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Abstract5

We consider a randomized discrete logistic equation to describe the dynamics of breast tumor volume.6

We propose a method, that takes advantage of the principle of maximum entropy, to assign reliable7

distributions to model inputs (initial condition and coefficients) and sample data, respectively. Since8

the distributions of coefficients depend on certain parameters, we design a computational procedure to9

determine the above mentioned parameters using the information of the probabilistic distributions. The10

proposed method is successfully applied to model the breast tumor volume using real data. The approach11

seems to be flexible enough to be adapted to other stochastic models in future contributions.12

Keywords: Maximum entropy principle; Computational model fitting; Volume tumor growth; Un-13

certainty treatment.14

1 Introduction15

Breast cancer is one of the most common malignant diseases in the female population, around 1/8 of women16

are affected by this illness. It is the second most commonly diagnosed cancer in women worldwide, [1, 2].17

Over the last decades, this type of cancer is increasing due to several reasons: the enlargement of the life18

expectancy and, consequently, the increase of DNA mutations, and the current unhealthy lifestyle (physical19

inactivity, obesity, living in polluted areas, etc.). The breast cancer is the first cause of death by malignant20

tumors in the female population aged between 40 and 59. Nevertheless, in the recent years, the survival of21

this malignancy has been increased because of new therapies and the early prevention and prediction [3].22

A key point in the early prevention of breast cancer is the capacity of measure the volume of tumors and23

predict their growth over the time. To quantify the volume of tumors, doctors use approximate measurement24

techniques based on medical images via electronic devices, [4, 5]. These measurements involve intrinsic errors25

in the real volume dimension that must be taken into account. As it shall be seen later, errors can be modelled26

by applying the principle of maximum entropy (PME), that allows us to allocate reliable uncertainties to27

sampled tumor volume data [6].28

∗Corresponding author
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To study and predict the growth of volume tumors cancer several nonlinear mathematical models, based29

on difference and differential equations, have been successfully proposed. In [7], the authors develop a30

nonlinear system of difference equations to study the short term dynamics of the bladder cancer and the31

immune response of patients. In [8] a numerical scheme for solving time-fractional cancer invasion system32

with non-local diffusion has been recently proposed. In this paper, authors propose an optimal control33

strategy to enhance the power of NK-cells and Efector T-cells in order to more quickly eradicate the cancer.34

In [9], authors perform a numerical analysis to understand the dynamics of cancer invasion using a time-35

fractional system. In [10], the classical Gomperzian growth is applied to study the breast tumor volume36

before applying suitable therapies. In [11], the logistic model is parametrized to predict the treatment37

response and changes in breast cancer cellularity during neoadjuvant chemotherapy. Cancer developement is38

a process where normal somatic cells acquire mutations, in [12], a system of nonlinear differential equations39

to study the dynamics of these cells mutations is proposed. Recently, the dynamics of a cell line (MCF-7)40

in human breast cancer has been described using the same type of mathematical formulation, [2].41

As it has been previously pointed out, tumor volume data involve uncertainties, then it is natural to42

consider stochastic models to study the evolution over the time of the breast tumors volume. In this43

contribution we consider a randomized logistic-type model to study the growth of breast tumors volume.44

Despite of its simple formulation, this class of models have demonstrated to be very effective to describe the45

dynamics of biological growth processes like tumors [3].46

In order to incorporate uncertainties to the logistic model, one usually distinguish two main approaches,47

namely, stochastic differential equations (SDEs) and random differential equations (RDEs). SDEs are usually48

forced by processes such as a Wiener process or Brownian motion whose sample behavior is highly irregular49

(non-differentiable sample paths). The rigorous treatment of SDEs requires special stochastic calculus like50

Itô or Malliavin [13, 14]. Complementary, RDEs are those in which random effects are directly manifested in51

model parameters (initial/boundary conditions, forcing or source term and/or coefficients) that are assumed52

random variables or stochastic processes with regular behavior (e.g., sample continuous or differentiable) with53

respect to time and/or space [15]. RDEs have demonstrated to be flexible models to quantify uncertainty54

in mathematical modelling since a wide variety of probability distributions can be allocated for each model55

parameter rather than using a global stochastic process, like the Wiener process, to include uncertainties in56

the whole model. In this paper, we will consider a logistic-type RDE whose initial condition and coefficients57

are random variables whose probability distributions must be consistently set from sampled information.58

