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A question on partial CAP-subgroups of finite
groups

A. Ballester-Bolinches∗ R. Esteban-Romero†

Yangming Li‡

Abstract

A subgroup H of a finite group G is a partial CAP-subgroup of G
if there is a chief series of G such that H either covers or avoids every
chief factor of the series. The structural impact of the partial cover
and avoidance property of some distinguished subgroups of a group
has been studied by many authors. However there are still some open
questions which deserve an answer. The purpose of the present paper
is to give a complete answer to one of these questions.
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1 Introduction
In this paper all groups are assumed to be finite. A subgroup A of a groupG is
said to have the cover-avoidance property in G and is called a CAP-subgroup
of G if either HA = KA or A ∩ H = A ∩ K for every chief factor H/K of
G. CAP-subgroups have played an important role in the structural study
of soluble groups because, in that universe, some important subgroups such
as Hall subgroups, maximal subgroups, normalisers associated to saturated
formations and prefrattini subgroups enjoy the property. In fact, as it is
shown in [1, Chapter 4], the cover and avoidance property and conjugacy of
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the members of some of the above families characterise solubility. Despite of
this, there was a little evidence to suggest a huge proliferation of results in
the area. However, Ezquerro [5] began to study the structural impact of the
cover and avoidance embedding of some relevant families of subgroups. He
observed that it is enough to impose the cover and avoidance property to the
maximal subgroups of the Sylow subgroups to get supersolubility. This result
establishes the standpoint for a research project consisting in characterising
some formations by the cover and avoidance property of some distinguished
subgroups such as maximal subgroups of Sylow subgroups, second maximal
subgroups of Sylow subgroups or minimal subgroups. For an overview, the
reader is referred to [2, 7, 11] and the papers cited therein.

Our point of departure is the observation that the cover and avoidance
property is not persistent in intermediate subgroups, that is, if H is a CAP-
subgroup of G and H is contained in K, then H is not a CAP-subgroup of K
in general (cf. [2, Example 1.3]). Surprisingly, the following weaker property
introduced by Y. Fan, X. Guo, and K. P. Shum in [6] has this property: a
subgroup A of a group G is said to be partial CAP-subgroup of G if there
exists a chief series ΓA of G such that A either covers or avoids each factor
of ΓA. These type of subgroups are also called semi CAP-subgroups (see
[6]) or SCAP-subgroups (see [11]). Of course, every subgroup of a supersol-
uble group is a partial CAP-subgroup. Hence the natural question arising is
whether there are more restricted families of subgroups whose partial cover
and avoidance property could guarantee supersolubility. In [2] and [11] it is
proved, as a particular case of a more general result, that the partial CAP-
property of a much more restricted family of subgroups, namely the maximal
subgroups of the Sylow subgroups of the generalised Fitting subgroup, im-
plies supersolubility. In addition, in [2] a local approach is used. It allows us
to discover new situations and see how the global properties can be deduced
from the local ones.

A further step in this analysis is to consider a dual family, that is, the
one of all subgroups of order p or order 4, and wonder whether a group is
supersoluble provided that all the members of this family are partial CAP-
subgroups. In fact, the following more general question was asked by the
third author in [10]:

Question 1.1. Let F be a saturated formation containing U, the class of
all supersoluble groups, and H a normal subgroup of a group G such that
G/H ∈ F. Suppose that, for every non-cyclic Sylow subgroup P of F∗(H),
P has a subgroup D such that 1 < |D| < |P | and all subgroups E of P with
order |E| = |D| and with order |E| = 2|D| (if P is a non-abelian 2-group
and |P : D| > 2) are partial CAP-subgroups of G. Does G belong to F?
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The following example gives a negative answer to Question 1.1.

