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Experimental benchmarks are at the heart of the phenom-
enal progress that artificial intelligence (AI) has witnessed in 
recent years. In areas such as machine learning, the relevance 

of a scientific contribution is often linked to the level of perfor-
mance achieved for a popular dataset or competition. Relatedly, 
technical contributions in AI go beyond single scientific papers in 
peer-reviewed journals or conferences to a more complex ecosys-
tem of teams and community projects developing architectures or 
systems with evolving reports (usually on arXiv.org and other open 
repositories), source code, pre-trained models and results (usu-
ally on github.com). This activity is frequently driven by bench-
marks. The importance of benchmarks in influencing AI research is 
poorly captured by traditional scientometric research, which mostly 
focuses on published papers and citations between them.

In this Article, we analyse how benchmarks may affect research 
dynamics in AI and the way different players—from academia 
to tech giants—behave. We perform an analysis of 25 popular 
benchmarks in AI, with 1,943 result entries overall. We extract  
the co-author communities from bibliographic repositories and 
plot the evolution of their performance results over time. For each 
benchmark, ‘success’ is related to their contribution to the SOTA 
fronts, a state-of-the-art curve defined by performance jumps on a 
bidimensional plot with time and performance as dimensions. We 
explore a series of hypotheses about the behaviour of communities 
that make repeated attempts on the benchmarks versus those mak-
ing more isolated attempts, the composition of successful commu-
nities (single institution versus multiple institutions), their diversity 
(industry, academia or mixed) and the temporal dynamics in terms 
of the number of active members per community. Recent stud-
ies1,2 have suggested that ‘small teams disrupt whereas large teams 
develop’, but this finding may be interpreted very differently in the 

context of AI benchmarks for a number of reasons: collaboration 
for AI challenges goes beyond a single paper, papers increasing 
the SOTA performance may be aligned to disruption or develop-
ment, and finally, computer science is one of the few disciplines that 
does not follow the general disrupt–develop spectrum (Fig. 1a in 
ref. 2). This creates a novel scenario where these phenomena can be  
investigated, but which also requires a new methodology, start-
ing from the analysis of communities (clusters of authors usually  
working together) rather than teams based on the static 
co-authorship of a single paper or the volatile notion of affiliation. 
Similarly, benchmarks give us a new perspective about the concen-
tration of efforts in a few major geographic areas, the increasing 
relevance of China and whether major academic institutions are 
giving way to industry. The findings can then be compared with 
recent bibliographical studies, such as figure 4 in ref. 3. Finally, we 
also analyse results in an aggregated way, using indicators such as 
the level of activity, the number of jumps and, more importantly, 
the efficiency of each institution (measured as jumps on the SOTA 
front versus activity).

Our findings have to be considered carefully given the sample of 
benchmarks we explore in this paper (data-driven machine learn-
ing techniques where big industrial players may have an advantage). 
Nevertheless, this scientometric meta-review of AI benchmarks 
introduces a series of methodological innovations, raises new ques-
tions and makes a series of recommendations. For instance, data 
below the SOTA front capture an important and useful part of 
the activity. This suggests that a more fruitful use and sustainable 
appraisal of these benchmarks in the future should be based on con-
sideration of other metrics beyond performance, such as technical 
innovations and resource use4. This should be encouraged by com-
petitions and scientific venues in the future.
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The widespread use of experimental benchmarks in AI research has created competition and collaboration dynamics that are 
still poorly understood. Here we provide an innovative methodology to explore these dynamics and analyse the way different 
entrants in these challenges, from academia to tech giants, behave and react depending on their own or others’ achievements. 
We perform an analysis of 25 popular benchmarks in AI from Papers With Code, with around 2,000 result entries overall, con-
nected with their underlying research papers. We identify links between researchers and institutions (that is, communities) 
beyond the standard co-authorship relations, and we explore a series of hypotheses about their behaviour as well as some 
aggregated results in terms of activity, performance jumps and efficiency. We characterize the dynamics of research com-
munities at different levels of abstraction, including organization, affiliation, trajectories, results and activity. We find that 
hybrid, multi-institution and persevering communities are more likely to improve state-of-the-art performance, which becomes 
a watershed for many community members. Although the results cannot be extrapolated beyond our selection of popular 
machine learning benchmarks, the methodology can be extended to other areas of artificial intelligence or robotics, and com-
bined with bibliometric studies.
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The following section describes our selection of benchmarks and 
explains the choice to perform the study at the level of communi-
ties. Next, we provide a detailed analysis of the results and explore 
a number of hypotheses and indicators. We close with a discussion 
that puts the paper into context, states the limitations of our study 
and makes some general recommendations. The Methods describes 
the new methodological pipeline, including data sources, algo-
rithms, indicators and visualizations.

Benchmarks and communities
Benchmarks in AI come in many different forms and are arranged 
very differently depending on the area. They may be linked to a 
regular competition or a one-off challenge, released by an organiza-
tion or maintained by a collective, and may be evaluated by their 
performance (for example, error rate for a machine learning clas-
sifier) or by efficiency (for example, computation time for a SAT 
solver). Because of this diversity, there is no fully comprehensive 
and unbiased source of results for all benchmarks in AI. However, 
Papers With Code (paperswithcode.com) has become the most 
comprehensive source so far, with hundreds of benchmarks and 
thousands of results from associated papers, with an emphasis on 
machine learning. Understanding this data source and its possible 
limitations, as well as the criteria we have used to make the selection 
of benchmarks, is key for the interpretation of our results.

Table 1 shows the list of benchmarks. The Methods discusses in 
detail the criteria we used for this selection, the inherent bias of this 
source and its implications.

Jointly with the use of benchmarks, the other cornerstone for our 
study is the use of communities. A community is formed of one or 
more authors that usually work together; authors can be from the 
same or different institutions. This is a novel feature of this method-
ology: unlike standard bibliometric analysis, where papers are used 
as units, communities can be used to track the continued efforts of 
a group of collaborating researchers, exploring longer-term endeav-
ours and repeated attempts at a benchmark. Communities are of 
increasing relevance as the collaborations between different AI 
groups in different sectors (from universities and companies) have 
widened notably over the past few years. This is seen, for instance, 
in the quantitative analysis of industry–academia collaborations 
in different countries worldwide included in the 2019 AI Index 
(Fig. 1.5a in ref. 5). We create communities using the Clauset–
Newman–Moore hierarchical agglomeration algorithm6, from the 
adjacency matrices between authors. All the details and an example 
of communities created from the graph of adjacencies is shown in 
Supplementary Fig. 1. Communities represent a better entity to 
identify trends spanning several organizations, sectors, areas or 
countries, than independent or small research teams with the same 
affiliation, or an occasional co-authorship7. Another important 
reason to consider communities is to avoid the overlap and repeti-
tion that would happen if we considered single authors, resulting in 
double counting of multi-author papers.

