is not efficient
when people density is high, so a contact-based diffusion is a better approach.

We now evaluate the delivery time of a message using expressions (7) and (17).
In Figure 4 we plot the delivery time depending on people density and for several
renewal rates. As reaching 100% nodes is only possible when ρ > β we plot the
delivery time for lower message coverages (95% and 75% concretely). In Figure 4a,
we can see that using fixed nodes reduce the delivery time when people density
is low. Specifically, for the case when the renewal rate is 1 and it is equal to ρ
(that is, δ = β = ρ = 1), we have, that when density is very low, we obtain a very
reduced delivery time (note also, that for these densities, the number of nodes in the
place are very low, so a centralised approach can quickly disseminate the message).
When, the density increases, all the curves converge to the same delivery time, so
the effect of ρ and the renewal rate are vanished. The results for a lower message
coverage (Figure 4b) show a similar pattern, although the values are lower, as they
represent the time when the message reaches less nodes.
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Figure 4. Delivery time depending on the people density and with
different renewal rates. The label with FN, refers to diffusion with
Fixed-nodes. a) Delivery time to 95% of the nodes; b) Delivery
time to 75% of nodes.

6. Conclusions. In this paper we focused on the study of coupled systems of or-
dinary differential equations (ODE’s) to describe the diffusion of messages between
mobile devices.

The question we analysed was whether the coexistence of a fixed infrastructure
can improve the diffusion of messages and thus justify the additional costs. We
analysed this case from the point of view of dynamical systems, finding and char-
acterising the admissible equilibrium of this scenario. We showed that a centralised
diffusion is not efficient when people density reaches a sufficient value.

This result supports the interest in developing opportunistic networks for occa-
sionally crowded places to avoid the cost of additional infrastructure. The perfor-
mance of contact-based diffusion depends mainly on people density and the renewal
ratio. Using only contact-based diffusion, when people density is low, the message
coverage is low and the diffusion time high. Introducing fixed nodes diffusion, we
can increase the performance of the diffusion. Nevertheless, a centralised diffusion
is not efficient when people density is higher, so a contact-based diffusion is a better
approach.
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