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Abstract

The transportation of people and goods is both a complex problem and an essen-
tial service in modern society. Among the various modes of transportation, road
transport offers unique advantages and challenges, thanks to its flexibility and op-
eration in both urban and interurban areas. The growing social concern for the
environment also affects road transportation, as motor vehicles are a major source
of greenhouse gas emissions. However, the digitalisation of society and the emer-
gence of new transport models indicate the potential for improvement in trans-
portation, which could be better adapted to its users while operating in a more
sustainable way.

In this thesis, we address the improvement of road transportation by means of
computational techniques and artificial intelligence. This includes the modelling of
transportation through multi-agent systems and their subsequent simulation. The
operation of transportation fleets is determined by the distribution of tasks, the
planning of the actions of each vehicle and their subsequent coordination. We
explore different techniques and develop proposals that improve the operation of
different transportation systems by considering three points of view: that of the
operator, that of the user and, finally, that of sustainability. In other words, we aim
to obtain systems with higher economic performance and quality of service while
reducing their environmental impact.

The objective of improving road transportation is pursued on three fronts. First,
a framework for the effective modelling and simulation of transportation systems
is proposed. This contribution serves as a tool for the experimentation of the rest
of the research. Next, the research focuses on urban transportation, a use case
for which we model the city as a shared resource scenario. We propose the use
of decentralised vehicle fleets for greater reactivity of the system. Through self-
interested modelling, vehicles are incentivised to provide a better service to users
while avoiding resource congestion. Finally, with the intention of bringing inno-
vative solutions also to rural areas, our previous proposals are adapted to the use
case of rural interurban transportation. In this case, we note the need for flexi-
ble and user-friendly public transportation, with special emphasis on its economic
sustainability. Our system proposals follow these principles following the demand-
responsive transportation paradigm.



ii

The results of this thesis provide practical solutions for the enhancement of
different road transportation systems, contributing to a future of more sustainable
and user-tailored flexible mobility. As a contribution to the field of artificial intel-
ligence the developed techniques have the potential to be adapted to fields beyond
transportation, providing general solutions for the task allocation and the coordi-
nation of distributed elements.
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Resumen

El transporte de personas y bienes supone un problema complejo a la vez que un
servicio esencial en la sociedad moderna. Entre los distintos modos de transporte,
el transporte rodado supone ventajas y retos únicos, gracias a su flexibilidad y op-
eración tanto urbana como interurbana. La creciente preocupación social respecto
al medio ambiente afecta también al transporte rodado, pues los vehı́culos a motor
son una gran fuente de emisiones de gases de efecto invernadero. Sin embargo, la
digitalización de la sociedad y la aparición de nuevos modelos de transporte indi-
can el potencial de mejora del transporte rodado, que podrı́a adaptarse mejor a sus
usuarios a la vez que operar de forma más sostenible.

En esta tesis afrontamos la mejora del transporte rodado mediante técnicas de
computación e inteligencia artificial. Esto incluye el modelado de sistemas de
transporte mediante sistemas multiagente y su posterior simulación virtual. La op-
eración de las flotas de transporte está determinada por la distribución de tareas,
la planificación de las acciones de cada vehı́culo y su posterior coordinación. Ex-
ploramos distintas técnicas y desarrollamos propuestas que mejoran la operación
de distintos sistemas de transporte rodado considerando tres puntos de vista: el
del operador, el del usuario y, finalmente, el de la sostenibilidad. En otras pal-
abras, apuntamos a obtener sistemas con mayor rendimiento económico y calidad
de servicio a la par que un reducido impacto medioambiental.

El objetivo de la mejora del transporte rodado se lleva a cabo desde tres frentes.
Primero, se propone un marco de trabajo para el modelado efectivo y la simulación
de sistemas de transporte. Esta aportación nos sirve como herramienta para la ex-
perimentación del resto de la investigación. Después, la investigación se centra
en el transporte urbano, caso de uso para el que modelamos la ciudad como un
escenario con recursos compartidos. Proponemos el uso de flotas de vehı́culos
descentralizados para una mayor reactividad del sistema. Mediante un modelado
de autointerés, se incentiva a los vehı́culos a proveer de un mejor servicio a los
usuarios a la vez que evitan la congestión de los recursos. Finalmente, con la in-
tención de aportar soluciones innovadoras también a las áreas rurales, se adaptan
nuestras propuestas previas para el caso de uso del transporte rural interurbano. En
este caso, observamos la necesidad de transporte público flexible y adaptado a los
usuarios, con especial importancia en su sostenibilidad económica. Nuestras prop-
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uestas de sistema siguen estos principios atendiendo al paradigma del transporte
adaptable a la demanda.

Los resultados de esta tesis aportan soluciones prácticas para la mejora de dis-
tintos sistemas de transporte rodado, contribuyendo a un futuro de movilidad flex-
ible más sostenible y adaptada al usuario. Como aportación en el ámbito de la in-
teligencia artificial, las técnicas desarrolladas tienen el potencial de ser adaptadas
a campos más allá del transporte como soluciones generales para la distribución de
tareas y la coordinación de elementos distribuidos.
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Resum

El transport de persones i béns suposa un problema complex alhora que un servei
essencial en la societat moderna. Entre els diferents modes de transport, el trans-
port rodat suposa avantatges i reptes únics, gràcies a la seua flexibilitat i operació
tant urbana com interurbana. La creixent preocupació social respecte al medi am-
bient afecta també al transport rodat, doncs els vehicles de motor són una gran font
d’emissions de gasos d’efecte d’hivernacle. No obstant això, la digitalització de la
societat i l’aparició de nous models de transport indiquen el potencial de millora
del transport rodat, que podria adaptar-se millor als seus usuaris alhora que operar
de forma més sostenible.

En esta tesi afrontem la millora del transport rodat mitjançant tècniques de com-
putació i intel·ligència artificial. Això inclou el modelatge de sistemes de transport
mitjançant sistemes multiagent i la seua posterior simulació virtual. L’operació de
les flotes de transport està determinada per la distribució de tasques, la planificació
de les accions de cada vehicle i la seua posterior coordinació. Explorem diferents
tècniques i desenvolupem propostes que milloren l’operació de diferents sistemes
de transport rodat considerant tres punts de vista: el de l’operador, el de l’usuari i,
finalment, el de la sostenibilitat. En altres paraules, apuntem a obtindre sistemes
amb major rendiment econòmic i qualitat de servei al mateix temps que un reduı̈t
impacte mediambiental.

L’objectiu de la millora del transport rodat es duu a terme des de tres fronts.
Primer, es proposa un marc de treball per al modelatge efectiu i la simulació de sis-
temes de transport. Esta aportació ens serveix com a eina per a l’experimentació
de la resta de la investigació. Després, la investigació se centra en el transport
urbà, cas d’ús per al qual modelem la ciutat com un escenari amb recursos com-
partits. Proposem l’ús de flotes de vehicles descentralitzats per a una major reac-
tivitat del sistema. Mitjançant un modelatge d’autointerés, s’incentiva als vehicles
a proveir d’un millor servei als usuaris alhora que eviten la congestió dels recur-
sos. Finalment, amb la intenció d’aportar solucions innovadores també a les àrees
rurals, s’adapten les nostres propostes prèvies per al cas d’ús del transport rural
interurbà. En este cas, observem la necessitat de transport públic flexible i adaptat
als usuaris, amb especial importància en la seua sostenibilitat econòmica. Les nos-
tres propostes de sistema segueixen estos principis atés el paradigma del transport
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adaptable a la demanda.
Els resultats d’esta tesi aporten solucions pràctiques per a la millora de difer-

ents sistemes de transport rodat, contribuint a un futur de mobilitat flexible més
sostenible i adaptada a l’usuari. Com a aportació en l’àmbit de la intel·ligència
artificial, les tècniques desenvolupades tenen el potencial de ser adaptades a camps
més enllà del transport com a solucions generals per a la distribució de tasques i la
coordinació d’elements distribuı̈ts.



Agräıments

Vull aprofitar aquest espai per a mencionar a les diferents persones que han con-
tribuı̈t, implı́citament o explı́citament, al desenvolupament de la meua tesi doctoral.

El present document representa el final de la meua etapa introductòria al món
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incorporació al GTI-IA i al VRAIN, per tant, va ser gràcies a dos factors. D’una
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d’una pandèmia global, aconseguiren enganyar-me per a estendre la feina feta a un
doctorat. I acı́ estem.

Entre octubre de 2020 i gener del 2024 la relació amb els meus directors no
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Gràcies als meus pares, Pascual i Amparo, per marcar en mi els valors de la curiosi-
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germans, Reina i Ximo. A Reina, per créixer amb mi; a Ximo, per fer-me créixer.
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Introduction and Objectives
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Chapter 1

Introduction and Objectives

“The most important step a man can take. It’s not the first one, is it? It’s
the next one. Always the next step, Dalinar.” – Quote from the novel

Oathbringer, by Brandon Sanderson [132]

3



4 1.1. Characterising Transportation Enhancement

Modern dictionaries define ”transportation” as the action or process of trans-
porting -carrying, conveying, or moving- things or persons from one place to an-
other. Although technically correct, this definition may lead the reader to oversim-
plify the phenomenon we understand today as transportation. This study focuses
on road transportation, which is performed between but also inside human settle-
ments. Road transportation is contextualised within society and occurs as a crucial
part of people’s lives. Its infrastructure is entangled with our cities and landscapes;
its operation influences our decisions. The use of transportation systems requires
the coordination of several parties and has a tangible effect on the population it
serves. Recognising its critical role in our society, this thesis focuses on improving
road transportation and its consequent social enhancement. Transportation sys-
tems are redefined as resource -vehicles, stations- distribution problems for which
solutions are proposed through computing and artificial intelligence techniques.

1.1 Characterising Transportation Enhancement

Transportation systems are characterised by several features, as illustrated in Fig-
ure 1.1. A transportation mode comprises the type of vehicles employed to carry
passengers or goods, the mobile elements of transportation. The infrastructure is
the physical support of a transportation mode, generally composed of the vehicle
fleet and a series of fixed elements such as routes and stations. The network is
defined as a system of linked locations that provide the transportation system’s
functional and spatial organisation. Finally, the demand flow, or simply flow, con-
stitutes the movement of a specific volume of passengers, goods, or information,
with a particular frequency, over the network, associating it with an origin, several
intermediate locations, and a destination.

Let us consider a public urban bus service as an example of a road transporta-
tion system. Such a service would use bus transportation as its mode, with an in-
frastructure supported by the bus station, bus stops and the routes assigned to each
vehicle, a network conformed by the urban roads, and a demand flow described by
the people making use of the service at each instant of the service hours.

Having defined transportation, assessing how computer science research ap-
proaches its optimisation is pertinent. Most authors consider two often conflicting
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Figure 1.1: Core Components of Transportation. Image extracted and adapted
from [126].

optimisation perspectives: that of the transportation operator and that of the user.
On the one hand, the operator aims for the economic sustainability of the ser-
vice. Their perspective is reflected in decreasing costs and boosting benefits while
preserving an acceptable service quality. On the other hand, the user perspective
focuses on their experience when using the service. User experience comprises the
reliability of the service, better frequency, adaptability to specific user needs and,
generally, a reduction in passenger waiting and travelling times. Although they are
not opposing, as the operator benefits from satisfying its service users’ needs, it can
be seen how both perspectives are conflicted: a cut in costs may imply worsening
service quality, whereas boosting passenger experience may increase operator ex-
penses.

During this thesis’s development, we found research focusing on a single of
the above perspectives. However, the more comprehensive works considered both
perspectives as their optimisation objective, thus formulating a multi-objective ap-
proach that generally leads to a trade-off between operational costs and passenger
experience. Finally, more recent works consider a third perspective: the environ-
mental impact of the transportation service. This perspective, often referred to as
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the sustainability [67] of the service, is again conflicted with the operator’s and
the user’s perspective. Sustainability concerns the direct and indirect effects on
the environment the transportation service has, for instance, carbon dioxide emis-
sions or traffic congestion. The inclusion of sustainability in the multi-objective
formulation implies the inclusion of the context in which the transportation sys-
tem is deployed in the optimisation efforts. In other words, emphasis is placed on
transport’s effect on society, not only on its operators and users.

Although they may be conflicting, all three perspectives (operator, user, and
sustainability) have synergies, often meaning that aiming to improve one will also
lead to improvements in another. As an example, let us consider enhancing a
transportation system from the user’s perspective, seeking that its operation is bet-
ter adapted to the actual demand of the serviced area. The research may reveal that
the transportation line servicing the area could be replaced by a single on-demand
vehicle with a flexible route. Implementing this change would imply lower oper-
ational costs, as a whole line is replaced by a single vehicle; less pollution, as the
vehicle would only travel if there was any demand; and, finally, a better service
to the citizens of that area. With one modification, all three perspectives could be
improved. This illustrates how considering all three perspectives may enrich road
transportation optimisation research and lead to globally better results.

In this thesis, road transportation is improved by formulating transportation as a
specific type of resource allocation problem [35, 167]. From a general perspective,
resource allocation comprises assigning a certain amount of resources to a partic-
ular task. Establishing parallelism with the transportation domain, we consider the
system’s fleet and infrastructure as resources to assign, whereas the displacement
demand defines the tasks [88], the travel services requested by users. The most
straightforward application of this modelling considers the vehicle fleet as a set
of resources [11]. In this sense, the operator’s perspective can be improved by
allocating vehicles more cost-effectively to travel requests. In contrast, the user’s
perspective can be enhanced by an assignment that reduces waiting and travelling
time, for instance. However, other types of transportation infrastructure can also
be considered as resources. For example, a set of electric charging stations may
represent resources allocated to vehicles that need to recharge their batteries [72].
In this case, optimised allocation can lead to energy savings and thus lower the
environmental impact of the transportation system.
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1.2 Artificial Intelligence for Transportation

The field of artificial intelligence (AI) provides tools for solving complex problems
in barely any domain. When it comes to transportation, there is a subset of AI
techniques that have particular relevance to dealing with its associated challenges.

For the modelling of transportation systems, we introduce software agents [66],
computer programs that aim to reproduce typically human values such as auton-
omy and reactive and social behaviour. Among them, we find a specification in in-
telligent agents [159] which can perceive their environment, and plan and execute
concrete actions that modify the environment to achieve a specific goal. Intelligent
agents are often part of multi-agent systems [160], where they interact with each
other and with their shared environment. Multi-agent systems permit studying the
interaction of various types of agents -often having different capabilities and goals-
in a particular environment. These interactions may bring crucial insights into the
research of individual problems or fields.

Road transportation, as defined previously, poses a complex problem with many
actors, and that is often divided into concrete subproblems. Because of that, trans-
portation (as a research field) and multi-agent systems (as an AI technique) are
a perfect match. The so-called agent-based modelling (ABM) [56] is a compu-
tational model for simulating the actions and interactions of autonomous agents,
aiming to understand the behaviour of a system and what governs its outcomes.
Following the principles of ABM [13], the transportation network is represented
by the shared environment of the multi-agent system. Each actor -vehicles, users,
managers and even parts of the infrastructure- can be encoded into an intelligent
agent, together with their actions and goals. Finally, the system’s flow is deter-
mined by the agent’s behaviours and interactions. This scenario provides the ideal
breeding ground for studying, developing, and validating techniques to enhance
transportation.

ABM can also be defined as a software simulation with intelligent agents as its
building blocks [90]. Software simulations are processes that represent real-world
events through mathematical formulas. A simulation allows the user to observe the
execution and outcome of the reproduced phenomenon in a virtual environment
without actually performing it. In addition, such an environment can be tailored to
study specific effects. The improvement of a transportation service generally in-
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volves modifications over its network, infrastructure, or operation. These changes,
in turn, have an impact on all involved actors as well as society. Because of that,
simulations are of the utmost importance for testing and validating transportation
improvement techniques [19, 25], ensuring the reliability of a change before im-
plementing it in the real world.

Once a transportation system is modelled, its improvement comes from the
development of its operation. Such an operation can be split into three tasks: al-
locating travel requests to fleet vehicles, scheduling each vehicle’s actions, and
coordinating the execution of such actions. An essential part of the system’s or-
ganisation is the component that will be in charge of solving the above tasks [149].
If a single component is in command, we model a centralised operation [78]. In
this case, the other system actors will receive instructions from the governing com-
ponent. In contrast, actors can be given some autonomy, allowing their own goals
to be reflected in their actions. This describes a decentralised system [44]. At
the technical level, the difference between these organisational models lies in the
location where the algorithms are implemented and the flow of communication
between the different elements.

Several techniques exist to build solutions for the request-vehicle assignments,
vehicle scheduling and fleet coordination tasks. A classic technique is automated
planning. Planning algorithms receive as input a set of goals, a set of possible
actions, and the current state of the environment in which the agents operate. The
output then returns a list of actions to be performed in the environment to achieve
the predefined goals. This powerful technique can solve an entire transportation
system, either through a centralised planner or in a distributed manner, allowing
each vehicle to plan its actions. However, due to its high computational complexity,
planning may not be suitable for solving reactive systems operating in real-time.

Beyond classical AI, a recent study [2] reviews different techniques that have
been applied to the field of transportation. These belong to specific areas within
AI such as machine learning [145], metaheuristics [43], game theory [49], and
fuzzy logic [143]. Machine learning is concerned with developing and studying
statistical algorithms that can effectively generalise and thus perform tasks with-
out explicit instructions. Metaheuristic techniques aim to provide sufficiently good
solutions to optimisation problems, especially with incomplete information or lim-
ited computation capacity. Game theory studies mathematical models that repre-
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sent strategic interactions among rational decision-makers. Finally, fuzzy logic is
based on the observation that people make decisions based on imprecise and non-
numerical information, enabling the representation of models that work with vague
data.

The research carried out in this thesis’s framework has used ABM to model
transportation systems, multi-agent systems to implement them and simulation to
experiment with them. The proposed systems define centralised or decentralised
operation according to the needs of the area where they will be deployed. Finally,
the improvement techniques developed come from machine learning, planning,
game theory and heuristics. Each chapter carefully characterises these intelligent
techniques for a better understanding of the contributions.

1.3 Motivation

The research conducted in this thesis has been carried out as a response to the
current needs in the road transportation of goods and services [119], which is be-
coming increasingly complex. Those needs must be balanced with the environ-
mental impact of the transportation itself to produce practical solutions that are
up to European Union standards on sustainability [76]. We propose the use of
artificial intelligence (AI) techniques as a tool to model, study and improve road
transportation systems, considering their operational costs, service quality, and so-
cial/environmental impact.

With the previous transportation characterisation, we have outlined the mag-
nitude that the improvement of road transportation involves. Nevertheless, it is
typical for research works in AI techniques for transportation enhancement to fo-
cus on a single aspect or process of the system. The outcome of these studies
tends to lack the proper insight into the practicality and applicability of their pro-
posals. In this thesis, we theorise that a broader viewpoint towards transportation
optimisation achieves more practical solutions. Because of that, our research ap-
proaches the distribution of resources of transportation systems and tackles their
optimisation on three fronts, which are reflected in the selected papers.

First, we focus on transportation data generation and simulation. The changes
introduced to a transportation system have a profound impact on the system’s oper-



10 1.3. Motivation

ation and the society in which the transportation system is integrated. It is therefore
crucial to test and analyse such changes before their implementation in a real-world
system. For that, two ingredients are needed. On the one hand, we need input data
that reflects the functioning of the transportation system with as much detail as
possible. On the other hand, we need a simulation tool to virtually reproduce the
transportation system and experiment with it, assessing the likely impact of all
introduced changes.

To deal with both challenges mentioned above, our thesis project has been sup-
ported by SimFleet [117], a multi-agent-based simulator, which enabled us to test
our proposals on many occasions. The simulator has been upgraded according
to our needs throughout the research development. Synthetic data generators have
been implemented, allowing us to create more realistic simulations in a straightfor-
ward way. These generators produce agent movement for our simulations based on
real-world data from the area where the transportation research takes place. More
informed simulations bring better quality results and, in turn, more relevant insight
into the topic at hand.

Second, the attention was driven to road transportation within cities. Urban
transportation occurs in a densely connected and dynamic environment, with high
volumes of displacement demand. In addition, new transportation paradigms are
spreading. Among the many new services, for this part, we focus on people and
goods transportation performed by open fleets [16], such as those of enterprises
like Uber or Cabify. Open fleets are composed of independent vehicles that deal
with their own goal while providing a global service. These features make open
fleets dynamic and reactive to changes but introduce their own challenges to their
coordination.

Given the features of open fleets, our research goes beyond traditional cen-
tralised transportation to explore innovative systems and coordination algorithms.
On the one hand, we propose a coordination by consensus algorithm for self-
interested agents. Self-interested agents act according to their private goals but are
interested in coordinating their operations with other parties to avoid conflicts. On
the other hand, we further model transportation with this type of agent by making
a demand-responsive transportation (DRT) system proposal that provides services
with an open fleet.

The potential and flexibility we observed in the DRT paradigm brought us to
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the third front: the extension and adaptation of our previous proposals to the rural
transportation field. Rural areas have been historically disregarded for innovation
compared to their urban counterparts. These areas present their own set of charac-
teristics that require a redesign of transportation algorithms for a better chance of
solving them adequately. Rural and interurban road transportation presents longer
distances to cover, less densely connected networks and a spatially distributed de-
mand. With all of these in mind, we explored the application of DRT to develop
quality rural public road transportation.

The first step of applying DRT to rural settlements was a deep dive into previous
work and learned lessons regarding rural transportation. That included a detailed
characterisation of DRT and rural transportation demand and an assessment of
failed and successful proposals over time. Then, our own system was proposed,
finally testing a hands-on implementation of rural DRT.

The work performed during this thesis constitutes a transversal approach to
road transportation enhancement through AI and asset -vehicles, passengers, stations-
distribution techniques. The development of a simulation framework allowed the
subsequent experimentation with specific road transportation systems and optimi-
sation techniques. The presented research has been contextualised and supported
by the research projects Intelligent techniques for optimising the location for elec-
tric vehicle recharging stations and improving mobility in cities (SP20180184),
Towards Smart and Sustainable Mobility Supported by Multi-Agent Systems and
Edge Computing (RTI2018-095390-B-C31-AR), Coordinated Intelligent Serviced
for Adaptive Smart Areas (PID2021-123673OB-C31), and a research stay at the
Faculty of Organisation and Informatics, University of Zagreb, in Croatia.

The initial financial support for the project was provided by the Universitat
Politècnica de València under grant PAID-01-20-4, from March to September
2021. The main financial support has been provided by the Conselleria de Inno-
vación, Universidades, Ciencia y Sociedad Digital de la Generalitat Valenciana,
under grant ACIF/2021/259, from October 2021 and until the project’s completion.
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1.4 Objectives

Considering the motivation stated above, the main objective of our research is the
development of intelligent solutions for the improvement of road transportation
from the operator, user, and sustainability perspectives. This is, the achievement
of faster, more reliable and cost-effective transportation services that incur less en-
vironmental impact. Our work begins focusing on urban mobility systems. Then,
the intention of extending our proposals to interurban mobility brings us to the
enhancement of rural transportation services. All the research to be carried out in
the above two areas requires, however, the creation of tools for the experimenta-
tion through simulation. Because of that, we propose the following division of the
main objective into more specific sub-objectives.

1. Propose a framework for the effective modelling and experimentation of
transportation systems.

1.1 Classify the state-of-the-art techniques of multi-agent modelling and
simulations.

1.2 Develop synthetic data generation algorithms to introduce realistic agent
movement in transportation simulations.

1.3 Integrate the data generation algorithms with a multi-agent simulator
and run complex experiments to validate the infrastructure.

1.4 Model different road transportation systems and study their operation
using the developed framework, assessing the results from the operator,
user, and sustainability perspectives.

2. Propose intelligent solutions for the improvement of urban road transporta-
tion through the distribution of its assets.

2.1 Analyse the state-of-the-art research on urban transportation improve-
ment and identify open problems.

2.2 Explore the different types of road transportation services for people
and goods.
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2.3 Define a resource-distribution-based urban transportation domain and
create simulation scenarios set on it.

2.4 Design and implement coordination techniques for a swift, conflictless
and sustainable urban transportation service.

2.5 Propose a flexible, sustainable, open-fleet-based urban road transporta-
tion service.

3. Extend and adapt the proposed solutions to the improvement and flexibilisa-
tion of interurban and rural road transportation.

3.1 Analyse the state-of-the-art research on rural road transportation and
identify research gaps.

3.2 Assess the specific challenges that rural transportation systems face for
their successful implementation.

3.3 Adapt and implement algorithms for a dynamic operation of interurban
rural transportation systems.

3.4 Explore task-allocation techniques to improve the cost-effectiveness of
dynamic interurban rural transportation systems.

3.5 Propose a flexible, cost-effective rural and interurban public road trans-
portation system.

1.5 Structure of the Thesis

This PhD thesis is structured into six parts as follows.

• Part I: Introduction and Objectives. The first part of this thesis presents
the introduction and the motivation of the research work carried out, charac-
terising the assessed topic. Moreover, we provide several listings comprising
the research objectives, the academic publications, and research projects that
supported this PhD thesis.

• Part II: Transportation Simulation. The second part of the thesis presents
the contributions that address the first objective. These focus on the realistic
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simulation of transportation fleets and the subsequent analysis of the results.
Part II of this thesis is partially framed in the research project Intelligent
techniques for optimising the location of electric vehicle recharging stations
and improving mobility in cities.

Chapter 2. Charging Stations and Mobility Data Generators for Agent-
based Simulations (Selected paper). Proposal and validation of several data
generation algorithms for creating realistic transportation simulation scenar-
ios.

Chapter 3. Taxi Services and the Carsharing Alternative: A Case
Study of Valencia City (Selected paper). Sustainability-centred analysis of
taxi services with respect to carsharing through multi-agent simulation.

• Part III: Urban Transportation Enhancement. The third part of the the-
sis groups the contributions that address the second objective. These works
focus on the improvement of the operation and sustainability of urban road
transportation. The proposed transportation systems are implemented by de-
centralised fleets of self-interested vehicles. Part III of this thesis is partially
framed in the research project Towards Smart and Sustainable Mobility Sup-
ported by Multi-Agent Systems and Edge Computing.

Chapter 4. Best-Response Planning for Urban Fleet Coordination
(Selected paper). Proposal of an original coordination procedure for self-
interested transports belonging to an open fleet. This work proposes an ar-
chitecture combining an ad-hoc optimal planning algorithm with a game-
theoretic coordination process, proving its potential to both improve the
fleet’s operation and reduce resource consumption.

Chapter 5. Demand-Responsive Shared Transportation: A Self-
Interested Proposal (Selected paper). First approach to demand-responsive
transportation with the proposal of an adaptable infrastructure that coordi-
nates the dynamic operation of a fleet of self-interested transports.
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• Part IV: Rural and Interurban Transportation Enhancement. This part
contains the contributions that address the third objective of the thesis. It
presents research in the development of cost-effective and flexible rural road
transportation. Algorithms and proposals that originated in the work of Part
III are adapted to rural mobility, after a thorough assessment of its charac-
teristics and needs. Part IV of this thesis is partially framed in the research
project Coordinated Intelligent Services for Adaptive Smart Areas.

Chapter 6. A Survey on Demand-responsive Transportation for Ru-
ral and Interurban Mobility (Selected paper). Literature review on re-
search specifically dealing with demand-responsive transportation systems
operating on rural settlements. This work fully characterises demand re-
sponsive and the needs of rural mobility. The analysis of previous articles
brings crucial insight regarding the economic viability of these systems.

Chapter 7. A Flexible Approach for Demand-Responsive Public Trans-
port in Rural Areas (Selected paper). Proposal of an architecture for the
implementation of a rural-specific demand-responsive transportation service.
This work includes the development of a scheduling algorithm that finds
passenger-vehicle assignments following a system-wide, user-defined opti-
misation function.

• Part V: Discussion. This part elaborates a discussion of the research results
that make up the thesis project. In it, we highlight the value of our proposals,
explaining how they contribute to the fields of transportation simulation, en-
hancement of urban transportation and improvement of rural transportation.

• Part VI: Conclusions and Future Work. Finally, this last part of the thesis
summarises the motivation for the project and the work carried out. It then
presents conclusions on the results and theorises on possible future direc-
tions that the research in this project could take.
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1.6 List of Publications

The work done in this thesis is supported by several publications. Following, we
list these contributions classified by their type. Note that those publications marked
with (*) are included in this document.

• Journals listed in JCR (publications ordered by impact factor):

– Jaume Jordán, Pasqual Martı́, Javier Palanca, and Vicente Julian. Elec-
tric vehicle charging stations emplacement using genetic algorithms
and agent-based simulation. Expert Systems with Applications , Vol-
ume 197, 116739, 2022, doi: 10.1016/j.eswa.2022.116739. Impact
Factor: 8,5 (Q1)

– (*) Pasqual Martı́, Jaume Jordán, Javier Palanca, and Vicente Julian.
Charging Stations and Mobility Data Generators for Agent-based Sim-
ulations. Neurocomputing, Volume 484, pages 196-210, 2022, doi:
10.1016/j.neucom.2021.06.098. Impact Factor: 6 (Q2)

– Jaume Jordán, Pasqual Martı́, Javier Palanca, and Vicente Julian. In-
terurban charging station network: An evolutionary approach. Neuro-
computing, Volume 529, pages 217-221, 2023, doi:
10.1016/j.neucom.2023.01.068. Impact Factor: 6 (Q2)

– (*) Pasqual Martı́, Jaume Jordán, and Vicente Julian. Best-response
planning for urban fleet coordination. Neural Computing and Appli-
cations, 2023, doi: 10.1007/s00521-023-08631-9. Impact Factor: 6
(Q2)

– (*) Pasqual Martı́, Jaume Jordán, and Vicente Julian. A Survey on
Demand-responsive Transportation for Rural and Interurban Mobility.
International Journal of Interactive Multimedia and Artificial Intel-
ligence, Volume 8, Number 3, pages 43-54, 2023 doi: 10.9781/iji-
mai.2023.07.010. Impact Factor: 3,6 (Q3)

– (*) Pasqual Martı́, Jaume Jordán, Fernando De la Prieta, Holger Bill-
hardt, and Vicente Julian. Demand-Responsive Shared Transportation:
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A Self-Interested Proposal. Electronics, Volume 11, Issue 1, 78, 2022,
doi: 10.3390/electronics11010078. Impact Factor: 2,9 (Q3)

– Holger Billhardt, Alberto Fernández, Pasqual Martı́, Javier Prieto Teje-
dor, and Sascha Ossowski. Towards the Prioritised Use of Transporta-
tion Infrastructures: The Case of Vehicle-Specific Dynamic Access Re-
strictions in City Centres. Electronics, Volume 11, Issue 4, 576, 2022,
doi: 10.3390/electronics11040576. Impact Factor: 2,9 (Q3)

– Pasqual Martı́, Jaume Jordán, Fernando De la Prieta, and Vicente Ju-
lian. Optimization of Rural Demand-Responsive Transportation through
Transfer Point Allocation. Electronics, Volume 12, Issue 22, 4684,
2023. doi: 10.3390/electronics12224684. Impact Factor: 2,9 (Q3)

– (*) Pasqual Martı́, Jaume Jordán, Pablo Chamoso, and Vicente Julian.
Taxi services and the carsharing alternative: a case study of valencia
city. Mathematical Biosciences and Engineering, Volume 19, Issue
7: 6680-6698, 2022, doi: 10.3934/mbe.2022314. Impact Factor: 2,6
(Q2)

– (*) Pasqual Martı́, Jaume Jordán, and Vicente Julian. A flexible ap-
proach for Demand-Responsive Public Transport in rural areas. Com-
puter Science and Information Systems, 2023.
doi: 10.2298/CSIS230115074M. Impact Factor: 1,4 (Q4)

• International conferences (articles ordered chronologically ascending):

– Pasqual Martı́, Jaume Jordán, Javier Palanca, and Vicente Julian. Load
Generators for Automatic Simulation of Urban Fleets. In Highlights
in Practical Applications of Agents, Multi-Agent Systems, and Trust-
worthiness. The PAAMS Collection, (PAAMS 2020), pages 394-405,
2020, doi: 10.1007/978-3-030-51999-5 33.

– Pasqual Martı́, Jaume Jordán, Javier Palanca, and Vicente Julian. Free-
Floating Carsharing in SimFleet. In Intelligent Data Engineering and
Automated Learning – IDEAL 2020, pages 221–232, 2020, doi:
10.1007/978-3-030-62362-3 20.
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– Pasqual Martı́, Jaume Jordán, Fernando De la Prieta, Holger Bill-
hardt, and Vicente Julian. Infrastructure for the Enhancement of Urban
Fleet Simulation. In Sustainable Smart Cities and Territories, (SS-
CTIC 2021), pages 263-273, 2021, doi: 10.1007/978-3-030-78901-
5 23.

– Holger Billhardt, Alberto Fernández, Sandra Gómez-Gálvez,
Pasqual Martı́, Javier Prieto Tejedor, and Sascha Ossowski. Reducing
Emissions Prioritising Transport Utility. In Sustainable Smart Cities
and Territories, (SSCTIC 2021), pages 300-311, 2021,
doi: 10.1007/978-3-030-78901-5 26.

– Jaume Jordán, Pasqual Martı́, Javier Palanca, Vicente Julian, and Vi-
cente Botti. Interurban Electric Vehicle Charging Stations
Through Genetic Algorithms. In Hybrid Artificial Intelligent Systems
(HAIS 2021), pages 101-112, 2021, doi: 10.1007/978-3-030-86271-
8 9.

– Pasqual Martı́, Jaume Jordán, and Vicente Julian. Carsharing in Va-
lencia: Analysing an Alternative to Taxi Fleets. In Highlights in Prac-
tical Applications of Agents, Multi-Agent Systems, and Social Good.
The PAAMS Collection, (PAAMS 2021), pages 270-282, 2021, doi:
10.1007/978-3-030-85710-3 23.

– Pasqual Martı́, Jaume Jordán, and Vicente Julian. Demand Respon-
sive Mobility for Rural Areas: A Review. In Highlights in Practical
Applications of Agents, Multi-Agent Systems, and Complex Systems
Simulation. The PAAMS Collection, (PAAMS 2022), pages 129-140,
2022, doi: 10.1007/978-3-031-18697-4 11.

– Pasqual Martı́, Jaume Jordán, Fernando De La Prieta, and Vicente Ju-
lian. Dynamic Transfer Point Allocation for Rural Demand-Responsive
Mobility. In Trends in Sustainable Smart Cities and Territories. (SSCT
2023), pages 453-464, 2023, Springer, Cham, doi: 10.1007/978-3-031-
36957-5 39.

– Pasqual Martı́, Jaime Llopis, Vicente Julian, Paulo Novais, and Jaume
Jordán. Validating State-Wide Charging Station Network Through Agent
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Based Simulation. In Highlights in Practical Applications of Agents,
Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection,
(PAAMS 2023), pages 158-169, 2023, Springer, Cham,
doi: 10.1007/978-3-031-37593-4 13

– Bogdan Okreša Durić, Tomislav Peharda, and Pasqual Martı́. To-
wards a Gamified System to Influence Behaviour of Users in the Con-
text of Smart Mobility. In the proceedings of the 34th Central Eu-
ropean Conference on Information and Intelligent Systems (CECIIS),
pages 9-16, 2023, University of Zagreb. Available online at: http://
archive.ceciis.foi.hr/app/index.php/ceciis/index/pages/

view/ProceedingsArchive2023

1.7 Research Projects

The research work presented in this thesis was carried out in the context of the
following research projects.

• Intelligent techniques for optimising the location of electric vehicle recharg-
ing stations and improving mobility in cities

– Funder: Universitat Politècnica de València (SP20180184)

– Lead Applicant: Jaume Jordán
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• Towards Smart and Sustainable Mobility Supported by Multi-Agent Systems
and Edge Computing

– Funder: Agencia Estatal de Investigación (RTI2018-095390-B-C31-
AR)

– Lead Applicant: A. Giret and V. Julian

– Years: 2020 - 2022

• Coordinated Intelligent Services for Adaptive Smart Areas (COSSAS)
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the work presented in this thesis.
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Chapter 2

Charging Stations and Mobility Data
Generators for Agent-based Simulations

PASQUAL MARTÍ, JAUME JORDÁN, JAVIER PALANCA,
AND VICENTE JULIAN

Neurocomputing, Volume 484, Pages 196-210, 2022
Doi: https://doi.org/10.1016/j.neucom.2021.06.098

Abstract

Current traffic congestion and the resulting carbon emissions are two of the main problems
threatening the sustainability of modern cities. The challenges facing today’s cities focus
primarily on the optimisation of traffic flow and the transition to electric vehicles. The lat-
ter aspect implies the need for an adequate deployment of the infrastructure of charging
stations. The inherent complexity in today’s cities and the difficulty in implementing new
policies whose benefits are difficult to measure and predict has led in recent years to consider
the enormous potential of simulation tools and in particular of the agent-based simulation
(ABS). ABS allows the specification of complex models that reflect the complexity and dy-
namism of urban mobility. Current technology in ABS has evolved and matured sufficiently
to provide very sophisticated tools but lacking facilities for a flexible and realistic generation
of input data in the execution of the experiments. In line with this, this paper introduces two
configurable generators that automatise the creation of experiments in agent-based simula-
tions. The generators have been developed with the SimFleet simulation tool enhancing the
simulation of realistic movements and location of vehicles, passengers and other users of the
urban traffic system within a city. The generators proved to be useful for comparing different
distributions of locations as well as different agent movement behaviours based on real city
data.
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2.1 Introduction

The International Telecommunication Union (ITU) and the United Nations Eco-
nomic Commission for Europe (UNECE) defined, in 2015, a smart sustainable
city as an innovative city that uses Information and Communication Technologies
(ICTs) to improve quality of life, the efficiency of urban operations and services,
and competitiveness, while ensuring that it meets the needs of present and future
generations concerning economic, social, environmental and cultural aspects. Cur-
rently, the list of challenges for keeping current cities sustainable has grown, and
consequently, so has the need to establish appropriate intervention policies with
the lowest possible risk.

One way of researching how to deal with such challenges is through the use
of simulators [112], and specifically agent-based simulation (ABS) [38]. ABS
integrates an interesting number of properties which makes it useful for a wide
range of domains, supporting structure preserving modelling of the simulated re-
ality, parallel computations, simulation of proactive behaviour, and flexible and
dynamic simulation scenarios [31]. All these properties can be clearly observed in
the domain of today’s cities, where we find multiple autonomous entities that move
around the city and make use of a collection of resources located according to cer-
tain policies, such as policies for the deployment of new electric vehicle charging
stations. Currently, we can find a multitude of agent-based simulation tools [1],
some of them specifically designed for traffic or urban mobility management. Us-
ing these tools, it is possible to see the effect that the changes would have on the
city after defining them, thus avoiding a possible unsuccessful deployment. How-
ever, as current cities are very complex systems, it is necessary to have a complete
simulator that allows experimentation with big and complex configurations inside
the city. The more realistic the simulator, the more accurate and useful experiments
would be for real-world applications.

In this work, we propose different ways to generate more realistic data as input
for agent-based simulation experimentation, extending a previous work presented
in [98]. More specifically, we focus the processes of generating more realistic data
on two problems: the generation of possible locations for electric vehicle charging
stations, and the generation of realistic movements of entities in a city to have an
appropriate representation of its traffic flow. To do this, we use SimFleet simulator
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[117], which is able to place different varieties of agents with custom behaviours
over real-world cities to develop and test any type of strategies. Over SimFleet
we have developed two generators for the above commented problems. On the
one hand, a charging stations generator to create several distributions of these in-
frastructures, and make comparisons and simulations with well-informed charging
stations emplacing systems such as the one in [71], which uses several data sources
to feed a genetic algorithm that obtains solutions. On the other hand, a mobility
data generator of entities that move in a city such as delivery transports, private
vehicles, or taxi fleets, among others. Moreover, these mobility data generators
makes use of real data of the city, which implies a more informed approach to the
generation of realistic traffic in a city to be used in dynamic simulations. To do
this, different generators of each type have been developed, where the most so-
phisticated ones are based on different AI techniques and are explained in detail
further in this paper.

In order to illustrate the use of the proposed generators, the paper includes a
case study in the city of New York, concretely in the Manhattan Island area. The
study has been made using available data such as population, traffic, and tweets,
from open data portals, or gathered with other tools like U-tool [33].

The rest of this paper is structured as follows. Section 2.3 presents the SimFleet
simulator, on which the proposal presented in this paper has been developed. Sec-
tions 2.4 and 2.5 explain the two main generators proposed in this work, that is, the
charging stations simulator and the mobility data generator. Section 2.6 illustrates
through a case study the use of the proposed generators. Finally, some conclusions
are presented in Section 2.7.

2.2 Related Work

Agent-based simulation has become in recent years a key aspect for the develop-
ment of more realistic simulations with high scalability. In the environment of
urban mobility, there are many works that try to perform simulations to study as-
pects such as traffic, movement of citizens, crowds, emergency situations, or the
optimal location of different services.

To support the modelling and development of these simulations, different tools
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have been appearing that facilitate the execution of experiments for the study of
mobility both at urban and interurban level. A review on agent-based simulation
tools for traffic and transportation can be consulted in [10].

In traffic simulation, one of the most well-known tools is SUMO [12]. SUMO
is an open-source traffic simulation framework which includes net import and de-
mand modelling components. SUMO helps in several research topics such as traf-
fic light algorithm, the choice of routes, and in the simulation of vehicular commu-
nication with other vehicles or with the infrastructure. The framework is used in
different projects to simulate traffic management or autonomous driving. SUMO
employs origin/destination matrices to describe the movement between traffic as-
signment zones in vehicle number per time in large-scale scenarios. Moreover,
SUMO can be extended through new applications in order to extend how to gener-
ate traffic information for the simulation process.

Another well-known simulation framework is MATSim [155]. MATSim is a
framework that allows the implementation of large-scale agent-based transport
simulations. The framework is mainly employed for demand-modelling and traffic
flow simulation. MATSim offers several extensions which enhance the function-
ality with additional features, one example is the package that allows to convert
Google Transit Feed Specification (GTFS) data into a MATSim transit schedule.
The GTFS is an extension of the General Transit Feed Specification which is a
data specification that allows public transit agencies to publish their transit data in
a format that can be consumed by a wide variety of software applications. Other
example we can highlight is SIMmobility [4], which is a simulation framework
that helps in the prediction of the impact of mobility demands on intelligent trans-
portation services, vehicular emissions and transportation networks, or its specific
version for logistics called SimMobility Freight [131]. VISSIM [45] is another
well-known commercial simulator that provides an ecosystem of products that can
be integrated to provide solutions to solve different mobility and transportation
challenges. VISSIM is the only one that offers real-time knowledge acquisition.
Lastly, Matisse 3.0 [146] is the last version of a microscopic simulator for agent-
based intelligent transportation systems which includes intersection controllers and
enables V2X and I2I [87] communication mechanisms.
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Another widely used framework is AnyLogic1. AnyLogic is a general pur-
pose simulation software but includes specific extensions for mobility management
that allows to simulate aspects such as transportation planning, fleet management,
and traffic flow. As facilities for data generation, AnyLogic allows the import of
databases as well as the generation from scratch of different components of the
simulation. There exists numerous examples of mobility simulation models in
AnyLogic, in [104] a simulation model is used as a decision support tool for esti-
mating efficiency of vehicle schedules with time windows. Another example is the
work presented [162] which is a study of passenger flow in urban subway stations
which makes use of the Anylogic pedestrian library.