More information and links to alternative baselines and meth-
ods, and the relevance of benchmarks for scientometrics, can be 
found in the Supplementary Information.

Table 1 | List of AI benchmarks used in the analysis by task

Task Benchmark Entries Authors Communities Average size

Action recognition HMDB-5142 31 103 23 4.96 ± 2.44

Action recognition UCF10143 42 132 27 5.89 ± 3.57

Atari games Montezuma’s Revenge44 40 111 11 19.18 ± 23.2

Atari games Space Invaders44 45 119 15 15.62 ± 25.36

Image classification CIFAR-10017 110 327 69 6.91 ± 8.71

Image classification ImageNet8 270 489 61 20.33 ± 41.12

Image generation CIFAR-1017 239 605 104 9.38 ± 15.23

Image super-resolution Set545 64 194 36 8.18 ± 9.19

Language modelling enwik846 33 87 18 7.44 ± 5.66

Language modelling Penn Treebank47 38 95 19 7.58 ± 5.98

Link prediction WN18RR48 39 122 25 6.84 ± 4.56

Machine translation WMT2014 English–French49 40 119 16 11.94 ± 12.42

Machine translation WMT2014 English–German49 57 167 24 11.92 ± 17.29

Named entity recognition CoNLL 200350 52 178 32 8.19 ± 7.58

Named entity recognition Ontonotes v551 20 58 16 4.44 ± 2.76

Object detection COCO Minival52 111 185 24 28.62 ± 46.18

Object detection COCO test-dev52 198 395 41 24.16 ± 38.99

Pose estimation MPII Human Pose53 32 107 21 6.57 ± 4.8

Question answering SQuAD1.19 196 157 21 15.95 ± 20.35

Question answering WikiQA54 18 55 13 5.31 ± 4.13

Semantic segmentation Cityscapes test55 91 259 39 11.23 ± 13.31

Semantic segmentation PASCAL VOC 2012 test56 53 146 23 10.95 ± 11.23

Sentiment analysis IMDb57 36 117 24 5.84 ± 6.12

Sentiment analysis SST-2 Binary classification58 53 201 36 7.61 ± 8.99

Speech recognition LibriSpeech59 35 139 13 17.69 ± 15.97

Number of entries, unique authors, communities and average size of the latter (that is, number of members) for each benchmark.
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Findings
Once communities are identified for each benchmark, we can 
analyse specific trends, activity patterns or player dominance. For 
instance, Fig. 1 represents the results for the ImageNet dataset8, 
which consists of 1.2 million images in 1,000 classes. The results of 
the different communities show that several long-term collabora-
tive ‘hybrid’ groups, formed mostly by American universities (Johns 
Hopkins, University of California, Los Angeles, Cornell, Stanford, 
Toronto and so on) in collaboration with tech giants (Microsoft and 
Google) are those that have dominated the SOTA front from early 
on (communities numbered as 1 and 2). Although hybrid commu-
nities dominate the SOTA front, there are also some isolated com-
pany players, possibly representing different divisions, departments 
and research groups from companies such as Google, Xiaomi, 
Facebook and Microsoft. However, only a single non-hybrid com-
munity, Google, is able to achieve a score on the SOTA front.

The high number of points from 2016 to the present day is also 
notable. This is consistent with the general increased activity in AI 
and machine learning in the past five years. Another more intrin-
sic reason for the high activity may be that the benchmark is still 
not considered ‘solved’. Human-level performance is reported to be 
around 95% of accuracy, whereas the SOTA front has gone from less 
than 65% in 2014 to 88% at the time of writing. No clear insights 
can be extracted from those entries that are far below the SOTA in 
the bottom-right part of the plot. While some have unknown affilia-
tions, others (after detailed analysis of the papers) seem to represent 
improvements, modifications and adjustments over well-known 
algorithms that do not seem to have been evaluated by performance 
only but also by some other dimensions of what make a solution 
good4.

While all benchmark plots can be found in the Supplementary 
Information (Supplementary Figs. 4–6), we include another exam-
ple here, in Fig. 2. This is the Stanford Question Answering Dataset 
(SQuAD1.1)9, a reading comprehension benchmark with more 
than 100,000 question–answer pairs from more than 500 articles. 

Questions derive from Wikipedia articles where the answer may 
be a segment of text from the corresponding reading passage, or 
may be unanswerable (for example, written adversarially to look 
similar to answerable ones). Like ImageNet, the SOTA front is 
dominated by hybrid long-term collaboration groups (communi-
ties numbered 2 and 3) formed by American universities (Stanford, 
Carnegie Mellon, Washington and so on) in collaboration with tech 
giants (Facebook and Google), but also by large hybrid communi-
ties formed by Asian universities (Beihang, Fudan, Peking and so 
on) jointly with Microsoft (community 1). We also observe that  
the participation of European universities initiatives is very low. 
Unlike ImageNet, most entries correspond to the period between 
2016 and 2018, with a clear decline in activity from 2018 to 2020. 
This is probably due to the introduction of the new (and much 
more difficult) version of the benchmark (SQuAD2.0), with atten-
tion moving to the new challenge. However, SQuAD1.1 is still being 
addressed by communities 2 and 3, which have participated since 
2016 and have led the SOTA from 2018 to 2020. Again, we see that 
long-term collaborative groups obtain better results than isolated 
communities.

Global hypotheses. We now provide a more general view by analys-
ing the results of all 25 AI benchmarks together, to test a number of 
hypotheses. The hypotheses address questions about the research 
community dynamics, the key players behind the SOTA jumps 
and their characteristics. We postulate eight hypotheses (a detailed 
rubric can be found in the Supplementary Information):

	1.	 HCollaboration: the majority of points in the SOTA front belong to 
multi-institution communities.

	2.	 HPersistence: the ratio of points in the SOTA front belonging to 
multi-attempt communities is higher than the ratio below the 
SOTA.

	3.	 HHybrid: the ratio of points in the SOTA front belonging to  
hybrid communities is higher than the ratio below the SOTA.
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Image classification—ImageNet

Fig. 1 | Progress in accuracy over time for ImageNet. Coloured shapes show the different communities (with one or more institutions in the legend). 
Dashed lines show the global SOTA front (in grey) for all the entries (results) and local SOTA front per community (in colour). The blue dotted line shows 
the smoothed means (all results) with 95% confidence level intervals. Different shapes indicate the types of institution (companies, universities or hybrid).
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	4.	 HCompany: points on the SOTA front are more likely to include 
companies than points below the SOTA.

	5.	 HIncrease: jumps with a SOTA increase higher than the total  
increase of the SOTA in the previous year are associated with 
higher-than-average activity growth in the next year.

	6.	 HConsecutive: consecutive jumps (on the SOTA front) by the same 
community are followed by a lower-than-average activity 
growth in the following year.