Example 1.2. Let H = 〈a, b | a5 = b5 = 1, ab = ba〉 be an elementary
abelian group of order 52, and let α be an automorphism of H of order 3
satisfying that aα = b, bα = a−1b−1. Let H1, H2 = 〈a′, b′〉 be two copies of
H and denote by G = [H1 × H2]〈α〉 the corresponding semidirect product.
If A is a subgroup of G of order 25, there exists a minimal normal subgroup
N such that A ∩N = 1. Hence A covers or avoids the following chief series
of G:

1 < N < AN < G.

Consequently A is a partial CAP-subgroup of G and so G is a non-su-
persoluble group whose every second maximal subgroups are partial CAP-
subgroups. Note thatH is an absolutely irreducible C3-module over the finite
field of 5-elements.

In fact, the main result of [3] characterises when the partial cover and
avoidance property of the second maximal subgroups implies supersolubility.

The main objective of the present paper is to show that Question 1.1 has
an affirmative answer for minimal subgroups.

Theorem 1.3. Let F be a saturated formation containing U, the class of all
supersoluble groups, and let G be a group with a normal subgroup H such
that G/H ∈ F. Then G ∈ F if every cyclic subgroup of F∗(H) of prime order
or order 4 is a partial CAP-subgroup of G.

We note that the saturation of F cannot be removed in Theorem 1.3.
Consider the formation F of all groups whose supersoluble residual is trivial
or a direct product of copies of the alternating group S = A5 of degree 5.
Then F is a formation which contains the class U of all supersoluble groups.
The group G = SL2(5) has a normal subgroup H = Z(G) of order 2 and
obviously H, which is the unique subgroup of prime order of F∗(H), is a
partial CAP-subgroup of G. However, G does not belong to F.

The proof of the above result depends on the following local theorem.

Theorem 1.4. Let p be a prime and let G be a group. If every cyclic subgroup
of G of order p or order 4 is a partial CAP-subgroup of G, then G is p-
supersoluble.

As a consequence of Theorem 1.3, we get another local result.

Corollary 1.5. Assume that p is a prime and F is a saturated formation
containing all p-supersoluble groups such that Ep′F = F. Suppose that G is a
group with a normal subgroup N such that G/N belongs to F. If every cyclic
subgroup of F∗p(N) of order p or 4 is a partial CAP-subgroup of G, then G
belongs to F.
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Recall that for every group X and for every prime p, the subgroup F∗p(X)

is defined to be the subgroup ofX such that F∗p(X)/Op′(X) = F∗
(
X/Op′(X)

)
.

2 Preliminaries
This section contains the results which are needed to prove our main theor-
ems. We begin with a lemma containing the basic properties of the partial
CAP-subgroups which turn out very useful in induction arguments.

Lemma 2.1 (see [6]). Every CAP-subgroup of G is a partial CAP-subgroup
of G. Furthermore, if S is a partial CAP-subgroup of a group G, then:

1. If S ≤ K ≤ G, then S is a partial CAP-subgroup of K.

2. If N ≤ S and N E G, then S/N is a partial CAP-subgroup of G/N .

3. If N E G and (|S|, |N |) = 1, then SN/N is a partial CAP-subgroup
of G/N .

The next lemma describes a configuration often encountered in the study
of partial CAP-subgroups. Although its proof is part of the proof of Lemma
2.2 in [2], we include it here for the sake of completeness.

Lemma 2.2. Let H be a partial CAP-subgroup of a group G. Suppose that
Q is a normal subgroup of G such that H is contained in Q. Then there
exists a chief series ΩH of G passing through Q such that H either covers or
avoids each chief factor in ΩH .

Proof. Since H is a partial CAP-subgroup of the group G, there exists a chief
series

ΓH : 1 = G0 < G1 < · · · < Gn = G

of G such that H either covers or avoids each chief factor in ΓH . Since Q is
a normal subgroup of G, then Q is a CAP-subgroup of G. Therefore

ΓH ∩Q : 1 = G0 ∩Q < G1 ∩Q < · · · < Gn ∩Q = Q

is, avoiding repetitions, part of a chief series of G. Moreover, if H covers
(respectively, avoids) Gi+1/Gi, then H covers (respectively, avoids) (Gi+1 ∩
Q)/(Gi ∩Q).