Indeed, in dealing with practical applications of RDEs, as modelling breast tumors volume using real data,59

a main challenge is allocating appropriate probability distributions for model parameters so that the output60

model, which is a stochastic process, satisfactorily captures data uncertainties. In this paper we face this61

key challenge by developing a computational technique to quantify uncertainties and then performing more62

realistic predictions to modelling breast tumors volume by means of a random logistic equation using real63

data. Assuming randomness to each model parameter (initial condition and coefficients), this computational64

technique is based on seeking the best probability density distribution (PDF) of model parameters so that65

the PDF of the solution stochastic process of the random logistic model matches the PDF assigned, via66

PME, to sampled data of breast tumor volume at each time instant. In this manner, through the PDF, we67

perform a more complete probabilistic description of the breast tumor volume dynamics than constructing68

predictions based only on the expectation and confidence intervals.69

At this point, it is important to emphasize that when applying RDEs to modeling real problems, the allo-70

cation of appropriate probability distributions to model parameters is often done using heuristic arguments71

based on positiveness, boundedness and/or meta-information [16, 17]. This limits the choice of distributions72

to particular families. For instance, for positive and bounded parameters, the Beta distribution may be an73

2



appropriate candidate; for positive and unbounded parameters, the Gamma distribution might be suitable;74

etc. In contrast, the PME method allows us to give more flexibility when assigning probability distributions75

to each model parameters, since a parametric family of distributions are seeking for.76

Our analysis will be presented in the following steps. Section 2 is devoted to introduce two auxiliary77

results. In Subsection 2.1, the randomized discrete logistic model is presented together with the expression78

of the PDF of its solution stochastic process. In Subsection 2.2, the PME is described as a suitable method79

to assign a PDF when only limited sampling information is available. In Section 3 we will apply the PME80

to assign an explicit PDF to each sampled data. In Section 4 we will again utilize the PME to represent the81

PDF of each model input via closed expressions, which depend on certain parameters to be determined later.82

In Section 5 we design a computational procedure to determine the aforementioned parameters so that the83

density of the model solution be as close as possible to the density previously allocated to sampled data. In84

Section 6 we will apply the computational approach, introduced in the previous section, to first obtain the85

densities of model inputs and, secondly of the model output. Finally, conclusions are drawn in Section 7.86

2 Auxiliary stochastic results87

This section is addressed to introduce some technical results, about the randomized logistic model and the88

PME, that will be required through the paper.89

2.1 A randomized discrete logistic model90

The logistic model has been extensively applied to describe the dynamics of growth processes in different91

scientific areas, as pharmacology [18], epidemiology [19] or ecology [20]. In this paper we are interested in92

its application in medicine to model tumor growth [11, 21].93

In this contribution we consider the following discrete dynamical system, usually referred to as the Pielou94

model [22, 23],95

Xn+1 =
AXn

1 +BXn
, n = 0, 1, 2, . . . , (1)

for a given initial condition X0. As it can be seen in [22], this discrete model comes from the classical96

Verhulst continuous logistic equation [24]97

V ′(t) = aV (t)

(
1− V (t)

b

)
, (2)

being a > 0 the growth rate and b > 0 the carrying capacity. According to [22, pp. 19–22], models (1) and98

(2) are related via the following relationship of their respective parameters,99

A = ea, B =
ea − 1

b
. (3)

Since a > 0 and b > 0, then A > 1 and B > 0.100

As it has been pointed out in the foregoing section, uncertainty quantification is a main goal in modeling101

breast tumors growth from real data. This aim us at treating the parameters A, B and X0 in model (1) as102

random variables belonging to a complete probability space (Ω,F ,P). As a consequence, model parameters103

depend on outcomes ω ∈ Ω, i.e., A = A(ω), B = B(ω) and X0 = X0(ω), and then the solution is a stochastic104

process, Xn = Xn(ω). As usual, hereinafter the ω-notation will be hidden.105

Although properties of random quantities are often described via statistical moments like the mean and106
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the variance, it is more desirable to do it through probability distributions. Specifically, fixed t, from the so107

called first PDF, fY (y, t) := fY (y), of a stochastic process, say Y (t), one can calculate the mean, E[Y (t)],108

the variance, V[Y (t)] = E[(Y (t))2] − (E[Y (t)])2, and also any higher one-dimensional statistical moment of109

arbitrary order m = 1, 2, . . . , [25, Ch. 3]110

E[Y (t)m] =

∫ ∞
−∞

ymfY (y)dy,

as well as to construct confidence intervals and also to calculate the probability that the process lies in a

specific interval of interest

P[y1 ≤ Y (t) ≤ y2] =

∫ y2

y1

fY (y)dy.