	7.	 HCommRise: communities have more active members before a 
SOTA success than in other previous years.

	8.	 HCommWane: communities become relatively smaller after a SOTA 
success.

We test the above set of hypotheses to see whether they are met 
for each benchmark. Some hypotheses are expressed as implications; 
if we do not find the antecedent for a benchmark (for example, no 
jumps by the same community), then we consider this a non-case (a 
blank), and it is not used for hypothesis testing. Results are shown 
in Table 2. The P value is calculated for each hypothesis (two-sided 
binomial test at 95% confidence interval), but as we are considering 
eight hypotheses, we apply the Bonferroni correction for multiple 
comparisons10.

From the above results, we reach a number of conclusions about 
the dynamics of communities engaging with AI benchmarks. We 
find that (1) SOTA jumps are mainly obtained by multi-institution 
communities, compared with the number of jumps obtained by 
single-institution communities; (2) multi-attempt communities 
are more likely to achieve SOTA jumps (compared with one-shot 
efforts); (3) jumps are mainly obtained by hybrid communities 
involving both universities and companies, meaning that hetero-
geneous communities achieve more success through collaborative 
efforts compared with ‘pure’ communities (only universities or 
companies); and, finally, (4) the presence of companies in a com-
munity, such as Google, Microsoft and Facebook, increases the odds 
of achieving a jump in an AI benchmark. All the above reinforces 
the usefulness of the increasing tendency of collaboration between 
universities and industry in AI research. Note, however, that asso-
ciation should not be interpreted as causation. It may well be that 

more success could increase the reputation for some institutions 
and attract further collaboration between different institutions. 
Also, reiterated attempts over a benchmark could provide more 
opportunities to work with other institutions.

It seems that the industry is engaging with academia not only 
to examine how best to produce and commercialize AI tech-
nologies but also to perform fundamental and applied research. 
Furthermore, over the past few years, we have witnessed an increas-
ing number of high-profile university AI scholars being involved in 
research and leadership roles at tech giant companies where they 
have set up powerful research teams with both talented researchers 
and engineers, with a thin line between academia and industry11.

The results for the fifth and sixth hypotheses are inconclusive. 
We cannot infer that new jumps are associated with an increase of 
activity (nor a decrease) immediately afterwards (5). Similarly, if the 
same community repeatedly achieves SOTA jumps, this does not 
seem to discourage the rest (6). These two hypotheses suggest that 
the motivations for working on a challenge go beyond what a single 
community or several communities are doing at the SOTA front.

The two last hypotheses bring more insight about the temporal 
dynamics behind community activity. We see communities usually 
grow before a SOTA jump (7), and their relative size diminishes 
after it (8). This seems to indicate that a SOTA jump is a watershed 
moment for the community members. Supplementary Fig. 2 shows 
consistent results too. The number of active researchers per activity 
is higher for SOTA communities (with mean 6.27) than for all com-
munities (SOTA and non-SOTA, with mean 5.31). According to 
the disrupt–develop hypothesis (Fig. 1A in ref. 2), larger communi-
ties are more incremental than disruptive. This seems to bring into 
question the idea that SOTA jumps are disruptive, and be consistent 
with the view that the real disruptive ideas are happening below 
the SOTA front. Nevertheless, we would require a deeper analysis 
of what contributions are considered disruptive in the discipline to 
answer this.

Global indicators. We have seen what kind of communities may be 
more successful and how they affect—or do not affect—the behav-
iour of other communities. Now we focus on characterizing their 
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Question answering—SQuAD1.1

Fig. 2 | Progress in accuracy over time for SQuAD1.1. Shapes and lines are as in Fig. 1.
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institutions. To do this, we use three main indicators: the level of 
activity (in terms of the number of papers or results published), 
the number of jumps (in terms of results placed on the SOTA) and  
the efficiency, the latter being the ratio between SOTA jumps and 
activity per institution.

Figure 3 shows the top institutions comparing activity and num-
ber of jumps obtained, as well as their efficiency. SOTA jumps on 
the y axis are dominated by a small group of players, with tech giants 
Google, Microsoft and Facebook, and a few universities, Carnegie 
Mellon, Oxford and Hong Kong, representing most jumps. Ignoring 
the institutions with zero SOTA jumps shown at the bottom, we see 
an important correlation between activity and SOTA jumps, but 
some universities such as Northwestern, New York and Oxford have 
the highest efficiency.

The observation that a few institutions dominate the activity and 
jumps suggests that benchmark activity is concentrated around a 
small number of key players. To better understand this, we can put 
this in the context of market scenarios when several players com-
pete for a share. We can measure the concentration of institutions 
using the Herfindahl–Hirschman index (HHI)12. This measures the 
sum of the squares of the activity shares (si) for each institution i 
from a set of n institutions (HHI =

∑n
i=1 s

2
i ). The result can range 

from 0 to 1: HHI ≤ 0.01 indicates a well distributed scenario (highly 
competitive); 0.01 < HHI ≤ 0.15 indicates an unconcentrated sce-
nario, 0.15 < HHI ≤ 0.25 indicates moderate concentration; and 
HHI > 0.25 indicates high concentration (note that values close to 
1.0 imply a single monopoly). In the case of the global set of bench-
marks, computing the HHI of activity and SOTA jump share per 
institution results in scores of 0.043 and 0.07, respectively. This indi-
cates a non-concentrated (highly competitive) research scenario in 
terms of the activity performed by the different institutions and the 
SOTA jumps achieved. Note that we do not compute the HHI for 
communities due to the fact that communities are very different for 
different benchmarks, implying little or no match between them 
(even if there are common institutions). A low number of common 
communities attempting several benchmarks is natural, since some 
benchmarks require specialized researchers that are not needed for 
others. Calculating the HHI for communities across benchmarks 
would simply give a low value of HHI.