From another perspective, new agent-based simulators for the generation and
testing of autonomous driving strategies have recently appeared. These simulators
are based more on providing mechanisms for sensing, monitoring, communication
and action at the level of autonomous vehicles in order to provide solutions for the
problem of autonomous driving. One of the best-known examples is CARLA2

[37]. CARLA allows controlling aspects such as traffic generation, pedestrian
behaviours, weathers and vehicle sensors. Its main goal is to allow the learning
of new driving policies or the training of new perception algorithms. Other similar
simulation frameworks are AIRSim3 [137] (a simulator developed by Microsoft as
a platform to experiment with AI learning algorithms), TORCS4 [161] (an Open
Racing Car Simulator which is an open source 3D car racing simulator that is
designed to enable AI-based strategies for competing drivers), and in [139] an
urban traffic simulation framework is presented for helping the development and
test of automated driving vehicles.

As can be observed there exist different agent-based simulation tools that offer
several facilities for the generation of highly accurate simulations with high scal-
ability. However, most of these tools do not offer specific facilities for a flexible
and realistic generation of input data in the simulation. Usually, the analysed ap-
proaches incorporate the possibility of generating third-party software or simply
include database import modules. Accordingly, in our proposal we make use of

1https://www.anylogic.com
2http://carla.org
3https://microsoft.github.io/AirSim/
4https://sourceforge.net/projects/torcs/
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different approaches, including AI techniques, that make use of real-world data as
input to improve simulations both by positioning elements, such as electric charg-
ing stations, in a more informed way, and by generating new, more realistic input
data, such as the most feasible traffic routes.

2.3 Extending the SimFleet Simulator

SimFleet [117] is a simulator based on SPADE [115] (a multi-agent system de-
velopment environment) specialised in testing different mobility strategies where
vehicles that belong to different fleets interact in the simulation. This simulation
tool has been chosen because of its features. It allows you to manage simulated
fleets in an easy and very flexible way. This is thanks to the agent architecture
provided by the SPADE platform, which allows every actor in the simulation to be
a proactive and independent agent which can have its own strategy and behaviour.
Also, scaling the simulation is simple. In SimFleet each simulation counts for a
number of clients (Customer agents), transport operators (Transport agents) and
fleet managers (FleetManager agents), where Customer agents serve individuals
who need to be shipped from their place of origin to their place of destination in
the region. In order to do so, each Customer agent demands a single transport ser-
vice offered by the Transport agent. Then, it is the duty of the FleetManager agent
to get the clients in need of a transport service and the transport providers that
might be required to provide such services into touch. In short, the FleetManager
agent serves as a command and control centre for transports. It acknowledges the
incoming customer requests and forwards those requests to the relevant transport
providers.

For passenger transportation across the region, SimFleet uses the OSRM5 rout-
ing software to locate the shortest routes in the road network. A query to OSRM
receives the origin and destination points and returns the shortest route between
the two points.

A SimFleet user needs to develop the behaviour of each agent in the simulation
in order to define their negotiation policy. Throughout this research we have ig-
nored the development and testing stages in order to concentrate on the simulation

5http://project-osrm.org/

http://project-osrm.org/
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development, a function in which much of this sort of simulators have limitations,
as presented in the related work.

We must clarify how the experiments are represented in order to understand the
limitations of SimFleet in conjunction with the development of simulations. To
load a simulation into SimFleet the user must write a JSON file where the details
of each actor of the simulation (this is, the agents) are described (position, initial
data, goals, etc.). These parameters may vary depending on the type of agent.

The only way to fill in the configuration file at the moment is to build each
agent manually, providing values to their attributes. This presents a problem for
developing simulations with a huge amount of vehicles, consumers or packages.
In addition, SimFleet is likely to be used by users to replicate static elements such
as charging (or gas) stations and movements around a city in a simulated environ-
ment. On the one side, it may be of interest for urban planners to measure how
each distribution can influence the mobility of the city by using a generator to put
charging (or gas) stations in different configurations. Mobility modelling, on the
other hand, involves introducing several agents that appear in the system during
the simulation time, as well as the mobility information of agents around the area,
based on real data measured from the city. Via the implementation of generators
that simplify the development of simulation configurations, our work intends to
solve those needs.

Two global generators are the key contribution of this work, enabling the setup
of larger and more realistic simulations with SimFleet. The generators are an in-
strument not only for helping the user write big files, but also for creating realistic
configuration files based on the actual target city details. These informed gener-
ators are designed to produce configuration files that are as similar to reality as
possible (i.e. simulating vehicles mobility with real traffic data from the city).

The first generator is a generator for charging stations that populates the simu-
lation area with a defined number of charging stations following a specified tem-
plate. The second generator is a mobility data generator that fills the simulation
space with various types of moving agents that can be pseudo-random or informed.
In addition, in order to compare informed versions against them, entirely random
versions of both generators were also introduced.

Next sections present these two generators in depth. First we present the charg-
ing stations generator, which allows selecting different approaches (from less in-
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formed to more informed) to place stations in the city map. Next, a mobility data
generator is presented, which allows to create realistic movements along the city
map.

2.4 Charging Stations Generator

The charging stations generator is in charge of placing a certain number of charg-
ing (or petrol) stations in the city according to a certain technique or distribution.
The generator has the following main parameters: n charging stations to place; p
charging poles to locate in the stations; and distribution type, {random, uni f orm,
radial, genetic}, that determines the technique used to place the stations in the city.
The first three types of distributions correspond to non-informed charging station
generators, i.e. they only use the parameters of the number of charging stations and
poles to be placed on the city map according to the specified distribution (random,
uni f orm, or radial). However, the so-called genetic distribution uses information
about the city (population, traffic, and activity in social networks) to distribute the
charging stations by means of a genetic algorithm that optimises utility and cost.

The charging stations generator receives the number of charging poles as an
input parameter. The charging poles are the spots that can be used by a vehicle in
a charging stations, so a station consist of at least a charging pole. In the genetic
distribution, the genetic algorithm receives as parameter the maximum charging
poles per station, and hence, it allocates the charging poles p in the specified n
stations depending on the utility and cost that the complete distribution provides.
However, the random, uni f orm, and radial distributions allocate one pole in each
station, and the remaining poles are placed using one of the following alternatives:

• In the first case, the list of stations is shuffled and the poles are distributed
following the order of the list. This process is repeated shuffling again the
list until all poles are distributed.

• The second case makes a pseudo-random distribution that allocates the re-
maining poles by selecting a random station and placing a random amount of
poles in it. However, the random number of poles is limited to a percentage
of the total poles to avoid uneven distributions.
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The output of the charging stations generator is a GeoJSON file with the po-
sition and number of poles of each station. However, the position given by the
generator is processed using the getValidPoint function of the service nearest of
OSRM, which obtains a valid point situated in a street near the given coordinates.
In the case of the genetic algorithm, this process is performed before to ensure that
the set of Points of Interest (PoIs) that have to be provided to the genetic algorithm
(it must be an amount of PoIs significantly larger than the stations to place) are
already valid.

2.4.1 Random Distribution

This distribution generates a set of n valid points in the city map that will be the
positions of the charging stations. For each point, coordinates x and y are randomly
generated within the bounds of the city map defined by its polygon: xmin, ymin,
xmax, ymax. The valid point of these coordinates is obtained and if it is not inside
the city map, it is discard. So, until there are n valid points, this process is repeated.

Figure 2.1: Random distribution of stations.
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Algorithm 1 shows a pseudo-code which operates as described. In addition, an
example of a random distribution with 50 stations in Manhattan is shown in Figure
2.1. A random distribution is useful to serve as a baseline for comparisons with
other more informed distributions.

Algorithm 1 Allocates n stations in random points within the city map
Require: city map, n

valid points← [ ]
xmin, ymin, xmax, ymax← city map.bounds()
while length(valid points)< n do
(x,y)← randomPoint(xmin,ymin, xmax, ymax)
if city map.contains((x,y)) then

valid points← valid points∪ (x,y)
end if

end while

2.4.2 Uniform Distribution

In this distribution, the city map (Figure 2.2a) is divided uniformly6 into rectan-
gular cells of equal size. The grid (see Figure 2.2b) is a wider working are cre-
ated from the bounds of the city map with the points of the polygon {(xmin,ymin),
(xmin,ymax),(xmax,ymax),(xmax,ymin)}.

The grid size can be obtained depending on the amount of stations (n) as spec-
ified in Equation 2.1. The number of rows and columns will be the square root if
n is a perfect square. Otherwise, there will be more rows or more columns if the
grid is higher or wider.

(2.1)


rows = cols =

√
n n is perfect square

rows = ⌊
√

n⌋, cols = ⌈
√

n⌉ height < width
rows = ⌈

√
n⌉, cols = ⌊

√
n⌋ otherwise

6The name “Uniform distribution” does not refer to a probability distribution but to how stations are
divided in the city map.
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Nevertheless, as the shape of the city map can be very irregular and a significant
part of the grid may be outside the boundaries, the user can also define the number
of rows and columns to find a more suitable cell distribution instead of using the
method of Equation 2.1.

Once the grid has been obtained, it is trimmed with respect to the city map
and the cells outside the borders are discarded as in Figure 2.2c. The cells of the
grid are traversed and a station is placed in the nearest valid point to the centroid
of the cell. In the case of any remaining stations to be distributed, they would be
placed at random valid points within randomly selected cells. Figure 2.2d shows
an example of this distribution and Algorithm 2 describes its operation by means
of pseudo-code.

There is an alternative version of this distribution in which all stations are di-
rectly placed in randomly chosen cells at a random valid point.

Algorithm 2 Distributes n stations uniformly within the city map
Require: city map, n

valid points← [ ]
xmin, ymin, xmax, ymax← city map.bounds()
grid← Polygon(xmin,ymin,xmax,ymax)
grid← grid∩ city map
for all cell in grid do
(x,y)← cell.centroid()
valid points← valid points∪ (x,y)

end for
# Place leftover station in random points inside random cells
while length(valid points)< n do

cell← randomCell(grid)
(x,y)← randomPoint(cell)
valid points← valid points∪ (x,y)

end while
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(a) City map (b) Working area or Grid (c) Grid trimmed against
city map

(d) Cells populated with
stations

Figure 2.2: Uniform distribution of stations process.

2.4.3 Radial Distribution

The radial distribution aims to adapt the charging station infrastructure to certain
urban areas which present greater activity towards its centre in contrast to the out-
skirts. It makes use of a new parameter c, which defines the number of circles in
which the city map will be divided.

The distribution procedure begins by defining two copies of a wider working
area, created as detailed for the uniform distribution. The first copy gets divided
into a configurable number of triangles, 8 by default, as it is shown in Figure 2.3a.
These are created by joining the working area vertex and sides’ middle points
with the centroid of the city map. As for the second copy, it gets partitioned by c
concentric circles, each with a larger radius than the previous. The initial radius
r is calculated according to the dimensions of the map. Each circle gets trimmed
against its previous one, starting with the last (and larger) created, so as to avoid
overlap among them. The resulting polygons are also trimmed against the city
map, obtaining an area with a central circle and many outer rings, as shown in
Figure 2.3b. Bear in mind that we will be referring to both circles and rings just as
circles from now on. Finally, the two modified areas are intersected, dividing each
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circle into up to 8 parts, obtaining a city map similar to that shown in Figure 2.3c.

(a) Triangle division of
working area

(b) 8-circles division of
city map

(c) Final city map divi-
sion

(d) 50 stations between 8
circles

Figure 2.3: Radial distribution of stations process.

Stations are assigned to the nearest valid point to the centroid of the polygons.
To assign the stations as evenly as possible among each circle and the city map,
both the number of stations per circle (n/c) and the subdivisions a circle has are
taken into account. Each triangle is populated beginning from the inner circle and
heading towards the outer. Once a station has been allocated to all polygons of
a triangle, the next triangle will be picked with respect to the number of stations
and the total number of subdivisions to evenly spread the stations within a circle.
This process is described by Algorithm 3. An example of a finished distribution is
shown in Figure 2.3d.

The procedure explained above allocates only one station inside each polygon.
However, there may be a higher number of stations to allocate than polygons in the
map, as the granularity of the division is decided by the user. For such cases, the
leftover stations are positioned by arbitrary selecting a polygon and a valid point
inside it.

A completely random variant of this distribution has also been introduced. The
city map is split in the same manner and the ratio of stations per circle is considered
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as well. The allocation of stations, however, is performed in random valid points
of arbitrary subdivisions of each circle.

Algorithm 3 Distributes n stations following a radial pattern with c circles within
the city map
Require: city map, n, c, num triangles

valid points← [ ]
xmin, ymin, xmax, ymax← city map.bounds()
working area← Polygon(xmin,ymin,xmax,ymax)
triangle area← divideInTriangles(working area,num triangles)
circle area← divideInCircles(working area,c)
working area ← triangle area ∩ circle area ∩ city map #Calculate the
number of stations to place in each circle
stations per circle← ⌊n/c⌋
while length(valid points)< n do

triangle← triangleSelection(stations per circle,num triangles)#Select
next triangle to populate
for all cell in triangle do
(x,y)← cell.centroid()
valid points← valid points∪ (x,y)

end for
end while
#Place leftover station in random points inside random cells
while length(valid points)< n do

cell← randomCell(grid)
(x,y)← randomPoint(cell)
valid points← valid points∪ (x,y)

end while

2.4.4 Genetic Algorithm Distribution

An alternative to placing charging stations or petrol stations in a city in an intelli-
gent way is to use genetic algorithms. Thus, this option of the generator is based on
the genetic algorithm presented in the papers [75, 116]. In the previous random,
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uni f orm, and radial alternatives, the only necessary data are the map itself and
the city limits together with the number of charging poles to be placed. This has
the advantage that if no more data is available, a set of stations in the city can also
be generated following the chosen distribution, which in some cases may be suffi-
cient. However, these approximations may be unrealistic to the reality of the city,
since a uniform or radial distribution may not correspond to the actual distribution
and movements of the potential users of the stations.

Thus, when relevant data from the city is available the solution that the genetic
algorithm can provide might be more realistic. Particularly, these data must be
referred to the possible users of the stations. Hence, the data considered relevant
to obtain the most accurate solution are:

• Population or cadastral information: It shows the amount of people that
live in different zones of a city. The population information (P) is defined
as: P = {(C1, p1),(C2, p2), . . . ,(Cn, pn)}, where Ci is a closed polygon rep-
resenting a zone in the city together with its population pi.

• Traffic information: It shows the number of vehicles moving around a cer-
tain area. The traffic information (T ) is defined as: T = {(R1, t1), (R2, t2),
. . . ,(Rn, tn)}, where Ri is a polyline that follows a street or road indicating
the volume of traffic ti.

• Twitter activity: Information about the amount of geo-located tweets, from
the social network Twitter, tweeted from a certain location. This infor-
mation can be used to determine where a representative percentage of the
population is spending their time. The Twitter activity (A) is defined as:
A = {(Q1,a1),(Q2,a2), . . . ,(Qn,an)}, where Qi is a point represented as a
latitude-longitude tuple and ai the number of tweets in such coordinates.

The sum of the population, traffic and activity data of the area covered by each
of the charging poles (cp) of a solution or individual (ind) defines the utility of the
solution. In addition, each of the data is balanced by a weight ω to give it more or
less importance.

(2.2) utility(ind) = ∑
∀cpi>0∈ind

(pi ·ωP + ti ·ωT +ai ·ωA)
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On the other hand, the distribution of charging stations in a city also implies
high costs, so this becomes an additional criterion for the optimal distribution of
charging stations. Therefore, the data to take into account in relation to costs are:
cost of each station cs and charging pole ccp (additional charging pole to a station
have a lower cost than the installation of the first point/station), cost per distance
to transformer substation cdt , and positions of transformer substations.

(2.3) cost(ind) = ∑
∀cpi>0∈ind

cs +(cpi · ccp)+(distenergy(s) · cdt)

Considering the population, traffic and social network data, that is, the utility
of placing charging stations, and the costs of placing them according to their po-
sition and number, the genetic algorithm obtains a solution in which it optimises
its fitness function, which is formed by the utility and cost. Since this is a multi-
criteria optimisation, the genetic algorithm tries to obtain the maximum utility and
the minimum cost to place the required charging stations and points.

The process of the genetic algorithm to generate the set of charging stations in
the city is detailed below.

Firstly, the genetic algorithm starts from a set of Points of Interest (PoIs) that
must be provided. This set of PoIs must be considerably larger than the number
of stations to be placed so the genetic algorithm can select the final subset where
the charging stations will be placed, and thus make sense for its application in
this context. The set of PoIs can be specified by the user, or on the contrary, it
can be created using different types of points such as those extracted from open
data of the city of study. The set of PoIs provided defines the individual of the
genetic algorithm, which is an array with the length of the set of PoIs. Then, each
position of the array represents each PoI in the city, and the integer number inside
will be the amount of poles to install in the PoI. This number can be from 0 to the
maximum poles per station specified by the user. Therefore, the genetic algorithm
generates different individuals simply by changing the integer numbers of the array
and evaluating the fitness of each of them.

Secondly, all possible geographical data (in GeoJSON) must be provided so
that the genetic algorithm can obtain informed solutions: cadastral data specified in
number of inhabitants by areas or polygons (P); traffic data specifying a number for
each street (at least the main roads) (T ); geo-located activity in social networks (A);
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and transformer substations. In addition, the weights ω with which the cadastral,
traffic and social network activity information is valued can be provided, along
with the monetary costs per station (cs), per charging pole (ccp), and per distance
to the transformer substation (cdt).

Finally, the genetic parameters themselves such as the initial population of in-
dividuals and number of generations must be provided. In this case, the higher
the values, the greater the exploration of the genetic algorithm will be; however,
its computing time will also increase. These are some parameters that should be
tested with low values in order to increase them according to the execution times.
In our case, as the computation of fitness is relatively complex, we can start from
100 population and 50 generations, which should be computed in minutes at most.
In addition, the probabilities of crossover and mutation, together with their oper-
ators, can be specified, however, the default values for this generator should be
enough (see [116] for more information).

With all the parameters specified above, it is possible to run the genetic al-
gorithm that will provide a distribution of charging stations in the city that is as
optimal as possible with respect to fitness, i.e. maximising the value of the utility,
and minimising the cost values. An example of 50 stations placed in Manhattan
with the genetic distribution is represented in Figure 2.4. This figure shows both
the location of the stations within the boundaries of the city map, as well as the
Voronoi polygons that determine the areas of influence (along with a 300-meters
radius circular area that intersects the Voronoi polygon) of each of the stations.

In this section, different charging station generators have been presented. The
first generators, corresponding to the random, uni f orm, and radial distributions,
serve as a baseline or for situations when no city data is available. On the other
hand, the generator based on the genetic algorithm, i.e., the distribution that we
have named as genetic, has all the available information of the city where it is
applied. This means that the charging station distribution solutions obtained by
the genetic-based generator are potentially more realistic, that is, adapted to the
demand for this type of service in the city. A detailed example of the genetic-
based charging stations generators is shown in Section 2.6.1.

In addition, the electric vehicle charging station (or petrol station) generators
presented in this section could also be used as a method for deciding the location
of other types of services, either fixed or dynamic. For example, any other type of
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Figure 2.4: Genetic distribution of stations example.

infrastructure such as bicycle stations or taxi ranks, as well as distribution of am-
bulances or emergency services, positioning of open-fleet vehicles or car-sharing
services, among others.

2.5 Mobility Data Generator

With the mobility data generator, we aim to create either random or real-life in-
spired movement of agents for SimFleet’s simulations. To generate realistic move-
ment data, from the point of view of an agent-based simulator, means to create
movements around the city which are inspired by its citizens and other users of
the traffic system such as private vehicles, taxi fleets, etc. This movement can be
adapted to any of the agent types that SimFleet offers by creating routes for them
which have their origin and destination points located in certain areas of the city
in which there is more activity. Both the areas and the type of activity are depen-
dent on the data source we use. For instance, we could have data indicating the
amount of population in a specific neighbourhood at a precise time of the day; sim-
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ilarly, we could gather the number of delivery vehicles that depart from a certain
zip code area at a certain weekday. There are many possibilities and depending on
data availability one could apply the principles of our generator to create mobility
data for different situations.

Hereunder are presented random and informed versions of the mobility data
generator. The random version simply creates valid routes and assigns them to
the agents. The informed versions of the mobility data generators, which create
realistic routes, are inspired by the work in [50], which presents an approach based
on the creation of a mobility graph with real traces.

The mobility data generator develops routes of at least min dist meters long
for n agents of type t within the borders of a given city map. The delay parameter d
determines the point of the simulation in which the agents will start their execution;
by default, at the beginning of the simulation (d = 0). The number of agents
per batch, agents per batch, is introduced to give different delays to groups of
agents that will start executing simultaneously. This is most useful for scenarios
with a great number of agents. If indicated, the first batch of agents will have a
delay of d seconds; the following batch, a delay of 2d, and so on. As indicated
above, all generators are prepared to receive an existing SimFleet configuration
file as input and fill it with agent definitions and their routes. This enables the use
of the mobility data generator to introduce, in the same simulation, different types
of agents in diverse quantities, with different delays and batch sizes, achieving a
complex simulation scenario.

2.5.1 Random Movement Generator

The movement of the random generator is created by designating a random route
(random origin and destination points) for the agents to follow. Both the origin
and destination points must be valid points inside the city map, and they must be
a minimum of min dist meters apart. This process is repeated to create and as-
sign routes for n agents of type t. The origin point indicates the agent the location
in which it will spawn, whereas the destination point determines the place where
the execution will finish. Transport type agents can travel by themselves. How-
ever, if the agent is of customer type or a package, the movement will actually be
performed by the transport agent that carries it after picking it up.
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Figure 2.5: 50 randomly generated routes in Manhattan, indicated by a line con-
necting origin and destination points.

2.5.2 Informed Movement Generator

The mobility data generator’s informed variant attempts to replicate more accurate
movements across the city map. For this, it is important to provide relevant data
to the generator on which to base the agents’ routes. This data can be accessed
from different sources; often open data portals the government of a city or nation
provides to its inhabitants. For our generator, we used the following data (already
presented in Section 2.4.4): population or cadastral information (P); traffic infor-
mation (T ); and Twitter activity (A).

The data is used to establish a probability distribution between a series of
points available in the city map. The assignment of the routes’ origin and des-
tination will be carried out according to the distribution. The process starts by
generating a collection of available points. As described for the uniform dis-
tribution (see Section 2.4.2), the city map (M) is split as a grid obtaining M =
{(G1,O1),(G2,O2), . . . ,(Gn,On)}; where Gi is a closed polygon and Oi the clos-
est valid point to the centroid of Gi. The grid is divided by a configurable number
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of rows and columns. Such a number directly affects the granularity of the system,
as a larger number of cells implies more accessible points (see Figure 2.6). The
more points, the more distributed will be the probability.

(a) 10 rows and cols (b) 20 rows and cols (c) 30 rows and cols (d) 40 rows and cols

Figure 2.6: Number of available points according to map division granularity.

By combining the city data with M, we join, for every polygon Gi, the popula-
tion, traffic and Twitter activity volumes that occur inside its area:
M = {(G1,O1,{p1, t1,a1}),(G2,O2,{p2, t2,a2}), . . . ,(Gn,On,{pn, tn,an})} and com-
pute the likelihood associated with each point Oi as in Equation (2.4):
(2.4)

prob(Oi) = wp ·
pi

∑
n
j=1 p j

+wt ·
ti

∑
n
j=1 t j

+wa ·
ai

∑
n
j=1 a j

; with wp +wt +wa = 1

where wp, wt and wa are weights that control the effect on the probability of each
of the variables. By having wp +wt +wa = 1 we obtain a probability distribu-
tion among points that ensures that the addition of the probability of each point
is equal to 1. An intuitive example of this can be seen in Table 2.1 and Equa-
tion 2.5. Finally, the set of available points (S) and their resulting probabilities:
S = {(O1, p(O1)), (O2, p(O2)), . . . ,(On, p(On))}; are taken into account for route
generation.
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Table 2.1: Example of a probability distribution among 3 points. ∗Value obtained
according to Equation 2.5.

Point (Oi) Population in Oi (pi) Traffic in Oi (ti) Activity in Oi (ai) Probability (prob(Oi))

O1 5000 1500 3500 0.44625∗

O2 3700 4500 1000 0.39375
O3 1300 2000 500 0.16

Total values 10000 8000 5000 1.0

Weights 0.5 (wp) 0.3 (wt) 0.2 (wa)

(2.5) prob(O1) = 0.5 · 5000
10000

+0.3 · 1500
8000

+0.2 · 3500
5000

= 0.44625

When all points in S have an associated probability, the process to define the
n routes starts (see Figure 2.7 for examples). The approach is very similar to
the one described for the random mobility data generator, except this time the
origin and destination points are picked from S with respect to their probability
and guaranteeing the min dist between both points.

2.5.3 Regression Mobility Data Generator

The regression version of the mobility data generator creates a data model and
makes use of it to enrich the simulations with a real-life inspired movement of
agents.

In this work, using New York City as an example, we used the regression mo-
bility data generator to reproduce a realistic taxi demand across the city map. For
this, we employ the TLC Trip Record Data7 of the city of New York. This dataset
contains records of taxi services which are defined, among other parameters, by
the service start date (month, day and time of the day) as well as an origin and des-
tination taxi zone identifiers. With this information, we divided our simulation’s
city map into its corresponding taxi zones and created a regression model which

7https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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(a) 10x10 map (b) 20x20 map (c) 30x30 map (d) 40x40 map

Figure 2.7: 50 routes examples in Manhattan with different granularity.

can estimate the amount of demand in each taxi zone for a specific month, week-
day and time of the day. Please refer to Section 2.6.2 for a detailed explanation of
how the data was processed.

Therefore, the generated movement is represented by a certain number of cus-
tomer agents that will spawn distributed among the different taxi zones according
to the predicted value of each zone. Additionally, as the dataset includes not only
the origin but the destination taxi zone of each service, we can also estimate a ser-
vice destination. According to the observed services, we can assign a probability
to every taxi zone that indicates how likely it is to be the destination of a service
originated in a specific taxi zone at a certain month, weekday and time of the day.
By pseudo-randomly choosing a destination according to such probabilities, we
complete the routes of the customer agents.

The customers will be picked up and driven to their destinations by transport
agents. Consequently, we have generated mobility data which is in line with real-
life taxi demand as well as origin and destination areas. Optionally, we could
develop a relocation service for transport agents, using the same regression model,
which sent idle taxis to zones where more demand is likely to appear in the next
minutes or hours; although that is outside of the scope of this work, as it has more
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to do with transport agent strategic behaviour.
As can be seen, we have designed and implemented three approaches to mo-

bility data generation with different levels of complexity. The random movement
generator may be useful to establish baseline measurements in simulations, so as
to compare them against other systems. As for the more informed versions, they
make use of real-world data, processing it with different techniques to create real-
istic routes. Assigning such routes to agents in our simulations we obtain a better
representation of the real urban traffic system. The regression mobility data gener-
ator employs the most complete approach, although in a very general perspective,
as it can be used with many types of input data. In the following Section 2.6.2 we
illustrate the use of the latter generator with a detailed example.

2.6 Case Study

In this section, we present a case study on the island of Manhattan in order to
illustrate the use of the charging stations generator as well as the mobility data
generator described in Sections 2.4 and 2.5. Throughout the previous sections we
have shown illustrative examples of how each of the generators works, i.e., each
of the distributions of the charging stations generator (random, uni f orm, radial,
genetic), and the mobility data generators (random, informed, and regression).
Thus, in this case study we focus on what we can consider to be the most informed
and potentially most realistic generator for each case. Thus, Section 2.6.1 de-
tails the use of the genetic algorithm-based charging station generator, and Section
2.6.2 details the use of the regression-based mobility data generator to generate a
realistic demand for taxis in the Manhattan island.

2.6.1 Genetic Generation of Stations

In this section we present the use and results obtained from the charging stations
generator based on the genetic algorithm of Section 2.4.4 on the case study lo-
cated in Manhattan. Concretely, we specify the pre-processing of the Manhattan
data as well as the parameters used to prepare the experimentation with the gener-
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ator. Then, the results of executions with different number of charging stations are
shown.

2.6.1.1 Data Pre-processing

One of the crucial parts for a successful operation of the charging stations generator
based on the genetic algorithm is the data on which it is based. For the genetic
algorithm we will use data on population, traffic, and social media activity (in this
case, Twitter). The population and traffic data have been extracted from the New
York open data portal8. Regarding the Twitter data, it has been obtained using
uTool [33], a tool that captures geo-located tweets during a specific period of time.

The population data of Manhattan has been extracted from two different datasets.
On the one hand, the 2010 Census tracts9 are used as the division of different areas
of Manhattan. Then, this data is processed and merged with the census demograph-
ics at the neighbourhood tabulation area (NTA) level10. Concretely, the number of
population at 2010 of each NTA code from the last dataset is assigned to the cor-
responding polygon that defines the NTA (extracted from the first dataset). This
produces a GeoJSON file with the population by areas of Manhattan (represented
in Figure 2.8a) that can be provided to the genetic algorithm.

Regarding the traffic data of Manhattan, two different datasets have also been
used. On the one hand, the New York City street centreline dataset11 has been
used for having the polylines that define the streets of Manhattan. On the other
hand, the traffic volume counts from 2014 to 201912 have been used to have the
number of cars moving through the streets of Manhattan. These data have been
processed to establish a correspondence between the street names represented in
both datasets, as there is no compatible identification or code that we can use for
our needs. All traffic volume counts, which are separated by date and hour from

8https://opendata.cityofnewyork.us/
9https://data.cityofnewyork.us/City-Government/2010-Census-Tracts/fxpq-c8ku

10https://data.cityofnewyork.us/City-Government/Census-Demographics-at-the-

Neighborhood-Tabulation/rnsn-acs2
11https://data.cityofnewyork.us/City-Government/NYC-Street-Centerline-CSCL-/

exjm-f27b
12https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/

ertz-hr4r

https://opendata.cityofnewyork.us/
https://data.cityofnewyork.us/City-Government/2010-Census-Tracts/fxpq-c8ku
https://data.cityofnewyork.us/City-Government/Census-Demographics-at-the-
Neighborhood-Tabulation/rnsn-acs2
https://data.cityofnewyork.us/City-Government/NYC-Street-Centerline-CSCL-/exjm-f27b
https://data.cityofnewyork.us/City-Government/NYC-Street-Centerline-CSCL-/exjm-f27b
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
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(a) Manhattan population by
neighbourhood tabulation areas

(b) Manhattan traffic by streets

Figure 2.8: Manhattan population and traffic.

2014 to 2019 are aggregated to have a single number per street. This aggregation
gives a global picture of the traffic volume in Manhattan that allows the genetic
algorithm to discriminate between different streets or areas. All this process ends
up with a GeoJSON file (represented in Figure 2.8b) which is ready to be used by
the genetic algorithm.

The geo-located tweets to use with these experiments are from 2017 to 2019,
that is, 3 complete years. The total number of geo-located tweets is roughly 4.5
million for New York City. However, this volume of data is difficult for the genetic
algorithm to process, as it would be very slow for each of the solution evaluations.
It is therefore more appropriate to reduce it by using the geohash system[111],
which allows the encoding of a geographical location using a string of characters.
In our case, the advantage lies in using a certain precision (7 characters) to reduce
the 4.5 million points at which the tweets are located to a smaller set. Hence, all
tweets that have the same geohash are grouped together in the same “bucket”, so
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that we end up with a set of points that represent each of the geohashes with the
number of tweets that have been made in that area. Thus, by applying geohash with
precision 7 we reduce the 4.5 million tweets of New York City to 41194 geohash
areas, and specifically, 5467 are the geohash areas corresponding to the island of
Manhattan that group together around 1.8 million tweets.

The genetic algorithm needs to start from a set of points of interest (PoIs) in the
city where it is applied. This set of PoIs must be considerably larger than the num-
ber of stations to be placed in order for the genetic algorithm to determine which
combination of points is the most appropriate. In other words, if the set of PoIs
were very similar to the number of stations to be placed, a genetic algorithm would
not be necessary and could be obtained by brute force. For these experiments, we
composed a set of 409 PoIs in the main isle of Manhattan which are separated at
least 150 meters. These PoIs represent areas in which a charging station could be
considered given their interest and the activity generated around them. Examples
include existing petrol stations, museums, monuments, tourist attractions, cinemas
or theatres, shopping areas, restaurants, among others.

The parameters used to configure the genetic algorithm to obtain the charging
stations to be placed in Manhattan are the following:

• Population of individuals is set to 100. This parameter determines the num-
ber of individuals (potential solutions) that are maintained and used during
the evolution.

• The number of generations in which the genetic algorithm evolves the indi-
viduals is established at 50. The evolution is made by applying crossover
and mutation operators with some probabilities, and selecting the best indi-
viduals of each generation.

• The weights to balance the importance of the population, traffic, and Twitter
activity are: ωP = 0.4, ωT = 0.3, and ωA = 0.3, respectively. These weights
are chosen by the user depending on the problem to be optimised. Different
values may give better or worse solutions. In this case it has been decided,
after a few tests, to give a little more weight to population versus traffic and
social networks.
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• The cost of each station is cs =AC40000, and the cost of a charging pole is
ccp =AC10000.

• The influence radius that each PoI considers about the area that covers (with
the intersection of the Voronoi polygon) is set to 300 meters.

• The crossover and mutation probabilities during the evolution are 0.5 and
0.2, respectively. The crossover operator is the graph operator presented in
[75] (Section 3.4). The mutation operator is the uniform with a mutation
probability of each gene of 0.05.

The rest of the parameters remain with default values since they are out of
the scope of these experiments. Additionally, the transformer substations or any
forbidden areas have not been considered. For more information about all the
genetic algorithm parameters we refer the reader to [116].

2.6.1.2 Execution and Results

With all the population, traffic, and Twitter data for Manhattan Island extracted and
processed along with the set of PoIs, as well as the other parameters specified in
the previous section, we can proceed to run the genetic algorithm. Specifically, we
have performed different runs in which we placed 25, 50, 100, and 200 charging
stations in Manhattan. The representation of the charging stations that have been
placed along with the resulting Voronoi diagram can be seen in Figure 2.9.

In the example with 25 charging stations in Figure 2.9a it can be seen that the
charging stations are quite dispersed, although some are more concentrated in the
southern area, probably due to the higher activity in the area. However, as there
are few stations to be placed there are some areas that are certainly far away from
any stations.

The example depicted in Figure 2.9b with 50 charging stations presents a dis-
tribution that apparently better covers the island of Manhattan, and especially the
southern part, in this case, below Central Park. However, there are still some large
areas without adequate charging station coverage.

The example of 100 charging stations in Figure 2.9c already shows a much
larger coverage of the entire island of Manhattan, except for the part of central
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(a) 25 stations (b) 50 stations (c) 100 stations (d) 200 stations

Figure 2.9: Charging stations in Manhattan obtained by the genetic-based genera-
tor.

park, where it is not possible to place many charging stations, and also some areas
in the north that have fewer stations than in the south, probably due to relatively
less activity.

Finally, the example in Figure 2.9d with 200 charging stations already shows
a much larger coverage of Manhattan compared to the previous examples. In this
case, it becomes more evident that the southern area is fully populated with charg-
ing stations, as well as the northern area. In fact, the only gaps that can be seen
are in the central park area where it is not possible to place too many stations, and
the amount of population and traffic in that particular area is much smaller as it is
a significantly large park with no housing or roads.

Table 2.2 shows the monetary cost of each of the Manhattan charging station
distributions seen in Figure 2.9. For the cases of 25, 50, and 100 stations, the mon-
etary cost is the result of multiplying the number of stations by 50000AC, since in all
three cases stations with only one charging point have been placed (the cost of one
station has been set at 40000AC, and the cost of each charging point at AC10000AC).
For the case of 200 stations, 165 stations are placed, in which several of them have
2-3 charging points. This implies a cost of 40000AC for each of the 165 stations
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Table 2.2: Monetary cost of each of the charging station distributions in Manhattan.

stations cost (AC)
25 1,250,000
50 2,500,000

100 5,000,000
200 8,600,000

(without considering the charging points), and then 10000AC for each of the 200
charging points in total. This happens because the genetic algorithm tries to max-
imise the coverage of the stations to have more utility, so in cases with 100 stations
or less, it only places one charging point per station. However, when it can place
200 charging points, it can afford to place more than one charging point per station.

Table 2.3: Utility and cost results for different runs of the genetic algorithm vary-
ing the crossover (cxpb) and mutation (mutpb) probabilities for the case with 200
charging points.

cxpb mutpb utility cost (AC)
0 0.05 0.03068 9,130,000
0 0.2 0.03195 8,850,000
0 0.5 0.03351 8,650,000
0.25 0 0.03741 8,890,000
0.25 0.05 0.04110 9,410,000
0.25 0.2 0.03978 8,920,000
0.25 0.5 0.04317 8,760,000
0.5 0 0.04156 8,880,000
0.5 0.05 0.04831 8,930,000
0.5 0.2 0.05230 8,600,000
0.5 0.5 0.03923 8,930,000
0.75 0 0.04943 8,970,000
0.75 0.05 0.04263 8,930,000
0.75 0.2 0.04516 8,890,000

Table 2.3 summarises the results obtained concerning the utility and cost of
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running the genetic algorithm for 200 charging points in Manhattan. Each row of
Table 2.3 corresponds with a pair of crossover and mutation probability values.
Note that the sum of both values must not be greater than 1. In addition, results for
values cxpb = 1,mut pb = 0 and cxpb = 0,mut pb = 1 have been excluded since
they did not arrive at any feasible solution. The best results are obtained with the
crossover probability at cxpb = 0.5 and the mutation probability at mut pb = 0.2.
Although also the values cxpb = 0.5,mut pb = 0.05 and cxpb = 0.75,mut pb = 0
obtain similar results with which there is no significant difference. Thus, we can
conclude that any of these 3 combinations of crossover and mutation probability
can obtain the best results for the problem we are dealing with.

2.6.2 Realistic Route Generation

To illustrate the use of our regression mobility data generator, in this section we
describe a complete example in which the TLC Trip Record Data of New York
City is used to train a regression model that predicts the taxi demand per taxi zone
in a concrete date. The predictions are then used to reproduce the demand on
SimFleet’s simulations by generating routes for taxi service customers.

2.6.2.1 Data Pre-processing

From the many parameters by which a taxi service is characterised, only the service
start date and the origin taxi zone ID are kept. Then, the date is split in month (1-
12), weekday (0-6) and hour (0-23). The minutes and seconds values of the service
start date are discarded so as to group together all services which started during the
same hour. Next, the taxi services get grouped by month, weekday, hour and origin
taxi zone id and a new column demand is created by counting the services being
joined together (see Table 2.4). By doing this, the demand value indicates the
number of taxi services that started during the indicated month, weekday and hour
on the corresponding taxi zone. Dividing the demand value by the total demand
(sum of all demand values) we obtain instead an estimation of the percentage of
total demand that occurs in each zone.

The process mentioned above can be applied to datasets with services from
many months or even many years, as long as they get merged together in the final
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Table 2.4: Clean taxi service dataset grouped by month, weekday, hour and origin
taxi zone ID. The demand column indicates the number of trips departing from the
origin taxi zone at the indicated date and time.

Month Weekday Hour Origin Demand
1 0 0 4 41
1 0 0 13 59
1 0 0 24 48

... ... ... ... ...
6 6 23 261 18
6 6 23 262 12
6 6 23 263 76

data model. Optionally, it would be possible to create an individual data model for
each month with its corresponding regression model. We decided to build a data
model with yellow taxi services of the months of January to June of 2019. Also, to
restrain the simulation city map to a smaller area, we considered a restricted set of
taxi zones inside the Manhattan borough as can be seen in Figure 2.10.

The last step of the pre-processing is to treat the origin taxi zone identifiers as
categorical variables, which we do by encoding them into a one-hot encoding (see
Table 2.5). The data is then ready to be divided into training and test sets and feed
to our regression model.

Table 2.5: Dataset formatted to train a regression model. The origin taxi zone ID
values have been converted to one-hot encoding and the demand presented as a
percentage of the total demand.

Month Weekday Hour 4 13 24 ... 261 262 263 Demand
1 0 0 1 0 0 ... 0 0 0 1.093e-06
1 0 0 0 1 0 ... 0 0 0 1.066e-07
1 0 0 0 0 1 ... 0 0 0 1.230e-06

... ... ... ... ... ... ... ... ... ... ...
6 6 23 0 0 0 ... 1 0 0 4.798e-07
6 6 23 0 0 0 ... 0 1 0 3.198e-07
6 6 23 0 0 0 ... 0 0 1 2.026e-06
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Figure 2.10: Restricted set of taxi zones of the Manhattan borough.

2.6.2.2 Execution and Results

We used an automated Machine Learning process (included in the TPOT tool
[113]) to find the most adequate regression model to train with our data. This
process automates the pipeline design of machine learning models by performing
a search using genetic algorithms to combine and evaluate different models and
hyper-parameters.

The pipeline found was composed by a Stacking Estimator with a Decision Tree
Regressor followed by a Random Forest Regressor. These models are part of the
scikit-learn toolkit [118]. The concrete parameters of each model, also tuned by
the automated Machine Learning process, are presented in Table 2.6. This model
achieved an accuracy of 0.95 over the test set, which we consider enough given its
purpose, which is to generate realistic data.

Once the regression model has been trained, we can generate mobility data as
a prediction of taxi demand over the different taxi zones. To do so we first define
the simulation time span, the amount of time we want our simulation to model. In
the following example, we model a simulation which takes place over a Monday



56 2.6. Case Study

Table 2.6: Best pipeline found for our dataset.

Decision Tree Regressor Random Forest Regressor

max depth = 10 max features = 0.5
min samples leaf = 17 min samples leaf = 1
min samples split = 7 min samples split = 15

n estimators = 100

accuracy = 0.95

(weekday 0) of January (month 1), from 9:00 to 14:00. In addition, we indicate a
number of customers per hour, which will inform the simulator about the number
of customer agents we want our system to spawn each simulation hour13. For our
example, we set the number of customers per hour to 1000. Let it be noted that
such a number could be indicated for longer time periods like many days or even
a whole month; the simulator would then adjust the duration of the simulation
accordingly.

With the simulation characterised by the aforementioned parameters, the gen-
erator builds the samples to pass to the regression model. As our example takes
place in different hours, the model builds, for each hour, samples of services which
depart from every taxi zone considered in the simulation. If the simulation was set
in different days or months, the generator would create samples in a similar manner
to the one described, making sure every possible combination of the parameters is
considered.