By applying the random transformation technique [25], recently some of the authors have obtained an111

explicit expression of the first PDF, fXn , to the solution of the randomized Pielou model (1), [26]. Specifically,112

by assuming that A, B and X0 are absolutely continuous random variables with a joint PDF, fX0,A,B , they113

obtained114

fXn(x) =

∫
D(A,B)

fX0,A,B

(
x(a− 1)

an(a− 1)− bx(an − 1)
, a, b

) ∣∣∣∣∣ (a− 1)2an

(an(a− 1)− bx(an − 1))
2

∣∣∣∣∣ dadb, (4)

where D(A,B) denotes the domain of random vector (A,B), [26]. In the particular case that A, B and X0115

are independent, then fX0,A,B(x0, a, b) = fX0(x0)fA(a)fB(b) (being fX0 , fA and fB the PDF of X0, A and116

B, respectively) and, as a consequence, the PDF of the solution can be represented as117

fXn(x) =

∫
D(A,B)

fX0

(
x(a− 1)

an(a− 1)− bx(an − 1)

)
fA(a)fB(b)

(
(a− 1)2an

(an(a− 1)− bx(an − 1))
2

)
dadb. (5)

Computing this double integral in an exact way, i.e. using primitives, is not always possible. Nevertheless,118

using numerical quadrature rules we can approximate it. This fact mainly depends upon the mathematical119

expression of the densities fX0
, fA and fB . To overcome this drawback, we will consider the following120

representation of fXn in terms of the expectation operator, E[·],121

fXn(x) = E

[
fX0

(
x(A− 1)

An(A− 1)−Bx(An − 1)

) ∣∣∣∣∣ (A− 1)2An

(An(A− 1)−Bx(An − 1))
2

∣∣∣∣∣
]
. (6)

At this point, it is important to underline that we can weak the condition that input parameters A and122

B are absolutely continuous random variables but just having probability distributions. Then, the density123

fXn can be computed using Monte Carlo simulations. However, notice that to follow this strategy, we need124

to assign reliable distributions to random variables A, B and X0. This key point will be addressed using the125

PME and it will be described in the next subsection.126

2.2 Principle of Maximum Entropy (PME)127

This section is devoted to briefly describe and adapt the PME to our modeling problem. The mathematical128

concept of entropy is a measurement of uncertainty. It defines the lack of knowledge of a random variable,129

which has been built on the basis of limited probabilistic information. The larger the uncertainty of a random130

variable the larger its entropy. Specifically, the PME that we will use in this paper utilizes the concept of131
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Shannon’s Entropy, SY , as a measure of uncertainty. This measure is defined as132

SY = −
∫
D(Y )

fY (y) log(fY (y))dy, (7)

where D(Y ) and fY denote, respectively, the domain and the PDF of the absolutely continuous random133

variable Y . Seeking for the function fY that maximizes SY can be interpreted as finding out the PDF of Y134

that corresponds to the maximal randomness and the minimal quantity of information. The latter, is usually135

given via the statistical moments (mean, variance, symmetry, kurtosis, etc.), the support, etc., [6, Chapter136

2.2].137

In our setting, the PME will be applied to assign reliable densities both to the sample data and the138

random input parameters A, B and X0.139

According to PME, the density fY is obtained by maximizing the functional SY subject to the avail-140

able probabilistic information about the random variable, usually trough the statistical moments mk, k =141

1, . . . ,K, as well as imposing that the integral of the density fY on its domain, D(Y ), is the unit142 ∫
D(Y )

fY (y)dy = 1, E[Y k] =

∫
D(Y )

ykfY (y)dy = mk, k = 1, . . . ,K. (8)

Using variational calculus, it can be seen that fY takes the following exponential form143

fY (y) = 1D(Y )e
−1−

∑K
k=0 λky

k

, (9)

where 1D(Y ) denotes the characteristic function of D(Y ), and the parameters λk, are determined solving the144

nonlinear system (8) once the moments mk, k = 1, 2, . . . ,K, have been determined usually from a sample.145