We can also analyse the data geographically. Supplementary  
Fig. 3 shows a scatter plot of countries comparing activity and SOTA 
jumps. Efficiency, measured as jumps on the SOTA versus activity, 
distributes among actors very differently, especially geographically 
(United States versus China). This can be better seen in Table 3: the 

Table 2 | Our eight hypotheses checked for each AI benchmark

Benchmark HCollaboration HPersistence HHybrid HCompany HIncrease HConsecutive HCommRise HCommWane

HMDB-51 ✓ ✓ ✗ ✗ − ✓ ✓
UCF101 ✓ ✓ ✓ ✓ ✗ ✓ −

Atari 2600 Montezuma’s 
Revenge

✓ ✗ ✗ ✓ −

Atari 2600 Space Invaders ✓ ✓ ✗ ✓ ✓ −

CIFAR-100 ✗ ✓ ✓ ✓ − ✗ ✓ ✓

ImageNet ✓ ✓ ✓ ✓ − ✓ ✓ ✓

CIFAR-10 ✓ ✓ ✗ ✗ −

Set5—4× upscaling ✓ ✓ ✓ ✓ ✗ ✓ ✓

enwik8 ✓ −

Penn Treebank (Word Level) ✓ ✓

WN18RR ✓ ✓ ✓ ✓ −

WMT2014 English–French ✓ ✓ ✓ ✓ − − ✓ ✓

WMT2014 English–German ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

CoNLL 2003 (English) ✓ ✓ − − ✓ ✓

Ontonotes v5 (English) ✓ ✓

COCO Minival ✓ ✓ ✓ ✗ ✓

COCO test-dev ✓ ✓ ✓ ✓ ✗ ✓ − ✓

MPII Human Pose ✓ ✗ ✗ ✗ − ✓

SQuAD1.1 ✓ ✓ ✓ ✓ ✗

WikiQA ✓ ✓ − ✗ −

Cityscapes test ✓ ✓ ✓ ✓ ✓ ✗ ✓

PASCAL VOC 2012 test ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

IMDb ✓ ✓ ✓ ✓ ✓ − ✓

SST-2 Binary classification ✓ ✗ ✓ ✓ − ✓

LibriSpeech test-clean ✗ ✓ ✓ ✓ ✓ ✓

Probability 0.920 0.882 0.842 0.794 0.421 0.714 0.775 0.861

P value 0.000b 0.002b 0.004b 0.013 0.648 0.180 0.012 0.001b

A tick indicates that the hypothesis is satisfied, the cross indicates that the hypothesis is violated, and ‘–’ indicates that the hypothesis is neither satisfied or violated. We use a blank when the hypothesis 
is not applicable. Probabilities per each hypothesis are computed as the ratio between the number of benchmarks satisfying the hypothesis and the total number of benchmarks where the hypothesis is 
applicable (with ‘–’ counted as half). Statistical significance (P values) is computed using the two-sided binomial test at 95% confidence level (with ‘–’ counted as half), in bold when significant, and with ‘b’ 
when so with the Bonferroni correction (testing each individual hypothesis at 1 − 0.05/8 = 99.375% confidence level).
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aggregated participation per continent (considering all countries). 
While institutions from the United States represent about 56.7% 
of all jumps, China only represents about 18%. However, the gap 
becomes smaller if we only consider the recent years. For instance, 
Table 3 (orange) shows the same results for year 2019 only. Here 
the institutions from Asia come at the forefront in terms of activity 
compared with those from America. At the country level, activities 
from the United States and China are much more similar (41% ver-
sus 37%) and although the United States keeps leading the chart 
with respect to to the number of SOTA jumps compared with China 
(54% versus 26%), the difference has narrowed. This country-level 
concentration is also reflected when we compute the (country-wise) 
HHI to analyse concentration and competitiveness. In this case, the 
HHI is 0.33, showing a much higher concentration level per country 
compared with the analysis per institution.

These results are loosely consistent with analyses framing AI 
research progress as a ‘race’ being led by the United States and China 
(although we agree that the research community should avoid using 
this terminology due to its military connotations13). The data we 
analyse here represent only a small snapshot of all AI progress, but it 

still suggests that the United States has had a relevant lead if we look 
at the whole period, but the gap is being reduced by other countries 
such as China (Table 3). In the whole period, as Fig. 3 shows, six out 
of the top ten institutions are from the United States (the top three 
being tech giants).

The tech giants have three of the key ingredients of modern AI 
and the AI benchmark philosophy14–16: hardware (for example, com-
puting infrastructure, especially through cloud services), software 
(for example, powerful libraries and platforms that are created and 
maintained by them, such as Keras, TensorFlow and so on) and data 
(for example, people’s behaviour, satellite images, computer use and 
so on). The fourth ingredient is talent, and competitions and bench-
marks play an important role in attracting young researchers.

Discussion
Benchmarks play an important role in shaping a field—deciding 
what is important and providing a shared challenge to focus on. 
They are increasingly prevalent in AI and machine learning. In 
machine vision, benchmarks such as ImageNet 8 and CIFAR-1017 
have supported and provided a focus for research activity. This suc-
cess has led to an acceleration in the development of new and more 
varied benchmarks18.

The role of benchmark performance as a metric of progress is 
reflected in some meta-analyses of the state of AI. For instance, the 
‘AI index’19 has been summarizing the state of AI every year since 
2017. In the 2019 edition of the AI index5, chapter 3 (‘Technical 
performance’) collects the results of several benchmarks and their 
SOTA fronts over time. This complements more classical bibliomet-
ric analysis20–26. However, in this and other reports and repositories, 
benchmark results are not considered themselves as elements over 
which scientometric analysis can be done. Benchmark results are a 
genuine outcome of research, introducing innovations, techniques 
and even discoveries, and as such they warrant a level of consistent 
scientometric analysis that is currently lacking.

Benchmarks and competitions challenge AI to new levels, but 
they also create complex phenomena in which social behaviour 
and research policy play an important role. Jumps in some partic-
ular challenges have been identified as landmarks of the field27–30. 
However, the accompanying papers usually get many citations that 
simply refer to the achievement of the milestone rather than the 
actual use or extension of the techniques or the science underly-
ing it. On the other hand, poor results on these benchmarks are 
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Table 3 | Aggregated results (number of institutions, activity, 
jumps and efficiency ratio) per continent

Continent Institutions Activity Jumps Efficiency 
(%)

Americas 118/68 1,327 
(52.5%)/394 
(43.4%)

223 
(60.8%)/84 
(58.7%)

16.8/21.3

Asia 106/76 858 
(33.9%)/408 
(45%)

82 
(22.3%)/44 
(30.8%)

9.6/10.8

Europe 83/29 261 (10.3%)/65 
(7.2%)

53 (14.4%)/11 
(7.7%)

20.3/16.9

Australia 13/10 74 (2.9%)/35 
(3.9%)

9 (2.5%)/4 
(2.8%)

12.2/11.4

Africa 2/1 8 (0.4%)/5 
(0.5%)

0 (0%)/0 
(0%)

0/0

Values are for all years/only for 2019.
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associated with a low likelihood of getting the accompanying paper 
accepted in a good venue. Absence of progress on a benchmark 
more generally may be associated with stagnation in the field—
or even AI winters. The more influential particular benchmarks 
become, the more careers and project funding may depend on good 
performance on them. Conversely, very quick progress on a bench-
mark may be a sign that the field is ‘overfitting’ on its performance, 
which may not translate ideally to the real world or to research 
challenges they are intended to be a benchmark for. This leads to 
a two-way dynamic: not only do benchmarks influence research, 
but research influences the new generation of benchmarks, in a 
‘challenge-solve-and-replace’ evaluation dynamic31,32.