The samples are passed to the regression model, which outputs a percentage of
demand for each one of them. As we mentioned on the data pre-processing (Sec-
tion 2.6.2.1), our model was trained with data belonging to 6 months. This means
the predicted demand is a percentage of the total demand of 6 months. Because
of that, we decided to normalise the demand percentage across all samples with
the same month, weekday and hour. For our example, that implies normalising the
demand across samples with the same hour, which gives us 6 sets of data, each
corresponding to an hour (9:00 to 14:00), with normalised demand. Each of the 6
datasets indicates the percentage of demand to be expected in each taxi zone dur-

13The real-time duration of an hour of simulation can be adjusted by the user.
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ing the same hour. Following, the demand percentage is multiplied by the number
of customers per hour (1000), finally obtaining the number of customers that will
spawn in each taxi zone during every hour of the simulation. A representation of
the dataset for the 9:00 hour can be seen in Table 2.7.

Table 2.7: Data predicted by our regression model. The demand column indicates
the percentage of the hourly demand that occurs in a determined taxi zone. The
customers column expresses such demand in terms of the number of customers
departing from the determined taxi zone.

Month Weekday Hour Origin Demand Customers
1 0 9 4 0.002154 2
1 0 9 13 0.013161 13
1 0 9 24 0.003504 3

... ... ... ... ... ...
1 0 9 261 0.003842 3
1 0 9 262 0.023182 23
1 0 9 263 0.026261 26

As it can be inferred, the normalisation of data can be adapted to a concrete
simulation setup; i.e., a concrete set of values for the month, weekday, hour and
customer amount parameters. If a simulation was defined to take place over many
days, and the number of customers was also indicated by day, the demand percent-
age could be normalised across a day instead of an hour.

As for the last step, the route creation, the generator defines a route for each
customer which starts in a random valid location inside its origin taxi zone. The
destination taxi zone can be chosen semi-randomly according to the observed taxi
services (as commented in Section 2.5.3) or completely random among all consid-
ered taxi zones. Once the destination is set, a random valid point inside it is fixed.
The origin and destination points are then passed to our routing service and the
final route is obtained. During the simulation development, the customer agents
will spawn in their origin points. To divide the demand of a single simulation hour
into different time intervals the delay parameter (commented in Section 2.5.2) can
be used.
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2.7 Conclusions

This paper has presented a proposal for the generation of more realistic data in
agent-based simulation tools related to mobility and transportation. Specifically,
the data generation has been focused on the location of EV charging stations and on
the generation of routes within the urban environment, but it can be easily adapted
to generate other types of infrastructure or data to be required in the urban environ-
ment. For the development of the proposal, the simulation tool SimFleet has been
used, on which different generators of each kind have been integrated.

We highlight the development of two more complex generators based on arti-
ficial intelligence techniques. In the case of the generation of charging stations,
a genetic algorithm has been used to optimise the location of stations in the city
based on information from open data and other data sources. In the case of route
generation, a regression algorithm has been used to generate more realistic routes
from historical mobility data. With both generators, the users can simulate dif-
ferent distributions over a city or metropolitan area by recreating mobility, using
real data to analyse and compare each distribution. This improves the simulation
results facilitating the decision making in municipalities.

Moreover, a case study has also been developed in order to illustrate the use
of such generators in common. Specifically, an example has been developed on
the island of Manhattan in New York using different sources of real data. Results
allow to ensure the usefulness of these generators. As a future work we aim to
propose an evolution of the proposed generators for their possible adaptation and
integration in other simulation tools similar to SimFleet. The work of adaptation
to other tools would mainly consist of transforming the input data generated in our
proposal into the appropriate format in each case. As an example, work has begun
on developing a data transformation algorithm for the MatSim tool, which requires
the input information in xml format divided into different files. On the other hand,
we also propose the integration of vehicle reallocation strategies for open fleets in
the generators.
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Abstract

The public’s awareness of pollution in cities is growing. The decrease of carbon dioxide
emissions from the use of fossil-fuel-powered cars stands out among the different viable al-
ternatives. To this purpose, more sustainable options, such as carsharing fleets, could be used
to replace private automobiles and other services such as taxis. This type of vehicle, which
is usually electric, is becoming more common in cities, providing a green mobility option.
In this research, we use multi-agent simulations to examine the efficiency of the current taxi
fleet in Valencia. After that, we evaluate various carsharing fleet arrangements. Our findings
demonstrate the possibility for a mix of the two types of fleets to meet present demand while
also improving the city’s sustainability.
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3.1 Introduction

In recent years, both city administrators and the general public have become more
conscious of the impact of pollution in metropolitan areas. As a result, there are
an increasing number of projects aimed at improving sustainability and lowering
cities’ carbon footprint. Among its crucial targets, the European Union’s 2030 cli-
mate and energy framework aims to lower the level of greenhouse gas emissions a
40% with respect to 19901. Various municipal councils are advocating for legisla-
tion that places considerable limits on polluting automobiles, particularly in urban
centres. With this, the inhabitant’s quality of life would be generally improved
thanks to an enhancement in air quality. Some localities have outright bans on per-
sonal petrol-powered vehicles. In contrast, others are more lenient and the worst
polluting vehicles (according to their technical datasheet, age or emissions) are the
only ones prohibited.

Parallel to this, new mobility service models have emerged that are more suited
to users’ needs.

Among them, the widely used “ridesourcing service” stands out. This kind
of services offer their customers on-demand rides that can be booked though a
multitude of platforms (call-centre, mobile application, etc.).

As new mobility options are popularised, the research interest in measuring
their urban transportation impact grows too. Authors publish in reference [125]
a study centred in San Francisco, California, that compares taxi services against
ridesourcing solutions such as the ones offered by Lyft or Uber.

Despite the many similarities ridesourcing and taxi fleets may seem to have,
their work reveals the two differ in the amount of satisfied requests and the cus-
tomer waiting time. Furthermore, around 50% of ridesourcing usage was replacing
public transportation and personal vehicle trips, having a deeper effect on urban
mobility than if it were just substituting taxi rides.

New means of transportation do not just replace existing modes of transporta-
tion; they also produce new transportation trends among consumers. As a result,
incorporating electric carsharing fleets [77] into city planning could help to reduce
both excess pollution and traffic congestion. Passengers whose journey includes

12030 climate & energy framework: https://ec.europa.eu/clima/policies/strategies/2030 en
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locations which are not served by the city’s public transportation options may be
able to fulfil their needs with carsharing. Carsharing customers can book a vehicle
which is close enough to reach by foot and make a private use of it. At the end
of their ride, the vehicle is available for another user. In turn, carsharing could
bring a reduction in the amount of active private vehicles in the urban transporta-
tion system. The research published in reference [109] reveals a decrease in the
average number of vehicles owned per household in Vancouver, Canada, after the
implementation of two separate carsharing services. Moreover, many users may
no longer need to possess a vehicle in the future, which will substantially influence
sustainability on multiple levels, including direct emissions from the active auto-
mobiles as well as indirect contaminating procedures for vehicle manufacturing.

In contrast with the stated above, authors in reference [79] declare their data
shows no significant relation between car ownership and free-floating car-sharing
in Germany. This goes to show the complexity of urban mobility and how its
is also affected by sociological factors. Nevertheless, the aforementioned study
does not analyse impact on urban rides. Many taxi consumers would be eager to
use carsharing services because they may be more cost-effective if the service is
competitively priced. However, carsharing vehicles cannot meet all taxi demand.
Some people are unable to drive or have special needs that this type of fleet can
not meet. A taxi-like service will never be completely substituted.

Taxi and dial-a-ride fleets, among other conventional urban transportation ser-
vices, may be partially substituted by carsharing services with potentially lower
environmental impact. The carbon dioxide emissions of carsharing are reduced
thanks to the nonexistence of empty movement (vehicle displacement without pas-
senger) [48]. Furthermore, as hybrid and fully electric vehicles perform well in
metropolitan settings, they may easily implement carsharing fleets. As a result,
even if carsharing serves a small portion of the city’s taxi demand, it will result in
a cleaner environment. With this focus, a Beijing-centred work [36] investigates
the features a carsharing fleet needs to outperform the existing taxi service with
regard to travelling costs. A similar research [165], also set in Beijing, assesses the
efficiency of different arrangements carsharing services by means of simulation.

As can be inferred from above, many studies that look at the efficiency of urban
transportation alternatives focus on a specific town or urban area. This is a sensible
choice because a critical aspect of an excellent urban fleet performance is its ability



62 3.1. Introduction

to adapt to citizens’ mobility patterns and travel preferences. We pursue such a
mindset by centring our research in the urban area of Valencia, Spain.

Valencia’s government has been particularly engaged in developing the sus-
tainable development goals (SDG) of the United Nations for the past few years.
Among them, SDG 11: Sustainable Cities and Communities is specially relevant
to our work. Authorities are implementing it through many policies such as the
prohibition of petrol-powered vehicles in specific sections of the urban centre,
pedestrianising roads and squares, developing additional parks and green spaces,
and finally encouraging electric-powered vehicle usage.

Valencia had never had a carsharing service previously, and it was only recently
that a small company named Cargreen2 began offering it on May 9, 2021, with a
fleet of 100 electric cars. The absence of this service means, in turn, the absence of
GPS data belonging to carsharing trips. Nonetheless, we have data on the popula-
tion, transportation, and social media activity that we utilise to recreate Valencian
inhabitants’ mobility patterns.

The findings of several of the research mentioned above are based on surveys
and fleet data analysis. Instead, we employ agent-based modelling to simulate
various mobility systems and their users, being able to define behaviours for each
of them. In addition, our experimental setup allows us to simulate vehicle fleets
directly in the city of Valencia. The multi-agent simulator SimFleet [117] is em-
ployed to run different scenarios and gather data that is later analysed to draw
conclusions. The research questions of this article are first to assess Valencia’s
public taxi service efficiency from two viewpoints: sustainability, with focus on
carbon dioxide emissions, and quality of service, mainly indicated by customer
satisfaction. Then, we want to present the characteristics of a free-floating car-
sharing service so that is able to absorb a portion of the mobility demand in a
sustainable manner while being a competitive alternative. Our results, supported
by the experimental simulations, show there is potential to reduce part of the public
taxi fleet in favour of a carsharing fleet. With both alternatives working together
to serve the displacement demand, we could preserve a reasonable degree of cus-
tomer satisfaction while improving the general sustainability of the urban mobility
system. The present work is an extension of reference [94].

2http://cargreen.es/
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The rest of the paper is structured as follows. Section 3.2 introduces the soft-
ware and the data employed to build the simulation scenarios, as well as the sys-
tem modelling and the experimental setup of this work. Then, Section 3.3 details
the development of the various experiments, the metrics that evaluate fleet perfor-
mance, and the collected results. Section 3.4 presents a general discussion on the
results and findings of this work. Finally, in Section 3.5 we present our conclusions
and future work.

3.2 Materials and Methods

This section describes the software that was employed to build realistic simulation
scenarios and the data used to this end. In addition, the simulator and its key
features are introduced. Finally, the system modelling and our experimental setup
are briefly described.

3.2.1 Simulation Environment: SimFleet

SimFleet [117] is a multi-agent based urban fleet simulator, initially intended for
an easy implementation and experimentation of agent strategic behaviours. In this
work, we carry out simulations with a modified SimFleet version. We the authors
of the current work have actively contributed to SimFleet’s development, which
allows us to easily modify its operation to adjust the simulations to our research.
It is implemented with SPADE [53], a Python agent development environment.
This feature enables us to introduce to the simulations agents with behaviours and
strategies defined by ourselves. In addition, SPADE provides scalability and more
tools to develop complex mechanisms of communication among agents. For the
current research, we have defined protocols for operating a taxi and a carsharing
fleet. Moreover, we implemented separated customer strategies to make use of
those services and a third one which enabled customers to use both. This was
possible thanks to our experience with SimFleet and our access to its code on a
lower level, which allowed us to alter its functionalities.

The urban mobility simulations are developed in SimFleet with three types of
agents: FleetManager, Transport and Customer agents. Each fleet has a FleetMan-
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ager, which generally acts as an intermediary between the users of such a fleet
and its vehicles. In turn, each vehicle is represented by a Transport agent. Fi-
nally, Customer agents portray the actors that use the transportation system. We
simulate three different transportation scenarios for this work: a taxi fleet, a car-
sharing fleet, and finally, a setting where both fleets operate over the same urban
area. The specific behaviours and strategies of the three types of agents will vary
for each scenario. However, the simulation goal is constant: all customers of the
transportation service must get to their destination. Following, we briefly describe
the particularities of the agent modelling of each fleet.

In taxi simulations, the FleetManager acts as a centralised entity that selects
the taxi to which a particular customer request is sent. The followed strategy is
to forward the request to the nearest available taxi. Transport agents act as a taxi,
picking the customers up at their origin location and dropping them off at their
destination. Lastly, Customer agents create a displacement request (from their
current position to their destination) and send it to the FleetManager. Once they
get assigned a vehicle, they wait for it to arrive.

To simulate carsharing fleets, in contrast, we employ an enhanced version of
SimFleet, described in reference [97]. Such a version allows the three aforemen-
tioned agent types to simulate a free-floating carsharing fleet, implementing new
behaviours for all of them.

The FleetManager now has to notify clients of any available (non-booked) car
and its location. Transports play a more passive role, remaining parked at their
origin locations and waiting for a booking request. On the other hand, customer
agents can now choose the car they want to book based on their requirements.
Furthermore, they must walk to their reserved vehicle to use it. A user-defined
parameter limits the distance they can walk. Once in their transport location, they
drive to their destination and finally park the car, leaving it available again. Ulti-
mately, in scenarios where both fleets are present, the crucial difference appears
in the Customer agent behaviour. The FleetManager and Transport agents of each
fleet behave according to their fleet type (carsharing or taxi), as explained above.
Regarding customers, these simulations accept taxi and carsharing customers and
a new so-called hybrid customer. Hybrid customers will initially aim to book a
carsharing vehicle. If unable, they will instead call for a taxi. Their behaviour,
therefore, begins as a carsharing customer and transitions to a taxi customer if
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necessary to reach their destination.

3.2.2 Data Generation

A simulation can recreate reality if the data on which it is based are accurate.
Therefore, we decided to base our simulations on real data from Valencia, Spain,
the location of our research. The regional3 and national4 governments maintain
open databases through which we have access to geolocated data: amount of in-
habitants per area, average traffic intensity on each city road, and the positions of
taxi stops, among others. Such data is fed to the Load Generators, presented in
reference [99].

These generators are used to allocate the elements of a simulation (customers,
vehicles, resources, etc.) in the scenario in a way that reproduces the real city-data.
Before the start of the allocation, the simulated area is split into multiple subareas.
The granularity parameter determines the number of subareas. Then it computes
a probability distribution for the entire area, attributing a selection probability to
each subarea. This probability is calculated based on the population, traffic, and
social activity in the subarea. The different factors are joined by Eq (3.1), where
Oi indicates a subarea, pi, ti, and ai the amounts of population, traffic, and social
activity within Oi, respectively; and wp, wt and wa are weights that regulate the
influence of each type of data over the final probability value. The amount of data
in a subarea is divided by the number of occurrences of the same type of data (P,
T , and A, respectively) in the entire region.

(3.1)
prob(Oi) = wp ·

pi

∑
P
j=1 p j

+wt ·
ti

∑
T
j=1 t j

+wa ·
ai

∑
A
j=1 a j

; with wp +wt +wa = 1

For this work, the probabilistic map obtained by the Load Generators has been
enhanced considering the main type of activity developed in each area of the city
of Valencia. According to this, we find residential, primary, secondary and service
industries, hospitals, and green areas, among others. By blending city and area

3Govern Obert. www.valencia.es/val/ajuntament/govern-obert
4Instituto Nacional de Estadı́stica (INE). www.ine.es/index.htm
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data, we better characterise the movement patterns of citizens. Although we do
not have data on specific GPS routes, we can define an origin-destination matrix.
The paths of the agents are constructed as follows: Agents are assigned an origin
point (contained in one of the sub-areas) in a semi-random way, according to the
probabilities. Varying the values of the weights (wp, wt , wa), we can increase the
importance of the different factors, which is helpful to introduce different types of
agents. For instance, in creating customer agents, more weight is given to popula-
tion and social activity with respect to traffic. As for the destination of the journey,
once the origin point has been selected, the map probabilities are recalculated,
taking into account the activity type of each sub-area. For example, a journey de-
parting from a residential area may be more likely to finish in an industrial sector
and vice versa.

With our generators, we introduce individual citizens (customer agents) with
their own displacement needs. Such needs can be satisfied with one of two options:
taxi or carsharing services. The demand generation is transparent to the differences
among concrete customer agents. Displacement requests are created as one-shot
trips similar to those a taxi customer would demand. This trip model also fits the
concrete type of carsharing mobility we study: free-floating carsharing, where, in
general, once the customer reaches a destination, the vehicle will be available for
any other user. With the described data generation setting, we improve the quality
of our simulations with respect to those obtained with random agent movement.

3.2.3 System Modelling

The simulations are performed in the city of Valencia, Spain. The data generators
(Section 3.2.2) make use of geolocalised population, traffic and Twitter activity
data to fill the scene with transport and customer agents, assigning realistic routes
to the latter.

The scenario is loaded by SimFleet (Section 3.2.1) and the simulation executed.
The system keeps track of different metrics regarding elapsed times and travelled
distances throughout the simulation. These values will be collected once the sim-
ulation finishes to assess the performance. Following, we briefly describe the flow
of each type of simulation.
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In taxi simulations the fleet vehicles are allocated in various points within the
city. Customers send travel requests to the fleet manager upon spawning. The
fleet manager forwards each request to the closest available taxi to the customer.
The taxi accepts the request, moves to the customer’s position, picks them up and
drives to their destination. Once at their destination, the customer agent completes
its execution, and the taxi informs the fleet manager of its availability. When the
fleet gets saturated and there are no free taxis, the customer waits a fixed amount of
time before sends their request again. A customer can wait for a taxi as much as its
maximum waiting time allows them. Once that time elapsed, if the customer could
not get a taxi assigned, it will be marked as “unsatisfied” and leave the simulation.

Regarding carsharing simulations, the fleet vehicles are also allocated in various
points within the city. Upon spawning, customer agents ask the fleet manager for
the location of available vehicles. The customer can book a vehicle among those
that are within its maximum walking distance. In general, it will aim to book the
closest one to them. When the customer receives the booking confirmation it starts
walking towards their vehicle. Once at the vehicle’s location, the customer unlocks
it and drives to their destination. Finally, the customer completes its execution and
the vehicle informs the fleet manager of its new location and availability. If the
customer is unable to book a transport after its maximum waiting time has expired
it will be marked as “unsatisfied” and leave the simulation. This generally occurs
when the customer does not have an available vehicle within walking distance at
any point in time.

Finally, for hybrid simulations, those with both types of fleet, we have defined
three types of customers: taxi, carsharing and hybrid customers. On the one hand,
taxi customers can only travel by calling for a vehicle to the taxi fleet. Whether it
is due to a lack of driving licence, a desire to avoid parking or simply not want-
ing to drive in the city centre, there will always be users who prefer a taxi service
to one such as carsharing. On the other hand, carsharing customers will only use
a carsharing vehicle. For these customers, we assume that they either prefer the
lower price offered by the use of carsharing vehicles or that they have a strong en-
vironmental conscience, which pushes them to use more environmentally-friendly
vehicles. Finally, hybrid customers have a utilitarian approach. They will first try
to book a carsharing vehicle, knowing its use is cheaper and less polluting than a
taxi ride. However, if they cannot book a vehicle after its maximum waiting time
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has elapsed, they will instead call for a taxi, as reaching their destination is what
drives them the most. Because of that, the satisfaction dynamics are changed in
hybrid-type customers: if a hybrid customer is unsatisfied, it means they have tried
to book a carsharing vehicle for its maximum waiting time and failed and later
tried to call a taxi and received no answer for another maximum waiting time. The
other two types of customers preserve the original behaviour described above.

All types of simulation will stop once every customer is either at their destina-
tion or unsatisfied.

3.2.4 Experimental Setup

Following, we present the system metrics and the simulations used to analyse Va-
lencia’s taxi and carsharing fleets. The experimentation consists on 15-hour simu-
lations of transportation activity in the city with a variable demand generation that
is higher at peak hours.

We defined metrics for customers’ time and fleet vehicle distances and assign-
ments, which are analysed to asses the performance of a fleet. Most metrics eval-
uate both carsharing and taxi fleets, although some are only meant for a concrete
type or customers. All metrics are listed in Table 3.1.

The performance of a fleet is evaluated from two different angles. On the one
hand, from the customer viewpoint, lower waiting times and shorter walked dis-
tances boost satisfaction. On the other, when it comes to the fleet’s economic
efficiency and environmental sustainability, shorter empty distances and a higher
number of assignments and occupied distances are good indicators. Finally, the
universal simulation metrics are useful to measure the effect different number of
vehicles and/or costumers has in various scenarios.

The city of Valencia has a total of 2841 registered taxis5, but not all of them
are active simultaneously. A maximum of 1044 taxis can be in service together,
although the concrete number is highly variable according to weekday and time of
the day. During concrete low demand periods, the city has had less than 200 active
taxis. Regrettably, because of the absence of official data on the number of active
taxis each hour, we decided to portray it as a percentage of the overall number of
taxis. Our baseline simulation experiment presents a taxi fleet of 840 vehicles, an

5Spanish National Statistics Institute https://www.ine.es/jaxi/Datos.htm?tpx=32954
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Table 3.1: Description of the output metrics of the simulation. Customer and
transport metrics describe individual factors relevant only to those types of agents.
The overall simulation metrics provide indicators to estimate service quality and
fleet performance.

Customer metrics
Walked distance Distance walked by the customer to its booked transport’s location
Waiting time for a booking Time a customer waited to get a confirmed booking
Waiting time for a pick up Time a customer waited for a taxi to pick it up
Satisfaction Boolean that indicates whether a customer has reached its destination
Transport metrics
Assignments Total number of served passengers
Empty distance Distance travelled by a taxi without a passenger
Customer distance Distance travelled by a vehicle while carrying a passenger
Simulation metrics
Avg. customer booking time Average of satisfied customers’ waiting for booking times
Avg. customer waiting time Average of satisfied customers’ waiting for pick up times
Avg. customer walked dist. Average of satisfied customers’ walked distances
Satisfaction % Percentage of satisfied customers (out of the total number of customers)
Total assignments Number of assignments of a whole transport fleet
Avg. assignments Average number of assignments per fleet vehicle
Avg. empty distance Average empty distance travelled by the fleet vehicles
Avg. distance Average distance travelled by the fleet vehicles
Unused vehicles Number of vehicles with 0 assignments
CO2 emissions Approximated amount of carbon dioxide emitted by the fleet

80% of the maximum number of active taxis. We hope that by doing so, we will
be able to compensate for periods when taxi amounts are greater or lower.

Regarding the demand modelling, we defined individual customers with a spawn-
ing time, location, and destination at least 2 km away from their origin. Our sim-
ulations reproduce 15 city activity hours, between 7:00 (AM) and 22:00 (10:00
PM). We have assigned to each one-hour interval a concrete demand intensity.
Such intensity is related to the number of customers spawning within the hour.
Specifically, we defined four intensities: Low, with 250 customers; Medium-Low,
with 500 customers; Medium-High, with 750 customers; and High, with 1000 cus-
tomers. We divided a total of 10,000 customers into one-hour intervals as shown
in Table 3.2. The intervals between 9:00 and 10:00, 14:00 and 15:00, and 18:00
and 19:00 have been assigned a high demand. This reflects commuting to and from
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Table 3.2: Mobility demand in terms of the number of customers per simulation
hour.

Simulation hour Customers Demand intensity
7:00 – 8:00 500 Medium-Low
8:00 – 9:00 750 Medium-High
9:00 – 10:00 1000 High
10:00 – 11:00 750 Medium-High
11:00 – 12:00 250 Low
12:00 – 13:00 500 Medium-Low
13:00 – 14:00 750 Medium-High
14:00 – 15:00 1000 High
15:00 – 16:00 750 Medium-High
16:00 – 17:00 500 Medium-Low
17:00 – 18:00 750 Medium-High
18:00 – 19:00 1000 High
19:00 – 20:00 750 Medium-High
20:00 – 21:00 500 Medium-Low
21:00 – 22:00 250 Low
Total 10,000

work and taking children to and from school or home.
The results of the baseline taxi simulation are compared with various configu-

rations of carsharing fleets, aiming to asses their performance. In order to do so,
another five simulation scenarios have been developed. The demand modelling
described above was preserved, but the transportation service was implemented
by means of a carsharing fleet. Each scenario has its own number of vehicles:
Cs-1000, Cs-840, Cs-560, Cs-280, and Cs-140, which present fleets of 1000, 840,
560, 280 and 140 carsharing vehicles, respectively.

We can estimate how much different carsharing fleet designs can cover mo-
bility demand by measuring the percentage of satisfied users. Furthermore, we
may compare each fleet’s greenhouse gas emissions as a function of the distance
travelled by their vehicles.

The movement speed for vehicles is set to 40 km/h whereas for pedestrians
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(carsharing users) is of 4 km/h. With this, we average between the urban road
speed limit of 50 km/h and the residential area speed limit of 30 km/h, as well as
the time spent waiting in traffic lights. Regarding pedestrians, the average human
walking speed of 5 km/h has been reduced by 1 to palliate our simulator’s absence
of traffic lights and the extra time they would incur. The maximum waiting time of
all customers is set to 12 minutes (720 seconds). In addition, carsharing users can
only book a vehicle which is within a 1000 meters walking distance. As a result,
if a customer is unable to book a vehicle or has not been picked up by a taxi after
12 minutes elapse, it will be marked as unsatisfied and leave the simulation.

3.3 Results

This section presents the experiments carried out with the different types of fleet.
First, the results for different carsharing fleet sizes to cover the demand in Valen-
cia are shown. Then, we present the results for covering the same demand with
different taxi fleet sizes. Finally, the results with combined hybrid fleets, i.e., a
carsharing fleet and a taxi fleet, to cover the demand in the city are shown.

3.3.1 Carsharing Fleet Performance

In the first experiment, presented in Table 3.3, the performance of the carshar-
ing fleet configurations is compared against the baseline configuration (Taxi-840).
Time values in the table should be regarded as a guideline rather than an exact time
measurement, as factors such as traffic congestion and traffic lights are not taken
into account. In the taxi simulation, the customer booking time (Table 3.3, first
row) shows the time required to call the taxi service provider and ask for a ride.
The customer waiting time, on the other hand, indicates the average time elapsed
between the call and the client pickup. These definitions vary for carsharing cus-
tomers, for whom the booking time display the time spent on the app looking or
waiting for an available vehicle to book. Therefore, the waiting time reflects the
time it took the used to walk to the vehicle. All other metrics are common for the
two types of services (please refer to Table 3.1 for a detailed explanation of each
metric).
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Table 3.3: Simulation metrics comparison of the carsharing configurations (la-
belled as “Cs-” followed by the number of vehicles in their fleet) with the baseline
taxi configuration of 840 transports.

Taxi-840 Cs-1000 Cs-840 Cs-560 Cs-280 Cs-140
Avg. cust. booking time (min) 1 2.3 1.9 1.2 1 3
Avg. cust. waiting time (min) 2.5 7.6 7.1 7.2 8.3 11.6
Avg. cust. walked dist. (m) 0 518 522 554 611 655
Satisfaction % 99.87 90.77 89.57 82.86 61.59 38.21
Total assignments 9987 9077 8957 8286 6159 3821
Avg. assignments 12.85 9.57 10.95 14.85 22.15 27.49
Avg. dist. per assignment (Km) 6.13 5.44 5.47 5.47 5.43 5.41
Unused vehicles 34 52 22 2 2 1
Total empty distance (Km) 7423 0 0 0 0 0
Total distance (Km) 60,909 48,821 48,299 44,763 33,246 20,593
CO2 emissions (tonnes)
Gasoline 6.68 5.35 5.30 4.91 3.65 2.26
Diesel 7.65 6.13 6.07 5.62 4.18 2.59

As can be seen, the fleet of 840 taxis achieves a high percentage of customer
satisfaction. Its average booking and waiting times indicate that the fleet operated
smoothly over most of the 15 hours. However, it got overloaded at some point,
as 13 customers could not be served before their maximum waiting time elapsed.
Each taxi made an average of 12.85 trips, an average of 6.13 Km long (including
customer pickup). Still, 34 taxis were never given assigned to a customer. This is
probably due to their original spawning location, making them unfit to serve any
trip.

Before comparing the performance of the different carsharing fleets with the
baseline, it is interesting to visualise how the demand evolved throughout the sim-
ulation. Figure 3.1 shows the evolution of the number of waiting and unsatisfied
customers during the 15-hour period of the simulation. The number of waiting cus-
tomers is indicated in the left vertical axis and represented by areas with a different
shade of blue for each fleet configuration. Such a value is increased each time a
customer enters the simulation. On the other hand, it decreases when a customer
has booked a vehicle or its state changes to unsatisfied. The number of unsatisfied
customers is indicated in the right vertical axis and represented by lines with dif-
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ferent colours and patterns for each fleet configuration. This value is initially 0. As
the simulation is carried out, the number increases each time a customer exceeds
its maximum waiting time and is therefore marked as unsatisfied.

Figure 3.1: Visualisation of the evolution of the amounts of waiting clients (left
vertical axis) and unsatisfied clients (right vertical axis) in the different carsharing
simulations according to the simulation time (in hours). Simulations are labelled
with “cs-” followed by the number of vehicles in their fleet.

Observing the shape of the areas of Figure 3.1 change along the horizontal axis,
we can visualise the demand peaks shown in Table 3.2. The amounts of waiting
customers reach their maximum values between the 9:00–10:00, 14:00–15:00 and
18:00–20:00 time periods, reaching their absolute maximum in the evening for all
configurations. Configurations cs-1000 and cs-840 behave similarly in terms of
waiting and unsatisfied customers. This is clear as their areas and lines are al-
most overlapped, having cs-840 a slightly worse performance (higher values). The
performance worsens as the fleet vehicles are reduced, as may be expected. The
difference between unsatisfied customers of the cs-560 and cs-280 configurations
is notable, as the latter significantly worsens the metric. The same can be observed
for configuration cs-140.

Going back to Table 3.3, configuration taxi-840 outperforms all carsharing con-
figurations in terms of customer satisfaction. The carsharing fleet cannot absorb
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the mobility demand with the restrictions we have introduced. However, we recog-
nise that comparing taxi and carsharing fleets directly is not fair since they are so
dissimilar. Taxis are most commonly utilised for brief, one-time trips. Carshar-
ing services, on the other hand, may be used for a similar purpose or to replace
private vehicles and even public transportation. Moreover, carsharing users must
be willing to drive and park the transport on their own. Nonetheless, the findings
suggest that a carsharing fleet may serve a portion of the taxi market (38.21% of
customers with a carsharing fleet of only 140 vehicles, 61.59% with a fleet of 280
vehicles, and up to 82.86% with 560 vehicles), decreasing emissions by reducing
the number of vehicles and the distance travelled.

From the standpoint of sustainability, is is noteworthy to observe how the aver-
age number of assignments per vehicle improves as the number of vacant vehicles
decreases. Fewer transports have a lower environmental impact, both in terms of
vehicle production and subsequent maintenance. Furthermore, it indicates a lower
chance of traffic congestion, which reduces pollution and enhances the overall
quality of life for all participants of the urban transportation system.

The use of carsharing vehicles has a simple but powerful benefit: it prevents
empty vehicle movement. This is because our modelling disregards the relocation
of vehicles, as this is a very complex problem which needs its own separate re-
search, and thus is outside the scope of the current work. Table 3.3 presents carbon
dioxide emissions for the different fleets assuming an average city consumption
of 5 L/100km6 and presenting two values according to the type of fuel (diesel or
gasoline). The results indicate that around 7423 km could be saved each 15 hours
by avoiding empty journeys (with a fleet of 840 taxis). This represents a saving
of around 0.81 to 0.93 tonnes of CO2

7. Comparing simulations Taxi-840 and Cs-
840, the reduction may reach around 1.38 to 1.58 tonnes. The savings would be
significantly higher if the carsharing fleet was made up entirely of completely elec-
tric vehicles. The fleet in Cs-140, for example, covers 20,953 km every 15 hours.
Travelling such a distance in a car with the mentioned consumption would result
in around 2.26 to 2.59 tonnes of CO2 emissions. All travelling emissions could be
prevented if every car was electric.

6Value obtained as an average of the gas consumption of vehicle models generally used for taxis in
Valencia.

7Computation made with https://calculator.carbonfootprint.com/calculator.aspx?tab=4
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3.3.2 Taxi Fleet Reduction

A different approach to increasing the sustainability of a transportation system is
to reduce the number of vehicles in it. This rather drastic change must be carefully
addressed to preserve an adequate level of service quality. In the following exper-
imentation, we carried out various taxi fleet simulations, reducing the number of
taxis in each fleet.

Figure 3.2: Visualisation of the evolution of the amounts of waiting clients (left
vertical axis) and unsatisfied clients (right vertical axis) in the different taxi simu-
lations according to the simulation time (in hours). Simulations are labelled with
“taxi-” followed by the number of vehicles in their fleet.

Figure 3.2 shows the evolution of the number of waiting and unsatisfied cus-
tomers throughout the different simulations. This graph follows the format of Fig-
ure 3.1. Please refer to Section 3.3.1 for a detailed explanation of the graph. As it
can be seen, the number of waiting customers reflects the three high-demand peri-
ods. In this case, configuration taxi-140 has a significantly higher number of wait-
ing customers than the other configurations. Regarding the number of unsatisfied
customers, the fleets of configurations taxi-280, taxi-560 and the baseline taxi-840
only get overloaded during the third high-demand period (18:00–20:00). In con-



76 3.3. Results

figuration taxi-140, however, the fleet gets overloaded during each high-demand
period, increasing its number of unsatisfied clients each time.

Table 3.4: Comparison of global simulation metrics of the different taxi fleets
(labelled as “Taxi-” followed by the number of vehicles they contain) against the
baseline taxi fleet of 840 vehicles.

Taxi-840 Taxi-560 Taxi-280 Taxi-140
Avg. cust. booking time (min) 1 1 1 1
Avg. cust. waiting time (min) 2.5 2.8 3.5 6
Avg. cust. walked dist. 0 0 0 0
Satisfaction % 99.87 99.73 99.23 95.71
Total assignments 9987 9973 9923 9571
Avg. assignments 12.85 18.15 35.8 68.4
Avg. dist. per assignment (Km) 6.1 6.3 6.6 7.7
Unused vehicles 34 5 0 0
Total empty distance (Km) 7423 9154 12,331 21,972
Total distance (Km) 60,909 62,571 65,487 73,253
CO2 emissions (tonnes)
Gasoline 6.68 6.86 7.18 8.03
Diesel 7.65 7.86 8.23 9.20

The simulation metrics of the different fleets, presented in Table 3.4, show good
satisfaction percentages. It is especially remarkable the fleet’s operation in taxi-
140, which only reduces satisfaction by a 4.07%, while its vehicles have been
reduced an 83.33% with respect to the baseline.

Any conclusions drawn from our experimentation must be understood in the
context of our simulation settings. Nevertheless, we see a potential for a reduction
of Valencia’s taxi fleet (or the optimisation of its operation), aiming to lower its
environmental impact. In this regard, we can see how the travelled distances, as
well as the carbon dioxide emissions, increase as we reduce the number of vehicles.
This is because the less taxis a fleet has, the more distance does each individual
vehicle cover. Therefore, to correctly assess the sustainability in this case, we
would need to compare the impact of producing and maintaining a vehicle against
the impact of its usage emissions.
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3.3.3 Hybrid Mobility Approach

The last set of simulations we performed present a hybrid approach to urban mo-
bility. In our previous experimentation, the taxi fleet shows consistently better
customer satisfaction. In contrast, the carsharing fleet presents the advantage of
reducing the distances travelled by vehicle and consequently carbon dioxide emis-
sions. This is, as mentioned before, because in carsharing the customer pickup is
avoided. In turn, many clients may find themselves without a vehicle to book, as
all of them parked are too far away. We combine a taxi and a carsharing fleet in
the simulation scenario, aiming to balance both metrics.

We created five new simulation scenarios. The distribution of customers by
type in these simulations is 70% hybrid customers, 20% taxi customers and 10%
carsharing customers (see Section 3.2.3 for a description of each customer type).
The different instances vary in the number of vehicles for each fleet. Simulation
(cs-280, taxi-280) has the highest number of transports, with a fleet of 280 car-
sharing vehicles and another with 280 taxis. Analogously, we defined simulations
(cs-280, taxi-140), (cs-140, taxi-140), (cs-140, taxi-70), and (cs-70, taxi-70). As it
can be seen, we intend to study the reduction of the number of vehicles, prioritising
the taxi fleet.

The results of the simulations are collected in Table 3.5. We must take into
account certain factors to analyse them. As hybrid customers can be served by
the carsharing and the taxi fleets, some of their metrics are presented split by fleet
type. In addition, the percentages of unsatisfied customers of a particular type are
calculated over the total number of customers of that type (7000 hybrid, 2000 taxi,
1000 carsharing). Finally, please note that the increase in the customer waiting
time for a taxi vehicle is partially due to the behaviour of hybrid customers, which
exhaust their maximum waiting time (12 minutes) trying to book a carsharing ve-
hicle before calling a taxi.

The results show that global customer satisfaction is relatively acceptable for
every fleet combination tested. As expected, reducing the number of vehicles re-
duces the quality of service. Nevertheless, even with the smallest fleets (70 carshar-
ing vehicles and 70 taxis), 74.06% of customers are satisfied. Among customers
of different types, we can see how hybrid customers benefit from their freedom
of choice, as they show lower dissatisfaction percentages for every simulation. In
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Table 3.5: Simulation metrics comparison of the hybrid simulations (labelled as
“cs-” followed by the number of vehicles in the carsharing fleet and “taxi-” fol-
lowed by the number of vehicles in the taxi fleet).

Simulation
cs-280 cs-280 cs-140 cs-140 cs-70

Customer metrics taxi-280 taxi-140 taxi-140 taxi-70 taxi-70
Avg. taxi cust. waiting time (min 11 11.4 12.8 15.1 16.2
Avg. cs cust. waiting time (min) 8.9 9.2 11 11 12.3
Avg. hybrid cust. waiting taxi (min) 17.2 17.4 17.1 19.7 19.8
Avg. hybrid cust. waiting cs (min) 8.9 9.2 11.1 11 12.3
Global satisfaction % 91.58 91.88 89.62 83.48 74.06
Hybrid cust. travelled by taxi % 31.11 31.34 53.91 45.34 55.69
Hybrid cust. travelled by cs % 64.46 64.35 41.83 43.71 24.46
Unsatisfied taxi customers % 8.70 7.70 7.00 16.20 22.60
Unsatisfied cs customers % 35.80 36.40 60.00 56.20 75.20
Unsatisfied hybrid customers % 4.43 4.20 4.26 10.94 19.86
Transport fleet metrics
Total assignments 9158 9188 8962 8348 7406
Taxi fleet assignments 4043 4040 5641 4850 5446
Cs fleet assignments 5115 5148 3321 3498 1960
Avg. assignments (taxi) 14.43 28.86 40.29 69.29 77.80
Avg. assignments (cs) 18.27 18.37 23.72 24.99 28.00
Avg. dist. per assignment (taxi) (Km) 6.4 6.8 6.9 8.5 8.73
Avg. dist. per assignment (cs) (Km) 5.4 5.4 5.4 5.4 5.4
Unused vehicles (taxi) 21 2 0 0 0
Unused vehicles (cs) 3 4 1 1 1
Total empty distance (taxi) (Km) 4584 6712 8878 15132 18454
Total empty distance (cs) (Km) 0 0 0 0 0
Total distance (taxi) (Km) 26,106 27,742 39,122 40,964 47,570
Total distance (cs) (Km) 27,850 27,842 17,956 18,957 10,548
Carbon dioxide emissions
CO2 emissions (taxi) (tonnes)
Gasoline 2.86 3.04 4.29 4.49 5.22
Diesel 3.28 3.48 4.91 5.15 5.98
CO2 emissions (cs) (tonnes)
Gasoline 3.05 3.05 1.97 2.08 1.16
Diesel 3.50 3.50 2.26 2.38 1.33
Avg. fleet CO2 emissions (tonnes) 6.35 6.54 6.73 7.05 6.84
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this regard, carsharing customers are more penalised, as they have more restric-
tions when it comes to booking a vehicle (maximum walking distance and the
common maximum waiting time). Finally, it is interesting to see the evolution of
the percentage of hybrid customers served by each type of fleet. In simulations
(cs-280, taxi-280) and (cs-280, taxi-140) most of the hybrid customers are able to
book a carsharing vehicle. However, when that fleet is reduced to 140 vehicles,
the greatest part of hybrid customer demand is absorbed by the taxi fleet, as (cs-
140, taxi-140) and (cs-70, taxi-70) show. Lastly, configuration (cs-140, taxi-70)
presents a certain balance in this aspect.

Analysing the travelled distances of each fleet, we see that both (cs-280, taxi-
280) and (cs-280, taxi-140) present similar total distances. Then, as the carsharing
fleet is reduced and its usage decays, the taxi service presents much higher dis-
tances. This is because as the number of taxis in the fleet is reduced, more distance
has to be covered to pick each individual customer, as we commented in Section
3.3.2. Observing the number of unused vehicles it stands out a single carsharing
transport which, as a result of its initial location, was not close enough to any of
the customer to be used. Besides that, we want to remark the high distances of
empty taxi journeys which are generally avoided with carsharing. Finally, the car-
bon dioxide emissions evolve in hand with travelled distances. Once again the
trade-off among vehicle production pollution and vehicle usage pollution should
be addressed. The number of vehicles in the fleet should be set at a level that
increases its overall sustainability but is not so low as to increase the kilometres
travelled by each vehicle further than a certain threshold.

3.4 Discussion

In this work, the experimentation has been performed through a multi-agent sim-
ulator. The combination of multi-agent modelling and simulation technologies
seems appropriate to reproduce a system with a high degree of dynamism [47],
such as the urban mobility one. Nevertheless, the data gathered from a simulation
can be misleading if it is directly extrapolated to the actual system the simulation
tried to reply to. Although we grounded all of our simulation scenarios on real
data of Valencia, is it not possible to reproduce every detail, and thus concessions
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have been made. Because of that, any conclusions drawn from our results must
be understood within our experimental settings. That said, our results show a se-
ries of trends worth discussing and from which concrete action could be derived to
improve the sustainability of urban traffic systems.

The impact carsharing technology could have on our environment is substan-
tial. On the one hand, it reduces the distance that a service vehicle travels empty
(not carrying any customer). This implies a more energy-efficient trip, as more
customers are displaced per energy unit spent. In addition, it can avoid direct car-
bon dioxide emissions by implementing the service with fully electric vehicles.
Regarding the latter, one of the objectives of the Spanish government is to increase
the number of hybrid and electric-powered vehicles in their public taxi fleets. A
2019 study8 indicates that the taxi fleet of Madrid, the capital of Spain, has a 26%
of hybrid taxis meanwhile fully electrical vehicles account for only a 0.1%.

Our results show poor customer satisfaction with the carsharing services with
respect to the taxi ones, although younger generations have positive perceptions on
shared mobility [141]. The particularities of our free-floating carsharing proposal
make it unfair to directly compare both types of fleet, as we commented above.
Furthermore, we made strong assumptions with respect to the maximum walking
distance and waiting time of our customers. Both magnitudes, while necessary to
define the agents’ behaviour in the simulation, in real life are likely to depend on
many personal factors. Besides that, we believe a relocation service [122] for the
carsharing fleet is essential to enable more users to make use of it. With accurate
data of carsharing usage, the service provider could develop a relocation algorithm
that allocates more cars in city areas where more demand is likely to be present
according to the time of the day.