In our modelling setting, we will apply the PME method using sample information of the mean (m1) and146

the variance (m2 +m2
1), hence K = 2. This will be done in Sections 3 and 4.147

3 Data and their uncertainty148

As it has been previously indicated, in this section we will apply the PME to assign probability distributions149

to each sampled data. To this end, we are going to use the following information. First, the figures tabulated150

in the second column of Table 1, that correspond to the sampled data of the breast tumor volume measured151

in mm3, at different days, ñ, [27, Figure 1]. They have been obtained using xenograft technique, which152

consists of inserting cell tissue from one species to another, in our case, breast tumoral tissue from human153

species to a rodent species, [27, p. 2]. These values have been collected by measurement electronic devices,154

hence involving uncertainties. This fact aims us at treating these quantities as random variables rather than155

deterministic values. The figures m̃1,ñ are taken as representing the mean and, according to [28], we assign156

a variance of 5% at each value, i.e. σ̃2
ñ = 0.05 m̃1,ñ (see third column, σ̃2

ñ, Table 1). As a consequence, the157

second moment can be straightforwardly computed, m̃2,ñ = m̃2
1,ñ + σ̃2

ñ, see last column of Table 1.158

Since we have information of the two first moments, we allocate the PDF of each the corresponding159

volume of breast tumor cell using expression (9) with K = 2, i.e.160

f̃ñ(x) = 1D(ñ)e
−1−λñ0−λ

ñ
1 x−λ

ñ
2 x

2

, (10)

where D(ñ) denotes the domain of the random variable inferred by the information collected in Table161

1 and λñk , k = 0, 1, 2, are determined solving the following system of nonlinear equations for each ñ ∈162
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Days Mean (m̃1,ñ) Variance (σ̃2
ñ) 2nd moment (m̃2,ñ)

ñ = 0 45.74 2.287 2094.4
ñ = 16 194.257 9.7129 37745.49
ñ = 30 675.14 38.2570 455852.27
ñ = 33 936.53 46.8256 877135.26
ñ = 43 1941.7 97.0850 3770295.97
ñ = 48 2558.6 127.930 6546561.89

Table 1: Volume of breast tumor cells using xenograft technique at different days, [27] (m̃1,ñ) together with
the assigned variance (σ̃2

ñ) and second moment (m̃2,ñ).

{0, 16, 30, 33, 43, 48},163 ∫ ∞
0

e−1−λ
ñ
0−λ

ñ
1 x−λ

ñ
2 x

2

dx = 1,∫ ∞
0

xe−1−λ
ñ
0−λ

ñ
1 x−λ

ñ
2 x

2

dx = µ̃ñ,∫ ∞
0

x2e−1−λ
ñ
0−λ

ñ
1 x−λ

ñ
2 x

2

dx = µ̃2
ñ + σ̃2

ñ.

(11)

The results are shown in Table 2. They have obtained by fsolve function in MATLAB, [29].164

Days λñ0 λñ1 λñ2
ñ = 0 74.5841 -3.2063 3.50e-02
ñ = 16 21.7070 -0.1882 4.8407e-04
ñ = 30 10.5921 -0.0133 8.6701e-06
ñ = 33 11.8918 -0.0145 8.0943e-06
ñ = 43 9.5029 -0.0034 9.3958e-07
ñ = 48 8.8842 -0.0015 3.1900e-07

Table 2: Values of λñ0 , λ
ñ
1 and λñ2 obtained solving the system of nonlinear equations given in (11) the different

values of ñ.

In Fig 1, we show a graphical representation of each PDF given by equation (10) with the values collected165

in Table 2. We can observe the PDFs built via the PME provide higher variability as n̂ increases in full166

agreement with the variance σ̃2
ñ given in Table 1.167

4 Statistical distribution of the model parameters168

Once probability distributions to sampled data have been assigned, as it has been indicated in the Introduc-169

tion section, the following step will consist of establishing probability distributions for model parameters A,170

B and X0. To achieve this goal, the PME will be applied again.171

For consistency with the distributions assigned in Section 3 for the first sampled data, corresponding to172

ñ = 0, we take173

fX0
(x0) = e−1−λ

0
0−λ

0
1x0−λ0

2x
2
0 , (12)

where λ20 = 74.5841, λ01 = −3.2063 and λ02 = 3.50e− 02, see first row in Table 2.174