The benchmarks may also focus overly on advances that are eas-
ily measured, in many cases reduced to a single metric of perfor-
mance, to the exclusion of more important but less easily measured 
advances4. We have seen that the large number of attempts below 
the SOTA front may provide an important contribution beyond 
mere performance, such as new (disruptive) ideas that do not yet 
translate into SOTA jumps.

The behaviour we observe in this broad sample of AI bench-
marks cannot be used as a single indicator of the way AI research 
evolves, its dynamics, competition and progress. This is especially 
the case given the original bias in the data source, Papers With 
Code, and our criteria for selection of benchmarks, as explained 
in Methods. However, the analysis of benchmarks in modern AI is 
sufficiently important to be a major source for the understanding 
of AI progress, in conjunction with some other indicators. In this 
Article, we have presented a new toolkit of methodological innova-
tions, such as the use of communities, the associated plots and the 
aggregated indicators.

The methodology recognizes and identifies communities as 
teams that go beyond particular papers and perform one or more 
attempts on the same benchmark. In the sample of benchmarks 
we explore in this paper, focused on machine learning, the pres-
ence of industry is higher than in other areas of AI. This is also 
reflected by some of our hypotheses, and the finding that hybrid 
communities (industry–academia) are usually more successful 
than one-shot attempts. This is consistent with other scientometric 
studies analysing the role of hybrid teams1,3. However we also find 
some temporal dynamics relating to the size of the communities 
(whether new members are attracted after success), with the last two 
hypotheses (HCommRise and HCommWane) showing that the communities 
attract more members before a SOTA jump, but wane in relative 
size immediately after. Our observations of the size of the commu-
nities and the evolution of active members should be understood 
in the context of the develop–disrupt spectrum too1,2. This seems 
to reinforce the idea that some disruptions happen well below the 
SOTA front. We should then avoid a simplistic benchmark narrative 
that only encourages incremental developments (for example, using 
larger architectures and datasets).

The aggregated indicators in terms of institutions and coun-
tries are similar to those obtained with traditional bibliometric 
approaches20,21,33. However, there are important differences if we 
look at conferences, journals or citations. When focusing on major 
conferences only, four of the six top players (see www.marekrei.
com/blog/ml-and-nlp-publications-in-2019/), Google, Microsoft, 
Carnegie Melon University and Facebook, also appear in the top 
four as per our Fig. 3. This overlap is expectable, so perhaps it is 
more meaningful to focus on particular cases where the difference is 
notable. For instance, Massachusetts Institute of Technology (MIT), 
the fourth-highest institution in terms of papers published at major 
AI conferences, does not appear in our 23 top institutions. Whether 
this is a coincidental exception or caused by different incentives at 
MIT with regard to AI competitions is difficult to tell. However, 
when looking at journals, for example, from Web of Science, the dis-
tribution is much more uniform in terms of players20. MIT, Toronto 

and Stanford top the ranking in the number of citations, and the 
Chinese Academy of Science, MIT and Hong Kong Polytech top 
the ranking in the number of papers. This discrepancy between the 
ranking given by the number of papers and the number of citations 
in bibliographic analyses can be compared with the discrepancy we 
found between the most active and most efficient institutions in our 
benchmark analysis. The research activity around AI benchmarks 
is an alternative source of insights into productivity and efficiency, 
highlighting different perspectives and incentives from the more 
traditional bibliometric approach.

Despite the advantages and insights, there are inherent limita-
tions in our analysis that derive from the data source, Papers With 
Code. The alignment or divergence of observations may well origi-
nate from a biased sample of benchmarks. In the same way that bib-
liometric studies can be biased by the inclusion of journal papers 
only, or by using just a subset of conferences that reflect the recent 
dominance of machine learning in AI3,34, the studies based on 
benchmarks may be affected by the selection criteria too. Similarly, 
there may be a bias in favour of recent papers and popular areas 
of research in the data of Papers With Code. This may affect the 
general increase of activity and the distribution of results below the 
SOTA fronts in later years, since old papers below the SOTA front 
may not have been included in Papers With Code. Furthermore, 
there are other factors affecting this in different directions, such 
as the chance of occurrence of extreme values as the scale for the 
performance metric approaches its limits, which in some cases may 
compensate for the exponential growth in submissions in recent 
years.

Many areas in AI cannot be reduced to benchmarks, and even 
where they can be, the benchmark data may not be representative 
or may not include the whole span of activity in an equally thor-
ough way. If so, we encourage platforms such as Papers With Code, 
and any statistic or meta-review using them, to be more explicit in 
acknowledging these limitations, leading to an accurate reading 
of the results and a balanced comparison with other sources and 
methodologies.

Conclusions
We believe the novel way of exploring scientific activity we have 
introduced in this paper should be valuable in an era where measur-
ing citations has been brought into question as a meaningful way of 
measuring innovation35. The scientometric analysis of benchmarks 
may present an excellent opportunity for distinguishing incremen-
tal research from more innovative undertakings. To do this, we 
believe that we should move beyond tracking performance alone 
when analysing the results of benchmarks. This does not mean that 
we should renounce metrics, plots and indicators. Rather, we should 
extend the analysis of AI results to include other dimensions of 
progress4 that create more complex SOTA surfaces in the extended 
multidimensional space.

For instance, some results for the machine learning benchmarks 
are obtained with additional training data, beyond the data pro-
vided with the benchmark. The model is then adapted (through 
transfer) to the particular benchmark. Defining a coherent dimen-
sion for ‘data economy’ is challenging—but not impossible36. On 
other occasions, some teams achieve similar results with alternative 
algorithmic solutions that use much less computing resources37. As 
comparing computing resource use is not straightforward—but not 
impossible38— many competitions run the approaches on the same 
hardware, getting a normalized dimension for this (see, for example, 
ref. 39). Finally, some performance results are obtained by specializ-
ing on some subpockets of problems, while failing to achieve results 
across all problems. There are already some proposals for defining 
a generality dimension40. We leave this more comprehensive anal-
ysis for future work; there is much to be explored in the activity  
that happens below the SOTA front. This activity may represent 
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fruitful directions that may extend replicability into real reproduc-
ibility, support innovation through alternative approaches and con-
tribute to the development of AI systems more suited to real-world 
applications.

Methods
We describe the methodology, including the data sources and their transformation 
into plots and aggregated indicators.

Data sources. Information on representative benchmarks in AI and the 
scientific papers associated with them have been obtained from Papers With 
Code (paperswithcode.com), the largest source so far hosting information on 
benchmarks in AI, focused on machine learning.

Papers With Code is not necessarily comprehensive. Not all areas in machine 
learning are equally represented, and some areas out of machine learning are 
covered, especially when machine learning is combined with other techniques (for 
example, video game agents may use deep learning for perception but also Monte 
Carlo tree search and planning for action). While areas such as theorem proving 
or combinatorial optimization are covered, no benchmarks are included yet in 
Papers With Code, despite the existence of important benchmarks in AI about SAT 
solvers, constraint satisfaction and other areas.