Besides the satisfaction, the type of user of each fleet must also be assessed.
A dial-a-ride service such as taxis will always be needed, as some users will not
drive a vehicle themselves. In addition, they might not be willing to, given the
generally heavy traffic in cities and the lack of parking space in certain areas. Thus,
potential users could be environmentally conscious people, tourists, users looking
for savings, people with daily commutes that do not comfortably correspond to a

8Movilidad urbana y metropolitana: un gran reto de las ciudades del siglo XXI, Observatorio del
transporte y la logı́stica en España: https://observatoriotransporte.mitma.es/recursos_otle/

monografico_otle_2019_movilidad_urbana_y_metropolitana_1.pdf

https://observatoriotransporte.mitma.es/recursos_otle/monografico_otle_2019_movilidad_urbana_y_metropolitana_1.pdf
https://observatoriotransporte.mitma.es/recursos_otle/monografico_otle_2019_movilidad_urbana_y_metropolitana_1.pdf
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direct public transport line, among others. In general, users would tend to have
a young to middle-aged age profile. A reduction in prices is not enough for a
carsharing system to be attractive enough to the general public [54] (with respect
to the commodity of dial-a-ride services). Moreover, a certain infrastructure [28]
must be ensured so that customers do not feel insecure making use of the service.
On the one hand, parking facilities must be implemented, for instance, by allowing
carsharing vehicles to park inside city centres or having enough reserved parking
spaces for this type of vehicle. On the other hand, a reliable network of electric
vehicle chargers would come in hand both for users and service providers.

From all our experimentation, we want to highlight the hybrid simulations of
Section 3.3.3. A city is a complex set of systems that interact with each other.
The urban mobility system is one of the most complexes, as it contains several
actors. Because of this, the hybrid simulations, those where the demand is covered
by both a taxi and a carsharing fleet, are the closest to a real city representation.
Most users of the urban traffic system have freedom of choice over different dis-
placement alternatives. Our results suggest that there is potential to improve the
general sustainability of our cities. The public should be encouraged to use more
environmentally friendly options considering the freedom of choice. Combining
transportation services with a strong promotion of the most sustainable ones could
be the best approach.

The analyses our work presents are relevant for the mobility options of today.
Nevertheless, the situation may change in the near future with the introduction of
autonomous mobility. Such a mode of transportation would effectively turn tradi-
tional taxi and carsharing vehicles into autonomous, demand-responsive taxis. In
this regard, there are a number of studies that address the effects of autonomous
transportation services. For instance, in [136] authors study the implementation
of an autonomous demand-responsive service that communicates the rural and ur-
ban areas of Bremerhaven (Germany). The authors suggest that operational and
environmental costs significantly decrease if the individual transportation vehicles
are completely replaced with such a service. However, they remark how the fully
autonomous operation of the vehicles is key for the economic sustainability of the
service. Another study [65] shows through a Melbourne (Australia) case study
how travel demand could be met with only a small part of the current fleet if the
mobility followed an on-demand autonomous shared transportation model. How-
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ever, their results also present that the reduction of the vehicle fleet would increase
the travelled kilometres of each vehicle, thus having a negative impact on the envi-
ronment. This finding is also present in our experimentation. Ultimately, we want
to remark that mobility is a really complex subject and changes that would seem
to report obvious benefits may end up worsening the overall system once imple-
mented. That is why simulation is especially important when it comes to exploring
and testing mobility solutions.

3.5 Conclusions

In this research, we looked at the implementation of a carsharing system in Valen-
cia, Spain, intending to provide a more sustainable alternative to the city’s current
taxi fleet. We have created simulations based on real-world city data for agent
movement and distribution. Our findings show that, while some form of taxi ser-
vice will always be required, carsharing has a significant potential to cut carbon
dioxide emissions and traffic congestion in the city, albeit at the sacrifice of some
consumer happiness.

With regard to the article’s hypotheses, the experimentation shows a reduction
in Valencia’s taxi fleet is possible in terms of quality of service, which would be
preserved. Nevertheless, this causes the sustainability of the fleet to worsen with
respect to carbon dioxide emissions. On the other hand, after trying many config-
urations, we propose a fleet of 840 carsharing vehicles as a competitive alternative
which presents a trade-off between customer satisfaction and sustainability. Fi-
nally, a hybrid solution that combines the usage of taxi fleets with green carsharing
services is assessed. Such an option can meet all client demand while simultane-
ously reducing carbon emissions. This would be excellent for a transition to totally
electric urban mobility, resulting in a more environmentally friendly city.

The urban mobility system of each city will have its own particularities. Many
of them may heavily influence the usage of the different modes of transportation
as well as their overall efficiency. Therefore, it is hard to state that our analyses of
customer satisfaction can be transferred to other urban settlements. Nevertheless,
we believe our general conclusions regarding the sustainability of reducing/replac-
ing a taxi fleet with carsharing vehicles can be transferred to other cities of a similar
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size to Valencia. In any case, our experimental framework can be used to simulate
carsharing fleets in any city, provided we have data to guide the demand genera-
tion, and thus we recommend experimenting before transferring any conclusions.

The current work paves the way for future research in various directions. On
the one hand, we would like to look at more practical demand generation meth-
ods. This would involve a dependable data source and the subsequent choice of
convenient features. On the other hand, we wish to add another mode of trans-
portation to our simulations to examine the proportions of overall mobility de-
mand that each system covers in greater detail. Vehicles from Valencia’s public
transportation system, such as buses, bikes, and metro lines, would be an excel-
lent addition to improve simulations of city mobility. Finally, we will enhance the
simulation regarding carsharing systems by adding vehicle relocation, a specially
relevant feature for free-floating carsharing. Specifically, we want to develop a
machine learning prediction solution, similar to the one presented in [102], that
aids to determine the time of day when the relocation should take place as well as
new vehicle locations.
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PASQUAL MARTÍ, JAUME JORDÁN, AND VICENTE JULIAN
Neural Computing and Applications,
Volume 35, Pages 17599-17618, 2023

Doi: https://doi.org/10.1007/s00521-023-08631-9

Abstract

The modelling of fleet vehicles as self-interested agents brings a realistic perspective to open
fleet transportation research. This feature allows us to model the fleet operation from a
non-cooperative point of view. In this work, we study parcel delivery in a city with limited
resources (roads, charging stations). We designed and implemented a system composed of
a multi-agent planner and a game-theoretic coordination algorithm: a Best-Response Fleet
Planner. The system allows for the self-organisation of the transportation system by coordi-
nating a fleet of self-interested electric vehicles. The system’s operation is optimised together
with resource usage while preserving the agents’ private interests, allowing each agent to
plan its actions. The results show that our system has higher scalability than similar ap-
proaches, allowing it to function for a considerable number of agents in settings that feature
congestion and conflicts. Additionally, overall solution quality is improved compared to other
coordination systems, reducing congestion and avoiding unnecessary waiting times.

87



88 4.1. Introduction

4.1 Introduction

A city can be seen as a non-cooperative or competitive scenario. Many of its
resources, like road networks or petrol stations, may get congested if too many
users want to use them simultaneously. As users (generally drivers) act selfishly
and uninformedly, resource management tends to be poor. This translates into
traffic congestion, higher waiting times to refuel, and, in general, more air pollution
and less quality of service (for transportation service users).

Optimisation techniques can improve systems by identifying and minimising
inefficiencies, reducing waste, and maximising output. These techniques use math-
ematical and computational models to analyse data and identify areas of improve-
ment [124, 26], such as minimising production costs, reducing delivery times, or
improving quality. In transportation systems, for instance, optimisation techniques
can be used to optimise routing, minimise fuel consumption, and reduce transporta-
tion time, resulting in improved delivery performance and reduced costs. One of
the main limitations, however, when it comes to traffic optimisation, is gathering
the necessary information to coordinate every user’s actions and make intelligent
decisions. Connecting all services and infrastructure would be beneficial for such
a complex task. Smart City technology would allow data collection and exchange
among these services. This data could be used in research on improving urban
traffic and applied to develop solutions.

The aforementioned technologies can be applied to develop an intelligent, self-
organising transportation service. This work focuses on open delivery fleets, dy-
namic fleets whose number of vehicles can increase or decrease according to the
demand. In contrast with traditional fleets, the drivers are autonomous: they
choose the passenger or delivery to serve and obtain a benefit accordingly. Al-
though drivers belong to the same fleet, they act according to their benefits. There-
fore, when reproducing such a fleet, we must ensure that the agents make their
own decisions and are not coordinated by a centralised entity. The transports that
compose the delivery service must be able to self-organize themselves according to
their private goals, but taking into account they all coexist in the same scenario, and
thus it is in their best interest not to cause congestion. Considering these features,
Agent-based modelling (ABM) and Game theory are applied to reproduce this type
of fleet. ABM [123] is a computational modelling technique used to simulate com-
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plex systems consisting of multiple interacting agents. In ABM, each agent in the
system is programmed with a set of rules that govern their behaviour and decision-
making processes. Game theory [154], on the other hand, is defined as the study
of mathematical models of strategic interaction among rational decision-makers;
i.e., agents who make decisions based on personal benefit. Game theory provides
the tools to coordinate the fleet’s autonomous transports taking into account the
actions of each other.

Our work presents a practical application to coordinating self-interested vehi-
cles of a fleet. In addition, this coordination considers the resources of the urban
area where the fleet operates to optimise its use and avoid congestion. To this end,
we have, on the one hand, designed and implemented an ad-hoc optimal planning
algorithm that enables each fleet’s individual vehicles to plan their actions accord-
ing to their interest. Moreover, the planner considers every other vehicle’s plans
to obtain the optimal plan with respect to every other agent’s plan. This, in turn,
implies the avoidance of congestion and conflict resolution. On the other hand, we
have implemented a game-theoretic coordination algorithm (best-response dynam-
ics) which converges to an equilibrium: A collection of agent plans from which no
vehicle is incentivised to change. The fleet’s operation that describes the equilib-
rium ensures the vehicles perform their services to maximise their benefits, imply-
ing that their private interests are preserved.

The main differences between our approach and other fleet coordination tech-
niques are the following. On the one hand, decentralised coordination is provided.
Generally, fleets are coordinated by a central entity that decides the actions of each
vehicle. In contrast, our fleet vehicles have the autonomy to make their decisions.
In addition, vehicle coordination may occur even if a member fails to communi-
cate, thus being appropriate to model an open fleet. Finally, our approach enables
each vehicle to keep its goals private, which is useful when coordinating agents
in a non-cooperative scenario. On the other hand, using game theory techniques
allows us to define the use of the city’s resources as a congestion game which, in
turn, shows the agents (vehicles) that it is in their best interest to make better use
of them. With these features, we achieve the optimisation of the whole system
together with the preservation of the agent’s autonomy, which is generally lost in
other coordination approaches.

Our research explores the limitations of the proposed system through extensive
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experimentation. We show the extent to which the ad-hoc planner can return op-
timal plans in a reasonable time according to problem complexity and the number
of agents. The results indicate that the system overcomes similar approaches in
terms of computation power, taking into account the advantage of having an ad-
hoc planner. Our system proves the viability of simulating realistic scenarios, with
a significant number of agents, in a game-theoretic environment. Finally, we as-
sess the quality of the returned solutions, which are better than those obtained by
greedy coordination.

The remainder of the paper is organised as follows. Section 4.2 reviews related
work. Then, in Section 4.3, we present an overview of the entire proposed system.
Next, Section 4.4 specifies the urban mobility planning domain that reflects the
problem to be solved. Section 4.5 describes in detail the developed ah-hoc planner.
Following, the best response fleet planning (BRFP) process with which the whole
game is developed to reach an equilibrium solution is explained in Section 4.6. The
experimental results of the proposed work are presented in Section 4.7. Section
4.8 discusses urban transportation challenges, how our system applies to other
problems, and its limitations. Finally, Section 4.9 draws the conclusions of this
work and presents possible future research directions.

4.2 Related Work

The proposed system is related to three fields within artificial intelligence: Multi-
agent systems, automated planning, and game theory. In this case, techniques of
each branch are applied to an urban mobility domain intending to optimise the
operation of delivery fleets. Multi-agent systems and their simulation allow us to
reproduce the behaviour of human drivers in a software world and study their ac-
tions and any synergies that may arise. Moreover, automated planning algorithms
ensure that, given an agent’s current knowledge, they are able to compute their
best course of action, considering each possible path at each computational step.
Finally, knowing they are part of a competitive environment and assuming ratio-
nality on all other participants, game theory gives the basis to reach agreements
and equilibria among the actions of all agents in the scenario.
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4.2.1 Multi-agent Simulation

Multi-agent simulation (MAS) is a computational modelling technique that allows
the simulation of complex systems composed of multiple interacting agents. Ap-
plied to urban fleet management, MAS is used to model and analyse the behaviour
of a fleet of vehicles in a city, considering various factors such as transportation
demand, traffic conditions, and resource availability. MAS can help improve the
efficiency and sustainability of the transportation system by allowing fleet man-
agers to test different scenarios and strategies in a safe and controlled environment
before implementing them in the real world. MAS has been widely used to model
and simulate vehicle fleets [72, 148, 32]. An urban mobility domain must define
many different interactions among the various elements of the scenarios. MAS
help achieve that, as we can represent each element through an agent (vehicles,
pedestrians, charging stations, etc.) and define appropriate behaviours for them. In
[117], authors presented a MAS-based simulator specialised in the representation
of urban fleets of different kinds. Later, in [94], the aforementioned simulator was
extended to include new types of fleets, such as carsharing. Using simulators en-
ables us to explore the effect of different coordination paradigms on the operation
of a fleet without having to implement changes in the real world.

In recent years, new agent-based simulators have appeared that facilitate the de-
velopment of different strategies for fleet management in the urban environment.
One of the tools is SUMO [86], an open-source traffic simulator that can be used
for route choice, communication between agents and infrastructure, traffic man-
agement, and autonomous driving. SUMO uses an origin/destination matrix to
assign movement between city zones. Another tool is MATSim [155], a frame-
work for demand modelling and traffic flow simulations. SIMmobility [4] is an-
other simulation tool that focuses on mobility demand impact prediction for smart
shipment services. Finally, commercial tools like VISSIM [46] offer an array of
technologies to address multiple mobility and transportation problems.

4.2.2 Fleet Coordination & Game Theory

Regarding vehicle fleet coordination, the degree of freedom given to each vehicle
is crucial. Such a degree indicates how much the self-interest of the vehicle (or
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its driver) can influence its actions. Authors assess this topic in [92], where a
taxonomy of autonomous vehicle coordination problems is presented. According
to the degree of freedom given to each vehicle, the coordination approaches vary
from fully centralised, where an external entity imposes actions on every fleet
vehicle, to fully emergent, where its self-interest guides all of the vehicle’s actions.

There is no direct involvement of the agents (vehicles, drivers) in any coordi-
nation protocol in emergent coordination approaches. Agents behave according
to their goals and aim to maximise their actions’ utility. These features give rise
to the use of game-theoretic techniques, where each agent assumes the rationality
of the others and determines its actions based on the information it knows or can
guess about other participants.

For instance, the work in [163] presents a distributed approach for coordinat-
ing the charging of a large fleet of plug-in electric taxis in a city, aiming to re-
duce charging costs, improve charging station utilisation, and balance charging
requests for the power grid. The approach involves a two-stage decision process
with a thresholding method for charging time slot selection and a game-theoretical
approach for charging station selection, as validated by extensive numerical sim-
ulations. Similarly, the paper [52] discusses the problem of fleet configuration
for unmanned vehicles, focusing on optimising the fleet for minimum costs. The
proposed approach involves transforming the fleet configuration activity into an
optimisation problem using game-theoretic techniques, with the aim of achieving
interoperability among different organisations involved in fleet provision through
distributed and decentralised planning.

Therefore, emergent coordination is generally applied to fleets composed of
independent vehicles; in other words, non-cooperative fleets. In these fleets, like
those of Uber, Lyft, or Glovo, each driver obtains benefits thanks to his/her work.
Even if they belong to the same fleet, the different drivers do not tend to cooperate,
although that does not imply that they are competitive either. For our work, we
will assume non-cooperative (agents only care about maximising their utility) and
non-strictly competitive (agents do not actively look to reduce the utility of other
agents) self-interested agents.
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4.2.3 Automated Planning

Self-interested agents must be able to plan their actions according to their private
benefits. Because of that, we introduced Automated Planning to the system. A
planner generally looks for a feasible, somewhat optimised solution to a problem.
This applied to a fleet would imply centralised coordination, as the planner would
define each vehicle’s actions. Nevertheless, the planning goal can be distributed
into different tasks, allowing each agent to plan, by itself, how to carry out their
task. When planning is applied to MAS, we perform Multi-Agent Planning (MAP)
[157].

In recent years, there has been significant research on cooperative MAP, where
agents join their efforts to achieve a common goal. Cooperative MAP is used
to solve tasks that can not be performed by a single agent or are better solved
when several agents work together [40]. In some cases, agents with different abil-
ities must cooperate to solve a planning task [147]. However, we focus on types
of MAP where game theoretic techniques may be applied. These are the coali-
tional MAP, where establishing alliances benefits groups of agents [39]; adversarial
MAP, which features self-interested agents with opposed goals and, consequently,
takes place in strictly competitive scenarios; and finally, non-cooperative MAP, in
which agents are not strictly competitive and; therefore, they are prone to follow a
collaborative strategy and resolve conflicts.

The coordination of self-interested agents in non-cooperative settings is gener-
ally performed through a game. In this game, the agent strategies are their plans,
the actions they intend to do. These plans will be adapted to other agents’ plans to
avoid conflicts. Finally, an equilibrium is obtained: a union of agent plans (joint
plan) that ensures no agent will deviate from it. The equilibrium, in addition, must
solve the goal of the MAP task. The works in [70, 74] introduce FENOCOP, an
approach to solving non-cooperative planning problems. In this approach, agents
have a limited set of plans. The final joint plan is built in two phases or games:
first, a Nash Equilibrium [110] is obtained from the many combinations of agent
plans. Then, a scheduling process delays specific actions to obtain an executable
outcome, avoiding conflicts. This approach can obtain Pareto Optimal and fair
equilibria, an extra quality measure for the solutions. However, the methods lack
scalability because of their exponential complexity.
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Another work, presented in [73], describes the so-called Better-response Plan-
ning Strategy (BRPS), a game-theoretic algorithm to solve congestion games [129].
In congestion games, the scenario features a series of resources that agents will use.
When too many agents use a resource simultaneously, it gets congested, and its cost
increases. Congestion games can significantly represent urban mobility domains,
as these contain many resources (roads, charging stations) in which we wish to
avoid congestion. In a best-response process, an equilibrium is reached through an
iterative process in which the participant agents propose, in turn, a plan which is a
best-response to every other agent’s plan. This process finally converges when no
agent is incentivised to change its plan. The Better-response Planning Strategy of
[73] allows agents to propose not their best plan but simply a plan that improves
the utility of its previously proposed plan. This avoids the need for optimal plan-
ning that a best-response process requires, which is computationally more costly
than satisficing planning in practice [5].

Our approach is inspired by the Better-response Planning Strategy but uses
a best-response process, as we can perform optimal planning in a fast manner
thanks to the design and implementation of our ad-hoc planner. We apply these
methods to coordinate the operation of an open delivery vehicle fleet, ensuring
optimal delivery routes and resource congestion avoidance.

4.3 System Overview

The work described in this paper is motivated by the research on rational, self-
interested agents. An agent with those features has its private objectives, which,
in practice, translates to its unique utility function. Our goal is to explore the co-
ordination of urban fleets composed of self-interested agents, particularly electric
delivery vehicles. Such vehicles may belong to a fleet, thus serving customers’
delivery requests and getting compensated by it. Introducing delivery vehicles in
a city with limited resources creates a competitive scenario where agents compete
to deliver their parcels as soon as possible. However, we must ensure that the
aforementioned scenario (delivery service) is solvable, avoiding the conflicts that
generally arise between agents. For that, we model the operation of the agents as
a MAP task, precisely a non-cooperative MAP task in a non-strictly competitive
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setting, one in which agents do not create coalitions to solve the global goal of the
task but instead, the task is solved by coordinating how agents solve their goals.
In this way, we aim to obtain a functioning of the agents which preserves their
individuality, not imposing any action but allowing them to determine their actions
by themselves and simultaneously avoid conflicts with the rest of the agents of the
scenario.

In a delivery fleet with the aforementioned modelling, the global goal would
be to complete all delivery tasks, thus solving the scenario. On the other hand, the
agents that compose it will aim to maximise their utility, dropping off the parcels as
soon as possible while following the most efficient route: the one that involves less
travelled distance and power consumption. To avoid conflicts, the actions of each
agent are decided by a game-theoretic process: A Best-Response Fleet Planning
(BRFP) process (Section 4.6). The process begins by creating a congestion game
equivalent to the scenario to solve. For this game, the moves or strategies of the
players will be their actions, i.e., an ordered list of the actions they will do. This list
of actions is a plan, being the plan’s goal to get the highest possible utility out of
the actions. Therefore, transport (delivery) agents act as players whose strategies
are plans built according to their interests.

To compute such individual plans, we developed an ad-hoc planner (Section
4.5). It is ad-hoc as it is designed to solve problems set in the Urban Mobility
Planning Scenario (Section 4.4). We take advantage of the domain characteristics
to speed up the search. All in all, given a scenario and a transport agent in that
scenario, the ad-hoc planner builds the optimal plan for such an agent, taking into
account both the state of the scenario and the plans of every other agent, always
obtaining a plan that is the best response to all other agents’ plans.

Once the congestion game is established, it is developed by the BRFP pro-
cess, in which the agents propose different strategies (plans), always in the best
response, improving each turn (if possible) their previously proposed plans to (1)
avoid conflicts with other agents and (2) minimise their costs. The process con-
verges to an executable solution (joint plan), a Pure-strategy Nash Equilibrium
(PNE) [105], guaranteeing that no agent will deviate from it (change its strategy).
In this way, the BRFP obtains a solution that indirectly achieves the global goals
of the fleet (all transport agent’s delivery tasks are served) by capitalising on the
agents’ own incentive to maximise its benefits, which it does by completing the
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Figure 4.1: Graphic of the functioning of the Best-Response Fleet Planner. The
image at the top shows how the Joint plan is updated each iteration: All agents
compute their plans and update a copy of the joint plan sequentially. The process
converges when no agent changes their plan. The image at the bottom shows an
iteration in detail; each agent invokes the ad-hoc planner during its turn to propose
their best plan, updating the Joint plan if necessary. The planner considers all other
agents’ plans by reading the joint plan each time it is invoked.
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tasks following the optimal route and avoiding congestion. As the global goals are
satisfied, the obtained joint plan also coordinates the fleet’s operation, which could
be simulated.

The diagram in Figure 4.1 shows the operation of the BRFP. It can be seen how
the agents use the planner to propose their best strategy. In one iteration, every
agent has to propose a new best plan (if the previous one was not in best-response
already), updating the joint plan. If, after a whole iteration, no agent has changed
their plan, the process has converged, and the joint plan, the union of every agent’s
individual plan, is returned. The joint plan describes a solution to the congestion
game, which is an equilibrium and, in addition, ensures the lack of conflicts among
agents of the scenario. In the following sections, we describe the planner and BRFP
algorithm and the urban mobility planning domain in which the executions occur.

4.4 Urban Mobility Planning Scenario

The planning problems of this work are set in an urban mobility scenario that
models a real-world smart-city urban area. The scenario contains three types of ele-
ments: parcels, with an associated initial position and final destination; electric de-
livery vehicles or transport agents, with an initial position and a current travel ca-
pacity (electric power), expressed in kilometres; and finally, electric charging sta-
tions, which have a certain number of charging poles for the transports to recharge
their batteries and an electric power which determines the speed at which agents
charge in them.

We are modelling a delivery service with non-fixed pick-up or drop-off loca-
tions. Transport agents have two basic behaviours: complete a delivery task, which
involves moving to the parcel location, picking it up, driving to its destination, and
recharging their batteries by driving to a charging station. Transports can carry a
single (1) parcel at a time. Consequently, our system considers the following four
types of actions:

1. PICK-UP: Move to a parcel’s position and pick it up.

2. MOVE-TO-DEST: Move to the carried parcel’s destination and drop it off.

3. MOVE-TO-STATION: Move to a charging station and wait for the charge.
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4. CHARGE: Begin charging until the travel capacity is full.

Actions 1 and 2 constitute a delivery service while actions 3 and 4 constitute
a charging service. These services must be executed without interruption; conse-
quently, during the construction of the individual plan of a transport agent, actions
of types 1 and 2 will always appear consecutively. The same applies to actions of
types 3 and 4. A scenario will be solved once the delivery tasks assigned to every
transport are completed. In practice, a transport agent with a preassigned number
of delivery tasks will aim to follow the optimal order to complete them so that
delivery time and power expenses are minimised.

We have chosen to apply this system to a delivery fleet. Nevertheless, our
approach can be used for other applications in the field of urban mobility, such as
the coordination of fully autonomous vehicles. In addition, it could be adapted to
manage the operation of other distributed systems in which the self-interest of each
part must be considered.

4.4.1 Transport Agent’s Utility

Transport agents are modeled as rational, self-interested agents that act according
to their private interests. Such an interest is to maximise their utility. Transports
must complete all their delivery tasks regardless of the cost involved. Because
of this, an agent’s utility is equivalent to the negative value of its costs. Thus,
transports are motivated to complete their tasks minimising their total cost.

The costs arise from two main sources: customer waiting time or waiting cost
and resource congestion. Regarding the former, transport agents have their costs
incremented by a fixed amount every time instant a delivery task assigned to them
remains uncompleted. Concerning the latter, roads and charging stations repre-
sent resources whose use incurs costs. These resources may get congested if too
many agents use them simultaneously (in overlapping time intervals). If a con-
gested resource is used, the cost of such usage will be higher than expected. Re-
source congestion costs are identified as road cong for road network congestion
and power cong for electric power network congestion in Equation 4.1.

The exact formulas that describe congestion costs can be configured by the user.
Generally, a resource will have a certain resource bound defining the number of
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simultaneous uses it can withstand. Once that bound is surpassed, the resource’s
cost increases proportionally to how many agents use it. Our modelling defines two
resource bounds: power bound, for power network congestion, and road bound, for
road network congestion. Let us define a bound, for instance, of 0.5. For power
network congestion, that would indicate the network gets congested once 50% of
its power is drawn at a time. In contrast, road network congestion would indicate
a road is congested once 50% of its capacity is used at a time.

The total cost of a transport agent is used to evaluate its plan. It is computed as
the addition of its waiting cost and the costs derived from resource congestion, if
any. In addition, every type of equation cost is pondered by a weight: ww, wr, and
wp for waiting, road congestion, and power congestion costs, respectively. The
utility of an agent, described in Equation 4.1, is equal to −(total cost), which, in
time, is the utility associated with its plan.

(4.1) U =−(total cost)
=−(waiting cost ·ww + road cong ·wr + power cong ·wp)

With this modelling of costs, we achieve transport agents interested in complet-
ing their assigned delivery tasks in an order that involves less delivery time, fewer
power expenses, and avoids congestion when it is profitable.

4.4.2 Conflicts

A shared scenario, populated by self-interested agents and with a limited number
of resources, may give rise to conflicts among agent plans. A conflict makes the
involved agents’ plans unfeasible. Our domain presents charging station conflicts
when two or more agents plan to recharge in the same charging station during
overlapping periods, and the station does not have enough available charging poles
to serve all transports simultaneously. In this situation, the agent that arrives at the
station the soonest has its charging spot ensured. Therefore, the conflict resolution
falls to the rest of the agents, who will have to choose between waiting in line at
the station for their turn to charge or charging at another station.

Conflict resolution always involves an increase in the agent’s delivery time and,
therefore, costs. However, there is no way in which conflicts could be permitted.
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To ensure agents avoid and/or resolve conflicts, any agent whose plan is in conflict
will be penalised with a great increment of its costs.

4.4.3 Individual Plans and the Joint Plan

Agent actions are reflected in plans. A plan consists of a list of entries arranged in
ascending order according to their start time. Every plan entry corresponds to one
action and presents it with its attributes and initial and end time in seconds. An
example of a joint plan (the union of agents’ individual plans) in our domain can
be seen in Table 4.1.

Table 4.1: Visual representation of a joint plan. Each row corresponds to a plan
entry. On the left column, the initial time instant of the action is presented in
seconds. In the middle one, the action with all its attributes. On the right column,
the time instant in which the action finishes is indicated, also in seconds.

init time actions end time
0.00 (Agent A, MOVE-TO-STATION, station1) 4.62
0.00 (Agent B, PICK-UP, parcel1) 9.81
4.62 (Agent A, CHARGE, station1) 9.97
8.52 (Agent C, PICK-UP, parcel3) 17.51
9.81 (Agent B, MOVE-TO-DEST, parcel1) 16.07
9.97 (Agent A, PICK-UP, parcel2) 19.01

17.51 (Agent C, MOVE-TO-DEST, parcel3) 25.41

We must differentiate between two types of plans: individual or agent plans,
and the joint plan. Individual plans are the ones planned and executed by a single
agent. The joint plan, in contrast, is the union of every individual plan. Individual
plans are computed guiding the planning only by the agent’s private interests, i.e.,
minimising its costs. However, when part of the joint plan, the individual plan may
have actions in conflict. All the conflicts must be resolved for a joint plan to be
executable.
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4.5 Ad-hoc Planner

Considering the characteristics of the urban mobility domain defined above, we
decided to implement an ad-hoc planner. Agents invoke an instance of the planner
to obtain optimal individual plans that solve the problem scenario while ensuring
their actions avoid conflicts. The current world state is represented by the transport
agent’s knowledge at the moment of planning. This includes its current position
and travel capacity as well as its uncompleted tasks. In addition, because of the
associated best-response process, the agent will have complete information on the
plan in the joint plan of every other agent in the scenario. The planner uses this to
avoid conflicts.

In this section, we describe our planner’s elements, its search tree’s compo-
nents, and the procedure used to build and explore it.

4.5.1 Best-response Planning

Our planner is meant to be used by the agents participating in a best-response
process to obtain and propose their best strategy; that is, the best possible plan
with respect to every other agent’s plan. Because of that, our planner performs
optimal planning, which is reasonable given the restrictions of our domain. Hence,
the individual plan returned from the planning process is always the best response
to the plan of every other transport agent. When a plan is returned, the agent
proposes it and is added to the joint plan, updating it.

Each planner instance has its own station usage table, a data structure contain-
ing, for every charging station in the scenario, the agents that planned to use it
together with the time instants they arrive at it and start and finish the charge. An
example of such a structure can be seen in Table 4.2. This data structure is used to
detect charging conflicts at the end of a best-response turn and makes agents avoid
them in their subsequent planning processes.

The best-response process will eventually converge to a Pure-strategy Nash
equilibrium (PNE) [105]. Once the best-response process converges, the joint plan
is guaranteed to be a PNE, conflictless and, thus, executable.
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Table 4.2: Station usage table example. It reflects the information regarding
charges that appear in the joint plan. For every station, it contains a list with the
agents charging in it and the time instants in which they arrive at the station, begin
and finish charging.

station agent arrival charge start charge end

station1
agent1 17.38 17.38 21.38
agent3 19.56 21.38 26.38

station2

station3 agent2 5.54 5.54 15.54

4.5.2 Partial Plan Search Tree and Exploration algorithm

Our planner searches for the optimal plan by building and expanding a search
tree of partial plans following an A* algorithm. During this process, the most
promising nodes are expanded depending on both the utility of the partial plan
developed so far and the potential (optimistic) utility that the rest of the plan could
develop from that node. The nodes of the tree contain partial plans. Nodes expand
and generate children, which inherit their plan and add new actions.

Nodes can be of two types: parcel or charge nodes. A parcel node is created
for each uncompleted delivery task of the agent when expanding the parent node.
Charge nodes are created whenever the agent’s travel capacity is not maxed out in
the parent node. One charging node is created per reachable charging station in
the scenario. The information of each station is accessed through the station usage
table (Section 4.5.1). With it, the planner sets the time instants at which the agent
will reach the station and start charging, according to the available poles and the
charge duration.

By creating parcel and charge-type children, plans are built adding two actions
to the parent node’s partial plan in each step. Using this method, we only con-
sider the addition of necessary and feasible actions every time. Consequently, we
are avoiding search tree ramifications that would eventually be discarded either
because of conflicts or a low utility value.
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4.5.3 Plan Evaluation

The value of a plan is tied to the utility it reports to the transport agent that executes
it and, therefore equivalent to the -(total cost) described in Section 4.4.1. Globally,
a joint plan is not evaluated, as only its feasibility is relevant. The planner (the
individual instance of an agent planner) evaluates partial plans during the plan-
building process and complete plans to return the best solution. Any congestion
in which the agent might be involved is considered during the plan evaluation,
increasing its cost accordingly.

To evaluate a partial plan n Equation 4.2 is used, where g(n) is its cost, h(n) is
an optimistic calculus of the expected cost that completing every non-completed
goal would yield, and h∗(n) is the optimal cost to reach all non-completed goals
from node n.

(4.2) f (n) = g(n)+h(n), h(n)≤ h∗(n)

The heuristic function h is a relaxation of the problem constraints. It assumes
that, from a particular partial plan, the remaining delivery tasks can be completed
as efficiently as possible without the need to charge. This is done by computing
the best permutation; the order in which to attend the remaining delivery tasks
that minimise costs. The node’s heuristic value will estimate the minimum cost of
completing the rest of a plan. The heuristic estimate would only match the actual
cost of a plan if such a plan was completed without charge actions and the agent
was not involved in any congestion.

The value of a complete plan n is equal to g(n). When an agent proposes its
plan, it gets integrated into the joint plan. Such a plan may present conflicts as
a part of a joint plan. If the integration does not cause any conflicts, the plan’s
value will be the same as it had when proposed. However, when a plan causes
any conflict, its cost is highly increased, forcing the planner to change it in the
following planning turn.

4.5.4 Search Tree Pruning

Planning is a computationally hard task. Our planner implements mechanisms that
aid in speeding up the plan search process and lower memory consumption.
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Best solution prune. Once the first solution node is found, its plan is extracted,
evaluated, and its utility saved as the best solution value found so far. This value
is updated as new solution nodes are reached. If the value of a child node is worse
than the best solution value, it will be discarded. The partial plan of an open node
with an f-value below the best solution value has no potential to evolve into a better
solution, so the planner can avoid wasting computational power expanding it.

Previous plan utility bound. When an instance of the planner is created, the
invoking agent’s previous plan (found in the previous best-response iteration) can
be passed to it. If there is a previous plan and the utility it reports is higher than
0, such a value will define a lower bound value for the planning process. When
a node is evaluated, it will be discarded if its value is below the lower bound. In
this way, solution nodes that contain worse plans (or partial plans with no potential
to improve) than the previously obtained ones are not considered, speeding up the
process. This technique is only applied if the previous plan of an agent is not
causing any conflicts.

4.6 Best-response Planning

This section explains how the best-response planning process is developed. First,
it describes the iterative process in which the agents propose their best plan given
the plans of the other agents. Then, the way to resolve conflicts that may arise
between agents during this process is explained. Finally, we explain how to build
an initial joint plan with a greedy algorithm.

4.6.1 BRFP Process

The BRFP is a process in which an agent a iteratively looks for a plan πa which
is in best response to every other plan in the joint plan Π. At the beginning of the
process, an arbitrary order is defined among all participant agents, and an empty
joint plan Π = /0 is created. Alternatively, the process can begin from an initial
joint plan Π= ⟨π1′,π2′, . . . ,πn′⟩, where πa′ is a non-optimal plan created following
a greedy strategy (see Section 4.6.2). This provides the agents with a lower utility
bound (see Section 4.5.4), speeding up the planning during the first BRFP iteration.
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During the process execution, agents must best respond in each iteration. A
planning process is used for that, which can return either a new plan, the same
plan as the previous iteration, or nothing if there is no solution. If the same plan is
returned, the agent will preserve it since it means that it is still in the best response
to every other plan. When no agent modifies its plan in a complete iteration, the
BRFP has converged to a joint plan that is a PNE.

From an agent’s perspective, the BRFP works as follows:

• An arbitrary order between agents is established. Following such order, an
initial joint plan is built incrementally using the individual planner of the
agent or following a greedy strategy: Π = ⟨ /0, . . . , /0⟩, Π = ⟨π1, /0, . . . , /0⟩, Π =
⟨π1,π2, . . . , /0⟩, . . . , Π = ⟨π1,π2, . . . ,πn⟩.

• In one iteration i, agent a executes these steps:

1. Analyze the utility of its current plan πa
i−1 in the joint plan, defining a

lower bound for the following search.

2. Start a planning process to search for a new plan πa
i which is in best

response to every plan in the joint plan.

3. If a new plan is returned, update the joint plan:

Π = ⟨. . . ,πa
i−1, . . . ,⟩ →Π

′ = ⟨. . . ,πa
i , . . . ,⟩

In case no plan with higher utility than the lower bound can be found,
the agent keeps its previous plan πa

i−1, since it is still in best response.

• When no participant agent changes its plan in a complete iteration, the pro-
cess has converged, and the current joint plan is a PNE.

4.6.2 Initial Greedy Joint Plan

The complexity of our planning scenarios is proportional to the number of parcels
and charging stations that they include. The planning during the first iteration of
the BRFP process is considerably slower. The absence of previous individual plans
implies not being able to use the previous plan utility bound (Section 4.5.4). We
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implemented a greedy method that creates an initial plan for every agent to palli-
ate this. Such a greedy plan provides the first best-response iteration with a utility
value to prune the search tree. The greedy plan is built as follows:

While there are uncompleted delivery tasks:

1. Select the parcel with a pick-up location closest to the agent’s current loca-
tion.

2. Check if the agent has enough travel capacity to complete the delivery.

2.1 If it does, go to (3).

2.2 If it does not, the agent goes to the closest station and charges. Then
goes back to (1).

3. Complete the delivery task of the selected parcel (pick-up and drop-off).

The cost of the initial greedy plan will be higher or equal to that of the optimal
plan but never lower. The creation of an initial greedy joint plan has proved to
be very effective, significantly reducing the amount of generated nodes during the
first planning process. However, it influences the BRFP process, as it guides it to-
wards certain equilibria, avoiding others that can not be reached with the method’s
restrictions.

4.7 Experimental Results

The described solution has been implemented with Python 3.7. Among the em-
ployed Python modules, Shapely, Geopy, and Geojson stand out, as they were
employed to reproduce real-life road networks, calculating travel distances and
times over the city area where the vehicle fleet is deployed. Transport routing is
solved by the Open Source Routing Machine [89], a routing service that calcu-
lates, among others, the fastest route between any two given points. Each problem
configuration was encoded in JSON format, indicating the attributes of each of the
actors (agents, resources) of the problem together with their location in the city.
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Finally, the multi-agent simulator SimFleet [117] was used to load and visualize
the problem configurations, although it had nothing to do with their resolution.

To test our system, we defined a set of 13 problem configurations, presented in
Table 4.3, with different levels of complexity. The complexity of our problem is
defined by the number of transport agents, the number of delivery tasks or parcels
an agent must complete, and the number of charging stations. The number of
parcels per agent (P/A) increases planning variability. Charging stations have the
same effect. Therefore, as those values increase, the complexity does too. The
number of agents mainly affects the performance of the best-response process, as
more agents imply longer iterations and more conflicts to resolve. All charging
stations belong to the same power network, whose maximum power is the addition
of each station’s power.

The main area of the city of Valencia, Spain, was chosen as the scenario for
all the problems, and the agents used its road network. Distances among scenario
elements are determined by their location in the city and expressed in meters. The
speed of every transport agent is fixed. Figure 4.2 shows a visual representation of
a problem in our urban mobility domain. The initial position of transport agents
and parcel positions are defined according to a probability distribution computed
from various city data, including population, traffic intensity per road, and geolo-
calised social network activity. Please note that each transport has been assigned
its packages already. Thus, the problem we are dealing with is the coordination of
their delivery.

Such a heterogeneous set of problems aims to show both our system’s capability
and limits. Therefore, we first compare the performance of our planner against
other similar approaches. Then, we address the quality of our solutions to show
how our approach optimises the urban traffic system. Finally, we demonstrate the
interest in modelling resource congestion and how self-interested agents can be
incentivised to avoid it.

Unless otherwise indicated, the default values of the different variables affect-
ing the agents’ utility are those presented in Table 4.4. The base price of power
is established, as well as the standard power consumption for electric vehicles. In
addition, a unit cost for waiting time is defined. Finally, the congestion bounds of
the different resources are indicated following their modelling in Section 4.4.1.
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Table 4.3: Problem instances used for experimentation. Row values indicate the
number of transport agents, parcels, parcels per agent (P/A), stations, and charging
poles in the scenario, respectively.

Problem Transport agents Parcels P/A Stations Charging poles
p20-60 20 60 3 20 40
p20-80 20 80 4 20 40

p20-100 20 100 5 20 40
p50-150 50 150 3 20 40
p50-200 50 200 4 20 40
p50-250 50 250 5 20 40

p100-200 100 200 2 30 60
p100-300 100 300 3 30 60
p100-400 100 400 4 30 60
p150-300 150 300 2 30 60
p150-450 150 450 3 30 60
p200-400 200 400 2 30 60

p500-1000 500 1000 2 30 60

4.7.1 General Performance

In the first set of experiments, we show the performance of our planner in terms
of time to achieve a solution. For that, we solved the problems presented in Table
4.3 and measured the number of iterations the best-response algorithm needed to
converge, the total running time of the BRFP, and the average time that each in-
dividual planner instance took to return a solution. We also indicate the time per
iteration since it is helpful to estimate the total running time of problems with a
similar level of complexity.

This process was repeated on five instances of the problems: problems with
the same complexity magnitude (number of agents, parcels, and stations) but with
the elements positioned differently within the scenario. This was done to palliate
the irregularity among problems caused by element positioning. Averages of the
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Figure 4.2: Visualisation of a problem configuration using the SimFleet software.
The experimentation takes place in the main area of the city of Valencia, Spain.
Different icons represent the location of electric vehicles, parcels, and charging
stations.

results of the five instances are presented in Table 4.51, where time is expressed in
seconds.

As can be seen, the number of parcels per agent (P/A) is closely related to the
increase in planning time. An agent with more parcels will have more ways to
deliver them; thus, it will have to explore every order to find the optimal one. The
standard deviation of the planning time also increases with the problem’s complex-
ity. Regarding the total time, the best-response process is expected to last longer
with the more participants it has. With problems such as p500-1000, even though
the P/A number is only 2, the high number of agents makes the process too time-
consuming.

Even though our work focuses on our particular problem and domain, we want
to compare it with a similar approach. The research in [73] approaches fleet co-

1All the tests were conducted on a single machine with an Intel Core i7-7700 CPU at 3.60GHz and 16
GB RAM.
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Table 4.4: Default values of different problem variables. These variables affect the
numeric value of the agent’s costs and the application of congestion.