We can complete ΓH ∩ Q to obtain a chief series ΩH of G. Note that H
avoids all chief factors above Q. Hence there exits a chief series

ΩH : 1 = G∗0 < G∗1 < · · · < G∗r = Q < G∗r+1 < · · · < G∗n = G

of G such that H covers or avoids all chief factors of G in ΩH .
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Recall that a class of groups F is called a formation if it is closed under
taking epimorphic images and subdirect products. F is said to be saturated
if G/Φ(G) ∈ F implies G ∈ F.

Let F be a non-empty formation. Each group G has a smallest normal
subgroup whose quotient belongs to F; this is called the F-residual of G and
it is denoted by GF. Clearly GF is a characteristic subgroup of G (cf. [1, 4]
for details).

Let p be a prime. A group G is said to be p-supersoluble if G is p-soluble
and every chief factor of order divisible by p is cyclic. The class Up of all
p-supersoluble groups is a saturated formation. Clearly the intersection of
all Up is again a saturated formation which is composed of all soluble groups
whose chief factors are cyclic. This class is the class of all supersoluble groups
and is denoted by U.

Let H be a non-empty class of groups. According to [1, 1.2.9, 2.3.18], a
chief factorH/K of a groupG is said to be H-central inG if [H/K]∗G belongs
to H, where [H/K]∗G is the semidirect product [H/K]

(
G/CG(H/K)

)
ifH/K

is abelian and G/CG(H/K) if H/K is non-abelian. A normal subgroup N
of a group G is called H-hypercentral in G if every chief factor of G below
N is H-central in G. By virtue of the generalised Jordan-Hölder theorem
[1, 1.2.36], we obtain that the product of H-hypercentral normal subgroups
of a group G is again H-hypercentral in G. Thus every group G possesses
a unique maximal normal H-hypercentral subgroup called the H-hypercentre
of G and denoted by ZH(G). Applying again the generalised Jordan-Hölder
theorem, every chief factor of G below ZH(G) is H-central in G.

The following theorem is a good illustration of how the partial cover and
avoidance property of the minimal subgroups influences the embedding of a
normal p-subgroup and it plays a crucial part in the proof of our main results.

Theorem 2.3. Let p be a prime and let P be a normal p-subgroup of a group
G. If every cyclic subgroup of P of order p or 4 is a partial CAP-subgroup
of G, then P is contained in ZU(G).

Proof. Suppose, by way of contradiction, that the theorem is false, and choose
a pair (G,P ) for which it fails. Then there exists a chief factor of G below P
which is not of prime order. Among the non-cyclic chief factors of G below
P , we choose one L/K with |L| as small as possible.

Assume there exists an element x of L of prime order or order 4 which is
not in K. Then 〈x〉 is a partial CAP-subgroup of G. Applying Lemma 2.2,
there exists a chief series

Γ : 1 = L0 < L1 < · · · < Ls−1 < Ls = L < · · · < G
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of G passing through L such that 〈x〉 either covers or avoids each chief factor
in Γ. By the choice of L/K, we have each chief factor Li/Li−1 is of prime order
for i = 1, 2, . . . , s− 1. If 〈x〉 covers Ls/Ls−1, then Ls/Ls−1 is of prime order.
Hence L ≤ ZU(G). This implies that L/K is of prime order, which is not
the case. Therefore 〈x〉 avoids Ls/Ls−1. Then x ∈ Ls−1 and so Ls−1K > K.
Hence L = Ls−1K. Since L/K = Ls−1K/K is G-isomorphic to Ls−1/(Ls−1∩
K), it follows that Ls−1/(Ls−1 ∩ K) is a chief factor of G. The choice of
L/K implies that Ls−1/(Ls−1 ∩K) is of prime order. Consequently L/K is
of prime order. This contradiction proves that every element of L of order p
or order 4 is contained in K.