This coverage bias is common in some sources used by Papers With 
Code, such as NLP Progress (http://nlpprogress.com/), EFF AI metrics 
(https://www.eff.org/es/ai/metrics), SQuAD (https://rajpurkar.github.
io/SQuAD-explorer/), RedditSota (https://github.com/RedditSota/
state-of-the-art-result-for-machine-learning-problems) and so on, and new 
platforms such as stateoftheart.ai. The bias is also reinforced by a tendency of 
machine learning researchers to collect and process data for their own research, 
and may introduce a bias in favour of data-collecting giants in industry prioritizing 
AI techniques that excel when fed with huge amounts of data. The very nature of 
Papers With Code also favours a higher representation of recent papers over old 
papers, especially if these old papers were not on arXiv, did not reach the SOTA or 
are not very cited. In sum, the characteristics and limitations of Papers With Code 
must be recognized when interpreting our results.

Benchmarks are grouped into tasks such as image classification, action 
recognition or language modelling, where each task can contain several 
benchmarks. A benchmark is a specific problem that is measured by a single 
performance metric. Papers With Code collects information about the 
performance of different approaches during a given period, typically ranging 
from the introduction of the benchmark to the present day. Papers With Code 
links results to papers; several results can correspond to the same paper. A JSON 
interface can be used to export the name of the paper, the metric and the date that 
was published. Data comes originally from ‘arXiv, Madewitml, Papers With Code 
(PwC), Connected Papers, ArXiv-sanity, GroundAI, Deep Learning Monitor, 
DistillPub, NLP Progress, and others’, which may also introduce a bias in favour of 
the conferences they prioritize as a source (namely, the International Conference 
on Learning Representations, the Neural Information Processing Systems annual 
meeting, the International Conference on Machine Learning, the Conference 
on Computer Vision and Pattern Recognition, the International Conference on 
Computer Vision, the European Conference on Computer Vision, the International 
Conference on Robotics and Automation, the International Conference on 
Medical Image Computing and Computer Assisted Intervention, the International 
Conference on Intelligent Robots and Systems, the International Journal of 
Robotics Research, the Multidisciplinary Conference on Reinforcement Learning 
and Decision Making, and the Medical Imaging with Deep Learning conference). 
This selection reflects a shift in popularity of the AI venues, as shown in several 
studies3.

Another cause of bias in this paper may come from our benchmark selection. 
Our criteria for inclusion are as follows. (1) Popularity: we only consider those 
benchmarks with at least 15 entries. (2) Diversity: we limit the maximum 
number of benchmarks per ‘task’ (the categories in Papers With Code) to two. 
(2a) When some problems are more challenging than others, we select the 
two most challenging ones. For instance, in the case of the more than 50 Atari 
games, deep reinforcement learning agents have struggled in a few challenging 
games: Montezuma’s Revenge, Space Invaders, Phoenix, Yars Revenge, Solaris, 
Ms. Pacman, Pitfall, Skiing and so on. From these, only the first two have at least 
15 entries. (2b) All things equal, we select the two most popular benchmarks 
for each particular ‘task’. For instance, in machine translation we find the same 
benchmark (for example, WMT) for different pairs of languages (English–German, 
German–English, English–French, ...). We choose Eng–Fre and Eng–Ger. Finally, 
it should be noted that for a few benchmarks (for example, the MNIST database 
of handwritten digits and SQuAD2.0), and due to the extraction procedures 
performed by PwC (beyond our control), some data are systematically corrupted 
or missing (for example, date, performance values and so on) and, therefore cannot 
be properly analysed as this would introduce some bias in our results.

Papers With Code does not provide information about the authors’ affiliation. 
We add this institution information by identifying authors’ affiliations through 
searching Scinapse (scinapse.io), a free search engine that provides papers, authors 

and affiliations. Geographical information is extracted as follows. We gathered data 
to manually annotate the country of origin for the different authors’ affiliations. 
We use the headquarters (for example, Google to the United States, but DeepMind 
to the United Kingdom), which benefits the United States even if many of their 
corporations have research centres in other parts of the world. See Supplementary 
Table 1 for more details about this annotation. A contribution counts for a country 
if at least one author of the paper is affiliated with an institution in that country. 
For robustness, we also tried doing this proportionally to the number of authors in 
the paper, and it produced very similar results.

Data processing. Further processing is needed to account for the following factors. 
Papers may have several authors; and authors may have multiple affiliations. One 
paper may detail several submissions to the same benchmark. Benchmarks may 
have positive (the higher the better, such as accuracy) or negative (the lower the 
better, such as error) metrics.

After this processing, how do we identify two papers as belonging to the same 
community? We first build adjacency matrices where each element indicates how 
many times a particular author has collaborated with other authors in one or more 
papers. From these networks, we apply the Clauset–Newman–Moore hierarchical 
agglomeration algorithm6 for inferring the community structure. This algorithm 
gathers vertices into groups such that there is a higher density of edges within 
groups than between them. As an illustrative example, Supplementary Fig. 1  
presents the communities discovered from the network of authors that have 
presented solutions for SQuAD1.19. It is possible for two authors who worked 
on the same paper to be split into two different communities by this approach, 
although this is a rare occurrence (5% of authors on average). Only in this case 
can a paper be associated with more than one community. Overall, there is an 
average number of 30 ± 20.9 communities per benchmark, with 11.3 ± 6.5 members 
on average (note that active members in a year may be smaller, as shown in 
Supplementary Fig. 2).

Data availability
The data regarding all the papers analysed, their authors, community memberships,  
results for the different benchmarks and SOTA jumps can be found in the data 
folder on GitHub41 (‘data’ folder).

Code availability
The code for reproducing results can be found on GitHub41.

Received: 9 October 2020; Accepted: 7 April 2021;  
Published online: 17 May 2021

References
	1.	 Fortunato, S. et al. Science of science. Science 359, eaao0185 (2018).
	2.	 Wu, L., Wang, D. & Evans, J. A. Large teams develop and small teams disrupt 

science and technology. Nature 566, 378–382 (2019).
	3.	 Frank, M. R., Wang, D., Cebrian, M. & Rahwan, I. The evolution of citation 

graphs in artificial intelligence research. Nat. Mach. Intell. 1, 79–85 (2019).
	4.	 Martínez-Plumed, F. et al. Accounting for the neglected dimensions of AI 

progress. Preprint at https://arxiv.org/abs/1806.00610 (2018).
	5.	 Perrault, R. et al. The AI Index 2019 Annual Report (AI Index Steering 

Committee, Human-Centered AI Institute, Stanford Univ. 2019);  
https://hai.stanford.edu/ai-index-2019

	6.	 Clauset, A., Newman, M. E. J. & Moore, C. Finding community structure in 
very large networks. Phys. Rev. E 70, 66–111 (2004).