Price per KWh 0.3 AC
Power consumption per Km 0.14 KWh

Power price per Km 0.3 · 0.14
Time penalty (waiting cost) 1
Road network cong. bound 0.3

Power network cong. bound 0.5

ordination through the so-called Better-response dynamics. As its name hints,
such an algorithm is developed in a very similar way to best-response but with the
agents proposing plans that improve the utility of their previously proposed plan,
not necessarily being the current best plan. As the authors prove, the convergence
to an equilibrium in such a case is guaranteed as with best-response dynamics.
With this, the need for optimal planning is avoided. This enables the authors to
use a general-purpose satisficing planner that can be applied to different domains.
However, in contrast with our planner, the plan computation for complex scenarios
is computationally more costly, as our planner is refined for the specific planning
scenario. Regarding the problem modelling, we are applying the BRFP to a more
realistic application using the real road network and a routing service (OSRM).
In contrast, their modelling solves an electric autonomous taxi problem in simple
networks with a concrete number of junctions.

Finally, assessing the experimentation results of both approaches, we can see
that our system can solve scenarios with a higher level of relative complexity. The
problem complexity in these scenarios depends on the number of agents to be
routed and the number of junctions, increasing the planning process’s ramifica-
tions. The most complex experiments performed in [73] and [69][Section 6.4]
include 6 agents (which can be interpreted as 18 since each company agent man-
ages 3 taxis carrying customers) and between 8-12 junctions, depending on the
case. Therefore, our simplest problem (p20-60) is already orders of magnitude
above the aforementioned ones that require almost 1800 seconds of computation
time to reach an equilibrium, which makes it unfair to compare planning and total
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Table 4.5: Average performance of 5 repetitions of the problem set. Times in-
dicated in seconds. P/A: parcels per agent. iterations: number of iterations the
best-response algorithm took to converge. total time: time until a solution was
obtained. time/iter. : total time/iterations. planning time: average time that each
individual planner instance needed to return a solution.

problem P/A iterations total time time/iter. planning time
p20-60 3 3.2 22.2 6.82 0.45±0.21
p20-80 4 3.6 72.8 20.06 1.33±0.83
p20-100 5 4.0 234.4 58.59 3.82±3.11
p50-150 3 3.4 150.1 43.61 1.12±0.60
p50-200 4 4.2 523.7 125.08 3.14±2.09
p50-250 5 5.5 2693.0 489.25 11.79±10.81
p100-200 2 3.0 206.7 68.90 0.89±0.52
p100-300 3 3.8 820.2 216.06 2.72±1.42
p100-400 4 4.8 3638.7 757.45 9.28±6.96
p150-300 2 3.0 528.7 176.24 1.53±0.92
p150-450 3 3.8 2102.2 555.08 4.73±2.47
p200-400 2 3.0 929.1 309.69 2.01±1.21
p500-1000 2 3.0 6462.8 2154.27 5.75±3.48

times directly. Our approach’s most significant benefit (with its ad-hoc planner)
brings the system’s ability to manage up to 500 agents in a considerable amount
of time. Nevertheless, most of our configurations reach an equilibrium in less than
15 minutes, except in the most complex cases where between 15 minutes and an
hour is required, even for problems like p50-250, where the planning process is
especially complex.

Our system’s major limitation comes from the complexity of planning, which
is PSPACE-complete [22] or even harder in practice for optimal planning [5].
The computation time increases exponentially with the problem complexity, which
means that our planner would stop returning solutions in a reasonable time for a
certain number of agents or problem variability. However, given the nature of the
type of problems we are dealing with, which include both the self-interest of the
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agents, thus requiring a game-theoretic approach, and their planning capabilities
to perform a set of tasks optimally, the theoretical complexity cannot be reduced
except by improving at the practical level the computation time, as we have done
using an ad-hoc planner for the restricted domain we have defined.

From the point of view of game theory, our system introduces a number of
agents, which is orders of magnitude above the norm. The computation of equilib-
ria is costly; therefore, most applications can not bear to compute them for games
with such a significant number of participants. Even though our approach com-
putes only a single equilibrium, it can do so for up to 500 participants in complex
planning scenarios that feature congestion and conflicts.

4.7.2 Comparison of Solution Quality

Users of urban traffic systems, especially drivers, tend to act selfishly, only con-
cerned about their goals, whether those are to reach their destination fast, follow
their preferred route, etc. With the introduction of game theory techniques, we can
turn selfishness into competitiveness and the latter into optimisation. If every user
acts in the best way with respect to every other user in the system, their experiences
will improve.

Decentralised coordination such as the one presented in this paper may seem
inadequate to optimise a system globally. Nevertheless, having agents follow self-
ish strategies in a competitive (or non-cooperative) scenario will generally improve
the agents’ utilities and some of the system’s metrics.

In this section, we compare the agent plans obtained by our BRFP with those
obtained by a greedy strategy that aims to reproduce the behaviour of an unin-
formed, selfish driver. We analyse the agents’ costs from a global perspective,
showing that both agents’ utilities and system metrics are optimised by following
the BRFP. A solution with improved agent utility implies, in turn, global benefits
such as optimal delivery of the parcels, both in order and time, reduced energy
spending, and less resource congestion. Although there are related works such as
[74] in which the quality of Nash equilibrium solutions is compared using addi-
tional criteria such as Pareto optimality or fairness, in such a case, it is necessary
to list all Nash equilibria of the game, which is unfeasible in complex, realistic
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scenarios such as ours. This is why we have preferred to compare with a greedy
solution preserving the complexity of the scenario.

The experimentation has been carried out by obtaining solutions to the first
instance of the previous 13 problems (Table 4.3). Those problems were solved
using the BRFP and the so-called Greedy Solver (GS). The GS builds an agent’s
plan in two steps: Greedy plan-building and conflict-solving.

The greedy plan is built with the following strategy: The agent tries, at each
time, to complete the delivery task whose pick-up location is the closest to its
current position. If, at some point, the agent’s travel capacity is not enough to
complete the selected delivery task, it will instead drive to the closest station and
recharge its batteries. After that, the delivery task selection will begin again. This
process finishes once the agent has completed every task, thus obtaining a complete
plan. Then, any action of the plan that causes a conflict with another agent is
delayed until the conflict no longer exists. Ultimately, we obtain a feasible joint
plan composed of individual greedy plans.

The results of this experimentation are presented in Table 4.6, where a com-
parison of the problems solved by the GS and the BRFP can be seen. The metrics
that define the quality of a solution are the mean total cost of the delivery fleet
operation (according to each agent’s utility function described in Section 4.4.1);
and the number of agents that experienced either a road or a power network con-
gestion. The BRFP shows lower values for the mean total cost and the number of
congested agents.

Table 4.7 further analyses the comparison by showing the percentage in which
every mean cost is reduced by the BRFP (with respect to the GS’s solutions). As
can be seen, the average total cost is reduced between 3.23% and 10.43%. As the
problem complexity increases, the reduction is higher. It can be observed how the
number of parcels per agent (P/A) affects the decrease in total cost. For 2 P/A, the
cost reduction does not overcome 3.81%. For 3 P/A, the reduction reaches a value
of 7.81%. Finally, for problems with 4 or 5 P/A, the reduction can surpass 10%.
Even though the total cost reductions are not high, there is a significant decrease in
the number of congested agents (see Table 4.7, columns under “congested agents”).
This shows how our approach, despite the selfish strategy of the agents, in a com-
petitive environment can lead to socially better solutions. In problems p20-80 and
p50-150, the results show an increase of agents which suffered road congestions
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Table 4.6: Solution quality comparison for problems solved with the Greedy Solver
and the BRFP. The problems present different values for the average total cost and
the number of congested agents. The mean total costs of the fleet’s transports as
well as the number of congested agents are generally lower with the BRFP

Greedy Solver BRFP
congested agents congested agents

problem P/A mean total cost
road power

mean total cost
road power

p20-60 3 77.07 0 0 71.45 0 0
p20-80 4 138.39 0 16 123.95 2 8
p20-100 5 200.33 0 17 182.42 0 14
p50-150 3 69.81 1 10 66.30 8 0
p50-200 4 126.96 2 27 114.65 0 14
p50-250 5 203.89 5 44 182.70 3 30
p100-200 2 30.62 0 0 29.63 0 0
p100-300 3 70.90 0 19 65.51 0 0
p100-400 4 131.03 0 70 118.10 0 38
p150-300 2 33.04 0 0 31.78 0 0
p150-450 3 72.99 0 33 67.29 0 0
p200-400 2 31.70 0 0 30.58 0 0
p500-1000 2 32.07 2 0 31.00 2 0

(values -200% and -700%) in favor of a high reduction of those that suffered power
(or charge) congestions. This occurs mainly because, for this problem’s configu-
ration, the cost increment associated with power congestion is higher than the one
associated with road congestion. Consequently, when the planner only finds plans
which involve either one or the other, road congestion will generally be preferred.

Ultimately, these results confirm the usefulness of our approach and show how
the use of self-interested agents improves not only their benefits but brings global
improvements. Our system increases customer satisfaction, reducing the time it
takes to deliver all parcels. Also, the sustainability of the urban traffic system
is enhanced, firstly, by reducing traffic and power congestion and, secondly, by
decreasing vehicle operating times, which entails fewer kilometres travelled and,
therefore, less energy consumption. In addition, this type of system also stud-
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Table 4.7: Greedy Solver vs. BRFP costs reduction percentages. Columns 5 and 6
show a reduction in the number of congested agents (instead of costs).

congested agents
problem P/A total cost traveled kms

road power
waiting cost

p20-60 3 7.29% 4.04% 0.00% 0.00% 7.35%
p20-80 4 10.43% 3.54% -200.00% 50.00% 10.46%
p20-100 5 8.94% 5.18% 0.00% 17.65% 8.91%
p50-150 3 5.03% 2.10% -700.00% 100.00% 5.08%
p50-200 4 9.70% 3.43% 100.00% 48.15% 9.67%
p50-250 5 10.39% 5.51% 40.00% 31.82% 10.36%
p100-200 2 3.23% 1.48% 0.00% 0.00% 5.46%
p100-300 3 7.60% 3.70% 0.00% 100.00% 7.66%
p100-400 4 9.87% 5.44% 0.00% 45.71% 9.75%
p150-300 2 3.81% 2.59% 0.00% 0.00% 3.85%
p150-450 3 7.81% 5.06% 0.00% 100.00% 7.79%
p200-400 2 3.53% 2.00% 0.00% 0.00% 3.56%
p500-1000 2 3.34% 1.98% 0.00% 0.00% 3.39%

ies and promotes the implementation of electric vehicles as the standard in urban
environments.

Ideally, we would compare our system with one that solves problems in the
same domain but using a centralised approach. However, because of our ad-hoc
design, there is no other application we could fairly compare it with. Even so,
the relevance of our decentralised planning and the best-response algorithm is pre-
serving the agents’ private interests. No entity imposes actions on the agents; they
decide for themselves their best possible actions, guided by data from the urban
traffic system.

4.7.3 Effect of Congestion

The modelling of resource congestion and how the agents can be aware of it to
avoid it gives our system the potential to test interesting scenarios. Higher con-
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gestion cost increments will drive agents to avoid congestion with greater interest.
In the experimentation presented so far, in Sections 4.7.1 and 4.7.2, the impact
of congestion cost increments on an agent’s total cost was minimal and did not
strongly influence the agent’s plan. In those cases, the customer’s waiting time
was the main parameter to optimise, as it entailed a much higher cost.

In this section, we analyse the changes in agents’ costs and behaviour when
resource bounds vary and greater congestion costs are introduced to the system.
Therefore, for the following experiments, the power network congestion costs were
multiplied by a hundred, whereas the road network congestion ones were multi-
plied by fifty. With this, we achieve congestion costs whose order of magnitude is
comparable to the waiting cost of customers.

4.7.3.1 Resource Bound Variation

For the first round of experiments, we executed problem p20-100 with values for
the resource bounds ranging from 0 (any simultaneous use congests the resource)
to 1 (the resource will only be congested if all agents are using it simultaneously).
The relevant results are presented in Table 4.8. As can be seen, with a bound of 0,
most agents get involved in congestion at some point in their plans. The number
of congested agents decreases as the bound is incremented until no agent gets
congested. The cost increments associated with congestion are higher according
to the number of agents involved. That is reflected in both the congestion cost
and the total cost, which are reduced as the bound increases and fewer agents get
congested.

On the other hand, it can also be observed in Table 4.8 that there is much
more congestion on the power network than on the road network when the bounds
are between 0.1 and 0.25. This occurs because transports can coincide in time
using the power network more easily than the roads since there is only one power
network, while the roads that agents can take are less likely to coincide.

4.7.3.2 Agent Behaviour Analysis

Following the trend of researching the effect of congestion, in this experiment, we
analyse the change in agent behaviour (reflected in their plans) once higher conges-
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Table 4.8: Average costs and congested agents variation according to resource
bound. count columns indicate the number of agents involved in congestion. mean
columns indicate the average cost increment and std columns show the standard
deviation.

Power network congestion
total cost power congestion

problem
mean std count mean std

power bound

p20-100 199.7 26.3 19.0 8.1 4.4 0
p20-100 196.7 26.9 18.0 5.9 3.2 0.1
p20-100 192.1 27.0 12.8 3.4 1.2 0.25
p20-100 189.4 26.3 0.8 1.9 0.0 0.5
p20-100 188.5 26.0 0.0 0.0 0.0 >0.5

Road network congestion
total cost road congestion

problem
mean std count mean std

route bound

p20-100 207.4 29.3 20.0 15.3 7.6 0
p20-100 190.3 25.3 7.7 7.1 6.5 0.1
p20-100 186.2 25.5 0.3 0.3 0.0 0.25
p20-100 186.0 25.5 0.0 0.0 0.0 >0.25

tion costs are introduced to the system. With our base modelling, the plan building
is mainly motivated by the agent’s waiting cost. In other words, agents prioritize
on-time delivery and thus reduce the customer’s waiting time. Congestion costs
may appear, and the agent will be inclined to avoid them when possible. However,
when avoiding congestion involves an increase in waiting cost that overcomes the
congestion cost increment, the agent will decide to assume the congestion in favor
of faster delivery since it implies a lower cost.

The behaviour described above is intended and achieved thanks to the higher
value of waiting costs with respect to congestion cost increments. For the following
experiment, we cause a change in agent behaviour by increasing congestion costs,
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making them overcome waiting costs. With this, the agent’s primary motivation
will be to avoid congestion. To study such a setting, we built a small problem con-
figuration, with 10 transport agents, 3 delivery tasks each, and 5 charging stations,
all belonging to the same power network, with 2 charging poles each. The transport
agents had an initial travel capacity of 20 km out of a maximum travel capacity of
30 km. Because of that, some agents will need to recharge their batteries at some
point in their execution to complete their delivery tasks.

The BRFP has solved the aforementioned configuration in three different ways:
(1) without considering charging congestion costs (wp = 0 in Equation 4.1), (2)
with the default charging congestion cost increments (wp = 1), and finally, (3) with
significantly higher charging congestion cost increments (wp = 100). The power
network bound was fixed at 0.5, its default value for the previous experiments.

Our results are presented both in Table 4.9 and in Figures 4.3, 4.4, and 4.5,
where the charging intervals of the agents are represented on a timeline. For sim-
plicity, the continuous time has been discretised in the representations. Bear in
mind that, as all charging stations are fed by the same power network, the specific
station in which agents are charging is not relevant. Because of the same reason,
any overlapping interval indicates an increment in the power demand to the power
network. Power congestion will arise when such an increment exceeds the power
network bound.

Table 4.9: Mean costs and congested agent number for the different executions of
the problem configuration.

instance total cost congested agents cong. cost waiting cost
(1) 71.1 ± 16.2 - - 69.9 ± 16.0
(2) 71.4 ± 16.3 6 0.42 ± 0.05 70.0 ± 16.0
(3) 74.5 ± 18.1 4 3.60 ± 0.71 72.0 ± 17.7

Comparing executions (1) (Figure 4.3) and (2) (Figure 4.4), it can be seen how
the introduction of a mild congestion cost can cause some agents to opt for a plan
which avoids it. In this case, agent7 moved its charge action to the beginning of its
plan. With such a change, it is still available to complete every delivery task with
only one charge, and, at the same time, it avoids charging in the period in which
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Figure 4.3: Timeline of transport agent charging intervals with no charging conges-
tion costs. Agents are represented by coloured rectangles whose length indicates
the duration of the charge. Most of the agents recharge their batteries between the
29th and the 51st time units, as they have no incentives not to overcharge the power
network

 

Figure 4.4: Timeline of transport agent charging intervals with default charging
congestion costs. Agents are represented by coloured rectangles whose length
indicates the duration of the charge. The charging congestion cost is not enough to
motivate the majority of the agents not to overcharge the power network, resulting
in most agents recharging between the 29th and the 51st time units

the network is overused. However, it is also clear that, for most agents, the cost
increment of congestion is not high enough to induce a change of plan. Agents 1,
3, 4, 5, 6, and 10 prefer to keep their charge schedule even though all of them are
affected by congestion (see instance (2) in Table 4.9), which increases the price of
their charge. This is because, as we commented above, the rescheduling of their
charge would entail an increment in the customer waiting time, which is the factor
that contributes to the total cost the most.

With a high congestion cost increment (Figure 4.5), there is an evident change
in behaviour, as agents are now interested in avoiding congestions and, in case
of being unable to do so, minimising the overlap of their charge with the charge
intervals of other agents. It can be seen how agent4 decides to charge two times,
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Figure 4.5: Timeline of transport agent charging intervals high charging conges-
tion costs. Agents are represented by coloured rectangles whose length indicates
the duration of the charge. The high congestion costs motivate the agents to sched-
ule their recharge so as not to overcharge the power network, thus splitting their
charging intervals uniformly over the simulation time

only to avoid congestion. Also, agent8 delays its charge, as currently charging at
the start would provoke congestion with agents 4 and 7. In this case, agent8 gets
involved in congestion, but it only partially overlaps with two agents (1 and 3), so
the cost increment is not too high.

As it can be seen in Table 4.9, the customer waiting time slightly increases
for (3), as the charge actions are now scheduled mainly to avoid congestion (in
contrast with (1) and (2), in which they were scheduled to reduce waiting time).
Nevertheless, the amount of congested agents is reduced by 2, and, what is more
relevant, the pressure on the power network is evenly divided along with the exe-
cution of the agents’ plans. Figures 4.6 and 4.7 present a visualisation of the power
network usage, showing with colourised intervals concurrent charges. Darker col-
ors indicate a higher number of overlapping charges. With the default charging
congestion costs (Figure 4.6), the maximum amount of overlapping charges is 7,
whereas with high congestion costs (Figure 4.7) it is only 2.

In the proposed system, a cost variation can significantly influence the agents’
actions, as they are mainly motivated to reduce costs. These experiments show
how the system can be tuned to achieve solutions with higher global customer
satisfaction, as in (2), or reduce the simultaneous use of a resource, such as the
power network, in (3).
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Figure 4.6: Timeline of power network usage with default charging congestion
costs. Painted intervals illustrate concurrent charges. Darker colours indicate a
higher number of concurrent charges. The power network is congested between
the 32nd and the 51st time units, showing a major congestion between 38th and
the 40th

 

Figure 4.7: Timeline of power network usage with high charging congestion costs.
Painted intervals illustrate concurrent charges. The network does not get con-
gested, as the maximum number of concurrent charges is two

4.8 Discussion

This section enumerates current challenges in the field of urban transportation and
optimisation. Then, it discusses the application of the described system to other
smart areas and different problem domains, and describes the limitations of our
system.

4.8.1 Urban Transportation Challenges

The research field of urban transportation and optimisation faces various chal-
lenges. One of the most prominent issues is traffic congestion, resulting from
increasing urbanisation and the rising number of vehicles on the road. The adverse
effects of traffic congestion include significant economic and environmental losses
and a decline in the quality of life for city residents. Another challenge is to make
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transportation more sustainable and reduce greenhouse gas emissions and air pol-
lution. The development of intelligent transportation systems has led to the use of
sensors, data analytics, and other technologies to optimise traffic flow and reduce
congestion, but their implementation can be complex and costly. Autonomous ve-
hicles have the potential to revolutionize urban transportation, but safety concerns,
infrastructure requirements, and public acceptance present significant challenges.
Lastly, the growth of e-commerce has created a major challenge for urban areas
regarding last-mile delivery. Addressing these challenges and finding ways to op-
timise delivery routes and reduce the environmental impact of delivery vehicles is
a crucial area of research in urban transportation and optimisation.

Our work addresses several of the aforementioned issues. Specifically, we con-
tribute towards reducing traffic congestion and improving sustainability by mod-
elling fleet coordination as a congestion game. This approach motivates each agent
to optimise their use of city resources such as roads and charging stations. Our ap-
proach is also relevant to developing intelligent transportation systems, as it relies
on data estimates and sensor technology to improve fleet operations and enhance
the quality of life of city residents. Additionally, our coordination principles of
decentralisation, privacy, and agent autonomy contribute to the development of
autonomous transportation. Finally, our work is applicable to the challenge of last-
mile delivery, as the domain we have developed addresses a problem within this
category.

4.8.2 Applicability of the Proposal to Other Domains

The main area of the city of Valencia, Spain, has been chosen to illustrate the
operation of the proposed system as well as to perform its evaluation. From a
general perspective, our system offers a solution for the coordination of open fleets
composed of autonomous, self-interested agents, independent of the agents’ goals
and the concrete area where they are deployed. The coordination by means of game
theory, however, requires complete information for the agents to make a strategic
decision. In terms of the deployment area, this implies having access to real-time
data and the computation of estimations. For the chosen domain, parcel delivery,
those estimations would be traffic congestion, travelling times, and speed. Because
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of that, the presented system can be applied to any smart area that fulfills its need
for estimated data.

Regarding the application domain, the present work assesses traffic optimisa-
tion by coordinating open delivery fleets. For that, a so-called “ad-hoc” planner
is designed, as commented in Section 4.5. The term “ad-hoc” refers to the design
of the planner according to the domain; this is, according to the specific actions,
conflicts and utility functions defined for the parcel delivery problem, described in
Section 4.4. If we separate the system from the domain chosen in this work, it of-
fers a general solution for coordinating autonomous self-interested agents, regard-
less of the agents’ concrete goals. The only essential requirement for the described
system to operate is the existence of a mechanism that allows the agents to plan
their actions according to their objectives, hence the creation of the ad-hoc planner.
Ultimately, this implies that, with a few adjustments, it is possible to modify the
presented planner, adapt it to a new domain, and thus develop a solution for that
domain without changing the workflow of the entire system.

4.8.3 System Limitations

The described approach, despite being highly configurable, has a series of limi-
tations that must be commented. On the one hand, the planning of agent actions
is performed statically before the agents’ execution. This requires that each agent
estimates their utility function. For the domain of parcel delivery, the estima-
tion includes traffic congestion and travelling time and speed. Because of that, the
most realistic application area of our system would be in a smart, highly-monitored
closed area, where all components are constantly sharing data. The implementa-
tion in an open area with components or agents that are not willing to share data
would worsen the estimations and, thus, the operation of the fleet.

On the other hand, the best-response coordination requires that participants are
willing to share their actions with other agents. While the concrete goals may
remain private, the course of action toward such goals must be disclosed. Since
our system is thought to coordinate agents in a non-cooperative but non-strictly
competitive scenario, some participants may have reservations about sharing their
plans. However, the final objective of the coordination is the optimisation of the
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whole operation and the usage of the area’s resources, and thus sharing information
would ultimately benefit all involved parties.

4.9 Conclusions

In this paper, we have presented a system for coordinating urban fleets of self-
interested agents using best-response dynamics and multi-agent planning. The
problem addressed has been defined as an urban mobility domain in which a set of
transport agents, which may represent electric vehicles, have to carry the parcels
assigned to them from an origin to their destination. To do so, each agent can
strategically decide the order in which it makes the deliveries, as well as when and
where to recharge the vehicle’s batteries. These strategic decisions are made by
each agent, in particular, depending on the strategies (plans) of the other agents
to obtain the highest possible utility avoiding the congestion of both the power
network and the roads, as well as conflicts due to lack of free poles in the power
stations.

To resolve this mobility problem with self-interested agents, an ad-hoc planner
has been developed for this domain. Each transport agent has its own instance
of the planner to obtain a plan that is the best response to the plan of the other
agents, i.e., the current joint plan. Thus, the resolution of the complete problem is
approached by a best-response algorithm in which each agent, in turn, proposes its
best plan with respect to the current joint plan. This iterative process ends when
no agent changes its plan during a complete iteration, in which case, the resulting
joint plan is guaranteed to be a pure-strategy Nash equilibrium.

We have tested our system’s performance for different levels of complexity
through extensive experimentation. Using our own ad-hoc planner is an advantage
over similar systems with general-purpose planners. The optimal plans’ obtention
is achieved relatively quickly, even for the most complex settings. However, one
must take note of the restrictions of our domain, which also help speed up the
search. In addition, we have also compared the quality of the solutions obtained
with our approach, which are Nash equilibria, versus solutions obtained with a
greedy approach. In this sense, the solutions of our system are better (around 7%
on average, and more than 10% in several cases) from a global point of view by
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avoiding congestion and unnecessary waits. Moreover, being equilibrium solutions
for self-interested agents, it can be ensured that none of the agents is incentivised
to change its plan instead of other types of coordination solutions that agents might
not respect, causing conflict situations.

Our system, because of its characteristics, is not able to adapt to new delivery
tasks as fast as online approaches would. In general, any change in the initial con-
ditions of the problem would require a new equilibrium, that is, a new execution
of the best-response algorithm. However, our system would be adequate for prob-
lems in which the parcels to be delivered are not updated every few minutes since
delivery windows of 15, 30, or 60 minutes could be assumed, depending on the
needs. If the system were to be implemented as a smart city solution, the comput-
ing power would be much higher than that used in our tests with a conventional
computer. This would imply that solutions could be computed in seconds or a few
minutes.

In the future, we aim to overhaul the described system by including a mecha-
nism that detects and deals with incorrect data estimations. One of the limitations
of the system, as discussed, is the reliance on data estimates. With this improve-
ment, we would increase system reliability for use in real-world scenarios. Also,
in the line of fair and optimised coordination of vehicle fleets, we would like to ex-
plore the implementation of a task allocation algorithm that follows the principles
of privacy and decentralisation established for this work. Finally, a future develop-
ment of greater magnitude would be the development of a digital twin representing
the deployment area of the open fleet together with its resources and with the pos-
sibility to include new and different smart services. Such work would bring a tool
for significant research in smart cities and their optimisation.
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Abstract

With the world population highly increasing, efficient methods of transportation are more
necessary than ever. On the other hand, sharing economy must be explored and applied
where possible, aiming to palliate the effects of human development on the environment. In
this paper we explore demand-responsive shared transportation as a system with the po-
tential to serve its users’ displacement needs while being less polluting. In contrast with
previous works, we focus on a distributed proposal that allows each vehicle to retain its pri-
vate information. Our work describes a partially-dynamic system in which the vehicles are
self-interested: they decide which users to serve according to the benefit it reports them. With
our modelling, the system can be adapted to mobility platforms of autonomous drivers and
even simulate the competition among different companies.
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5.1 Introduction

As the world’s population increases, the scarcity of our planet’s resources becomes
apparent. Responsible authorities have developed a strong interest in the sustain-
ability of our means of production as well as our way of life. Urban centres, for ex-
ample, need to improve their services to make them competitive in today’s world.
By implementing artificial intelligence in the different systems that make up a city,
it becomes a Smart City. Among the different city systems, the urban transit system
stands out as one of the most complex and dynamic. However, most affordable so-
lutions still consist of high-capacity transport with fixed routes and stops, to whose
operation users have to adapt. The considerably more expensive alternatives focus
on a completely individual service, which does not favour a possible reduction of
greenhouse gas emissions or congestion avoidance.

In the current ever-changing dynamic ecosystem that cities define, static sys-
tems have become, if not obsolete, outdated and often uncomfortable to use.
Demand-responsive transportation (DRT) systems initially served people with spe-
cial needs or those who lived in rural, ill-connected areas of a city or country. This
type of mobility is characterised by its flexibility to adapt to different demand
patterns. At first, this meant creating routes according to the departure location of
users specifically. Nowadays, however, we see some demand-responsive behaviour
implemented in most current transportation services. Ranging from picking a cus-
tomer up at their desired location to increasing the number of vehicles in a fleet
in periods of high demand, plenty of strategies try to make the service operation
reactive to the demand.

Introducing the concept of shared transportation to DRT systems, we can de-
velop Demand-Responsive Shared Transportation (DRST). DRST services can of-
fer a reasonable middle-point between the stiffness of public transport and the
pollution and individuality of dial-a-ride services. This mobility features strate-
gies like dynamic modification of vehicle routes and stops, on-demand creation of
routes, and dynamic dispatching of vehicles according to demand. Shared mobil-
ity, however, generally involves a lower customer satisfaction with the service if
compared to individual mobility. In addition, dynamic systems are complex, and
their degree of dynamism affects their operation costs. DRST presents the chal-
lenge to find the balance between flexibility, shareability and sustainability of its
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fleet model so that (1) the service is economically viable, (2) the quality of service
is maximised and (3) the pollution derived from its operation is minimised.

Most DRST research focuses on exploring service configurations, management
and operation strategies to find the equilibrium among the above-mentioned indica-
tors. For that, it is necessary to model and parameterise the transportation system,
which is generally done through either mathematical or agent-based approaches.
In this work, we focus on agent-based modelling (ABM), as it allows the design
of behaviours for each component of the system and the analysis of the system’s
operation, from which interactions and synergies may appear.

Regarding service operation, however, the reviewed publications mainly pro-
pose centralised systems. In this type of system, a central coordination entity
makes all decisions, while the fleet vehicles are expected to follow every order.
In practice, a manager entity accepts or rejects travel requests, assigns and mod-
ifies vehicle routes, and organises vehicles dispatching. In contrast with the cen-
tralised operation, we find decentralised systems. Decentralisation allows the deci-
sion making to be performed individually by each component of the system, taking
into account that their operation must be coordinated. Given the lack of works that
apply distributed techniques to their modelling, we want to explore a decentralised
operation in our DRST system. Decentralisation allows for implementation with
open fleets, whose number of vehicles is variable and favour the autonomy of ve-
hicles (and drivers). Transportation services like Uber are implemented with open
fleets, and their drivers can choose which requests to accept according to their own
preferences. Inspired by this, we propose developing the service’s operation from
a distributed and self-interested perspective.

Self-interested agents (or entities) are those whose actions are guided by their
own private objectives. These agents accurately represent many aspects of human
behaviour, which is generally motivated by personal gains. When many of these
agents operate in a shared environment (such as a city), they define a non-strictly
competitive scenario. The goals of the agents may not be opposed, but their op-
eration to reach the goals may cause conflicts with the operation of other agents.
The field of game theory [138] explores the interactions among self-interested en-
tities, offering tools to develop coordination techniques that ensure a conflictless
operation. In addition, automated negotiation algorithms can also be applied for
conflict resolution. Modelling with self-interested agents allows us to reproduce a
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DRST system where vehicles of different enterprises may “compete” to serve the
customers of one mobility platform. We believe such a competition may result in
a better quality of service for the user and higher adaptability of the system to the
demand.

We hope to open a discussion on distributed demand-responsive shared mobil-
ity with this work. The aim is to analyse and discuss the requirements a DRST
system needs if its fleet is implemented by self-interested vehicles. In accordance
with the above, we propose a system architecture for a partially-dynamic system
that accepts real-time travel requests as well as bookings. We discuss the par-
ticularities that a fleet of self-interested vehicles involves and describe how the
assignment of bookings and requests works in our distributed paradigm.

The rest of the paper is structured as follows. Section 5.2 discusses relevant
works in the field of DRT systems, focusing on the differences in configuration
and modelling approaches. Section 5.3 presents an overview of the proposed sys-
tem, briefly describing our modelling and the system’s architecture. Section 5.4
discusses the operation of the static subsystem of our proposal, which takes care
of booked trips. Section 5.5 describes how our system deals with real-time travel
requests. In Section 5.6 our proposal is analysed and compared to other works.
Finally, Section 5.7 assesses our work and comments on future extensions.

5.2 Related Work

Among the many works that explore DRST systems, three research currents stand
out: service impact and viability assessment, system modelling, and operational
strategy optimisation. The current proposal lies between the last two, which are
generally addressed together in scientific papers. In this section, we discuss dif-
ferent contributions to the field of demand-responsive mobility, grouping them ac-
cording to the previously mentioned research currents.

There has been extensive research on the topic in hand, starting around the ’90s,
when flexible transportation was aimed at disabled people [108] Later, it evolved
into a kind of public transport operated in zones with a low population density or
low demand. Nowadays, it is being considered a potential mode of transportation
for the general public, although its usefulness with respect to traditional transporta-
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tion alternatives is yet to be demonstrated. Many recent works focus on the impact
assessment and economic viability of DRST services. This type of research does
not focus on algorithms or optimisation. Nevertheless, it is an essential part of mo-
bility research, as it deals with transportation policies and user behaviour. As it is
common in transportation research, most of these works are focused on particular
cities or rural areas whose population lacks efficient mobility services. Alterna-
tively, some authors propose using DRST services to substitute unproductive and
ill-suited traditional transportation methods. The work in [20], for instance, pro-
poses the replacement of the bus service in the city of Velenje (Slovenia) with a
combination of bike-sharing and DRT systems. Their cost analysis reveals that the
new system would not incur a much higher cost for the municipality while covering
the citizen’s displacement needs much better than the current service.

A very relevant study for our particular modelling of DRST is the work in
[135], where authors assess the implementation of an autonomous DRST service
that communicates the rural area surrounding the city of Bremerhaven (Germany)
with its city centre. Through multi-agent simulation, the authors find that opera-
tional and environmental costs significantly decrease if the individual transporta-
tion vehicles are entirely substituted with a fully automated DRT service. Their
conclusions, however, remark how a fully autonomous operation of vehicles is
crucial for the economic viability of the service. Cutting operator (driver) costs
is essential to offer a competitive and attractive price policy. Our proposal bears
this in mind and, although it could be applied to human-driven vehicles, the co-
ordination methods we explore can be employed by autonomous vehicles once
technological advances allow their implementation.

The interest in demand-responsive transportation also comes from its inherent
sharing economic model. In a sharing economy, goods and resources are collabo-
ratively shared by individuals and groups. From a general perspective, the sharing
economy can reduce resource consumption. Focused on transportation systems,
it can improve their sustainability by reducing, for instance, carbon dioxide emis-
sions. In this regard, authors in [51] present a hybrid unsupervised learning model
which categorises taxis according to many features that are related to their CO2
emissions. Their model proves useful to cluster vehicles with similar degrees of
emissions and identify the most polluting ones for further improvements.

Reviewing the literature, we identified a set of elements which are common
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among all DRT systems (routes, stops, and driver strategy, among others), although
the use of these is highly configurable, varying in each specific system. Table
5.1 enumerates the observed configurations. Such a variety of options presents
advantages and disadvantages. On the one hand, a concrete system can be adapted
to fit the mobility needs of a specific community or group of users. Many strategies
can be followed, whether through flexible routes and stops, allowing reservations,
changing timetables, or more.

On the other hand, high flexibility in configuration can lead to a more costly
implementation. In addition, in terms of research, each particular work focuses
on a specific system configuration and characteristics. This may result in the type
of DRST system that a transport manager is interested in not being sufficiently
researched to be adequately implemented.

As commented in the introduction, many works focus on the research of man-
agement strategies and fleet operations that permit an economically viable, sus-
tainable and reliable service [84]. These indicators must be defined according to
the concrete service being researched. The balance among the indicators is gener-
ally found through experimentation with different system configurations. Besides
this, an appropriate approach to model the system must be chosen. The most pop-
ular approaches for the topic at hand are either mathematical or agent-based, being
the latter generally coupled with simulation. Following, we comment on relevant
works which present the characteristics stated above.

The work in [7] models the dynamics of a DRT system mathematically and
aims to identify a management strategy that incentivises system users to adapt the
timing of trip requests uniformly over time. At the operational level, three strate-
gies are identified concerning the pickup and dropoff of users: (1) minimise total
distance travelled by finding the next closest pickup/destination point at each stop;
(2) Alternate between pickup and dropoff phases (of n customers each), reducing
travel time variance; and (3) Each pickup is followed by the nearest unloading and
vice versa. The total system cost is estimated according to the operational capac-
ity of the system and the number of requests waiting to be served. Finally, it is
a linear combination of the number of vehicles, driver salaries, and energy and
maintenance costs. The distinguishing feature of this work is that it studies the
saturated system, with a number of waiting requests higher than the system’s op-
erational capacity. The authors then aim to find an equilibrium among customers
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Table 5.1: Review of DRT system configurations. Column headers identify com-
mon elements to all systems. Rows enumerate configuration options of their cor-
responding element. Read from top to bottom, the options transition from a non-
flexible shareable system to a flexible but less shareable system.

Stops Routes Fleet
Fixed Fixed Cooperative
Flexible Flexible Decentralised
On-demand Hybrid

On-demand

Vehicle capacity Services Dispatching
+20 passengers Trip reservation All vehicles available
8-20 passengers Real-time requests Dynamic
4-8 passengers Hybrid
1-4 passengers

from the congestion theory point of view. A dynamic pricing policy is applied to
motivate the users to advance or delay their requests to reduce their prices.

In contrast with the previous, the work in [64] uses ABM to describe a DRST
system with fixed and flexible routes and stops. The authors aim is to analyse the
necessary trade-off among the system’s economic efficiency , the service quality
and the fleet’s sustainability . Their experimentation is performed with the NetL-
ogo1 simulator and based in a real-world setting. Different system configurations
are tested, including fleet size, vehicle capacity, and dispatching strategies. The re-
sults present a specific system configuration that guarantees the system’s economic
viability while improving its sustainability with respect to a taxi service, although
this inevitably comes at the cost of a reasonable reduction in service quality. Bal-
ancing the metrics above proves to be a challenge in any DRST research.

In line with the functional design of DRST systems, authors in [63] extend
their previous work to compare, through multi-agent simulation, their system with
a traditional taxi service. They define three indicators: transport intensity, related
to operational costs and environmental impacts; total unit cost, which represents

1https://ccl.northwestern.edu/netlogo/

https://ccl.northwestern.edu/netlogo/
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the total costs of the system; and effectiveness in terms of satisfied customers.
The system was measured by varying the number of vehicles and their capacity.
Their results point out how in low demand conditions, the taxi service outperforms
DRST. On the contrary, during periods of high demand, the higher capacity of
shared vehicles enables the demand-responsive service to stand out. Nevertheless,
their analyses are inconclusive for medium demand intervals.

Also within the operational strategy of a DRT system, one must decide the
dynamism of its operation. Given the demand-responsive feature of this service,
most works (including the last two mentioned) present fully dynamic systems,
where the demand is unknown, and the requests are dealt with in real-time. In
contrast, authors in [158] model a service with degree of dynamism. Compared to
fully dynamic systems, theirs accepts bookings, which are requests that are known
before time. A request is defined by pickup and destination locations and a time
window describing the acceptable times for the client to be picked up and dropped
off. Their system works in two steps. First, all the static requests are divided
among the fleet’s vehicles , creating an initial routing for the day. Then, as the
fleet operates, dynamic requests appear. These requests are assigned to a vehicle
ensuring minimal cost increments and respecting time window restrictions of the
already assigned requests. If no vehicle is fit to serve the request, a new vehicle
is dispatched, or the request is rejected. The conclusions drawn from this paper
indicate that a dispatching system incurs higher system costs and serves fewer
requests when the request arrival is partially dynamic, compared to static or fully
dynamic operations.

In this paper, we model a system that is inspired in the revisited works. Nev-
ertheless, we introduce two features that suppose a new approach to demand-
responsive transportation.

On the one hand, we want to explore the potential of shared demand-responsive
transportation. Shared transportation [142] consists of reducing the number of ve-
hicles in a transport system by grouping different passengers, initially not related
to each other, in vehicles with a capacity for two or more users. Generally, pas-
sengers are grouped so that the vehicle route can meet their transportation needs
(regarding time and location). Therefore, passengers with origin and destination
locations close to each other or whose origin or destination points are on the route
to another passenger will be grouped together. Shared mobility has the potential
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to favour sustainability in transport systems by reducing the number of operating
vehicles. However, it can also lead to a reduction in user satisfaction [107, 81],
because as the system becomes more shareable, it also becomes less flexible and
adaptive to the different transportation requests of each individual user.

On the other hand, we want to develop a decentralised system, which includes
the possibility for different transportation companies to serve the same demand.
Most of the works that research demand-responsive transportation describe cen-
tralised systems, where a manager entity has full control over the vehicle fleet.
The dispatching of vehicles, acceptance and assignation of transportation requests,
and vehicle routing are all decided by the system. Although some centralised sys-
tems include compensations for drivers forced to change their routes in real-time
[17], most assume that drivers will act according to the orders of the central entity.
In contrast to this, our system will model vehicles as self-interested agents, which
act according to their own private interests. The transports in our system will have
the chance to accept or reject requests and even alter their routes according to the
benefits or costs that these changes would imply for themselves. Consequently
with the stated above, the fleet of our system can be implemented by either fully
autonomous or human-driven vehicles.

According to [92], a taxonomy on the coordination of autonomous vehicles,
with our self-interested modelling of vehicles, we need to apply agreement or ne-
gotiation approaches to sort out the operation of the fleet. Therefore,, we propose
game-theoretic and automated negotiation techniques [133]. Modelling with self-
interested agents allows us to reproduce a competition among drivers of different
companies. These drivers, although mainly interested in their own benefit, are also
keen to coordinate with potential competitors to optimise both their own operation
and the operation of the global mobility system.

Following, we describe our system’s particularities, present its infrastructure
and discuss its operation.

5.3 Overview

From a general perspective, a demand-responsive transportation system works as
follows: users issue a travel request indicating the location and time they want to
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be picked up and their desired destination. Then, the fleet manager chooses a ve-
hicle, among the available, to serve the customer request. This involves driving
to the customer’s location, picking them up and dropping them off at their desti-
nation. All of this has to be performed considering any possible time restrictions
of the customer’s request (pickup time, maximum arrival time). The assignment
of requests to certain vehicles is performed in a centralised manner, aiming to
maximise both the system profits and customer satisfaction. For this, routing and
scheduling algorithms compute the best global assignment each time a travel re-
quest arrives. This computation may result in one or many vehicles having to
dynamically change their own route to attend to the new requests they have been
assigned. With a centralised system, however, it is assumed that all vehicles will
be willing to adopt those changes, as they have no real willpower.

In contrast with the stated above, our proposal consists of a partially-dynamic
demand-responsive transportation system that makes use of autonomous (in terms
of will) shared vehicles to serve its users. Our system focuses on the decentral-
isation of the service and the self-interest of the system’s vehicles. This type of
autonomous vehicle has its own private goals and keeps its information (and its
customers’ information) private. With this modelling, we can a have system that
serves customers from different mobility platforms or companies. Therefore, the
vehicle fleet of the system shares properties with open fleets. The total number of
vehicles may vary, and each individual vehicle acts as an autonomous entity. The
goal of the fleet is to serve as many travel requests as possible, maximising cus-
tomer satisfaction while minimising overall costs. This goal, however, is achieved
through the self-interested behaviour of the vehicles, which aim to maximise its
own benefits, thus also reducing costs. Similarly to customers, the fleet may be
integrated with vehicles from different companies. To make the system suitable
for shared mobility, we assume that vehicles have a capacity that ranges from four
to eight customers.