Let X denote the intersection of the centralisers of the chief factors of
G below K. Then X stabilises a chain of subgroups of K. Applying [4, A,
12.4], Op(X) centralises K. In particular, Op(X) centralises every element
of prime order or order 4 of L. By [8, IV, 5.12], Op(X) centralises L. Thus
X/CX(L/K) is a normal p-subgroup of G/CG(L/K). By [4, B, 3.12], X
centralises L/K. This implies that L/K can be regarded as an irreducible
G/X-module over the finite field of p-elements. Note that every chief factor
U/V of G below K is of order p and so G/CG(U/V ) is cyclic of order dividing
p − 1. Consequently, G/X is abelian of exponent dividing p − 1. Applying
[4, B, 9.8], L/K has order p. This final contradiction shows that no such
counterexample G exists.

Since every cyclic chief factor of order 2 in a given chief series of a group
is central, we have:

Corollary 2.4. Suppose that P is a normal 2-subgroup of G. If every cyclic
subgroup of P of order 2 or 4 is a partial CAP-subgroup of G, then P ≤
Z∞(G), the nilpotent hypercentre of G.

3 Proofs of the main theorems
We are now ready to prove our main results.

Proof of Theorem 1.4. Suppose that the theorem is false, and let G be a
counterexample of minimal order. The structure of G is analysed, and even-
tually a contradiction is reached. For the ease of reading we break the argu-
ment into separately-stated steps.

Step 1. Every proper subgroup of G is p-supersoluble, that is, G is a
minimal non-p-supersoluble group.

Let M be a maximal subgroup of G and let L be a cyclic subgroup of
M of order p or order 4. Then L is a partial CAP-subgroup of G. By
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Lemma 2.1 (1), L is a partial CAP-subgroup of M . Hence M satisfies the
hypotheses of the theorem. The minimal choice of G yields that M is p-
supersoluble. Consequently, every proper subgroup of G is p-supersoluble,
since the class of all p-supersoluble groups is subgroup-closed. This is to say
that G is a minimal non-p-supersoluble group.

Step 2. Op′(G) = 1. Therefore F(G) = Op(G).
Set G = G/Op′(G). Suppose that L is a cyclic subgroup of G of order p

or 4. Then we can write L = LOp′(G)/Op′(G), where L is a cyclic subgroup
of G of order p or 4. By hypothesis, L is a partial CAP-subgroup of G. By
Lemma 2.1 (3), L is a partial CAP-subgroup of G. Hence G satisfies the
hypothesis of the theorem. If Op′(G) were non-trivial, then G would be a
p-supersoluble group by the minimal choice of G. In this case, G would be a
p-supersoluble group. This contradicts Step 1. Hence Op′(G) = 1.

Applying Theorem 2.3, we have:
Step 3. F(G) ≤ ZU(G).
Step 4. G = F∗(G).
Assume that F∗(G) is a proper subgroup of G. Then F∗(G) is p-supersol-

uble and so F∗(G) = F(G) = Op(G). Since F(G) is U-hypercentral in G, we
can apply [4, IV, 6.10] to conclude that G/CG

(
F∗(G)

)
∈ U. By [9, X, 13.12],

CG

(
F∗(G)

)
≤ F(G) and so G/F(G) ∈ U. Since every G-chief factor of F(G)

is of order p, it follows that G ∈ Up, contrary to supposition. Hence we have
G = F∗(G).

Step 5. G/Z(G) is non-abelian simple and G is perfect.
By Step 4 G = F∗(G) = F(G)E(G), where E(G) is the layer of G, that is,

the product of all components ofG (cf. [9, X, 13.18]). SinceG is not nilpotent,
we have that E(G) is not contained in F(G). Let H be a component of G.
Then H is normal in G and H/Z(H) is non-abelian simple. Moreover, by
Step 2, p divides the order of H. In particular, H is not p-supersoluble. By
Step 1, H = G.