	7.	 Van Raan, A. The influence of international collaboration on the impact of 
research results: some simple mathematical considerations concerning the 
role of self-citations. Scientometrics 42, 423–428 (1998).

	8.	 Deng, J. et al. ImageNet: a large-scale hierarchical image database. In 2009 
IEEE Conference on Computer Vision and Pattern Recognition 248–55 (IEEE, 
2009).

	9.	 Rajpurkar, P., Zhang, J., Lopyrev, K. & Liang, P. SQuAD: 100,000+ questions 
for machine comprehension of text. In Proceedings of the 2016 Conference on 
Empirical Methods in Natural Language Processing 2383–2392 (Association for 
Computational Linguistics, 2016).

	10.	Bonferroni, C. Teoria statistica delle classi e calcolo delle probabilita. 
Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di 
Firenze 8, 3–62 (1936).

	11.	Kwok, R. Junior AI researchers are in demand by universities and industry. 
Nature 568, 581–584 (2019).

	12.	Rhoades, S. A. The Herfindahl–Hirschman index. Fed. Res. Bull. 79, 188–189 
(1993).

	13.	Cave, S. & Ó hÉigeartaigh, S. S. An AI race for strategic advantage: rhetoric 
and risks. In Proc. 2018 AAAI/ACM Conference on AI, Ethics, and Society 
36–40 (Association for Computing Machinery, 2018).

	14.	Lee, K.-F. AI Superpowers: China, Silicon Valley, and the New World Order 
(Houghton Mifflin Harcourt, 2018).

Nature Machine Intelligence | VOL 3 | July 2021 | 581–589 | www.nature.com/natmachintell588

http://paperswithcode.com
http://nlpprogress.com/
https://www.eff.org/es/ai/metrics
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems
https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems
http://stateoftheart.ai
http://scinapse.io
https://arxiv.org/abs/1806.00610
https://hai.stanford.edu/ai-index-2019
http://www.nature.com/natmachintell


ArticlesNATure MACHIne InTellIgenCe

	15.	Horowitz, M. C., Allen, G. C., Kania, E. B. & Scharre, P. Strategic Competition 
in an Era of Artificial Intelligence 8 (Center for New American Security, 2018).

	16.	Li, W. C., Nirei, M. & Yamana, K. Value of Data: There’s No Such Thing as a 
Free Lunch in the Digital Economy Working Paper (US Bureau of Economic 
Analysis, 2019).

	17.	Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images.  
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf (2009).

	18.	Hernández-Orallo, J. et al. A new AI evaluation cosmos: Ready to play the 
game? AI Magazine 38, 66–69 (2017).

	19.	Shoham, Y. Towards the AI index. AI Magazine 38, 71–77 (2017).
	20.	Niu, J., Tang, W., Xu, F., Zhou, X. & Song, Y. Global research on AI from 

1990–2014: spatially-explicit bibliometric analysis. ISPRS Int. J. Geoinf. 5, 66 
(2016).

	21.	Juan Mateos-Garcia, K. S., Klinger, J. & Winch, R. A Semantic Analysis of the 
Recent Evolution of AI Research. https://www.nesta.org.uk/report/
semantic-analysis-recent-evolution-ai-research/ (NESTA, 2019).

	22.	Gao, F. et al. Bibliometric analysis on tendency and topics of artificial 
intelligence over last decade. Microsyst. Technol. 1–13 (2019).

	23.	Tran, B. X. et al. Global evolution of research in artificial intelligence in 
health and medicine: a bibliometric study. J. Clin. Med. 8, 360 (2019).

	24.	Tang, X., Li, X., Ding, Y., Song, M. & Bu, Y. The pace of artificial intelligence 
innovations: speed, talent, and trial-and-error. J. Inf. 14, 101094 (2020).

	25.	Qian, Y., Liu, Y. & Sheng, Q. Z. Understanding hierarchical structural 
evolution in a scientific discipline: a case study of artificial intelligence. J. Inf. 
14, 101047 (2020).

	26.	Serenko, A. The development of an AI journal ranking based on the revealed 
preference approach. J. Inf. 4, 447–459 (2010).

	27.	Campbell, M., Hoane Jr, A. J. & Hsu, F.-h Deep Blue. Artif. Intell. 134, 57–83 
(2002).

	28.	Ferrucci, D. A. Introduction to ‘This is Watson’. IBM J. Res. Dev. 56, 235–249 
(2012).

	29.	Mnih, V. et al. Human-level control through deep reinforcement learning. 
Nature 518, 529–533 (2015).

	30.	Silver, D. et al. Mastering the game of Go with deep neural networks and tree 
search. Nature 529, 484–489 (2016).

	31.	Schlangen, D. Language tasks and language games: on methodology in 
current natural language processing research. Preprint at https://arxiv.org/
abs/1908.10747 (2019).

	32.	Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A. & Choi, Y. Hellaswag: can a 
machine really finish your sentence? In Proceedings of the 57th Annual 
Meeting of the Association for Computational Linguistics 4791–4800 
(Association for Computational Linguistics, 2019).

	33.	Lei, Y. & Liu, Z. The development of artificial intelligence: a bibliometric 
analysis, 2007–2016. J. Physi. 1168, 022027 (2019).

	34.	Martínez-Plumed, F. et al. The facets of artificial intelligence: a framework to 
track the evolution of AI. In Proc. Twenty-Seventh International Joint 
Conference on Artificial Intelligence 5180–5187 (International Joint 
Conferences on Artificial Intelligence Organization, 2018).

	35.	Bhattacharya, J. & Packalen, M. Stagnation and Scientific Incentives Technical 
Report (National Bureau of Economic Research, 2020).

	36.	Houghton, B. et al. Guaranteeing reproducibility in deep learning 
competitions. Preprint at https://arxiv.org/abs/2005.06041 (2020).

	37.	Lucic, M., Kurach, K., Michalski, M., Gelly, S. & Bousquet, O. Are gans created 
equal? A large-scale study. Adv. Neural Inf. Process. Syst. 700–709 (2018).

	38.	Hernandez, D. & Brown, T. B. Measuring the algorithmic efficiency of neural 
networks. Preprint at https://arxiv.org/abs/2005.04305 (2020).

	39.	Mattson, P. et al. MLPerf training benchmark. Preprint https://arxiv.org/
abs/1910.01500 (2019).

	40.	Martínez-Plumed, F. & Hernández-Orallo, J. Dual indicators to analyse AI 
benchmarks: difficulty, discrimination, ability, and generality. IEEE Trans. 
Games 12, 121–131 (2020).