Although the utility that serving a customer request reports to each vehicle is
private, there are a series of shared elements among all vehicle fleets. The vehicles
have routing and scheduling algorithms that enable them to plan their operation
according to their assigned tasks and time windows. In addition, a traffic condition
estimator is available for all vehicles so that they estimate, to some extent, the time
that will require serving a concrete travel request. The information retrieved by
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such a system is the same for every vehicle.
The crucial difference with respect to a centralised system is that self-interested

vehicles have the will to decide whether to serve a travel request is in their best
interest or not (if it reports them more benefits than costs). In addition, travel
bookings and requests in our system are visible to every vehicle. One or more
vehicles may be interested in serving a concrete request, making it necessary to
introduce distributed processes to decide which vehicle is assigned the disputed
request. This creates a somewhat competitive scenario among the fleet vehicles.
Each request will have a different “value” to each vehicle, as they have their own
utility function. Because of that, requests will generally be assigned to the vehicle
which is more interested in it (the one to which the request has more value). We
propose the use of Best-response dynamics and auction procedures to sort out the
request assignments. Both these methods are detailed below, in Sections 5.4.1
and 5.4.2 respectively. The aforementioned techniques are concrete proposals, and
they must be understood only as such. There are a variety of processes that could
be employed for the task at hand, which would have to be tested to select the most
appropriate.

As we mentioned above, we model a partially-dynamic system. This means that
the travel requests our system accepts are of one of two types: bookings (static) or
real-time (dynamic) requests. Figure 5.1 shows the system’s architecture, which is
split into two parts: static and dynamic.

The static part deals with travel bookings; displacement requests which are
known before time. The static subsystem can be run every day or every few hours
to obtain a route planning for every fleet vehicle, allocating the bookings in a dis-
tributed, self-interest guided manner. All fleet vehicles have a maximum number
of bookings that can serve during a concrete working period. Such a number is pro-
portional to the duration of the working period. The static subsystem is described
in detail in Section 5.4.

The dynamic subsystem takes care of real-time requests, which arrive while the
fleet is already operating. These requests may ask for the fastest possible pickup,
in contrast with programmed pickups. The vehicles are filtered to sort out which
of them can get a real-time request assigned. . Any vehicle which, to include the
new request in their route, fails to preserve the time restrictions of its previously
accepted requests, will be discarded from the assignment process. Then, the dis-
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Figure 5.1: System architecture, split into a static and a dynamic subsystem. The
proposed architecture may be communicated to a simulator which allows for sys-
tem testing, tuning and visualisation.

tributed process takes place among the leftover vehicles through an auction. The
vehicle that gets the request assigned updates its route planning accordingly to
serve it. The dynamic subsystem is described in detail in Section 5.5.

Finally, we propose the integration of the proposal with a simulator. A simula-
tor would enable the system’s managers to test the system with different configura-
tions of vehicles, vehicle capacity and customer demand. In addition, it can be used
to tune the parameters of the different algorithms and find the best combination.
Specifically, we would integrate our system with SimFleet [117], a multi-agent
based simulator that counts with a web interface that allows the visualisation of
the system in operation.

Following, we detail each part of our proposal, characterising the format of
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bookings and travel requests and describing the distributed assignment processes
that take place among the self-interested vehicles.

5.4 Static Subsystem

The static part of our system computes an initial route planning for every fleet
vehicle to perform during the following working day or period (as it could be run
to plan for periods of a concrete number of hours). In order to do so, it receives
a set of client bookings, as well as the set of vehicles that will be available during
the day.

A booking b is defined in our system as a tuple with the following parameters:

(5.1) b = {Lb
pickup,L

b
dest ,T

b
pickup,

b Tdest ,T b
thresh}

• Lb
pickup: Pickup location where the user issuing the booking will wait to be

picked up by a vehicle.

• Lb
dest : Destination location where the user issuing the booking wants to be

dropped off the vehicle.

• T b
pickup: Preferred pickup time at which the user expects to start travelling

towards its destination.

• T b
dest : Preferred arrival time at which the user expects to be dropped off at

its destination. The system will indicate a minimum arrival time according to
the expected pickup time, trip distance, route, and predicted traffic flow. The
user is free to delay its preferred arrival time, which would give the system
more flexibility to allocate their trip.

• T b
thresh: Time threshold indicating the amount of time the user is willing to

wait past their preferred pickup time or the delay on their preferred arrival
time they could accept. A longer time threshold would give benefits for the
user, such as a lower service price. It is crucial to incentivise the duration of
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this parameter as it offers the vehicles more free time to either better adjust
their routes or serve incoming real-time requests.

According to the definition of a booking, the utility that serving a booking
b reports to a vehicle v is defined by Equation 5.2. Let dist(x,y) be a func-
tion that returns the distance travelled by road between locations x and y; and
service f are(time) a function that returns a price value according to the time
passed to it. Let vloc be the current location of v; km price a fixed price per
trip kilometer; wv

thresh a weight that determines the importance of a flexible thresh-
old for v; and Lb+1

pickup the pickup location of the booking b+ 1 that will be served
after b.

(5.2) Utility(b,v) = bene f its(b,v)− costs(b,v)

The benefits (Equation 5.3) that serving booking b reports to a vehicle v are
determined by the distance travelled by the user that issued the booking, the time
in which the booking time window begins and the time threshold, whose influence
is pondered by a weight. A service that begins at a specific time of the working
period might be more costly for the customer. Ideally, this would, to some extent,
motivate users to spread their trip times uniformly throughout the working period.
In addition, the time threshold represents more benefit for the vehicles the longer
it lasts, as it gives them more free time to adjust their route or serve real-time
requests.

(5.3)
bene f its(b,v) = dist(Lb

pickup,L
b
dest)∗ km price+

service f are(T b
pickup)+T b

thresh ∗wv
thresh

As for the costs (Equation 5.4), these include the distance travelled while the
vehicle is empty and the inverse of the time threshold. With this, trips that start
nearby the vehicle and finish nearby another assigned booking will be more attrac-
tive. The threshold, in this case, adds fewer costs the longer it lasts.

(5.4) costs(b,v) = dist(vloc,Lb
pickup)+dist(Lb

dest ,L
b+1
pickup)+

1
T b

thresh ∗wv
thresh
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As it can be seen, the functions combine values with different units. For a
correct utility computation , those values would be normalised to adjust their mag-
nitudes. In addition, take into consideration that these are equations developed for
the current proposal. They could be modified in the future and adjusted to other
system configurations.

Once all the information has been loaded, a distributed process begins in which
the fleet vehicles, all modelled as self-interested agents, build their routes by choos-
ing to serve one booking at a time, taking turns. As they incrementally build their
route planning, the vehicles take into account the time restrictions associated with
every booking in order to ensure all clients will be served satisfactorily. Vehicles
run a routing algorithm that analyses the inclusion of the next booking they are
interested in serving into their current route. A vehicle will be able to choose a
booking if its inclusion in their route planning does not delay any of the already
selected bookings past their threshold.

Regarding the distributed booking allocation process, we propose two alter-
natives in which the decision to include or not a booking in their routing plan is
driven by the self-interest of each agent. In particular, we discuss a game-theoretic
approach named Best-response coordination (Section 5.4.1), in which the vehicles,
in turns, select the booking that better fits their routing, also taking into account
the routing of every other participant vehicle. This process eventually converges
to an equilibrium, an assignment of bookings to vehicles from which no vehicle is
incentivized to deviate. On the other hand, we propose an approach based on auto-
mated negotiation: the Bertsekas auction algorithm (Section 5.4.2). This algorithm
allows vehicles to bet on the bookings they are most interested in.

Finally, as an extra feature of our system, we enable users to configure periodic
bookings. A periodic booking is issued with the same parameters regarding loca-
tion and daytime, but with a different date. A clear example of a periodic booking
would be one which is repeated from Monday to Friday to transport a user from
their home to their workplace (or vice versa). Periodic bookings are comfortable
for our system and would be encouraged among users, as they provide certainty
for the initial route plannings of each vehicle for each working period.
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5.4.1 Best-response Coordination

The best-response coordination [68, 73] is a game-theoretic distributed algorithm
which obtains an equilibrium among the strategies of a set of agents. In game
theory, an equilibrium is a solution or set of agent actions from which no agent
is incentivised to deviate. In other words, every agent has decided on a set of
actions that reports them the maximum possible benefit with respect to the ac-
tions of every other participant agent. Applying this concept to our DRST system,
with an equilibrium we obtain a coordinated global route planning; that is, a route
planning containing the individual route plannings of every vehicle. The booking
assignment of the global route planning creates no conflict during the vehicles’
operation.

To apply such an algorithm would require the definition of the booking as-
signment as a multi-agent planning task. Therefore, the route planning that each
vehicle intends to perform during its operation would be encoded in an agent plan.
An agent plan, in this context, would describe the bookings the vehicle would
like to serve, indicating also the route and schedule it would follow. During the
best-response process, the agents propose their best plan (the one that reports them
more benefits) , taking turns. After a whole round, the agents reevaluate the plan
they proposed taking into account the plan of every other agent. If the actions of
another agent are in conflict with theirs (for instance, because more than one agent
is interested in serving the same booking), the agent will propose a different plan
which (1) avoids any conflict, and (2) is its current best plan. This process repeats
iteratively until no agent has modified its plan after a whole round. This means
that each agent is proposing their best plan with respect to every other agent’s best
plan. Consequently, as no agent will benefit from switching plans, an equilibrium
has been reached. The agents are coordinated, no conflicts will arise from the
execution of their plans, and their private interests have been preserved.

This coordination, however, needs vehicle information to be shared among par-
ticipants. As commented above, agents propose their best plan with respect to
other agents’ best plans. This implies that every agent has complete information
about every other agents’ intentions. In addition, when a booking conflict arises
(more than one vehicle interested in serving the same booking), information such
as the location of vehicles is vital to determine who will end up serving the book-
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ing, as generally a vehicle closer to it will be able to get there sooner, increasing
customer’s satisfaction and reducing wasted time.

5.4.2 Bertsekas Auction

The Bertsekas’s Auction algorithm, presented in [15], is generally used to assign a
set of jobs (or persons) to a set of tasks (or objects) such that each job is assigned
to only one task and the effectiveness of the assignment is optimised. We adapted
the formulation of this distributed algorithm to our problem modelling. Following,
we describe the algorithm’s input and its operation.

For our proposal, we have a set of m bookings which must be assigned to one of
the n vehicles of the fleet. Each booking bi, i∈ [1,m], has a real static cost price(bi)
associated to it. This cost is independent of the vehicle serving the booking and is
computed only taking into account the attributes of the booking (distance between
pickup and destination, time of pickup and flexibility on the time threshold). In
addition, for each vehicle a j, j ∈ [1,n], each booking has a unique estimated cost
estim(a j,bi).

The estimated cost of each booking for a particular vehicle is determined by
the costs that would imply to serve such a booking if it was assigned to it. Its value
depends on many factors such as the vehicle’s location, the number of bookings it
has already assigned and the necessary modifications in its route planning to serve
the new booking. Because of that, the estimated cost that each request has for every
vehicle is unique. This estimated value will determine the vehicle’s willingness to
serve a particular booking.

Given the aforementioned input, the algorithm develops in iterations until each
booking is assigned to a vehicle. An iteration works as follows: The vehicles com-
pute their own perceived cost for each booking, costa j(bi), by adding the estimated
(unique) and real (static) costs:

(5.5) costa j(bi) = estim(a j,bi)+ price(bi)

Each vehicle bids on the booking with less cost: min(costa j(bi)). The “price”
of the bidding is the difference between the cost of the booking with the second
lowest cost (bsub) and the one with minimum cost (bmin):
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(5.6) bida j = costa j(bsub)− costa j(bmin).

Each booking that has received at least one bidding is assigned to the highest
bidder. Then, the real cost of such a booking is incremented by adding the highest
bidding price to it. Let au be the vehicle with the highest bid (bidau) for booking bi
and price′(bi) be bi’s price for the next iteration:

(5.7) price′(bi) = price(bi)+bidau

With this price increment, the algorithm makes all other vehicles bidding for
booking bi aware of how interested is au in it. If the increment in the real price
does not dissuade other vehicles from bidding for bi in the following iteration, au
could lose it (get the booking unassigned). At the end of the process, each task will
be assigned to the vehicle that can afford to “pay” more for it. In other words, the
vehicle that is willing to increase its costs the most to serve the booking’s customer.

Our system will generally receive a higher number of bookings than the number
of vehicles in the fleet. Therefore, to assign all of them to the different vehicles,
we must run the auction algorithm iteratively. At the end of the first iteration,
the vehicles will have one booking assigned to them. Each consecutive iteration,
they may be assigned one more booking. As explained in Section 5.3, the vehicles
have a limit in the number of tasks they can be assigned during a specific working
period, whether it is the whole working day or a few working hours. Once a vehicle
reaches that limit, it will not participate in any following auction. Finally, when
every booking has been assigned, the iterative auctions finish. At that time, each
vehicle counts with its own individual route planning, which, as every booking is
assigned to a single vehicle, will not cause any conflicts during the operation.

5.5 Dynamic Subsystem

The dynamic side of our system deals with real-time (or online) travel requests.
This type of request share the attributes of a booking (Section 5.4); although its
T b

pickup can be configured as “as soon as possible”. Real-time requests are issued
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by system users through the application and arrive at a pool of requests that is visi-
ble to every vehicle. Once again, the decision to serve a request of the pool is based
on each individual vehicle’s self-interest, taking into account the necessary restric-
tions. The utility that serving a real-time request reports to a vehicle is computed
in the same way a booking’s utility (see Equations 5.2, 5.3, and 5.4 in Section 5.4).

The inclusion of an online request in the route planning of a vehicle implies
new scheduling of the already accepted trips. In addition, this rescheduling is
performed while the vehicle is most likely already serving one of their bookings.
Therefore, such inclusion must not delay any of its already assigned requests or
bookings past their threshold. When a new travel request is issued, the first step
is to select as potential servers the vehicles that can add it to their route planning
while respecting the time restrictions of their other bookings. For this, every ve-
hicle in the fleet calculates a new scheduling that includes the new request. If the
scheduling can not be computed, the vehicle will not be able to show interest in
serving the request.

The assignment of the new request is done among the vehicles that passed the
previous step. The computation of their new schedules gives the vehicles the infor-
mation that defines how interested they are in serving the request, i.e., the expected
benefit obtained from serving it. A distributed process takes place in which the in-
terested vehicles bid for the request to decide who will serve it. The request will be
assigned to the auction winner, who will update its schedule to the one it computed
before. The time differences among schedules are informed to the corresponding
users through the application. Similarly, the user that issued the new request will
be informed of their expected pickup time.

Considering that new travel requests may appear at any time, the vehicles adapt
their operation to maximise the number of requests they can serve. In this regard,
the time between consecutive bookings or requests can be administered by each
vehicle according to different waiting strategies [166]. If the Drive first strategy is
followed, the vehicle will depart towards its following location immediately after
the current request is served. In contrast, the Wait first strategy favours waiting for
the longest possible time in the current location as long as the time restrictions of
the following requests are preserved. Finally, the Modified dynamic wait consists
in waiting at the current location for a concrete time, aiming to arrive at the location
of the following request precisely at the beginning of its time window so that the
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customer is served without waiting. In our system, each vehicle could employ its
preferred waiting strategy.

5.6 Discussion

Throughout this work, we have discussed the many configurations that demand-
responsive mobility can have. From all those, our system is modelled with fully-
flexible routes, on-demand stops, a decentralised fleet of self-interested vehicles,
having each vehicle capacity to carry four to eight passengers, and offering trip
reservations as well as real-time travel requests. The service we propose does not
differ that much from on-demand transportation services like those of Uber or Cab-
ify. However, from the shareability perspective, our system improves on traditional
alternatives, although it can not be compared to public transport services. Regard-
ing sustainability, the type of service we offer has the potential to reduce private
vehicle usage in favour of shared vehicles [135]. Such a potential is increased if
we consider the vehicles could run on electric power, thus avoiding carbon dioxide
emissions during their operation. To draw any concrete conclusions, however, we
need to gather specific data about our proposed fleet’s sustainability. We plan on
doing this in the future by simulating the system and experimenting with different
fleet sizes and vehicle capacities.

In terms of our proposal, the self-interest of the vehicles is defined in their
utility function. The utility that serving a certain booking/request returns is equal
to the benefit it produces minus the cost it involves. In turn, benefits relate to the
distance travelled while the customer is on the vehicle, while costs derive from
vehicle maintenance and empty movements, among others. With this modelling,
certain requests may be unattractive to every transport of the fleet. Requests whose
pickup or destination location are far away from any vehicle may be at risk of
reporting more costs than benefits. To tackle this problem, we can follow many
strategies.

On the one hand, we could incentivise the vehicles to serve unattractive re-
quests by increasing their benefits. This, however, may involve an increment on
the prices the user has to pay to be served, which would potentially impact nega-
tively on customer satisfaction. On the other hand, the vehicles might be forced to
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serve unattractive requests and later compensated. Possible compensations would
be an increment on their benefits or, for instance, advantages during the distributed
booking/request assignment processes. There is, of course, a third option which
consists of enabling the system to reject unassigned requests. If after the assign-
ment processes no vehicle has shown interest in a particular request, the issuing
user would be informed, through the application, that the system can not serve
them at the moment. This feature is currently implemented in most traditional
transportation systems, which negate service if their operative capacity has been
reached. This measure may worsen quality of service but reduce, at the same time,
operational costs, as seen in [158]. To correctly assess the impact of this measure
on our proposed system, however, we need experimentation.

Most of the reviewed literature points out the difficulty to have flexible trans-
portation with a profitable operation. According to many works, the more flexible
and responsive a system is, the higher tend to be its operation costs. It can therefore
be inferred that in a system with the features we propose achieving economic via-
bility of the service might be challenging. Although the current work is in an early
stage, it is interesting to analyse the requirements to implement our proposal in a
real setting. In that regard, our system may need some type of public subsidy to
have an adequate quality. With that, users would pay lower prices for the services,
which would motivate other users to make use of our system instead of a private
vehicle or other less sustainable alternatives.

5.7 Conclusions

In this work, we have explored the particularities of Demand-Responsive Shared
Transportation systems. Our contribution consists of a proposal for a partially-
dynamic system whose fleet is implemented by self-interested vehicles. On the
one hand, our system can deal with trip reservations through its static subsystem
and real-time travel requests through its dynamic part. On the other hand, using
a distributed fleet enables private information to be retained and optimises service
quality through vehicle competition. With our approach, the need for a central
coordination entity that gives orders to the fleet is avoided. Finally, we propose the
integration with the SimFleet simulator to set up and execute experiments.
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Regarding the specific configuration of our DRST system, we model a fully-
responsive service with on-demand routes and stops. Nevertheless, we do not limit
ourselves to this configuration and are eager to design and test others in the future.
For the current work, we chose to focus the discussion on the differences among
fully and partially-dynamic systems, decentralisation of the fleet and the modelling
with self-interested vehicles.

In contrast with the reviewed work, our proposal defines a decentralised opera-
tion of the system. In addition, we use self-interested agents to model autonomous
vehicles or drivers. The use of self-interested agents supposes a novel approach in
transportation modelling, where vehicles are generally assumed to follow orders
of a manager entity. With them, we can reproduce an open fleet, a new approach
to DRST systems. Our setup gives us the chance to explore the application of
distributed techniques, such as the best-response algorithm or the Bertsekas auc-
tion algorithm, to coordinate the fleet’s operation. These techniques ensure that
vehicles (or drivers) serve transportation requests according to their own interests.
Furthermore, we could reproduce a system in which vehicles of different compa-
nies compete by serving clients of a single transportation platform. By introducing
decentralised self-interested operation, we hope to improve both the vehicle’s ben-
efits and the client’s satisfaction.

The natural future step for this proposal would be an implementation of the
infrastructure. Concretely, we plan to: (1) specify the modelling refining the for-
mulas for the costs, benefits and utility of the vehicles. In addition, define system
performance indicators regarding economic viability, service quality and sustain-
ability. (2) Implement and test the described system, assessing the use of the pro-
posed distributed algorithms and testing also alternative ones. Finally, (3) overhaul
the SimFleet simulator to enable the creation and execution of mobility scenarios
to be resolved by our DRST fleet and visualise its operation.
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Abstract

Rural areas have been marginalised when it comes to flexible, quality transportation re-
search. This review article brings together papers that discuss, analyse, model, or experiment
with demand-responsive transportation systems applied to rural settlements and interurban
transportation, discussing their general feasibility as well as the most successful configura-
tions. For that, demand-responsive transportation is characterised and the techniques used
for modelling and optimisation are described. Then, a classification of the relevant publi-
cations is presented, splitting the contributions into analytical and experimental works. The
results of the classification lead to a discussion that states open issues within the topic: re-
placement of public transportation with demand-responsive solutions, disconnection between
theoretical and experimental works, user-centred design and its impact on adoption rate, and
a lack of innovation regarding artificial intelligence implementation on the proposed systems.
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6.1 Introduction

Access to public transportation (PT) should be generalised, as its name implies.
Rural communities are often marginalised, with citizens only accessing low-quality
PT. Some of the characteristics associated with rural PT are old vehicles, long and
infrequent routes, and inconvenient stops. Therefore, it is common to observe
higher ownership of personal motor vehicles in rural settlements (2 per household
versus 1 in cities) [27].

The demand for transportation in rural areas differs from that in urban areas.
It is characterised by more scattered transport requests, both in time and space,
which makes the economic viability of higher-quality services more difficult. Con-
sequently, with this shape of demand, it seems difficult to justify deploying a trans-
port that continuously offers service, with or without passengers. Because of that,
the on-demand transportation paradigm shows potential for reducing costs while
increasing service quality in rural areas.

Demand-responsive transportation (DRT) systems offer displacement services
adapted to the needs of their users. Initially conceived as a mobility option for im-
paired people and inhabitants of isolated areas [130], this mode of transport is again
attracting PT providers’ interest thanks to technological advances that allow users
to be connected most of the time. DRT systems count on two main characteristics:
on-demand mobility and adaptable flexibility. According to the specific configura-
tion, DRT can resemble transportation ranging from high-capacity interurban buses
to dial-a-ride urban taxis [57]. Thus, given a use case, it is necessary to analyse
which implementation best fits the needs of the potential customers. In practice,
however, implemented DRT services have a relatively high failure rate, caused by
high economic costs [30, 42] and low customer acceptance, among others. In ad-
dition, the success of a concrete DRT deployment depends on the characteristics
of the area it services, its population density, demand, and current transportation
trends. The implementation of demand-responsive mobility has been highly stud-
ied in recent years, although mostly applied to urban contexts [21].

In this review article, we bring together papers that discuss, analyse, model,
or experiment with DRT systems applied to rural areas and interurban transporta-
tion, with the intention of discussing their general feasibility as well as the most
successful configurations. Political authorities from different parts of the world
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have shown their interest in the improvement of rural transport with a sustainable
perspective. The Spanish government, for example, has presented within its “mo-
bility strategy” the Rural Mobility Roundtable1 where it highlights, among others,
the importance of demand-driven transport and the creation of dynamic routes to
work towards the goal of generalised access to PT in rural areas.

The rest of the paper is structured as follows. Section 6.2 describes DRT
systems and their components, introducing the challenges its implementation in-
volves. Section 6.3 classifies the state-of-the-art work dividing it into analyses and
proposals and summarising each of the cited works. Section 6.4 discusses the re-
sults and insights of the reviewed publications, with a particular fixation on the
observed open issues. Finally, Section 6.5 concludes the review article by sum-
marising the state of DRT research and stating the main takeaway points of the
present work.

6.2 Definitions and Problem Description

This section describes DRT and provides the necessary definitions for the posterior
classification of rural-DRT publications. First, we characterise demand-responsive
systems according to their configuration. Then, the modelling and optimisation
techniques that are classically applied to works in the area are commented. Finally,
some insight is given regarding the optimisation perspective that different DRT
researchers follow.

6.2.1 Demand-Responsive Transportation Characteristics

DRT systems have a series of standard elements present in all of them. Different
authors apply different labels to those elements. For the current work, we have
followed the terminology described in this survey [152].

In a DRT system, a service is the departure of a vehicle to serve the transporta-
tion requests it has assigned. One service is generally tied to a concrete area or
line assigned to the transport. In contrast, a route is the specific path the vehicle

1https://esmovilidad.mitma.es/mesa-de-movilidad-rural (Accessed on 01/12/2022)

https://esmovilidad.mitma.es/mesa-de-movilidad-rural
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(a) Within a rural settlement (b) Between rural settlements (c) Between rural and urban set-
tlements

Figure 6.1: Observed operational patterns for rural demand-responsive transporta-
tion systems. Boxes indicate rural/urban settlements. Black dots represent stops.
Dashed lines represent demand-responsive lines. Pictures (a) and (b) are cases of
many-to-many transportation, while (c) represents a many-to-one model.

follows connecting all the pickups and drop-offs. A route does not necessarily in-
clude all existing stops in a line or area. Customers are picked up and dropped
off in a predefined set of stops within the serviced area or line. Alternatively, a
door-to-door service can be offered, in which any user-specified location within a
particular area may act as a stop. This type of mobility is thought to be shared;
i.e.: multiple customers are served by the same vehicle. Typical vehicle choices
for demand-responsive services include a taxi-like car with a capacity of 4 passen-
gers, mini-vans with 9 to 12 seats, and mini-buses or buses with 20 to 30 seats,
respectively.

Many operational patterns exist for DRT. Specifically, for rural-DRT, we find
the following: transportation within rural settlements, transportation between rural
settlements, and transportation between rural and urban settlements. In practice,
these cases can be reduced to two systems: many-to-many, with a set of multiple
origins and destination locations, and many-to-one, where origin and destination
locations share a unique pick-up or drop-off point. The last type is usually the
so-called feeder line, where a flexible transportation service is used to move pas-
sengers to a different, less accessible service (for instance, communications from
rural settlements to an airport). Fig. 6.1 shows a schematic representation of the
commented used cases.

If the customer is required to send a request to access transport the service is
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provided on-demand. The time between sending a request and the customer’s pick
up is the lead time, and it is used to adapt the fleet operation or planning to include
such a request. In a stop-based operation, the customer will be assigned a stop
from which it will be picked up. On-demand systems can operate in real-time,
accepting last-minute bookings, or with a hybrid approach, accepting bookings in
advance too. DRT systems which are not on-demand are also possible. These
systems consider current demand or demand predictions for service planning but
do not require requests to run.

The period of time for which the DRT service is planned and optimised is re-
ferred to as planning horizon. The duration of planning horizons is usually a whole
day. In addition, the operator may plan for a few hours to adapt to high/low demand
periods. According to the influence of the demand data on the service planning, the
system will be fully-flexible if routes are planned from scratch according to current
demand or semi-flexible if a predetermined plan exists but vehicles are allowed to
modify it influenced by demand.

6.2.2 Modelling and Optimisation Techniques

Once the specific type of DRT system has been chosen, it must be modelled and
tested to check its performance and adjust its attributes. We discuss below the
different steps this involves, citing relevant research and the methods their authors
employ. Please be aware that not every paper cited in this section explores rural-
DRT.

Most DRT works are set in a specific settlement or area. In general, the main
transportation network (roads, highways) of the area is mirrored thanks to services
like Open Street Map (openstreetmap.org) or Open Sourcing Routing Machine
(OSRM, project-osrm.org) [41]. Ideally, the actual organisation of the area,
its types of districts, population, or socio-economic reality, among others, should
also be considered. Authors in [80] describe a seven-step analysis method for the
optimisation of any transportation system, based on reproducing the features of
the currently implemented transport service (that would potentially be replaced).
Alternatively, some works employ grid-like modellings of the area where the sys-
tem will run [23]. The actual routing of each fleet vehicle represents one of the

openstreetmap.org
project-osrm.org


156 6.2. Definitions and Problem Description

main challenges of DRT services, as it must be performed in real time. Innovative
heuristic algorithms [34, 114] aid in this respect.

Demand modelling is also crucial. Passenger demand has two main aspects: (1)
frequency and intensity and (2) shape (location of origin-destination pairs). De-
mand attributes can be extracted from datasets of different transportation modes
and extrapolated, as in [60], where taxi data is used. Moreover, real data of
pilot DRT services [150, 29] can be reproduced when available. However, the
most observed technique is the use of synthetic demand data that can be gener-
ated statistically [23], based on socio-demographic information [153], via surveys
[29, 136, 41] or generated in a (semi-)random [151] way according to the prop-
erties of the reproduced area (population, age, occupation, vehicle ownership).
Finally, if traffic intensity data is available, it is useful to include it in the model,
although not as relevant for rural areas with respect to city-centred studies, since
the former tend to have lower intensity.

The operation of the DRT system requires automated planning and schedul-
ing of vehicle services. At the same time, these tasks need information on the
time and travelled kilometres that any detour would imply, which makes routing
algorithms also necessary. In addition, since it is common to find online systems
that accept real-time requests, the computation time for detours and new request
insertions must be kept low. The use of multimodal planning [41] is common to
solve the scheduling of vehicle services. Moreover, some simulation platforms,
such as MATSim [9] include their own implementations of the algorithms men-
tioned above. These implementations usually employ (meta)heuristic techniques
[153] that optimise vehicle-passenger assignments (insertion heuristics [18], for
instance) or vehicle routing in a short computational time. Besides that, other
less exploited techniques such as automated negotiation could be used to decide
assignments from a decentralised perspective [14].

Finally, to observe the system’s dynamics and its operation and adjust its at-
tributes, it is necessary to simulate it. This can be performed through mathematical
modelling [80] provided detailed data is available. However, a more popular way
of achieving this is through multi-agent simulation (MAS). Among the observed
choices we find NetLogo [144], used in [62], the already mentioned MATSim, and
even custom simulators [117, 41].
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6.2.3 Optimisation Goals

The main goal of people transportation services is to supply the displacement needs
of its users. Ideally, the operation of the service shall be performed by optimising
three factors: (1) the economic viability of the service; (2) the customer’s experi-
ence (or quality of service); and (3) the environmental impact of the service. These
three factors are translated into scopes when it comes to transportation research,
and thus we can find works that asses one (only operator perspective [93]), or many
of them from a multi-objective perspective (passenger and operator perspectives
[85]). Optimising customer experience implies reducing passenger travel times,
whereas economic viability is ensured by reducing operational costs. Finally, op-
timising sustainability requires reducing vehicle travelled kilometres (VTK).

The greatest challenge of demand-responsive transportation systems is finding
the equilibrium among the above factors to offer a competitively-priced, economi-
cally viable, and flexible mobility alternative to private cars and traditional public
transportation. For the case of rural-DRT, economic viability is especially difficult,
taking into account the relatively low demand.

6.3 State of the Art Classification

This section presents a classification of the relevant literature found while research-
ing the topic. Given the heterogeneity observed among the articles, they have been
grouped by two criteria. On the one hand, the first group encapsulates studies,
surveys, and analyses on the implantation of DRT solutions for rural areas. On
the other hand, the second group presents papers that include at least an explicit
DRT system proposal and experimentation to evaluate it. Both types of work offer
reflections and insights into the viable application of on-demand mobility to areas
with scattered populations and low demand.

6.3.1 Literature Retrieval and Overview

The Google Scholar and Scopus search engine were used to retrieve articles and
book chapters relevant to the topic. The results were filtered applying the following
rules: 1) the term “demand-responsive” had to be present in the title, abstract, or
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keywords of the publication, and 2) at least one of the terms “rural”, “rural area”
or “interurban” had to be present in the title, abstract, or keywords of the publi-
cation. Using the above criteria, the first search yielded 34 articles. Of these, 9
were discarded because the algorithms or systems they described did not fit the ru-
ral perspective of our review paper. The keywords “rural” and “interurban” could
be present in the abstracts, but that did not guarantee that the characteristics of
the systems researched by the authors matched those of rural or interurban mo-
bility. Therefore, only papers that explicitly modelled low demand with scattered
residents or assessed a rural interurban scenario were retained. Once filtered, the
batch of relevant publications had a relatively small size of 25 publications. The
fact is that rural-DRT solutions are less explored than their urban counterparts,
probably because of factors such as scarce data availability and a lack of general
interest until recent times.

In addition to the few publications, the degree of detail regarding the DRT
systems described in them varied considerably. In general, all authors describe at
least the operation of the basic components of any transportation system. However,
just a minority explicitly state their system’s constraints, the objective function(s),
or the technology employed to build their proposals. Finally, it is worth mentioning
that each proposal is tailored to the rural area it serves, which also differs for each
work.

Given the described situation, we have chosen to summarise the publications
on this topic one by one, giving as much relevant detail for each of them as possi-
ble. Nevertheless, two main classification criteria have been applied to divide the
publications: analytical works, discussing challenges and studying the implemen-
tation of DRT in a specific context (Section 6.3.2); and experimental works that
explicitly model, implement and simulate a DRT system (Section 6.3.3).

6.3.2 Analyses and Surveys

This subsection groups the state-of-the-art literature which assesses the challenges,
potential benefits and contributions of implementing DRT for rural mobility. Most
of the cited works develop their analyses around a main topic, which is shared
among some, but present their own methods and conclusions. Following, we
present the contributions grouped by the main topic they discuss.
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6.3.2.1 Success and Failure of DRT Systems

One of the most historically studied topics in DRT history is the success and failure
of deployed systems. Works in this line give important insight that PT providers
must consider when designing a system. Enoch et al. assess the failure of DRT
systems in [42]. The authors concluded that DRT projects are often not realisti-
cally costed or designed with a full understanding of the market they are to serve.
A pattern was observed in which providers offered too flexible a service, including
costly technological systems, when they may not be needed. In contrast, the au-
thors recommend an incremental approach as a more sensible option. Compared
to conventional PT operations, DRT requires more marketing effort and skills, but
above all, it requires new skills in working in partnership. The failure in partner-
ships is where the root of DRT failure is often found.

G. Curry and N. Fournier [30] review DRT and Micro-Transit implementations
to assess their performance. High failure rates stand out in their findings. 50% of
the systems last less than 7 years, 40% last less than 3 years, and about a quarter
fail within 2 years. In the UK, 67% of DRT services have failed, and in Australa-
sia, 54%. The results indicate that simpler operations (e.g., many-to-few or route
deviation) had lower failure rates compared to more complex many-to-many ser-
vices. The authors develop a cost analysis that shows a strong and definitive link
between DRT failure and higher service costs.

6.3.2.2 Replacing Classic PT With DRT

Many analyses focus on a particular rural settlement and aim to replace or opti-
mise the currently implemented means of PT. Ryley et al. [130] investigate the
contributions of DRT to sustainable PT. Their study surveys the public of both ur-
ban (Rochdale, Manchester) and rural (Melton Mowbray, Leicester) areas of the
UK. Six DRT service variants are explored using mixed logit models; from those,
a rural hopper service linking a number of rural settlements to a market town fits
our research. Regarding that system, authors find the in-vehicle time of passengers
is longer than normal, as the alternative to the DRT service is private motorised ve-
hicles. Longer times are mainly caused by the dispersion of the served population,
and the need for door-to-door as opposed to stop-based services, necessary due to
the predominantly elderly and/or mobility-impaired users.
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Coutinho et al. [29] assess replacing a fixed public bus line with a DRT system
to service the rural surroundings of Amsterdam, the Netherlands. Their analysis
focused on indicators such as distances, ridership, costs, greenhouse gas (GHG)
emissions and the population’s perception of DRT. Their results expect a drop in
ridership which is compensated by mileage and operating time-frame reductions.
There is better overall efficiency with DRT compared to the fixed service. The
number of travelled kilometres, operational costs and GHG emissions per passen-
ger were smaller.

C.-G. Roh and J. Kim [127] analyse and propose an optimisation for six small
bus routes in the rural city of Yangsan-si, South Korea. Geographic Information
Systems (GIS) were used to compare and review the planned routes and operation
status of each route, while improved DRT operation methods were studied based
on these operations patterns. A more suitable DRT small bus operation model for
each route was proposed as a conclusion.

6.3.2.3 DRT Systems’ Adoption Rate

The adoption rate of newly deployed DRT systems is tightly related to their suc-
cess. Some authors centre their assessments on this topic. Wang et al. [156]
discuss the DRT adoption rate in the rural area of Lincolnshire, England. The au-
thors argue that car ownership, the aging population, and cuts in public spending
threaten the traditional public bus services that operate in rural settlements. DRT,
however, faces a series of challenges for its successful implementation. Through
the analysis of various factors, it is determined that people with disabilities, those
travelling for work, and those who live in less densely populated areas are more
likely to travel by DRT. In addition, a gender-based analysis reveals females have
a higher propensity to use DR services compared to males below retirement age.
However, the trend vanishes upon reaching retirement age. This, for the authors,
indicates an emerging market potential from the retired male market segment, and
thus service providers should design their systems considering it.

Anburuvel et al. [8] run a survey to explore the willingness to accept a DRT
service for the spatially scattered population of a rural region of Sri Lanka. The
survey pointed towards economic attributes (income and vehicle ownership), so-
ciocultural attributes (age, gender, and education), and mobility needs (travel fre-
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quency and access distance/cost) as the primary factors which decided the choice
of a transport mode, thus begin more relevant in the decision of the deployment of
a new service.

Schasché et al. [134] elaborate a review on the conflicting expectations and
weak user acceptance of rural-DRT systems. Their paper creates an overview of
the development in the research field, focusing particularly on user-oriented re-
search, detects conflicting performance expectations towards DRT services that
complicate their success, and identifies discrepancies between perception and em-
pirical design studies. The findings suggest a need for more focus on rural areas
when attempting to reduce the use of private combustion engine vehicles in favour
of public transport and successfully establish DRT services as well as further re-
search into specific user groups. The main take-away points are the following: In
rural areas, personal factors such as age, gender, and private car access are found
to be of stronger influence on user acceptance than in urban areas. Service-related
factors like time reliability and booking methods have a higher impact on rural
transport mode decisions than in urban settings. Finally, knowledge of DRT ser-
vice and information provision also appears more influential for users in sparsely
populated regions.

6.3.2.4 Reviews on Smart and Sustainable Mobility for Rural Areas

Some of the most useful theoretical contributions come from those works that
group relevant publications, much like the present paper. The perspectives and
criteria for the grouping are what differentiated one review on a concrete topic
from another. Agriesti et al. [6] aim to build the case for a renewed research effort
about smart mobility in low-density areas. The authors perform a wide survey-
ing effort across Estonian municipalities, focusing on the outputs from rural and
small suburban centres. The results report the main mobility challenges across the
region and what hindering factors are preventing envisioned solutions. Tracking
social behaviour, changing travel patterns, and social inclusion stand out among
these challenges. Technology implementation is also identified as a key priority,
particularly regarding traffic management and planning practices.

Poltimäe et al. [120] present a review of papers dealing with inclusive and
sustainable mobility systems for rural areas. After analysing many proposals, the
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authors group them into four categories: semi-flexible DRT, flexible door-to-door
DRT, car-sharing, and ride-sharing. The main conclusion of their study is that sin-
gle mobility solutions are rarely applicable to all rural travellers. Therefore, the
future lies in multimodal mobility, considering that strong spatial and temporal
synergies exist when combining different solutions. Success factors for sustain-
able rural transportation are identified, among which accessible and easily under-
standable information on routing, booking, and ticketing systems, as well as co-
operation, shared values and trust between various parties, stand out. Finally, the
importance of integrating the needs of various user groups for implementing en-
vironmentally, socially, and economically sustainable mobility solutions in rural
areas is emphasised.

6.3.2.5 Other Analytical Contributions

Given the strong relationship between transportation systems and the area they
service, some authors focus their surveys and proposals on specific topics which
are relevant in their case. Abdullah et al. [3] assess the service quality of two
DRT bus services operating in Lahore, Pakistan, through a questionnaire. The
surveyed data reflected service attributes and bus ambience as significant predictors
of overall customer satisfaction.

F. Heinitz [55] approaches the improvement of rural mobility through incen-
tives for private vehicle drivers to share their vehicle with other passengers for a
concrete journey. The author builds a framework that defines steps to take when
considering the introduction of DRT elements to a rural mobility scenario. His
case study, set in the Schmalkalden-Meiningen area, Germany, takes into account
German legislation. The author’s conclusions show he understands as a mistake
the proposal of a whole DRT solution from scratch for a certain rural area. Instead,
he bets on modal integration and the development of high-adoption ridesharing
among citizens, as private vehicles are the best approach to the mobility patterns
of rural inhabitants.

F. Cavallaro and S. Nocera [24] study the novel concept of integrating passen-
ger and freight transportation in flexible-route vehicles for rural areas. The devel-
oped case study is centred in the municipality of Misano Adriatico, Italy. The per-
formance of the service is evaluated through a selection of financial, operational,
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environmental, and social key performance indicators. The results of the analysis
revealed a reduction in kilometres travelled, fuel consumption, and air pollutants,
together with an increase in the area covered by the service, an increase in poten-
tial daily deliveries (for freight transport), and an increase in the occupancy rates
of vehicles (for passengers).

6.3.3 Proposals and Experimental Work

This subsection groups the state-of-the-art literature which explicitly describes ei-
ther a complete DRT system or some crucial part of it, including proposals that
seek to optimise the system’s operation or that simply test a particular approach
for modelling, scheduling, or simulation.

Two main criteria have been used to divide the publications according to the
system’s proposed features. On the one hand, systems following many-to-many lo-
cations’ operational patterns are separated from those using a many-to-one scheme.
On the other hand, within each operational pattern, systems are split into those with
fully-flexible routing and scheduling and those with semi-flexible ones.

Fig. 6.2 illustrates different DRT configurations that were found among the
proposals analysed in this section.

6.3.3.1 Many-To-Many Operational Pattern

Fully-flexible Scheduling
Among the analysed works that implement and validate concrete proposals, a few
aim to enhance a commonly used technique or define approaches that deviate from
the norm. Van Engelen et al. [151] propose an enhancement to insertion heuristics
by including demand anticipation. Their algorithm is tested over the Tata Steel
IJmuiden area in the Netherlands. The demand forecast is considered when a new
request arrives in the system and is used to filter the number of fleet vehicles that
can serve it. Generally, a vehicle will have enough free seats to serve passengers
(demand) at the next stop on its route. Demand forecasting is applied to decide
the probability that the next stop will have more demand than what the system
currently considers. A vehicle may be rerouted to a stop with an expected demand
greater than its current seat availability if the operator has “low confidence” in
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(a) Interurban stop-based operation (b) Within settlement door-to-door operation

Figure 6.2: Graphic representations of demand-responsive transportation systems
operating with different configurations. Passenger demand is depicted by green
human icons, whereas vehicles are portrayed by yellow buses. Vehicle routes are
indicated with red dashed lines. Picture (a) reproduces an interurban operation,
where settlements, indicated with white boxes, act as stops to travel from/to. Pic-
ture (b) depicts a door-to-door operation within a rural settlements, in which pas-
sengers can ask for a ride from any location within the town.

the demand forecast; this implies taking a risk. Conversely, when there is high
confidence in the prediction, vehicles with a higher number of available seats than
the current demand are rerouted, thus making room for the estimated demand as
well. The authors compare their method to traditional insertion heuristics. The
results show that by combining their proposal with empty vehicle rerouting 98%
of the baseline rejected requests are eliminated, and travel and waiting times are
reduced by up to 10 and 46%, respectively.