Step 6. The conclusion of the proof.
Assume that M is a maximal subgroup of G not containing Z(G). Then

MZ(G) = G and so M is a normal subgroup of G because M is normalised
by M and centralised by Z(G). But then G/M is isomorphic to the abelian
group Z(G)/

(
M ∩ Z(G)

)
, which contradicts that G is perfect. Consequently

Z(G) is contained in the Frattini subgroup of G. Let A be a normal subgroup
of G such that G/A is a chief factor of G. Then AZ(G) 6= G. Therefore A
contains Z(G) and so A = Z(G). Hence Z(G) belongs to all the chief series
of G. Let x be an element of G of order p or 4. We know 〈x〉 is a partial
CAP-subgroup of G. Hence 〈x〉 covers or avoids the G-chief factor G/Z(G).
This implies that x ∈ Z(G). Applying [8, IV, 5.5], G is p-nilpotent. This
final contradiction completes the proof.
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Proof of Theorem 1.3. Clearly we may assume that H 6= 1. Let p be a
prime dividing the order of F∗(H). By hypothesis, every cyclic subgroup
of F∗(H) of prime order or order 4 is a partial CAP-subgroup of G. By
Lemma 2.1 (1), every cyclic subgroup of F∗(H) of prime order or order 4 is
a partial CAP-subgroup of F∗(H). By Theorem 1.4, we know that F∗(H)
is p-supersoluble for all primes p. Therefore F∗(H) is supersoluble and so
F∗(H) = F(H). Moreover, applying Theorem 2.3, every Sylow subgroup
of F(H) is contained in the supersoluble hypercentre of G. Hence F(H) ≤
ZU(G). By virtue of [4, IV, 6.10], G/CG

(
F(H)

)
∈ U. Since G/H belongs

to F and F contains U, it follows that G/CH

(
F(H)

)
∈ F. This implies that

G/F(H) ∈ F because CH

(
F∗(H)

)
≤ F(H) (cf. [9, X, 13.12]). Since every

chief factor of G below F(H) is of prime order and F contains U, we obtain
that G acts F-hypercentrally on F(H). It follows that G ∈ F.

Proof of Corollary 1.5. We argue by induction on the order of G. Applying
Lemma 2.1 (1), every cyclic subgroup of F∗p(N) of order p or 4 is a partial
CAP-subgroup of F∗p(N). Applying Theorem 1.4, F∗p(N) is p-supersoluble. If
F∗p(N) is a p′-group, then F∗p(N) = Op′(N) and soN is a p′-group. In this case
G ∈ Ep′F = F. Therefore, we may assume that p divides the order of F∗p(N).
Since every abelian chief factor in a given chief series of F∗p(N) with order
divisible by p is central in F∗p(N), we conclude that F∗p(N) is p-nilpotent,
that is, F∗p(N) = Op′,p(N). Set G = G/Op′(G) and N = NOp′(G)/Op′(G).
Clearly F∗p(N) = F∗p(N) Op′(G)/Op′(G). If L is a cyclic subgroup of F∗p(N) of
order p or 4, we can write L = LOp′(G)/Op′(G), where L is a cyclic subgroup
of F∗p(N) of order p or 4. By hypothesis, L is a partial CAP-subgroup of G.
Hence L is a partial CAP-subgroup of G by Lemma 2.1 (3). Thus G satisfies
the hypothesis of the theorem. If Op′(G) 6= 1, then G ∈ F. Then G ∈ F,
as Ep′F = F. Hence we can assume that Op′(G) = 1. Therefore F∗(N) =
F∗p(N) = Fp(N) = F(N) = Op(N). Applying Theorem 1.3, G ∈ F.
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