	41.	Martínez-Plumed, F., Barredo, P., hÉigeartaigh, S. Ó. & Hernández-Orallo, J. 
AI research dynamics. GitHub https://github.com/nandomp/AI_Research_
Dynamics (2021).

	42.	Kuehne, H., Jhuang, H., Garrote, E., Poggio, T. & Serre, T. HMDB: a large 
video database for human motion recognition. In 2011 International 
Conference on Computer Vision 2556–2563 (IEEE, 2011).

	43.	Soomro, K., Zamir, A. R. & Shah, M. UCF101: a dataset of 101 human 
actions classes from videos in the wild. Preprint at https://arxiv.org/
abs/1212.0402 (2012).

	44.	Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. The arcade learning 
environment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 
253–279 (2013).

	45.	Timofte, R., De Smet, V. & Van Gool, L. Anchored neighborhood regression 
for fast example-based super-resolution. In Proc. IEEE International 
Conference on Computer Vision 1920–1927 (IEEE, 2013).

	46.	Hutter, M. Human knowledge compression contest. Hutter Prize http://prize.
hutter1.net/ (2006).

	47.	Mikolov, T., Deoras, A., Kombrink, S., Burget, L. & Černocky, J. Empirical 
evaluation and combination of advanced language modeling techniques. In 
Twelfth Annual Conference of the International Speech Communication 
Association 605–608 (2011).

	48.	Dettmers, T., Minervini, P., Stenetorp, P. & Riedel, S. Convolutional 2D 
knowledge graph embeddings. In Proc. AAAI Conference on Artificial 
Intelligence Vol. 32 (2018).

	49.	Bojar, O. et al. Findings of the 2014 workshop on statistical machine 
translation. In Proc. Ninth Workshop on Statistical Machine Translation 12–58 
(Association for Computational Linguistics, 2014); http://www.aclweb.org/
anthology/W/W14/W14-3302

	50.	Sang, E. F. & De Meulder, F. Introduction to the CoNLL-2003 shared task: 
language-independent named entity recognition. In Proceedings of the Seventh 
Conference on Natural Language Learning at HLT-NAACL 2003 142–147 (2003).

	51.	Weischedel, R. et al. Ontonotes Release 5.0 ldc2013t19 23 (Linguistic Data 
Consortium, 2013).

	52.	Lin, T.-Y. et al. Microsoft COCO: common objects in context. In European 
Conference on Computer Vision 740–755 (Springer, 2014).

	53.	Andriluka, M., Pishchulin, L., Gehler, P. & Schiele, B. 2D human pose 
estimation: new benchmark and state of the art analysis. In IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR) 3686–3693 (IEEE, 2014).

	54.	Yang, Y., Yih, W.-t. & Meek, C. Wikiqa: a challenge dataset for open-domain 
question answering. In Proc. 2015 Conference on Empirical Methods in 
Natural Language Processing 2013–2018 (Association for Computational 
Linguistics, 2015).

	55.	Cordts, M. et al. The cityscapes dataset for semantic urban scene 
understanding. In Proc. IEEE Conference on Computer Vision and Pattern 
Recognition 3213–3223 (IEEE, 2016).

	56.	Everingham, M. et al. The Pascal visual object classes challenge: a 
retrospective. Int. J. Comput. Vis. 111, 98–136 (2015).

	57.	Maas, A. L. et al. Learning word vectors for sentiment analysis. In Proc. 49th 
Annual Meeting of the Association for Computational Linguistics: Human 
Language Technologies Vol. 1, 142–150 (Association for Computational 
Linguistics, 2011).

	58.	Socher, R. et al. Recursive deep models for semantic compositionality over a 
sentiment treebank. In Proc. 2013 Conference on Empirical Methods in 
Natural Language Processing 1631–1642 (Association for Computational 
Linguistics, 2013).

	59.	Panayotov, V., Chen, G., Povey, D. & Khudanpur, S. Librispeech: an ASR 
corpus based on public domain audio books. In 2015 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP) 5206–5210 
(IEEE, 2015).

Acknowledgements
F.M.-P. acknowledges funding from the AI-Watch project by DG CONNECT and DG 
JRC of the European Commission. J.H.-O. and S.Ó.h. were funded by the Future of 
Life Institute, FLI, under grant RFP2-152. J.H.-O. was supported by the EU (FEDER) 
and Spanish MINECO under RTI2018-094403-B-C32, Generalitat Valenciana under 
PROMETEO/2019/098 and European Union’s Horizon 2020 grant no. 952215 (TAILOR).

Author contributions
The four authors, F.M.-P., P.B., S.Ó.h. and J.H.-O., participated in the definition and 
refinement of the goals of this study and the hypotheses. F.M.-P., J.H.-O. and P.B. 
conceived the technical methodology. P.B. and F.M.-P. implemented the code that collects 
and processes the data, and creates the communities. F.M.-P. generated the plots. All 
authors discussed the results and contributed to the writing of the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s42256-021-00339-6.

Correspondence and requests for materials should be addressed to F.M.-P., P.B.,  
S.Ó.h. or J.H.-O.

Peer review information Nature Machine Intelligence thanks Nima Dehmamy, Lars 
Kotthoff and Dashun Wang for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

Nature Machine Intelligence | VOL 3 | July 2021 | 581–589 | www.nature.com/natmachintell 589

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.nesta.org.uk/report/semantic-analysis-recent-evolution-ai-research/
https://www.nesta.org.uk/report/semantic-analysis-recent-evolution-ai-research/
https://arxiv.org/abs/1908.10747
https://arxiv.org/abs/1908.10747
https://arxiv.org/abs/2005.06041
https://arxiv.org/abs/2005.04305
https://arxiv.org/abs/1910.01500
https://arxiv.org/abs/1910.01500
https://github.com/nandomp/AI_Research_Dynamics
https://github.com/nandomp/AI_Research_Dynamics
https://arxiv.org/abs/1212.0402
https://arxiv.org/abs/1212.0402
http://prize.hutter1.net/
http://prize.hutter1.net/
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
https://doi.org/10.1038/s42256-021-00339-6
http://www.nature.com/reprints
http://www.nature.com/natmachintell

	Research community dynamics behind popular AI benchmarks

	Benchmarks and communities

	Findings

	Global hypotheses. 
	Global indicators. 

	Discussion

	Conclusions

	Methods

	Data sources
	Data processing

	Acknowledgements

	Fig. 1 Progress in accuracy over time for ImageNet.
	Fig. 2 Progress in accuracy over time for SQuAD1.
	Fig. 3 Most prolific institutions (at least ten entries) in terms of total SOTA jumps entries and activity.
	Table 1 List of AI benchmarks used in the analysis by task.
	Table 2 Our eight hypotheses checked for each AI benchmark.
	Table 3 Aggregated results (number of institutions, activity, jumps and efficiency ratio) per continent.