K. Viergutz and C. Schmidt [153] propose a case study on the rural town of
Colditz, Germany, comparing conventional public transportation against DR ser-
vices. The conventional transportation consisted of a bus line, whereas for the DRT
two proposals were tested. Both DR proposals were on-demand, many-to-many,
and fully-flexible. However, one of them operated stop-based with 5 automobiles
and the other door-to-door with 10 vans. Their system declared constraints on the
number of fleet vehicles, vehicle capacity, the maximum waiting and passenger
travel time, and walking distance to the nearest stop. The scheduling of services
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was performed by a heuristic algorithm that allocates the nearest idle vehicle to
each new request. The authors used surveyed and statistical data to reproduce real-
istic demand for the experimentation. Then, multi-agent simulations were run for
each fleet configuration. Their findings revealed that, for the stop-based scenario,
the number of passengers increases compared to conventional PT, but also does the
fleet necessary to keep a good level of service (four vehicles vs one). Moreover,
dynamic, real-time vehicle assignment requires hard-and software, which involves
additional expenses to already financially limited rural PT providers. An excess
of dynamism in PT (absence of lines and timetables), according to the authors,
may be a strain on customers, leaving them at the mercy of their technical capa-
bilities for managing booking applications. The work concludes that ultra-flexible
DRT services are not the panacea for the rural PT sector, especially not in the case
of a free-floating, DR, door-to-door service. Economically speaking, the authors
remark on the importance of autonomous vehicles for a more efficient DRT.

Dytckov et al. [41] explore by means of simulation the benefits of replacing
existing bus lines in the rural area of Lolland, Denmark, with a DRT system that
better fits the low mobility demand. Authors build their own microsimulator join-
ing together many open-source tools: a multimodal travel planner for scheduling
(OpenTripPlanner), a library for solving vehicle routing problems (jsprit), OSRM
to prepare data for the routing solver, and finally a custom event-driven simula-
tor. Their proposal consists of an on-demand, fully-flexible, many-to-many, stop-
based DRT system served by eight-seat minibusses. During the experimentation,
constraints on request lead time, time window, trip time, driving time, and vehi-
cle capacity are defined and modified. In addition, authors consider penalties for
rejected requests and for the dispatching of new vehicles. The main assumption
of their study is that transportation demand does not change when changing from
buses to a DRT system. The simulation results show the potential to reduce costs
and CO2 emissions.

R. Morrison and T. Hanson [106] explore the concept of volunteer driver pro-
grams (VDPs) to replicate a door-to-door DRT service in rural areas. A rule-based
system was developed to describe the operation of a VDP. The system was cali-
brated and validated with one year of New Brunswick (Canada) Volunteer Driving
database data. Then, the multi-agent simulator Netlogo was used to implement and
study a simple agent-based VDP. The system operation was simulated and stressed



166 6.3. State of the Art Classification

through many scenarios that posed challenges. Finally, VDPs were understood as
a viable solution, although the authors remark on the need for additional research
regarding actor (users, drivers, dispatchers) interactions.

Matsuhita et al. [103] propose two methods for promoting tourism use of a de-
mand transportation system operated in the rural town of Aizumisato, Fukushima
Prefecture, Japan. These proposed methods are a hybrid operation of both conven-
tional on-demand transportation and scheduled transportation which is compatible
with Google Map route search and the posting of times and routes using virtual
stops. The effect of the proposals is studied utilising the SUMO microscopic traffic
simulator. The results show that the proposed system can operate on time without
any problems, although the waiting time for passengers increases compared to the
current method. The average maximum number of passengers that can be picked
up and dropped off within 30 minutes is 12.3, which means that the system can op-
erate with an increase of about four passengers compared to its current maximum
capacity during peak hours.

Semi-flexible Scheduling
Bruzzone et al. [20] explore the implementation of a DRT solution for the rural
town of Velenje, Slovenia, given the poor performance of its current transit system.
The researchers surveyed a focus group to establish the faults of the current trans-
portation and the citizen’s attitude towards on-demand mobility and cycling. The
authors had the parallel objective of moving demand away from private motorised
transports. Their final proposal combines two new DR bus lines and an electric
bike-sharing system (e-BBS). The main DR line offers a semi-flexible, many-to-
many service with a scheduled route and several on-demand stops; meanwhile, the
secondary line operates in a fully-flexible manner, feeding the main line with a
many-to-one2 service. The e-BBS has two roles; feeding both DRT bus lines and
offering accessible transportation for short displacements within the town’s neigh-
borhoods. Cost analysis reveals the proposal would achieve better service quality
with the same financing the current public transportation is getting, reaching a
higher percentage of the population.

Li et al. [82] propose a method for transit scheduling of DRT systems based on
2Bruzzone et al. use the term few-to-one, which would be a variation of a many-to-one operation with

a relatively small number of origin stops.
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optimising urban and rural transportation stops. Their method clusters passenger
reservation demand through a DK-means clustering algorithm, identifying later
fixed and alternative stops for the transportation system. Then, a genetic simulated
annealing algorithm is proposed to build the bus schedule, obtaining a flexible-
route DRT service that promotes urban-rural connections. Their proposal is vali-
dated in the northern area of Yongcheng City, Henan Province, China. Comparing
their final model against the existing regional flexible buses, results show the op-
timised bus scheduling reduced the operating cost by 9.5% compared with that of
regional flexible buses while reducing the running time by 9%. In addition, the
authors compare their final proposal to that obtained merely after the DK-means
clustering of stops and observed a 4.5% reduction in operational costs and 5% re-
duction in run times, thus proving the genetic simulated annealing step crucial to
improve the service further.

6.3.3.2 Many-To-One Operational Pattern

Fully-flexible Scheduling
Vehicle dispatching (from the current stop to the following one) in DR services
is generally computed as a function of time, ensuring early service to boarded
customers and waiting at stops only when there is enough slack time. Marković et
al. [93] propose a threshold policy to dispatch vehicles according to the number
of onboard passengers. For the experimentation, a flexible, one-to-many, door-
based DR service is implemented, transporting the customers from a terminal to
their homes. The authors adjust their proposal through numerical simulations set
in a rural context, with demands ranging from 21 to 30 passengers per hour. They
aim to find the threshold that reduces hourly costs as well as the adequate fleet
size. The results indicate that the optimal threshold is a function of time-varying
demand and thus must be adjusted for different times of the day. In contrast, the
fleet size must be adjusted accordingly.

J. Bischoff and M. Maciejewski [18] propose an optimisation for the operation
of a DR fleet based on balancing vehicles according to the expected trip demand.
Their method ensures that the spatial availability of vehicles follows the spatial dis-
tribution of demand in the (near) future. To test their proposal, the authors imple-
ment a feeder service that connects inhabitants of rural areas to other high-capacity
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means of transportation. The system operation is simulated with MATSim. The
passenger-vehicle allocation is done through insertion heuristics where, given a
request, each feasible insertion point is assessed and the best one is chosen. The
balancing of the fleet is done as follows: First, rebalanceable (with enough slack
time) and soon-to-be-idle vehicles are grouped. Then, the amount of demand per
zone is estimated according to historical data. With that, the surplus (extra) ve-
hicles in each zone are computed, and vehicles are dispatched from routes with a
positive surplus to those with a negative one. Such dispatching aims to incur the
shortest possible movement of the empty dispatched vehicle. The results show that
customer waiting times can be cut up to 30% with no increase in VTK, meaning
the rebalancing improves service quality at barely any monetary cost.

Schlüter et al. [136] assess the impact an autonomous DRT system would have
in the specific case of linking an urban and a rural area. Specifically, their work
is centred in the city of Bremerhaven, Germany, and its surrounding rural settle-
ments of Lengen, Schiffdorf and Loxstedt. This constitutes a fairly wide area,
leading the authors to two different assessments, centring one of them in the ru-
ral area. For that, an on-demand, door-to-door, many-to-one, fully-flexible service
is established. As for the implementation, authors use the multi-agent simulator
MATSim [59] with DRT modules. The road network is created with Open Source
Routing Machine (OSRM), reproducing the real one. The system optimises the
operation through insertion heuristics, and the demand is generated following pop-
ulation statistics and surveys. The experimentation studies the replacement of the
MIT (motorised individual transport). Results show that at least 1800 vehicles with
a capacity of 6 passengers are necessary to provide a service rate of above 95%.
Passenger waiting time values are below 13 minutes in this manner and decrease
with an increasing number of DRT vehicles. The average travel time of the agents
increases by around 66% when switching from a car-based scenario to pure DRT.
Their results distil the following assessments: the number of vehicles can be re-
duced by more than 90%. By that, several negative side effects such as congestion,
noise, fragmentation, or land sealing can be mitigated, allowing new perspectives
for urban planning and regional management. The replacement of human drivers
with an autonomous driving system leads to a significant reduction in operational
costs. However, the authors state that without the use of fully automated driv-
ing systems, DRT cannot compete economically. Finally, the limitations of this
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work come from the available data, which does not provide sufficient depth, the
exclusion of public transportation from the simulated baseline framework, and the
replacement of the entire MIT of a region, which is a radical theoretical approach.
Authors remark that the adoption rate of new mobility, such as DRT systems, and
the acceptance of fully automated vehicles determine the realistic percentage of
MIT that can be replaced.

Calabrò et al. [23] explore the benefits of DRT feeder services with respect to a
fixed-route (FR) service. Even though their experimentation takes place in a virtual
road network, feeder services are one of the go-to DR modes in rural settlements,
and thus we consider them relevant for the present review. The authors model a
stop-based, many-to-one, fully-flexible, on-demand service. Their implementation
employs basic insertion heuristics and a demand generation based on Poisson dis-
tributions. The system operated on a node-joint network. The simulations reveal
that DRT is preferred in peripheral areas where the space between stops is high
and during off-peak demand periods. In contrast, FR service performs better dur-
ing peak demands. The recommendation for a transport operator is, therefore, to
switch services according to the demand.

Semi-flexible Scheduling
Lakatos et al. [80] explore the substitution of a regular bus line operating between
11 “dead-end” villages in rural Hungary. They describe a seven-step analysis
method for the optimisation of any transportation system. Such a method attaches
particular importance to the characteristics of the current transport service (the one
that would potentially be replaced). Their study is conducted through mathemati-
cal modelling fed by surveyed data. The study proposes three different DRT solu-
tions. All proposals are on-demand and stop-based but vary in operational pattern
and flexibility. Their first system (1) completely replaces all bus connections with a
DRT service, modelling a many-to-many, semi-flexible operation. The second one
(2) aims to replace only the detours that the bus has to do from the main line with
a DRT service, keeping the regularly scheduled bus service just along the main
line, describing a many-to-one, semi-flexible operation. Finally, the last proposal
(3) introduces DRT just as an extra service connecting settlements with the present
main route, therefore establishing a feeder for the main bus service. In this case,
the operation would be many-to-one and fully-flexible. After analysing all three
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proposals, the main bus line is kept for four of the settlements and the connection
among all of them, whereas the other seven villages implement a DRT service,
with one minibus each, connecting the stops within them to the main line. This
configuration feeds the main line and avoids bus detours. The new configuration’s
cost does not exceed that of the traditional transportation system but increases the
level of service with better frequencies and more connections. The authors empha-
sise the importance of developing policies with the public services for the viability
of the rural-DRT system as well as the limitations of their method, which mainly
considers ridership as an influencing factor.

6.4 Discussion

The cited works have been summarised in a series of tables. Table 6.1 gathers the
works from Section 6.3.2 whereas Table 6.2 collects those described in Section
6.3.3.

6.4.1 Summary of Results

Observing Table 6.1, certain topics stand out as the most investigated. DRT sys-
tems’ failure as a general public transportation service has been widely studied.
Such a topic is closely related to the adoption rate these systems have once de-
ployed; the number of users that switch from their current transportation alterna-
tives to the new DRT system. In addition, many authors aim to replace or improve
the current PT of a rural area with a DRT solution. This is also the case for most
of the assessed system proposals. Regarding the observed challenges for a viable
and successful DRT system deployment, these can be grouped into economic chal-
lenges: unrealistic or excessively flexible operation, lack of partnerships, and poor
adoption rate; and social challenges: scattered population, disparity among tech-
nological skills, low income, different social behaviours and travel patterns, and
high ownership of MIT. Both analytical (Table 6.1) and experimental works (Table
6.2) acknowledge the potential of DRT to improve service quality and thus passen-
ger satisfaction, and reduce vehicle mileage and operating hours, thus reducing the
system’s environmental impact too. Besides that, a series of factors increment the
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Table 6.1: Cited survey and analysis works classified by main topic, data-gathering
method, and identified challenges and potentials. Acronyms: DRT (demand-
responsive transportation), MIT (motorised individual transport), PT (public trans-
portation), VTK (vehicle travelled kilometres).

Topic Method Challenges Potentials

[42]
Analysis of Unrealistic design,

Success and failure failure factors excessive flexibility, Simpler operations

[30]
of DRT systems Review of lack of partnership, (in pattern and flexibility)

DRT database high service costs

[130] Citizen survey
Financial viability,
institutional barriers

[29]
Replacement/optimisation Historical overview Population’s perspective, Mileage reduction,
of public transportation of DRT systems drop in ridership operating time-frame reduction,

[127]
with DRT

Modelling
Populations’ aging improved passenger load
and decline

[156]

Adoption rate

Factor analysis
Ageing population, Market for commuters
cuts in public expense and retired population

[8] Citizen survey
Scattered population,

User-focused
low income,

deployment of services
high vehicle ownership

[134] Literature review
Disparity among perception

Specific user group research
and empirical design

[6] Citizen survey
Social behav. tracking,
changing travel patterns, Multimodal mobility

Smart, sustainable mobility technology implementation Cooperation among parties

[120]
for rural areas

Literature review
Mobility solutions tied User group integration
to specific travellers

[3] Service quality Questionnaire
High costs, Customer satisfaction given
institutional barriers by vehicle ambiance

[55] Incentivised shared mobility Modelling
Excess of MIT in rural areas, Modal integration,
uneven travel patterns citizen cooperation

[24] Modelling

Limited resources
Passenger-freight to guarantee access Higher area of service,
transportation to main territorial hubs, higher occupancy,

underutilised PT reduction in VTK
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Table 6.2: Cited experimental works classified by operational (Op.) pattern, route
flexibility, stop configuration, booking necessity, fleet size and capacity, and op-
timisation (Opt.) perspective (persp.). Acronyms: e-BBS (electric bike-sharing
system).

Op. pattern Flexibility Stops Booking <# vehicles>x<# seats>s Opt. persp.
[151]

many-to-many

fully-flexible

stop-based on-demand 100x5s passenger
[153] (1) stop-based on-demand 5vx4s operator
[153] (2) door-to-door on-demand 10x6-14s passenger

[41] stop-based on-demand 29x8s, 19x8s
operator
passenger
environment

[106] door-to-door on-demand 4s (private cars) passenger
[103] door-to-door on-demand 1x9s + 2x4s passenger

[20] (1)

semi-flexible

stop-based not needed 1 bus + e-BBS passenger

[82] stop-based not needed 1x20s
operator
passenger

[80] (1) stop-based on-demand 11x8s
operator
passenger

[20] (2)

many-to-one
fully-flexible

stop-based on-demand 1 bus + e-BBS passenger
[93] door-to-door not needed 6x10s operator

[18] door-to-door on-demand 100x4s
operator
passenger

[136] door-to-door on-demand 1800x6s
operator
passenger

[23] stop-based on-demand 3x20s, 5x8s, 10x4s, 20x2s passenger

[80] (3) stop-based on-demand 1x50s + 11x8s
operator
passenger

[80] (2) semi-flexible stop-based on-demand 1x50s + 7x8s
operator
passenger

chances of a successful deployment of DRT: semi-flexible operations, user-focused
design, user-group research, partnerships with public and private institutions, and
the integration of different modes of transportation.

Regarding experimental works, Table 6.2 shows the most popular trend in terms
of DRT systems’ configuration: a many-to-many operational pattern with a fully-
flexible routing, servicing a series of stops with an on-demand shared mid-capacity
vehicle. The proposals mainly aim to replace or improve the operation of the cur-
rent means of PT in a concrete rural area. In some cases, a new system is pro-
posed from scratch to serve a specific unfulfilled displacement need. Among the
observed used cases, most of them serve a series of locations freely, whereas a
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minority propose feeder systems that bring passengers to a higher-capacity, less
flexible transportation network. Finally, it is usual that authors aim to optimize,
at least, the passenger’s perspective. Most of them also include an operator per-
spective, which is closely related to the economic viability of the service. Finally,
a minority explicitly comments on the environmental improvements their system
brings.

6.4.2 Open Issues

Following, the open issues and key insights distilled from our classification are
discussed, providing a basis for reflection on the challenges and indicating possible
solutions and recommendation.

6.4.2.1 Replacement and Optimisation of Existing PT With DRT

The reviewed literature shows the difference among authors’ insights regarding the
performance of their proposed systems. For a fair assessment of a DRT proposal’s
performance, we must consider the context in which the system is proposed and
thus its intended goals. The metrics that the authors will give importance to in
their research depend on those goals. For instance, when it comes to public trans-
portation optimisation, usual metrics are passenger waiting and travelling time,
vehicle travelled kilometres (VTK), and greenhouse gas (GHG) emissions. If a
DRT system is proposed to replace or complement the current public transporta-
tion system, the research will focus on reducing passenger waiting and travelling
time, VTK and GHG emissions. In contrast, a DRT service may be planned to
introduce public transportation in an area where there are no mobility alternatives
besides motorised individual transports (MIT). In such a case, the research will
focus on the level of adoption rate of the new service and the reduction of MIT in
favour of public transportation.

Most of the cited works propose a partial or a complete replacement of the
traditional means of transportation already implemented in a chosen rural area in
favour of a new DRT solution. Those aiming for total replacement usually keep
elements of the old transportation system (such as stops) in the DRT service. This
approach eases the comparison between new and previous transportation systems.
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However, it also facilitates results with lower VTK and, therefore, GHG emissions,
as generally with DRT some of the stops along a vehicle line are optional. If the
DRT is implemented as a door-to-door service, VTK and GHG may increase with
respect to the existing means of PT, and thus an improvement in service quality
through time reduction and the servicing of a wider area gain more relevance.

The substitution and improvement of preserved elements of the current PT of
an area should also be assessed when aiming to improve its operation. As in [82],
demand distribution and stop location can be studied and modified to fit the new
proposal’s characteristics better.

6.4.2.2 Disconnection Between Analysis and Proposals

From a general perspective, comparing the potentials that DRT offers (Table 6.1)
with the most popular system configurations (Table 6.2), there appears to be a
disconnection between theoretical and practical works. Even though surveys con-
clude on the benefits of simpler, less flexible operations and the inclusion of mul-
timodality, the proposals present mostly fully-flexible services, and only some of
them [20] consider a different transportation mode (electric bike-sharing) to com-
plement DRT. Some authors [30, 42] agree that an excess of dynamism in demand-
responsive operation can be too economically costly for the system’s long-term
sustainability, especially when the level of demand does not justify such a level
of dynamism. The general conclusion of analytical works seems to favour semi-
flexible systems, with elements from scheduled transportation (non-flexible) com-
bined with on-demand, dynamic operation.

As a relatively new field, DRT lacks standardised systems, leading to a plethora
of proposals, each with its own unique “name”. Despite the abundance of ideas,
a closer examination reveals that most systems are strikingly similar, varying only
in minor details. Furthermore, there are few works that delve into the attributes of
these models. Although it is expected to explore various algorithms and techniques
in a field with many open issues like DRT, authors should focus on the specific con-
tributions their algorithms and system models bring to passengers, operators, and
drivers. It is crucial to adjust configurable components such as stops, assignments,
and vehicle capacity to suit the specific real-world use case of the system.

Authors in [55, 120] comment on the importance of the integration of different
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modes of transportation to truly match the rural area inhabitants’ mobility require-
ments. In addition, partnerships between the transportation provider and other
entities have been identified as a factor contributing to DRT success. One of the
many ways multimodal transportation and partnerships can be promoted is through
mobility hubs [128], physical locations where different modes of transportation are
integrated. Mobility hubs provide travellers with options for transfers between var-
ious transport systems in order to facilitate the exchange from one mode of travel
to another. Moreover, they can also include amenities like shops and restaurants,
making them attractive places to visit while travelling. Given the high percentage
of failed DRT systems, we consider the implementation of mobility hubs must be
studied together with the topic at hand.

6.4.2.3 User-Centred Design and Adoption Rate

It seems evident that a transportation system has to adapt to the area it serves.
Elements such as routes, stops and vehicles take into account the geography and
spatial-temporal demand of the area. However, when it comes to classic transport
systems, the way they operate remains the same regardless of where they are im-
plemented. In the case of DRT, generalist solutions have no place, even less so
in rural areas. Their necessary flexibility, combined with the low and distributed
demand, forces an operation tailored to the reality of the system’s potential users.

How well a system is adapted to its potential users determines the number of
final users it will have. This is even more evident for systems that compete with
other alternatives, such as transportation systems. Therefore, user-centred design
is closely related to the final DRT system’s adoption rate. The adoption rate of
DRT is one of the key issues leading to its failure. The number of passengers that
may switch from existing PT or MIT to DRT depends on the service quality and
the ease of interaction with the service. The latter concept refers to the booking
of services, which is generally done through a call centre, web, or smartphone
application. Because of all the aforementioned, when simulating a DRT operation,
the demand intensity must be adapted accordingly and not simply copied from the
existing PT or MIT displacements. In addition, by including findings on human
behaviour in such simulations, further research could simulate the estimated depth
and speed of user transition from their preferred transportation method to the new
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DRT solution.
Works such as [156, 8, 134, 120] conclude on the importance of adapting the

design, operation, and deployment of DRT solutions to specific user groups. The
displacement requirements of potential users should be at the centre of the devel-
opment of a mobility system. In rural areas, where demand is low, and the gap
between users is widening, it is especially crucial to consider their characteristics,
such as social and travel patterns and technological skills. However, it would be
unrealistic to propose a system that adapts to each and every one of its users. Be-
cause of that, user-group research is advisable to determine the best operation for
the system. Moreover, we consider hybrid operations that adapt to different user
groups in various periods of the day as a potential solution to increase a system’s
adoption rate.

6.4.2.4 Artificial Intelligence for Rural-DRT

Regarding rural-DRT research, we can establish a baseline of commonly discussed
topics and commonly applied technologies for modelling and simulation. Regard-
ing the latter, most proposals are modelled through mathematical or agent-based
approaches. The demand for the system’s validation is synthetically generated ac-
cording to surveys and population, vehicle ownership, and other relevant statistics
from the serviced area. The system counts with routing algorithms and insertion
heuristics to assign passengers to vehicles and schedule the service. Finally, nu-
merical or agent-based simulations are run according to the modelling, and con-
clusions about the proposal are drawn.

Recently, rural areas have attracted the interest of artificial intelligence re-
searchers, in order to apply in them the type of techniques which are already being
developed for smart cities [91, 140]. Still, there is a noticeable lack of innovation
regarding rural-specific transportation. Certain aspects of transportation research,
such as autonomous vehicles [121], enjoy a high level of popularity and therefore
a high level of articles. For the case of DRT, most of the proposed systems do
not implement new algorithms for allocating the demand or scheduling operations.
On the contrary, the authors assess the viability of specific proposals. The few
improvements for the classic algorithms that have been reviewed present general
optimisations and do not consider the characteristics of the rural demand to fur-
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ther improve the system. Because of that, we wish to highlight those contributions
which innovate regarding research topics.

The works in [55, 24, 106] present unexplored topics which tie their proposals
to specific characteristics of the serviced area. These topics are incentive-driven
shared mobility, integrated passenger-freight transportation, and volunteer driving
programs, respectively. In addition, some authors innovate with the optimisation
techniques applied to their systems. In [151], demand anticipation is used to im-
prove the classic insertion heuristic. In [93], the authors propose a dispatch policy
based on a threshold of passengers onboard a vehicle. In [18], vehicles are rebal-
anced based on expected demand. Finally, the authors in [82] employ generally
unused techniques for their proposal: DK-means to group stops and a genetic al-
gorithm (global optimisation) combined with simulated annealing (local optimisa-
tion) to define the system’s operation. These works, regardless of their relevance,
bring freshness to the field of research and, as analysed in this paper, follow the
line necessary to apply real solutions that work in concrete rural areas.

The DRT paradigm facilitates resource savings and transport adaptability. Hand
in hand with artificial intelligence (AI), the potential for improving rural mobility
increases considerably. Machine learning and pattern recognition techniques can
be used for demand prediction and generation, both historically and in real time.
This, in turn, may optimise vehicle deployment and passenger balancing. AI can
also identify and group potential customers of a future DRT service according to
their social behaviour and travel patterns. Regarding the adoption rate of DRT, AI
can be implemented to analyse data about the needs of rural populations and iden-
tify ways to increase the demand for transportation services, such as gamification:
creating incentives for people to use public transportation or offering discounts
to those who carpool. Additionally, as mentioned throughout the paper, heuristic
optimisation can improve transportation conditions, identify the best routes, and
create more efficient routes that reduce the amount of time and money spent on
displacement. There are myriad approaches that can be leveraged to the topic at
hand, from agent negotiation to evolutionary computation, and most are worth ex-
ploring to build original solutions for a research field in need of innovation.
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6.5 Conclusions

This survey has reviewed relevant works that assess the viability and potential of
improvement that the DRT paradigm can bring to rural mobility. Such a task in-
cluded the description of transportation problems, the characterisation of DRT, and
the enumeration of the techniques that computer science brings to implement and
experiment with transportation systems. Both analytical and experimental works
have been described and classified. Finally, the open issues of the matter, gathered
from the reviewing process, have been discussed.

The main takeaway points of the present work are the following. Practical
research needs to be more in touch with its theoretical counterpart. Works that
apply the knowledge of transportation research must favour the approaches which
are economically viable. The problem of low adoption rate and implementation
that does not adapt to the potential users of the rural area has to be considered
in every step of the formulation of the transportation system. PT providers must
understand those issues and adapt their expected ridership amount accordingly. It
is smart to begin with a somewhat less flexible operation and increase the flexibility
if factors such as demand justify it. Finally, one should always keep in mind the
potential of multimodal transportation; study the application area to try and create
partnerships with other actors that facilitate the transition to the new transportation
method.

From the point of view of computer science research, there is a need for rural-
specific works that use the deployment area’s features to find innovative and cre-
ative optimisation solutions. There are a series of unexplored algorithms that could
bring new perspectives to synthetic data generation, mobility modelling, and sim-
ulation.

The present research inspires two logical follow-up works. On the one hand,
the results of this work could be applied to the definition of a framework describ-
ing the series of steps that both PT providers and researchers in the area should
follow when considering the design and implementation of a DRT system, giving
the necessary importance to user-centred design, multimodality, and innovation in
modelling and optimisation. On the other, we would like to take advantage of the
latest advances in AI to study the best way to implement and improve rural-DRT.

Regarding the latter, we have plans to develop a general framework for trans-
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portation fleet optimisation. Employing agent-based modelling to reproduce pub-
lic transportation and other types of fleets, and integrating different algorithms to
optimise aspects such as task allocation and vehicle coordination from both a cen-
tralised and a distributed perspective. A few examples of algorithms we have been
researching would include insertion heuristics, distributed negotiation and task
allocation through auctions, or distributed planning of the fleet’s operations[96].
With the aforementioned ideas, a first approach on demand-responsive systems
can be found in [101].

Machine learning techniques are also a powerful tool to innovate in the im-
provement of the operational area and further optimise transportation operations.
For instance, in [61] demand-prediction models are developed to test and opti-
mise a public bus service. Finally, we would use massive multi-agent simulation
techniques, such as those illustrated in [100], to validate the different systems and
identify potential partnerships with other means of transport or actors in the rural
area.
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Computer Science and Information Systems,

2023
Doi: https://doi.org/10.2298/CSIS230115074M

Abstract

Rural mobility research has been left aside in favour of urban transportation. Rural areas’
low demand, the distance among settlements, and an older population on average make con-
ventional public transportation inefficient and costly. This paper assesses the contribution
that on-demand mobility has the potential to make to rural areas. First, demand-responsive
transportation is described, and the related literature is reviewed to gather existing system
configurations. Next, we describe and implement a proposal and test it on a simulation basis.
The results show a clear potential of the demand-responsive mobility paradigm to serve rural
demand at an acceptable quality of service. Finally, the results are discussed, and the issues
of adoption rate and input data scarcity are addressed.
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7.1 Introduction

Demand-responsive transportation (DRT) was first developed in the UK in the
1960s as a means of rural transportation [130] with a flexible route and dial-a-
ride program. In the past, it has been utilised to provide on-demand transportation
services for those who are physically disabled. These early initiatives depended on
government money, and if that funding was cut off, they eventually ceased to ex-
ist. In fact, funding has always been a major problem in DRT because, typically, a
transportation mode’s flexibility results in greater operational costs [30, 42]. Public
transportation companies have rekindled their interest in DRT systems in today’s
environment of dial-a-ride private transportation [57] (taxi, Uber, Cabify) pow-
ered by smartphones and applications. The reason is twofold: On the one hand,
the technological advancements in computation and electronics make it possible
to solve complex problems such as online vehicle scheduling, routing and detour-
ing in brief computational times. Moreover, the popularisation of smartphones has
made on-demand mobility more accessible than ever for the newer generations. Fi-
nally, the advances in autonomous mobility made demand-responsive transporta-
tion more promising. On the other hand, the flexibility and responsiveness of DRT
are intuitively good attributes for an environmentally conscious, more sustainable
transportation mode that may be able to reduce empty-vehicle displacement, thus
reducing energy consumption and greenhouse gas emissions.

The interest of the research community in DRT has been rising in the last few
years, although most of the studied and proposed systems are developed for high-
density urban areas. In contrast, the application of DRT solutions to rural set-
tlements or areas is less explored. Rural areas count with scattered residents, a
low level of transportation demand, and, on average, an older population with re-
spect to urban areas. Its usual transportation methods feature a single line with
a mid-to-high capacity vehicle and a low frequency. The lack of quality public
transportation is reflected in the usage of individual motorised transport, which is
the most popular form of transportation in some rural areas [135]. DRT seems
appropriate to fit rural demand and has the potential to cut operating costs while
being more sustainable thanks to its on-demand activation. In addition, passenger
experience could be improved by lower waiting and riding times.

There are a few works that analyse the potential of DRT for rural mobility.
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The authors of [29, 127] propose the replacement of the traditional transportation
services of specific rural areas with a DRT alternative. Both works find a better
overall efficiency with DRT compared to the fixed service. Particularly, the re-
sults in [29] show a decrease in the amount of travelled kilometres, operational
costs, and greenhouse gas emissions per passenger. Other analytical works such as
[156, 8] focus on the adoption rate of these services among rural inhabitants. Their
findings show a potential niche market for DRT transportation and explicit relevant
factors that the user takes into account to switch to a new transportation service. Fi-
nally, the work in [134] goes over rural DRT services from a customer satisfaction
perspective, evidencing a concerning conflict between user expectations and the
actual system operation. The authors underscore the importance of the analysis of
the rural area and the characterisation of its potential customer needs for a success-
ful DRT application. All the research cited above shows that several authors from
different contexts find the use of DRT as a potential solution for improved rural
mobility. However, there is a noticeable lack of papers that bring more intelligent
techniques to rural mobility.

Urban areas have always had a steady flow of quality proposals, such as [83,
164], focused on optimising their processes. However, rural areas find a clear lack
of proposals. Specifically, our current research is motivated by the literature gap re-
garding the application of intelligent techniques for rural DRT services. The main
objective of this line of work is the development of practical solutions for dynamic,
flexible, reliable, and economically viable rural mobility. Working on such a goal,
this paper characterises DRT systems, assessing each of the challenges their design
and implementation implies. Given the specific issues of rural areas, we theorise
that the DRT paradigm might be a good fit to provide displacement services to
their inhabitants. We prove our hypothesis by describing and implementing a sys-
tem, which is later tested by simulating its operation in a real rural area. The results
show the system achieves a good quality of service over a wide area with a reduced
fleet of smaller (with respect to public buses) vehicles. Our work contributes to the
rural mobility research field with the introduction of an algorithm that schedules
both the static and online operation of the proposed DRT service. In addition, our
results show the potential DRT has to modernise and improve rural transportation
systems.

This work is an extended version of the paper “Demand-responsive Mobility for
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Rural Areas: A Review” [95], presented at the 20th International Conference on
Practical Applications of Agents and Multiagent Systems (PAAMS 2022). The rest
of the paper is structured as follows. Section 7.2 dissects DRT through the review
of relevant literature works. Then, Section 7.3 describes the proposed system, its
components, and the algorithms that make it work. Section 7.4 presents the use
case and the simulation results. Section 7.5 discusses the introduction of DRT to
rural areas in accordance with our results. Finally, Section 7.6 concludes the work
and states possible future directions for our research.

7.2 Demand-Responsive Transportation Descrip-
tion

A DRT system is composed of a series of subsystems, each in charge of solving
one of the many challenges a transportation system involves. These subsystems are
highly configurable and can be adapted to the concrete mobility needs of a specific
area. Because of that, the variety of DRT services is vast. Nevertheless, all of them
deal with a concrete set of issues presented below:

• Planning of services and scheduling of requests. Whether it is performed in
advance or in real-time after receiving transportation requests, a DRT opera-
tor must plan the operation of its fleet according to its resources. Depending
on the type of system, such planning may include routing and stop assign-
ment. In addition, in a request-based system, passengers must be assigned to
a vehicle (or a concrete line) that will serve them. This assignment implies
the rescheduling of the vehicle planning to include new customers while
worsening as little worse as possible other passengers’ experiences.

• Optimising fleet resources. The goal is to select the appropriate vehicles with
a concrete capacity such that the operation of the DRT system yields an ac-
ceptable quality of service while being economically viable and sustainable.

• Demand prediction and estimation can be a complementary feature of DRT
systems used to optimise their operation. Such a feature can be implemented
based on historical data or prediction techniques to control future and current
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demand. Many solutions require the passengers to explicitly state their desire
to use the service by issuing a request.

• Validation through the definition of appropriated metrics to evaluate and
compare different configurations.

Solutions to the above issues are dependent on the concrete type of DRT system
that will be implemented in addition to the modelling and optimisation techniques
used for that. Following, we describe the different characteristics that a DRT sys-
tem can have (Section 7.2.1) and the techniques that have been observed in the
literature for their implementation (Section 7.2.2). Finally, we enumerate the opti-
misation perspectives of the reviewed material (Section 7.2.3).

7.2.1 System Types

DRT systems have a series of standard elements present in all of them. Different
authors apply different labels to those elements. For the current section, we have
followed the terminology described in this survey [152].

In a DRT system, a service is the departure of a vehicle to serve the transporta-
tion requests it has assigned. One service is generally tied to a concrete area or
line the transport will follow. In contrast, a route is the concrete path the vehicle
follows, connecting all the pickups and drop-offs. A route does not necessarily
include all existing stops in a line or area. Customers are picked up and dropped
off in a predefined set of stops within the serviced area or line. Alternatively, a
door-to-door service can be offered, in which any user-specified location within a
particular area may act as a stop. This type of mobility is thought to be shared;
i.e.: multiple customers are served by the same vehicle. Typical vehicle choices for
demand-responsive services include a taxi-like car with a capacity of 4 passengers,
vans with 8 to 12 seats, and mini-buses or buses with 16 to 22 seats, respectively.

Many use cases exist for demand-responsive transportation. Specifically, for
rural DRT, we find the following: transportation within rural settlements, trans-
portation between rural settlements, and transportation between rural and urban
settlements. In practice, these cases can be reduced to two systems: many-to-many,
with multiple origins and destination locations, and many-to-one, where origin and
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(a) Within a rural settlement (b) Between rural settlements (c) Between rural and urban set-
tlements

Figure 7.1: Observed use cases for rural demand-responsive transportation sys-
tems. Boxes indicate rural/urban settlements. Black dots represent stops. Dashed
lines represent demand-responsive lines. Pictures (a) and (b) are cases of many-to-
many transportation, while (c) represents a many-to-one model.

destination locations share a unique pick-up or drop-off point. The last type is usu-
ally the so-called feeder line, where flexible transportation service is used to move
passengers to another, less accessible service (for instance, communications from
rural settlements to an airport). Figure 7.1 shows a schematic representation of the
commented use cases.

If the customer is required to send a request to access transport, then the service
is provided on-demand. The time between sending a request and the customer’s
pick up is the lead time, and it is used to adapt the fleet operation or planning to
include such a request. In a stop-based operation, the customer will be assigned a
stop from which they will be picked up. On-demand systems can operate based on
reservations issued in advance by the users, and in real-time, accepting last-minute
bookings. The more complete systems employ a hybrid approach, accepting ad-
vanced reservations as well as real-time travelling requests. DRT systems that are
not on-demand are also possible. These systems consider current demand or de-
mand predictions for service planning but do not require requests to run.

The period of time for which the DRT service is planned and optimised is re-
ferred to as planning horizon. The duration of planning horizons is usually a whole
day. In addition, the operator may plan for a few hours to adapt to high/low demand
periods. According to the influence of the demand data on the service planning, the
system will be fully-flexible if routes are planned from scratch according to current
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demand, or semi-flexible if a predetermined plan exists but vehicles are allowed to
modify it influenced by demand.

7.2.2 Modelling and Optimisation Techniques

Once the concrete type of DRT system has been chosen, it must be modelled and
tested to check its performance and adjust its attributes. We will discuss below the
different steps this involves, citing relevant research and their authors’ methods.
Please be aware that not every paper cited in this section explores rural DRT.

Most rural DRT works are set in a concrete rural settlement or area. In general,
the main transportation network (roads, highways) of the area is mirrored thanks
to services like OpenStreetMap (openstreetmap.org) or OpenSourcingRouting-
Machine (OSRM, project-osrm.org) [41]. Ideally, the actual organisation of
the area, its types of districts, population, or socio-economic reality, among others,
should also be considered. Authors in [80] describe a seven-step analysis method
for optimising any transportation system based on reproducing the features of the
currently implemented transport service (that would potentially be replaced) Al-
ternatively, some works employ grid-like modellings of the area where the system
will run [23].

Demand modelling is also crucial. Passenger demand has two main aspects: (1)
frequency and intensity and (2) shape (location of origin-destination pairs). De-
mand attributes can be extracted from datasets of different transportation modes
and extrapolated, as in [60], where taxi data is used. Moreover, real data of
pilot DRT services [150, 29] can be reproduced when available. However, the
most observed technique is the use of synthetic demand data that can be gener-
ated statistically [23], based on socio-demographic information [153], via surveys
[80, 136, 41] or generated in a (semi-)random [151] way according to the prop-
erties of the reproduced area (population, age, occupation, vehicle ownership).
Finally, if traffic intensity data is available, it is useful to include it in the model,
although not as relevant for rural areas with respect to city-centred studies since
the former tend to have lower intensity.

The operation of the DRT system requires automated planning and scheduling
of vehicle services. At the same time, these tasks need information on the time
and travelled kilometres that a concrete detour would imply, which makes routing

openstreetmap.org
project-osrm.org
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algorithms also necessary. In addition, since it is common to find online systems
that accept real-time requests, the computation time for detours and new request
insertions must be kept low. The use of multi-modal planning [41] is common to
solve the scheduling of vehicle services. Moreover, some simulation platforms,
such as MATSim [9] include their own implementations of the algorithms men-
tioned above. These implementations usually employ (meta)heuristic techniques
[153] that optimise vehicle-passenger assignments (insertion heuristics [18], for
instance) or vehicle routing in a short computational time. Besides that, other less
exploited techniques, such as automated negotiation, could be used to decide as-
signments from a decentralised perspective [14].

Finally, to observe the system’s dynamics and its operation and adjust its at-
tributes, it is necessary to simulate it. This can be performed through mathematical
modelling [80] provided detailed data is available. However, a more popular way
of achieving this is through multi-agent simulation (MAS). Among the observed
choices, we find NetLogo [144], used in [62], the already mentioned MATSim and
even custom simulators [117, 41].

7.2.3 Optimisation Goals

The main goal of people transportation services is to supply the displacement needs
of its users. Ideally, the operation of the service shall be performed by optimising
three factors: (1) the economic viability of the service; (2) the customer’s experi-
ence (or quality of service); and (3) the sustainability of the service. These three
factors are translated into scopes when it comes to transportation research, and
thus we can find works that asses one (only operator perspective [93]), or many
of them from a multi-objective perspective (passenger and operator perspectives
[85]), The optimisation of customer experience implies the reduction of passenger
travel times, whereas economic viability is ensured by reducing operational costs.
Finally, optimising sustainability requires reducing vehicle travelled kilometres or
the total fleet operational time.

The greatest challenge of demand-responsive transportation systems is finding
the equilibrium among the factors above to offer a competitively-priced, economi-
cally viable, and flexible mobility alternative to private cars and traditional public
transportation. For the case of rural DRT, economic viability is especially difficult,
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taking into account the relatively low demand.

In this section, DRT research has been dissected by reviewing various works.
The enumeration of its many configuration options is crucial to plan the correct
system according to the characteristics of the area of application. In addition,
knowing how authors model and implement their proposals facilitates future re-
search. Coming up, we introduce a proposal for a dynamic DRT system that aids
in improving rural mobility.

7.3 System Proposal

We propose an on-demand, stop-based, many-to-many, and fully-dynamic ride-
sharing transportation system to give service to rural areas. A fleet of vehicles
provides displacement services with a variable capacity. Each vehicle will follow
its own itinerary: the list of stops it will visit during its operation, ordered in time.
We assume that users of the system issue travel requests through an application. A
travel request indicates the location and time window in a simple manner, such as
“Pickup at stop A after 8:30, and dropoff at B by 9:00”.

The implementation of our proposal is based on the work in [58]. Our sys-
tem is managed by a centralised scheduler which allocates each travel request to
a vehicle’s itinerary. The scheduler has two modes of operation: (1) offline plan-
ning of services and (2) online scheduling of incoming travel requests. In offline
operation, the scheduler prepares the fleet’s itineraries for the following service
period (i.e., hours, the following day), finding the optimal allocation of bookings
(requests issued in advance). In contrast, during service hours, when the fleet is
operating, the scheduler works in online mode, listening to incoming requests and
allocating them as they are issued. Figure 7.2 presents a schematic representation
of the scheduler’s operation, in which the allocation of a request to an itinerary is
referred to as a trip insertion.

The scheduler allocates the requests to itineraries such that the system-wide
objective function is optimised. Such an objective is the minimisation of the fleet’s
operational time, thus reducing the operational costs of the whole system.



190 7.3. System Proposal

Figure 7.2: Operation modes of the proposed transportation system scheduler. Of-
fline refers to static planning of services, whereas online mode indicates the real-
time allocation of incoming travel requests.

Following, we present the system elements together with their attributes and
describe the insertion searching procedure that the scheduler implements.