Using PME, we propose the following parametric PDFs for the rest of random variables A and B175

fA(a) = e−1−λ
A
0 −λ

A
1 a−λ

A
2 a

2

, a ∈ [a1, a2], (13)
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Figure 1: PDF of each sampled data using the PME at the days ñ ∈ {0, 16, 30, 33, 43, 48}. The red points
represent the values m̃1,ñ given in Table 1.
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fB(b) = e−1−λ
B
0 −λ

B
1 b−λ

B
2 b

2

, b ∈ [b1, b2], (14)

respectively. According to (3), we derive that a1 = 1 and b1 = 0, hence a2 > 1 and b2 > 0.176

The values of parameters
{
λA0 , λ

A
1 , λ

A
2

}
and

{
λB0 , λ

B
1 , λ

B
2

}
must be chosen so that fA and fB integrate177

the unit. Therefore, after calculating the integral and isolating λA0 and λB0 one gets, respectively,178

λA0 = −1 +
(λA1 )2

4λA2
+ log

[ √
π

2
√
λA2

(
Erf

(
λA1 + 2a2λ

A
2

2
√
λA2

)
− Erf

(
λA1 + 2a1λ

A
2

2
√
λA2

))]
, (15)

λB0 = −1 +
(λB1 )2

4λB2
+ log

[ √
π

2
√
λB2

(
Erf

(
λB1 + 2b2λ

B
2

2
√
λB2

)
− Erf

(
λB1 + 2b1λ

B
2

2
√
λB2

))]
, (16)

provided λA2 > 0 and λB2 > 0. Here, Erf(x) = 2√
π

∫ x
0
e−t

2

dt stands for the error function.179

According to expression (6), to compute the PDF of the solution stochastic process Xn, it is necessary180

to sampling random variables A and B. This will be done via the inverse of the distribution functions of A181

and B using the so called inverse transformation method, [30, Chapter 2]. According to this technique, we182

first need to calculate the distribution functions of A and B,183

FA(a) =

∫ a

1

fA(s)ds =
1

2
√
λA2

e
−1−λA0 +

(λA1 )2

4λA2

√
π

(
−Erf

(
λA1 + 2λA2

2
√
λA2

)
+ Erf

(
λA1 + 2aλA2

2
√
λA2

))
(17)

and184

FB(b) =

∫ b

0

fB(s)ds =
1

2
√
λB2

e
−1−λB0 +

(λB1 )2

4λB2

√
π

(
−Erf

(
λB1

2
√
λB2

)
+ Erf

(
λB1 + 2bλB2

2
√
λB2

))
, (18)

where 1 ≤ a ≤ a2 and 0 ≤ b ≤ b2, respectively. Denoting uA := FA(a) ∈ (0, 1) and uB := FB(b) ∈ (0, 1) in185

(17) and (18), respectively, and isolating a and b in each expression, one gets186

a =
1

2λA2

−λA1 + 2
√
λA2 InvErf


2e

1+λA0 −
(λA1 )2

4λA2
√
π uA

√
λA2 + πErf

(
λA1 +2λA2

2
√
λA2

)
π


 , (19)

and187

b =
1

2λB2

−λB1 + 2
√
λB2 InvErf


2e

1+λB0 −
(λB1 )2

4λB2
√
π uB

√
λB2 + πErf

(
λB1

2
√
λB2

)
π


 , (20)

respectively. Here InvErf(·) denotes the inverse function of Erf(·). Sampling many times uA and uB uniformly188

in the unit interval (0, 1), i.e. uA, uB ∼ U(0, 1), and substituting these sampled values in expressions (19)189

and (20), we obtain simulations of random variables A and B, respectively.190

5 Procedure design191

In the previous section, we have taken advantage of PME to assign reliable PDFs to model inputs A and B192

(see expressions (13) and (14), respectively). Taking into account the relations (15) and (16), these PDFs,193

fA and fB , depend on parameters
{
λA1 , λ

A
2 , a2

}
and

{
λB1 , λ

B
2 , b2

}
, respectively. In this section, we design194
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a computational procedure to determine these parameters so that the PDF, fXn , which according to (6)195

depends on A and B, matches, as much as possible, the PDFs constructed via PME in Section 3 of sampled196

data at the time instants ñ ∈ {0, 16, 30, 33, 43, 48}.197

To seek the parameters λA1 , λA2 , a2, λB1 , λB2 and b2, an optimization algorithm will be applied. This198

technique consists of comparing, over various iterations, sets of admissible parameters (λA1 , λ
A
2 , a2, λ

