Contents

Glossary	19
1. Introduction	25
1.1. Minimal hepatic encephalopathy	27
1.1.1. Factors contributing to minimal hepatic encephalopathy	28
1.1.1.1. Hyperammonemia	30
1.1.1.2. Alterations during peripheral inflammation	31
1.1.1.3. The interplay between neuroinflammation and systemic	
inflammation	33
1.1.1.4. Inflammation in cases of liver cirrhosis	35
1.1.1.5. Microbiota	37
1.1.2. Treatments that reduce peripheral inflammation	39
1.2. The human immune system and inflammatory responses	40
1.2.1. Immune system cells	41
1.2.1.1. CD4+ T cells	42
1.2.2. Communication between cells during immune responses	43
1.2.3. Inflammatory response	45
1.2.4. T-cell receptor	46
1.3. Omics and systems biology	49
1.3.1. Overview of multi-omics data	50
1.3.1.1. High-throughput RNA quantification	52
1.3.1.2. Mass spectrometry platforms	53
1.3.2. Analysis steps and integration of multi-omics data	55
1.3.2.1. Single-omics analysis	55
1.3.2.2. Multi-omics analysis	62
1.3.2.2.1. Multivariate approaches to omics data analysis	65
1.3.3. Computational immunology	67
2. Hypothesis, aims, and contributions	71
2.1. Hypothesis and objectives	73
2.2. Aims	73
2.3. Contributions	74
2.3.1. Journal papers	78
2.3.2. Conferences	79
3. Multi-omic analysis of changes in the peripheral immune	
encenhalonathy in natients with cirrhosis	81
3.1 Introduction	83
3.2. Methods	85

3.2. Methods

3.2.1. Overview of the analysis strategy	85
3.2.2. Patients and sample collection	87
3.2.3. Transcriptomics profiling of plasma samples	88
3.2.4. Metabolomics profiling of serum samples	89
3.2.5. Analysis of cytokines in serum samples	91
3.2.6. Data pre-processing plots	92
3.2.7. Single-omic analysis	92
3.2.8. Omic power analysis	94
3.2.9. Obtaining modules of coordinated metabolites and cytol	kines
	94
3.2.10. Integration of multi-omic datasets	95
3.2.11. Data and code availability	98
3.3. Results and discussion	98
3.3.1. Data pre-processing	98
3.3.2. Transcriptomics analysis confirms changes in the	
immunophenotype in patients with minimal hepatic encephalop	pathy
and unveils new altered pathways	102
3.3.3. A coordinated metabolic and cytokinetic signature is pre	sent
in patients with minimal hepatic encephalopathy	110
3.3.4. Multi-omic integration analysis highlights altered genes	and
associated pathways related with metabolites and cytokines in	l
patients with minimal hepatic encephalopathy	115
3.4. Conclusion	126
A Identification of altered signaling nathways in CD4+	
lymphocytes isolated from natients with minimal henatic	
encenhalonathy	127
4.1 Introduction	129
4.2 Methods	131
421 Patients	131
4.2.2. Assessment of cognitive function using psychometric te	sts
	132
4.2.3. Isolation of CD4+ T lymphocytes	132
4.2.4. RNA extraction and sequencing	132
4.2.5. RNA-seq analysis	133
4.2.6. miRNA-seg analysis	134
4.2.7. Omic power analysis	134
4.2.8. Biological integration analysis	135
4.2.9. Data availability	135
4.3. Results and discussion	136
4.3.1. Data pre-processing	136
4.3.2. CD4+ lymphocytes from patients with minimal hepatic	
encephalopathy showed alterations in 167 mRNA and 20 sign	aling

1 1 0
and
149
iy
150
159
161
163
165
165
167
167
167
168
169
169
169
170
170
170
171
172
172
ea –
175
179
Sa) 179
' of 180
е
181
183

5.4. Conclusion	187
6. General discussion and conclusions	191
6.1. General discussion	193
6.2. Conclusions	195
6.3. Future perspectives	197
References	201