B
1 , λ

B
2 , b2)199

until an optimum or a satisfactory set is found [31].200

To compare sets of admissible parameters, a suitable criterion, which is enclosed in a fitness function, is201

required. In our case, given a set of parameters (λA1 , λ
A
2 , a2, λ

B
1 , λ

B
2 , b2), we have chosen the sum of certain202

local errors, Eñ, ñ ∈ {0, 16, 30, 33, 43, 48}, which are defined in terms of the absolute differences between the203

PDF, fXñ , given in (6) and the PDF, f̃ñ, assigned to sampled data given in equation (10) and Table 2.204

Down below, we shall describe through several steps the construction of the fitness function, FF (s), for205

a given set of parameters s = (λA1 , λ
A
2 , a2, λ

B
1 , λ

B
2 , b2).206

Step 1: Compute the values of λA0 and λB0 defined by equations (15) and (16), respectively.207

Step 2: Obtain M = 10000 samples of uA, uB ∼ U(0, 1) and substitute them in equations (19) and (20) to208

sampling values a and b of random variables A and B, respectively.209

Step 3: Define the mesh of N + 1 nodes over the interval [0, H],

x̂ := {xi} :=

{
iH

N

}N
i=0

,

being H < +∞ an upper bound of the random variable defined by equation (10) at ñ = 48. In our210

application we will take N = 500 and H = 8000 (see panel corresponding ñ = 48 in Figure 1).211

Step 4: Fix ñ ∈ {0, 16, 30, 33, 43, 48} and xi defined in Step 3. Substitute the M simulations (a, b) of the212

random vector (A,B) generated in Step 2 in the expectation argument of (6), i.e., in the expression213

fX0

(
xi(a− 1)

añ(a− 1)− bxi(añ − 1)

) ∣∣∣∣∣ (a− 1)2añ

(añ(a− 1)− bxi(añ − 1))
2

∣∣∣∣∣ , (21)

Thus, for each ñ, M curves, along the mesh x̂, are generated.214

Step 5: For each day ñ, compute the average of the M curves generated in Step 4. Then, according to (6)215

an approximation of the PDF fXñ evaluated in x̂ is obtained.216

Step 6: For each day ñ, evaluate in the mesh x̂ the PDF, f̃ñ, of sampled data defined by equation (10) and217

Table 2.218

Step 7: For each day ñ ∈ {0, 16, 30, 33, 43, 48}, compute the error

Eñ =

∑N
i=0

∣∣∣fXñ(xi)− f̃ñ(xi)
∣∣∣∑N

i=0 f̃ñ(xi)
.

Step 8: The output of the fitness function, named fitness, is given by

E = E0 + E16 + E30 + E33 + E43 + E48.
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It is important to remark that E0 = 0, since by construction we have taken fX0 = f̃0, see Section 3.219

Using an optimization algorithm, we can find out the vector s = (λA1 , λ
A
2 , a2, λ

B
1 , λ

B
2 , b2) that mini-220

mizes the fitness E, i.e. a set of parameters such that fXñ and f̃ñ, are close at the time instants ñ ∈221

{0, 16, 30, 33, 43, 48}.222

The optimization algorithm used in this contribution to minimize FF is a bioinspired algorithm named223

Particle Swarm Optimization (PSO). These kind of algorithms are inspired by biological behavior of certain224

species. In this case, PSO represents the movement of a swarm of birds exploring new areas to find food.225

In each iteration all the birds of the swarm, change their position according to balance of its particular best226

position and the global best position of the swarm, [32].227

6 Results228

This section is aimed at seeking the values λA1 , λ
A
2 , a2, λ

B
1 , λ

B
2 and b2 that minimize the fitness function, FF ,229

described in the foregoing section through Steps 1− 8. Minimizing FF , we guarantee that the PDF of the230

randomized discrete logistic model (6), at the time instants ñ ∈ {0, 16, 30, 33, 43, 48}, approximates with the231

PDF of sampled data described in (10) and Table 2.232

As it has been explained in Section 5, PSO algorithm is applied to find out the best set of parameters233

s = (λA1 , λ
A
2 , a2, λ

B
1 , λ

B
2 b2) that minimizes FF . We consider a swarm made up of 200 particles (birds), and234

during 90 iterations, the particles change their positions. In other words, our optimization algorithm requires235

90 iterations.236

Using the MATLAB function particleswarm with 200 elements and 90 iterations, we proceed to find out237

the best set of parameters that minimizes FF . This procedure requires about 3 hours to reach a suitable238

solution with an Intel Core i7 7700HQ and 16Gb of RAM. The best set of parameters and their respective239

fitness are collected in Table 3. Notice that the values of λA2 and λB2 are positive as required in (15) and240

(16).241

Notice that the upper bound, b2, of the domain of the random variable B is close to zero, b2 = 9.365588 ·242

10−6. This numerical result is in full agreement with expression (3) that relates the parameter B, appearing243

in the discrete logistic model (1), and the parameters a and b involved in the formulation of continuous244

logistic model (2). On the one hand, the numerator of B in expression (3), ea− 1, is small since the random245

variable A = ea takes values similar to 1. On the other hand, the denominator of B in (3) is given by the246

parameter b of the logistic model (2), defining the carrying capacity, i.e. the maximum volume the tumor247

can reach. From Table 1, we can see that the maximum sampled volume is 2558.6 mm3, and according to248

the trend of sampled data, it is expected the carrying capacity, b, will be greater than 2558.6 mm3. As a249

consequence, random variable B takes values close to zero.250

Parameters Values
λA1 -2038.1233
λA2 919.6327
a2 1.11057
λB1 90.5919
λB2 196.5526
b2 9.365588e-06

Fitness 1.582584

Table 3: Values of parameters λA1 , λ
A
2 , a2, λ

B
1 , λ

B
2 , b2 that minimize the fitness function FF using Particle

Swarm Optimization algorithm.
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Figure 2: Probability density functions of random model parameters A and B of the randomized discrete
logistic model described by equations (13) and (14), respectively.

A graphical representation of the PDFs of random variables A and B described by expressions (13) and251

(14), respectively, are plotted in Fig. 2.252

To better compare the obtained results, in Fig. 3 we show, at the days ñ ∈ {0, 16, 30, 33, 43, 48}, the PDF253

of the randomized discrete logistic model described in equation (6) (blue lines) and the PDF of sampled data254

described in expression (10) and Table 2 (red dashed lines). We can observe that there is a good agreement255

between both PDFs at every value of ñ. This confirms the goodness of the fitting procedure.256

In Fig. 4, we have plotted the PDF of the randomized discrete logistic model given by equation (6) for257

n ∈ {0, 1, . . . 50}. The red points represent the sampled data (given in column m̃1,ñ of Table 1) and green258

points are the means or expectations obtained via the PDFs (blue curves).259

7 Conclusions260

In this contribution a probabilistic logistic-type model to describe the growth of breast tumor volume has261

been presented. A key aspect to treat model uncertainties has been the allocation of reliable distributions262

to model parameters. To handle this important issue, we have devised a computational method which takes263

advantage of the principle of maximum entropy. A relevant aspect of our approach is that we fit the model264

to real data taking into account the probabilistic information via the probability density functions assigned265

and computed to sampled data and output model. This is a distinctive feature of our study with respect266

to alternative methods that perform the fitting by means of punctual statistics like the expectation. In this267

manner, uncertainty quantification analysis in the stochastic model is more informative. The uncertainty268
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Figure 3: Comparison between the PDF of each sampled data (red dashed lines) and the PDF of the fitting
randomized logistic model (blue lines) at the days ñ ∈ {0, 16, 30, 33, 43, 48}. In the horizontal axis of each
panel, the red point represents the sampled data (it corresponds to column m̃1,ñ in Table 1) and the blue
point represents the mean or expectation obtained via the PDF (blue curves).
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Figure 4: Representation of the PDF, fXn , of the random discrete logistic model (6) for different days
n = 0, 1, . . . , 50. Red points represent the sampled values of tumor volume described in the column m̃1,ñ of
Table 1 and green points represent the mean of the distribution defined by the blue curves.
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quantification technique proposed in this paper may be applied to other models where randomness in data269

and model parameters play a key role [33, 34].270
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