7.3.1 Definitions

Before describing the request allocation algorithm, it is necessary to define the
system’s elements. This section briefly enumerates those elements and attributes,
giving important notions to understand our implementation. The time units em-
ployed in the following formulation are minutes, as these better serve the purposes
of our experimentation.
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7.3.1.1 Itineraries.

The fleet is managed by the scheduler, a centralised entity with updated informa-
tion about each vehicle’s itinerary, capacity, and location. An itinerary is equivalent
to the vehicle it represents. An itinerary is mainly characterised by its stop list, an
ordered list of stops that the vehicle will visit, including the time of arrival to and
departure from each of them. Even though an itinerary has additional attributes, we
underscore that when the text mentions the insertion of an element in an itinerary,
it is referring to the itinerary’s stop list, as it can be deduced. The attributes of an
itinerary I are:

• vehI: Vehicle represented by itinerary I.

• capI: Capacity of vehI.

• I’s stop list: List of stops of the itinerary; it has at least two stops.

– Sstart
I : Stop where vehI begins its shift, including location and time

window.

– Send
I : Stop where vehI ends its shift, including location and time win-

dow.

• nextI: Next stop of vehI within I’s stop list.

• costI: Total amount of time that vehI will spend driving to complete the
itinerary.

At the beginning of the operation, an itinerary per fleet vehicle is created. The
stop list in those itineraries only contains the stop where its vehicle begins its shift
and, subsequently, the stop at which finishes it. As travel requests are assigned to
vehicles, the stop list of the vehicle’s itinerary is updated, inserting new stops in
visiting order. Because of that, the stop list represents the route the vehicle will
follow to complete its itinerary.

7.3.1.2 Trip.

The scheduler receives travel requests from the system customers. The request is
the explicit petition for displacement. Such a petition describes the displacement
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in what we call a trip. A trip indicates the need for a certain number of passengers
to move from its origin stop to its destination stop. Accepting a request implies
that the trip it defines has been inserted in an itinerary, and thus its customers will
be serviced. The attributes of a trip t are:

• npasst : Number of passengers travelling as a group on the trip.

• SOR(t): Pickup stop with location and time window.

• SDEST (t): Drop-off stop with location and time window.

• I(t): Itinerary to which the trip is assigned if any. I(t) ̸= /0 implies SOR(t),
SDEST (t) ∈ I(t)’s stop list.

The time window associated with stop SOR(t) defines the earliest and latest pos-
sible times at which the customers can be picked up. Similarly, SDEST (t)’s time
window defines the earliest and latest drop-off time for the customers. For further
clarification on a stop’s time window, please refer to the definition of Stops. The
wider the time window of a request, the more flexibility the system has to allocate
its trip.

7.3.1.3 Stops.

A stop represents a physical location within the transportation service infrastruc-
ture where customers can board or lay off a vehicle. In our problem formulation, a
stop must be part of a trip or an itinerary. Stops have a time window associated with
them. The time window indicates to the scheduler the period of time a stop must
be serviced, understanding the service of a stop as the service of the passengers
associated with it.When part of a trip, a stop S has the following attributes:

• tstart
S : Soonest time at which the stop can be visited by a vehicle. Start of the

time window.

• tend
S : Latest time at which the stop can be visited by a vehicle. End of the

time window.
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• tserv
S : Time employed by a vehicle for passenger pick-up and drop-off at the

stop.

In addition, when a stop S is part of the stop list of itinerary I, it has the follow-
ing attributes, which come in handy to check the feasibility of trip insertions. As a
reminder, vehI indicates the vehicle that follows itinerary I.

• tarrival
S : Time at which vehI arrives to S.

• tdeparture
S : Time at which vehI departs from S.

• wserv
S : Service window at S, indicating the time taken by passengers boarding

or laying off vehI in S.

• wwait
S : Waiting window at S, during which vehI waits in S until the departure

time.

• npassS: Number of passengers boarded in the vehI on departure from S.

Given the above attributes, the time window of a stop is defined as follows:

tstart
S ≤ tarrival

S , [wserv
S ], [wwait

S ], tdeparture
S ≤ tend

S

The vehicle visiting a stop can arrive to it at time tstart
S as the soonest. Then, the

service interval [wserv
S ] begins, in which passengers are going on or off the vehicle.

Following, the vehicle may wait at the stop for a defined waiting interval [wwait
S ].

At the end of such a waiting period, the vehicle departs from the stop, which may
be at time tend

S at the latest.
The particular arrival and departure times to a stop are determined according

to a dispatching strategy. A dispatching strategy defines the use of the so-called
slack time, the period of time during which the vehicle does not yet need to leave
the stop where it is stationary (represented by wwait

S in our formulation). A gen-
eral dispatching strategy would be departing the current stop as soon as possible,
providing the earliest possible service to those customers of the following stop.
In contrast, other strategies force the vehicle to wait at its current stop as much
as possible, hoping new requests will be issued and thus having more stationary
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vehicles to assign them to. For this work, we make use of a hybrid strategy. Vehi-
cles will depart from a stop to ensure the earliest feasible service to the following
stop. When the vehicle has slack time, it waits at a stop to maximise the chance of
inserting an incoming request.

7.3.1.4 Insertions.

An insertion indicates the feasibility of allocating the trip of a request to a particular
itinerary. Moreover, it indicates the positions within the itinerary’s stop list where
each trip stop will be inserted. The scheduler looks for all feasible insertions of a
trip and implements the best one.

Given a trip t, its insertion in an itinerary I implies finding appropriate spots
within I’s stop list to visit t’s SOR(t) and SDEST (t). The visit to SDEST (t) must be
subsequent (but not necessarily directly after) to that of SOR(t). A trip insertion will
always increase the itinerary’s duration (costI).

We define a trip insertion πi j with the following attributes:

• I(π): Itinerary in which the trip will be inserted.

• i: Position within I’s stop list where SOR will be inserted.

• j: Position within I’s stop list where SDEST will be inserted.

• ∆i j: Time increment incurred by inserting π in I.

Let us have insertion πi j that allocates trip t = ⟨SOR, SDEST ⟩ to itinerary I =
[Sstart

I , S1, . . . , Sn, Send
I ]. The insertion implies creating two new connections in

the itinerary: (Si−1→ SOR) and (S j−1→ SDEST ), finally obtaining I = [Sstart
I , S1,

. . . , Si−1, SOR, . . . , S j−1, SDEST , . . . , Sn, Send
I ]. Keep in mind that we could have

S j−1 = SOR, as the destination stop could be visited immediately after the origin
stop.

The implementation of a trip insertion modifies the planned operation of the
vehicle to whose itinerary the trip is allocated. Such a modification may occur dur-
ing the reservation-based operation of the system or in real-time while the vehicle
is already in service. In the former case, the time windows associated with each
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stop in the vehicle’s itinerary are updated taking into account the visit to the in-
serted trip stops. In the latter case, time windows are adjusted in the same manner,
but the vehicle may need to change its route to reflect the changes in its itinerary’s
stop list. Such a change of route, however, will not break the time window of any
already scheduled stop, as that is taken into account by our scheduling algorithm
(see Insertion feasibility checks, under Section 7.3.2 for further details).

7.3.1.5 Cost Computation & Objective Function.

As commented on the definition of an itinerary, its cost is equivalent to the time
the vehicle it represents spends travelling throughout its list of stops. Given an
itinerary I with stop list = [S0, S1, . . . , Sn−1, Sn], its costI would be computed by
adding the travelling time between every two consecutive stops in its stop list. Let
us assume a function travelTime(x,y), which, given service stops x and y, returns
the time taken by a fleet vehicle to travel from x to y in minutes. For an itinerary I
with n stops in its stop list, the cost would be computed as shown in Equation 7.1.

(7.1) costI =
n−1

∑
i=0

travelTime(Si,Si+1), ∀S ∈ I

Given a fleet F of vehicles, the system’s objective function is to minimise the to-
tal vehicle travel time or distance. This implies direct benefits for both passengers
(shorter trips) and the service provider (less operational costs). Such an objective
is achieved by the way in which requests are allocated to vehicles. These allo-
cations are done with the insertion search procedure, which works by iteratively
finding the best possible insertion for each of the pending requests and implement-
ing it. The search for the best insertion is guided by the cost increment ∆ that each
feasible insertion may incur to an itinerary’s cost costI. Therefore, the system’s
objective function can also be described as the minimisation of the sum of the cost
of each itinerary, as represented by Equation 7.2.

(7.2) min(∑costI), ∀ I ∈ F
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7.3.2 Insertion Search Procedures

An insertion search procedure is the action of finding the best position within an
itinerary to allocate a request’s trip. In other words, the best moment to visit the
trip’s origin stop and the same for the destination. Our system implements two
insertion search procedures, each for an operation mode (online, offline). Follow-
ing, both procedures are briefly described, together with the system constraints that
ensure the consistency of itineraries as trips are inserted.

7.3.2.1 Offline Insertion Search.

The offline insertion procedure allocates all bookings to the initially empty itineraries
of the fleet. The bookings’ trips are inserted one by one, according to issuing time,
in the best possible itinerary, i.e., the one that minimises operational time.

The search works as follows: While there are non-allocated requests, the sched-
uler selects the next request and extracts its trip t. Given t, with origin stop SOR and
destination stop SDEST , we want to obtain all feasible insertions of that trip within
all itineraries of the fleet. Algorithm 4 receives the SOR, SDEST , and an itinerary
I with N stops. Then, it returns all feasible insertions found for trip t in I. This
is done for all itineraries of the fleet, and all the returned insertions are ordered
according to their time increment ∆. The scheduler then implements the insertion
with a lower ∆. The request is rejected if the procedure does not find any feasible
insertion.

As it can be seen, Algorithm 4 tries to insert SOR in every possible position
within I. Once a feasible position is found for SOR, it is inserted in a copy of I,
and the time windows of other stops are updated, thus creating itinerary I′. Then,
the process tries to insert SDEST in the position of all stops subsequent to SOR in
I′. Once a feasible position is found for SDEST , it is inserted in a copy of I′, and
the time windows of other stops are updated, thus creating itinerary I′′. We have
found a feasible insertion at this point, so the algorithm computes its time incre-
ment (comparing I′′ and I’s costs) and stores it before continuing the exploration.
Please note that I′ and I′′ are simply auxiliary itineraries; thus, neither I nor the
stops in t are modified by the search algorithm. The described procedure consti-
tutes a complete exploration of the possible insertions, allowing the scheduler to
implement the optimal one.
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Algorithm 4 Search for feasible insertions within an itinerary I
Data: SOR, SDEST , I
Result: All feasible insertions of SOR, SDEST in I
f ound← [ ] ; /* List to store feasible insertions */

n← 0 ; /* Pointer to first stop, N = number of stops in I */

while n < N do
R← I[n] ; /* Select stop in position n */

if (R→ SOR) is feasible then
i← n+1 ; /* Position to insert SOR */

I′← I.insert(SOR, i), recalculate time constraints m← i ; /* Pointer to

SOR */

while m < N do
R← I[m] if (R→ SDEST ) is feasible then

j← m+1 ; /* Position to insert SDEST */

I′′← I′.insert(SDEST , j), recalculate time constraints ∆i j← costI′′−
costI ; /* Increase in duration */

f ound← f ound +(πi j,∆i j)
else

m← m+1 ; /* Go to next stop */

end
end

else
n← n+1 ; /* Go to next stop */

end
end
return f ound

7.3.2.2 Online Insertion Search.

The online insertion procedure works similarly to the offline one but considers the
current position of the vehicles within their itineraries. Therefore, given a trip t
and an itinerary I being considered for its insertion, assuming vehI is travelling the
connection (R→ nextI), Algorithm 4 only explores positions within [nextI,Send

I [
for the insertion of the trip’s origin and destination stops.
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If the trip’s origin stop were to be scheduled in nextI’s position, we would have
an immediate request, which implies the rerouting of vehI, changing its following
stop from nextI to SOR.

7.3.2.3 Insertion Feasibility Checks.

For the system to work correctly, all itineraries must be consistent. This consis-
tency is enforced through time and capacity constraints.

Let S be a stop in an itinerary I. Let vehI be the vehicle represented by itinerary
I, with a capacity of capI. Let npassS be the number of passengers on board vehI
on departure from S. The capacity constraint states that: npassS ≤ capI, ∀S ∈ I.
Simply put, the number of passengers on departure from any of the stops of an
itinerary can be, at most, the capacity of the vehicle following such an itinerary.

Concerning time constraints, the system implements the following:

• All passengers must be picked up within the time window specified by their
request’s start time and the maximum waiting time.

• All passengers must get to their destination before their request’s end time.

• All stops must have service windows contained within their arrival and de-
parture.

• All stops must be reached within their time window.

An insertion will be feasible if the insertion of its trip in its itinerary does not
violate any of the above constraints. The developed insertion search procedure re-
turns only feasible insertions. Because of that, the insertion of a trip in an itinerary
will never cause any inconsistencies or constraint violations.

7.3.2.4 Computational Complexity.

The presented insertion search procedures perform an exhaustive analysis of every
possible position in which to allocate a trip within all the fleet’s itineraries. This
procedure composes a subproblem of the resolution of the whole DRT service,
which will be solved once all travel requests have been dealt with.
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Regarding the trip insertion search procedure, its computational complexity
depends on the number of stops that the itinerary being explored contains. Such a
number of stops, in addition, is generally incremented every time a trip is inserted
in the itinerary. This causes the search for trip insertion at the beginning of the
operation to be less complex than towards its end. Assuming an itinerary has
n stops, the complexity of the search is of O(n2), as the algorithm checks each
feasible position for the trip’s origin stop and, for each of these positions, explores
all feasible positions for the destination stop, using two nested loops. In practice,
the actual search for an insertion is less costly, as the many restrictions that a
feasible insertion has to preserve facilitate early discarding of invalid positions
within the stop list.

When it comes to the complexity of solving the scenario, we must take into
account that the aforementioned search is performed for every travel request (trip)
and every vehicle (itinerary) in the fleet. Thus, the computational complexity of
allocating T trips within I itineraries is of O(T × I×n2).

As it can be understood, the service schedules travel requests iteratively ac-
cording to their issuance time, following a FIFO logic. This way of operating is
mandatory in the online scheduling of requests, as future demand is unknown. Be-
cause of that, the resolution of the proposed DRT service is performed greedily
and is sensitive to the order in which requests are fed to the scheduler. To palliate
this, improvement procedures could be implemented, which considered global cost
optimisations over a solved scenario.

7.4 Experimental Results

This section tests the proposed system’s potential to satisfy rural mobility demand.
For that, we defined simulations that reproduce the system’s operation over a con-
crete rural area. Following, the rural area where the simulations are set is de-
scribed. Then, the results of various simulations are presented, showing the evolu-
tion of the overall service quality of the system according to demand intensity and
fleet size.
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Figure 7.3: Rural sub-area chosen for the deployment of the proposed system. The
area features many small-to-medium-sized settlements. The northern part of the
area shows the city of Valencia, Spain.

7.4.1 Rural Case Study Description

A rural sub-area of the region of Valencia, Spain, was chosen for the deployment
of the demand-responsive service. For that, we departed from the existing public
interurban bus service of the Valencian Community, which connects many rural
settlements between them and with the region’s main cities. The dataset1, publicly
accessible thanks to the Generalitat Valenciana (https://linkshortner.net/
kkvFj, accessed on December 15th, 2022), contains information on the different

1https://dadesobertes.gva.es/va/dataset/gtfs-itineraris-horaris-transport-public-interurba-autobus-
comunitat-valenciana

https://linkshortner.net/kkvFj
https://linkshortner.net/kkvFj
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transportation lines, routes and stops the service offered. Specifically, it describes
722 lines with a total of 4562 stops. From those, only the elements lying inside
the area shown in Figure 7.3 were kept. That amounted to 88 lines and 341 stops,
shown in Figure 7.4. Since we propose dynamic DRT, the bus lines effectively
disappeared, as now vehicles move freely between the stops scheduled in their
itinerary. The existing stops, however, were clustered so that any two stops were at
least 500 meters apart. With this, the final distribution of 99 stops that can be seen
in Figure 7.5 (left) is obtained. With fewer stops and longer distances between
them, a better representation of interurban displacement is achieved.

Figure 7.4: Bus lines (left) and stops (right) the public interurban bus service de-
fines in the assessed rural area.

The deployment area features mainly small-to-medium-sized towns located in
rural contexts. It can also be noticed how the urban density increases in the north-
ern part of the area, which is closer to the city of Valencia. Our proposal aims
to provide on-demand transportation to citizens of the shown settlements, such as
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Figure 7.5: Final distribution of 99 stops over the chosen deployment area (left).
All stops are at least 500 meters apart. The image on the right shows a close-up
view of small settlements in the southeastern part of the area, near the town of
Sueca.

Alginet, Algemesı́, Silla, Picassent, and El Saler, to mention a few. Figure 7.5
(right) shows a close-up in which the location of stops can be better appreciated.
Specifically, it shows the town of Sueca and many smaller settlements nearby.

With respect to the displacement demand, the dataset did not provide usage
data. To the best of our knowledge, there is no publicly available usage data for
interurban displacement within the chosen region. Rural transportation demand
has a lower intensity than that of a city, and given the service area, it tends to be
widely distributed in space. With that in mind, a synthetic demand generator was
employed to feed data to the simulations.

The demand generator receives geolocated population information of the ser-
vice area to create demand according to it. The more population nearby a stop, the
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more probable it is to be selected as the trip’s origin. The destination stop of the
request, however, is chosen randomly among all stops, considering a configurable
minimum trip distance. Longer trip distances favour the reproduction of interur-
ban displacements. In addition, each request can have between 1 and 5 passengers
with respect to given probabilities (less probable the more people). The demand
is uniformly distributed throughout the service hours of the system. The end of a
request’s time window (the time at which the passengers need to be at their des-
tination) is computed according to a chosen maximum waiting time (at a stop to
be serviced) and the direct travel time between origin and destination. The direct
travel time is multiplied by a configurable factor. The higher this factor, the wider
the time window, and thus the more flexibility the system has to serve the request.

7.4.2 Service Quality Assessment

The proposed system has been tested through many 14-hour services (07:00 AM
to 09:00 PM) simulations with different amounts of vehicles and travel requests.
Inspired by the reviewed literature, a fleet of 10 vans, each with a capacity for eight
people, was fixed for the first round of experiments. The vans were deployed from
a warehouse in Valencia (the northern part of the service area) at 06:00 AM, an
hour before the first requests could be scheduled. Similarly, the drivers had to end
their shift at the warehouse no later than 10:00 PM.

With regard to the demand, a total number of travel requests was specified and
then generated as described above in Section 7.4.1. The demand is divided into
50% of bookings (scheduled before the system’s operation) and another 50% of
real-time requests. Each request could have either 1, 2, 3, 4, or 5 passengers with
a probability of 0.6, 0.15, 0.125, 0.1, and 0.025, respectively. Finally, a minimum
trip distance of 2,000 meters and a maximum waiting time of 15 minutes were
chosen. It must be noted that the different probabilities that influence demand
generation determine the importance of the subsequent results. For the purposes
of demonstrating the proposed algorithm’s operation, those probabilities defined
above have been used. We remark that the results presented below are dependent
on the specific demand generation. Nevertheless, their assessment can give insights
to guide future work in this field.
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With the fixed fleet of 10 vans, we explored the system’s service quality as the
number of requests increased. Service quality is defined as the percentage of ac-
cepted requests with respect to the total number of requests. In addition, the time
that passengers wait for a vehicle to pick them up is included as an additional mea-
surement of service quality. As commented above, for a request to be accepted,
their passengers must be picked up before a wait of 15 minutes. Nevertheless,
waiting times closer to such a maximum indicate worse passenger experiences.
Because of that, our results reflect the average waiting time of all accepted passen-
gers, together with its standard deviation. Table 7.1 shows our first results. The
running time of the most complex simulation was 30 seconds, being executed in a
machine running Windows 11 with an Intel Core i7-10750H CPU at 2.60GHz and
16GB of memory.

The system maintained near-perfect service quality in runs with 100 to 300 re-
quests (rows 1 to 5). As it can be seen in the last column, given a particular fleet,
the system tries to schedule trips so that all vehicles are employed. Only in the
first run, with 100 requests, a vehicle is unused. With 350 requests, the system
maintains an acceptable service quality with 84.29% of scheduled requests. From
400 requests on, the service quality decays, lowering to 70% with 450 requests and
62.8% with 500 requests. These last three runs present an unacceptable quality of
service (< 80%) based on similar works of the literature. With regards to the av-
erage waiting times, results show how these increase proportionally to the number
of requests. The standard deviation, however, is kept around 5 minutes throughout
all executions. This fact reflects the high variability among each of the individual
waiting times, which in turn is motivated by the differences among the generated
trips. The obtained average times indicate that most of the passengers are picked
up relatively soon after the issuance of their travel requests.

7.4.2.1 Fleet Size.

After the initial experimentation, the fleet was varied by adding or subtracting a
few vehicles. Once again, the aim was to observe service quality and vehicle us-
age evolution. For these tests, the number of requests increased from 200 to 500
in 50 request intervals. Table 7.2 presents all the runs. The results indicate that
reducing the fleet also reduces the amount of demand the system can appropriately
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Table 7.1: Service quality evolution with increasing demand and a fixed fleet of 10
vehicles.

Requests req/hour Vehicles Capacity Service quality (%) Avg. pax wait (min) Fleet usage

100 ∼8 10 8 100.00 3.5 ± 5.0 9/10
150 ∼11 10 8 99.33 4.4 ± 5.2 10/10
200 ∼15 10 8 99.00 4.3 ± 5.1 10/10
250 ∼18 10 8 96.00 4.8 ± 5.0 10/10
300 ∼22 10 8 89.67 5.0 ± 4.9 10/10
350 ∼25 10 8 84.29 5.5 ± 5.3 10/10
400 ∼29 10 8 74.75 6.1 ± 5.2 10/10
450 ∼33 10 8 70.00 6.2 ± 5.1 10/10
500 ∼36 10 8 62.80 6.5 ± 5.3 10/10

manage, as can be expected. Similarly, with a more significant fleet, the quality
of service is preserved above the 70% margin for higher intensities of demand.
Even in runs with a more extensive fleet, the system achieves a uniform division of
requests among vehicles, employing all of them. The pattern of evolution of pas-
senger waiting times is observed to be the same as in the previous experimentation,
having standard deviations approaching 5 minutes across all the tested parameter
combinations.

The graph on Figure 7.6 visually represents the results of Tables 7.1 and 7.2,
showing the evolution of the service quality provided by fleets of various vehicles
with respect to an increasing number of requests. Table 7.3 summarises all results,
showing the lower bounds of acceptable service quality found for each combina-
tion of demand and fleet size.

7.4.2.2 Vehicle Capacity.

The final parameter that was assessed was vehicle capacity. The above simula-
tions were run with fleets of 8 to 12 vehicles but changing their capacity to that
of a minibus, ranging from 16 to 22 passengers. The results in terms of quality
of service, however, were very similar to what has been presented so far. This
indicates that, given the shape of the generated demand, vehicle capacity was not
a bottleneck of the system, and rejected requests were motivated by time window
incompatibilities and not because of capacity constraints. We must acknowledge,
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Table 7.2: Service quality evolution with different fleets ranging from 8 to 12
vehicles and various demand intensities.

Requests req/hour Vehicles Capacity Service quality (%) Avg. pax wait (min) Fleet usage

200 ∼15 8 8 94.50 4.2 ± 5.0 8/8
250 ∼18 8 8 83.60 5.5 ± 5.1 8/8
300 ∼22 8 8 76.67 6.3 ± 5.2 8/8
350 ∼25 8 8 69.43 5.9 ± 5.3 8/8
400 ∼29 8 8 60.50 6.4 ± 5.1 8/8
450 ∼33 8 8 56.22 6.5 ± 5.2 8/8
500 ∼36 8 8 50.60 6.9 ± 5.3 8/8

200 ∼15 9 8 98.50 4.5 ± 5.3 9/9
250 ∼18 9 8 92.00 4.8 ± 4.9 9/9
300 ∼22 9 8 85.00 5.2 ± 4.9 9/9
350 ∼25 9 8 78.57 5.9 ± 5.3 9/9
400 ∼29 9 8 69.75 6.2 ± 5.0 9/9
450 ∼33 9 8 64.00 6.5 ± 5.1 9/9
500 ∼36 9 8 56.20 6.5 ± 5.2 9/9

200 ∼15 11 8 99.50 4.2 ± 5.1 11/11
250 ∼18 11 8 98.00 4.7 ± 5.1 11/11
300 ∼22 11 8 93.67 4.4 ± 4.9 11/11
350 ∼25 11 8 89.71 5.1 ± 5.1 11/11
400 ∼29 11 8 83.25 5.6 ± 5.0 11/11
450 ∼33 11 8 74.89 6.0 ± 5.0 11/11
500 ∼36 11 8 67.40 7.0 ± 5.3 11/11

200 ∼15 12 8 99.50 4.2 ± 5.1 12/12
250 ∼18 12 8 99.20 4.3 ± 4.9 12/12
300 ∼22 12 8 97.67 4.3 ± 4.8 12/12
350 ∼25 12 8 93.43 4.9 ± 5.1 12/12
400 ∼29 12 8 86.25 5.4 ± 5.0 12/12
450 ∼33 12 8 80.22 6.1 ± 5.2 12/12
500 ∼36 12 8 73.80 6.4 ± 5.3 12/12

Table 7.3: Lower bound of acceptable service quality found for all combinations
of demand intensity and fleet sizes.

Requests req/hour Vehicles Capacity Service quality (%) Avg. pax wait (min) Fleet usage

250 ∼18 8 8 83.60 5.5 ± 5.1 8/8
300 ∼22 9 8 85.00 5.2 ± 4.9 9/9
350 ∼25 10 8 84.29 5.5 ± 5.3 10/10
400 ∼29 11 8 83.25 5.6 ± 5.0 11/11
450 ∼33 12 8 80.22 6.1 ± 5.2 12/12
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Figure 7.6: Visualisation of service quality according to various number of re-
quests and fleet sizes.

however, that the conclusions drawn from this study of vehicle capacity are only
applicable to the specific generated demand. From a general perspective, varying
the capacity of fleet vehicles could have a great impact on the system’s perfor-
mance, which is what motivated this final experimentation.

7.5 Discussion

Given the results summarised in Section 7.4.2, we can conclude that dynamic DRT
is a good fit for the synthetically generated rural mobility demand. The ineffi-
ciency of traditional interurban public mobility options in rural contexts comes
from the shape of its demand. Vehicles with a high occupancy ratio, scheduled in
periodic lines, tend to drive mostly empty, therefore being costly to maintain for
public transport providers. The proposed system tackles these problems by ensur-
ing maximum fleet usage, taking advantage of every present vehicle. In addition,
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this behaviour eases the consideration of adding new vehicles to the fleet, as the
fleet administrator has the certainty that it will be exploited and thus not a waste of
resources.

With regard to the economic viability of the system, having a smaller fleet of
smaller vehicles implies lower maintenance and salary expenses. Furthermore, if
autonomous mobility becomes feasible in the future, economic expenses would
lower even more due to the avoidance of driver salaries. Our experimentation has
not explicitly considered the service’s environmental impact. Nevertheless, the
proposed system has features which indirectly contribute to a better sustainabil-
ity. On the one hand, the objective function reduced vehicle travel time which, in
turn, would reduce any type of emissions stemming from the fleet. In addition,
we assess a reduction of such a fleet, achieving a similar level of service quality
while cutting costs. Finally, it is worth mentioning that the environment is better
preserved because the fleet makes journeys only when necessary. Moreover, these
journeys are more cost-effective due to the higher occupancy of the vehicles.

As seen throughout Section 7.2, demand-responsive systems present a high
number of operation modes and configurable parts. The present work describes
one of the many approaches that could work to modernise and improve rural mo-
bility. Ideally, the proposed system would completely replace the inefficient, tradi-
tional transportation options. However, in reality, the adoption rate of DRT tends to
be low, even more in rural contexts, due to the necessity to explicit a travel request.
The easiest methods to do so consist of smartphone applications and call centres,
being the former generally harder to manage for the older population. Because
of that, the deployment of a demand-responsive system would initially comple-
ment the current mobility options providing, for instance, connection to the most
stranded settlements with the main means of public transportation.

Finally, we want to assess the lack of publicly available demand data, which
hardens the research on rural mobility. In the context of rural DRT, this issue is
aggravated by the lack of rural-specific or low-demand datasets. There are a small
number of DRT pilot projects, and among them, an even smaller number share
the collected data. Still, the data that can be found about pilot projects is very
dependent on the specific area and the socio-demographic context where the pilot
took place. To deal with data shortage, synthetic data generation is often employed,
basing generation on population, age, occupation, and any other kind of survey that
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characterises the potential users of the system.

7.6 Conclusion

In this paper, DRT has been characterised, together with the challenges rural mo-
bility presents for the implementation of efficient modes of public transportation
that satisfy the population. A DRT system has been proposed to match the rural
mobility demand and provide such a quality service. The system has been de-
scribed in depth, implemented, and tested by means of simulations. A rural area in
the region of Valencia, Spain, has been chosen for the deployment of the system.
The mobility demand, in terms of travel requests, has been generated with a syn-
thetic demand generator according to the population of the deployment area and
a series of configurable parameters. The research results prove the potential that
DRT holds to develop dynamic, reliable, and cost-effective public transportation
in the rural context. This research contributes with a system proposal and its vali-
dation to the field of rural mobility, which has a general lack of innovation when it
comes to displacement proposals.

In terms of future research, we observe two paths. On the one hand, the pro-
posed system can be further improved. Different system configurations must be
assessed to find the best match for the deployment area. In addition, the parame-
ters of the proposed system could also be fine-tuned through more experimentation.
To further improve results, global optimisation techniques can be implemented in
order to further optimise the obtained itineraries. For instance, considering request
exchange among vehicles could decrease global costs. Finally, we would like to in-
clude transfer operations as an option for the scheduler to allocate requests. These
operations have the potential to simplify the fleet operation, cutting costs. On the
other hand, regarding experimentation, it would be interesting to assess the im-
pact of different levels of demand dynamism, tighter request time windows, or
different dispatching strategies, to mention a few. Finally, simulation results could
be enhanced by considering factors such as vehicle autonomy or strategic agent
behaviour.

As closing remarks, we want to state that there is a need for specific investiga-
tions on the successful implementation of DRT. To bridge such a gap, researchers
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must go beyond service quality to focus on the adoption rate and usage of the sys-
tem. For instance, we believe in the potential pricing policies that could both attract
new users to the system and, in addition, influence how they use it to improve the
overall quality of service.
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Chapter 8

Discussion

This chapter discusses the main contributions that originate from this thesis. The
presented work had as its primary objective the improvement of road transportation
through the proposal of several resource distribution techniques, including delivery
task allocation and passenger-vehicle assignments. Such an objective was divided
into three pathways, as laid out in the introduction. Following, the contributions
to the first, second and third objectives are presented in Sections 8.1, 8.2, and 8.3,
respectively. Finally, Section 8.4 assesses the main challenges encountered during
the thesis development and discloses the limitations of our approaches.

8.1 Contributions to Transportation Simulation

The first objective was the proposal of a framework to model and simulate trans-
portation systems, which would allow us to create and execute realistic simulations
from which to ground our results. Part II of the thesis groups the works that achieve
this objective. Chapter 2 analyses the most utilised simulation software, pointing
out the lack of realistic data generation techniques. Its main contributions are two
differently purposed data generation algorithms: the charging stations generator
and the mobility data generator. These algorithms, integrated with the SimFleet
multi-agent simulator, constituted a vital tool for developing the thesis experimen-
tation.

On the one hand, the charging stations generator has a significant impact with
regard to transportation sustainability research. It allows for the dispersal of cru-
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cial infrastructure employed by fleets of electric vehicles (EV) and electrically mo-
torised individual transports (MIT). Such a distribution is performed over the area
where the simulation will occur through geometry-based methods or data-guided
algorithms, such as the genetic algorithm previously developed in works [75, 116].
Even though our thesis centred on road transportation systems and fleets, this gen-
erator has had a critical role in enabling transport-related research that focused on
charging infrastructure optimisation. On the other hand, the mobility data gener-
ator has contributed towards all of our research, allowing us to localise the agents
of our simulations according to the real-world data of the area where they took
place, whenever possible. In this case, the generation can be based on a probabil-
ity distribution over the area or regression data computed by a machine learning
architecture.

Most of our research results are distilled from assessing simulations. The qual-
ity of the simulation directly affects its output data. Chapter 3 demonstrates the
usefulness of the generators and their integration with the SimFleet simulator. In
that work, we model two different types of urban road transportation: a traditional
taxi service and a fleet of carsharing vehicles. The experimentation assesses both
fleets regarding operational costs, customer experience and environmental impact.
The results gave us key insights regarding transportation improvement research,
such as the difficulty of directly comparing two different services and the impor-
tance of adapting the service to its potential users. Finally, it is worth underscoring
the development of a hybrid simulation in which a reduced taxi fleet was combined
with the carsharing service to assess a more realistic urban area where inhabitants
have several mobility choices.

All in all, Part II presents our first mature proposals for the modelling and test-
ing of transportation systems. The data generation techniques presented in Chap-
ter 2 pose a practical contribution to the corpora of tools that aid in transportation
simulation research. Then, the work developed in Chapter 3 validates the proposed
simulation framework, certifying the fulfilment of the first objective.
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8.2 Contributions to Urban Transportation En-
hancement

The second objective of this thesis was the proposal of intelligent solutions for
improving urban road transportation through intelligent resource distribution and
usage. Part III of the thesis groups the main works that contribute to this objec-
tive. The state-of-the-art research on urban transportation systems is analysed in
Chapters 4 and 5, but also in Chapter 3 in Part II. Firstly, Chapters 3 and 5 explore
different types of urban road transportation services, introducing the challenge of
fleet sustainability, thus motivating our enhancement goals. Secondly, Chapter 4
extensively analyses the state-of-the-art artificial intelligence techniques employed
for modelling and optimising urban fleets. These include multi-agent systems, fleet
coordination through game theory and automated planning.

Part III contributes with two system proposals that tackle different cases of
urban transportation. On the one hand, Chapter 4 proposes a last-mile delivery ser-
vice emphasising its coordination to avoid congestion. On the other hand, Chapter
5 focuses on passenger transportation services, aiming to propose an innovative
system that circumvents the issues that traditional services pose.

Chapter 4 contains our most explicit contribution to the redefinition of trans-
portation as a distribution of resources problem. In it, we model an urban delivery
service scenario in which the city’s road network and charging stations represent
shared resources. The vehicles in this scenario develop a congestion game, com-
peting against each other for resources. The more simultaneous usage a resource
gets, the more impact it has on the player’s costs. This motivates the agents to
coordinate their actions, avoiding conflicts and resource congestion. We take ad-
vantage of this modelling to improve the delivery time and the sustainability of the
service, motivating the drivers to bypass congested roads. In terms of algorithmic
proposals, this chapter introduces an optimal planning algorithm that considers the
aforementioned resource congestion. In addition, it proposes a practical imple-
mentation of the multi-agent coordination algorithm introduced in [73], allowing
for its use with fleets of hundreds of vehicles. These two techniques, integrated into
the best-response fleet planning process, solve the congestion game that represents
the completion of all deliveries.
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Regarding the proposal of Chapter 5, we found that demand-responsive shared
transportation (DRST) offered a middle ground between the rigidity of public
transportation and the pollution and urban congestion caused by private dial-a-ride
services. A DRST service has the potential to provide a user-adapted travelling ex-
perience, such as taxi services would, but in a shared vehicle, thus having a lower
cost and environmental impact per passenger. The proposed dial-a-ride DRST sys-
tem was serviced by an open fleet of self-interested drivers with the autonomy to
choose the request they are more interested in. Conflicts among drivers aiming for
the same request are solved through distributed coordination techniques. These
features bring unique benefits to the operational costs, service quality and sustain-
ability of the transportation system, which we discuss below.

The publications encompassed in Part III bring a novel approach to transporta-
tion enhancement research, particularly with the self-interested modelling of ve-
hicles. Both of the proposed road transportation systems respond to the open is-
sues identified in current urban transportation. The dynamicity of modern cities is
matched by orchestrating decentralised transportation services. The decentralised
operation makes systems more tolerant and responsive to sudden changes. Open
fleets represent the ideal grouping of vehicles for distributed coordination, with
each agent retaining the autonomy to select the most beneficial travel requests.
These features enable particular improvements concerning service quality and sus-
tainability.

Firstly, the original self-interested driver modelling introduces a unique ap-
proach to transportation service quality improvement. Each agent is interested in
minimising costs and boosting benefits. Because of that, drivers aim to serve travel
requests (whether these are parcel deliveries or passenger displacements) that they
can reach as soon as possible. In the case of shared transportation, a driver will
be interested in those requests that allow them to deviate from their planned route
as little as possible. These characteristics make the system users perceive a tai-
lored service with lower waiting times and swifter displacements. Secondly, the
very self-interest of the drivers motivates them to avoid those city resources that
other actors are overusing. This results in an operation that reduces resource con-
sumption. Modelling road networks and charging stations as resources, the self-
interested drivers plan to avoid dense traffic and the most expensive power prices,
lowering the environmental impact of the transportation operation.
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8.3 Contributions to Rural and Interurban Trans-
portation Enhancement

The third objective of the thesis was the extension and adaptation of the solu-
tions proposed for urban road transportation to the rural and interurban transporta-
tion field, with a particular interest in system flexibilisation. Part IV of the the-
sis groups the publications contributing to this objective. The motivation behind
this part came from the observed research gap in innovative road transportation
improvement techniques designed exclusively for rural areas. This fact and our
results on demand-responsive transportation (DRT) inspired us to study current
transportation systems offering rural inhabitants interurban displacement between
their settlements.

Chapter 6 reviews state-of-the-art research on flexible and demand-responsive
transportation systems. This chapter fully characterises DRT systems, listing their
many configuration options and describing how they operate. Then, the relevant
publications on the topic are classified into two groups: analyses and surveys,
and proposals and experimental works. Articles from the first group were used to
gather the main challenges that flexible transportation services face for their suc-
cessful implementation in rural areas. These include the economic sustainability
and adoption rate of the service. The experimental works, on the other hand, were
classified by the configuration of the particular DRT system they proposed. Each
paper investigated a concrete rural area and its citizens’ needs. The analysis of
the results gives insight into the type of DRT configurations that operate better in
various rural areas.

Our survey on DRT for rural mobility represents a fundamental contribution
to rural road transportation enhancement, particularly concerning the proposal of
innovative systems and solutions. As evidenced by Chapter 6, there is a small num-
ber of publications that deal with this topic. Grouping and analysing them allowed
us to understand the social factors that motivate this lack of interest. Moreover, we
listed challenges and potentials that different researchers found regarding the few
implemented rural DRT services. Finally, our survey lists open issues, aiming to
guide future research towards more insightful results.

As a more specific contribution to the contents of the thesis, the findings of
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Chapter 6 influenced the type of system that we later proposed in Chapter 7. The
contributions described throughout Section 8.2 approached the coordination of
transportation fleets from a decentralised perspective, giving a certain level of au-
tonomy to each driver or vehicle. In contrast, the results from our rural DRT survey
indicated that an excess of dynamic features ultimately harms rural transportation
services. Not only do they increase operational costs, but also the complexity of
the user interaction with the service. Although these facts might not be a challenge
for urban areas, which count with a generally younger population, it can impede
the adoption of DRT services in rural areas. Rural transportation features a high
number of MITs coupled with poor investment in quality public transportation and
scarce displacement demand. These elements justified a shift towards centralised
road transportation systems that could complement existing public transportation
while offering a more personalised experience.

Chapter 7 approached the improvement of rural road transportation with a sys-
tem proposal that minimises travel time, thus reducing operational costs and in-
creasing the swiftness of the service. This chapter proposes an insertion-search
algorithm that follows our task distribution modelling approach. Employing it as
the scheduler of a demand-responsive service, the algorithm finds the best vehi-
cle to serve each incoming request. The request-vehicle assignments are chosen
by the objective function and by considering a time window associated with each
request. The preservation of such a time window ensures the reliability of the ser-
vice, guaranteeing the arrival time of customers who travel with it. The proposal is
validated through a case study, localising the service in a real-world rural area and
simulating various configurations.

The DRT public transportation system of Chapter 7 recreates a cost-effective
quality transportation option designed explicitly with the needs of rural inhabi-
tants in mind. With it, we conclude the work on the third objective, certifying its
accomplishment as reflected by Part IV. These contributions towards rural mobil-
ity may illustrate demand-responsive services’ potential to assemble solutions that
overcome rural-specific challenges. The ongoing Spanish research project Coor-
dinated Intelligent Services for Adaptive Smart Areas attests to the scientific com-
munity’s interest in creating intelligent solutions for rural areas. With our work,
we contribute to ensuring that the field of transportation does not fall behind all
other potential areas of improvement.
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8.4 Limitations

The proposals developed in the context of this thesis present various limitations,
many caused by intrinsic challenges of the road transportation enhancement field.
The disclosing of such limitations brings an honest perspective into research and
helps the scientific community to be aware of open issues.

Data sourcing remains a considerable impediment to the realistic modelling and
simulation of transportation systems. Focusing on urban road transportation, most
private companies will keep their data private. Moreover, public transportation
data may be hard to find and use, as its maintenance and availability depend on the
interest of local government bodies. Concerning rural areas, it is even harder to en-
counter public datasets that reflect actual mobility data. This challenge shows the
relevance of synthetic data generation techniques, such as the ones we presented
in Chapter 2.

The results we can derive from simulation are affected by the quality of the data
the simulation is based on. Furthermore, when simulating a transportation system,
its configuration, constraints and the assumptions we impose during its modelling
deeply impact the simulation outcome. These assumptions are generally neces-
sary, as reproducing all and every aspect of a transportation system would require
ad-hoc software. As scientists, we must bear this in mind when we draw conclu-
sions from our results. Nevertheless, the assumptions and constraints pay off, as
they allow us to experiment with systems that would be costly to modify in the
real world. Therefore, the results should not be considered as a step-by-step guide
on how to improve a transportation system. However, they can be interpreted by
an operator to estimate the potential benefits that a particular technique or system
configuration can bring to the studied area. This phenomenon affects the contribu-
tions we presented in Chapters 3, 4, 5, and 7, which is why we made it a habit to
include discussion sections in our research to help contextualise the results.

In line with the limitations of the simulation results, in the field of transportation
enhancement, we find it difficult to generalise the results derived from the exper-
imentation on a specific urban or rural area. Techniques designed for one type of
transportation system can often be modified to work with a different one. How-
ever, the same cannot be said of the conclusions drawn from a given investigation.
Transportation systems are designed and optimised considering the specific fea-
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tures of the area they serve or will serve. It is possible to find similarities between
different deployment areas and, therefore, use previous results to start experiment-
ing with a system that has the potential to work. Then, such a system shall be
refined, re-adapting it to the serviced area and the needs of its potential users.

The next challenge arises from the computational complexity of transporta-
tion problems. Transportation systems often require the algorithms that coordinate
them to run in real time. Many of the modellings we employed, turning transporta-
tion into a resource-allocation problem, implied that our solution space contains
multiple combinations of elements. Some of the most powerful optimisation tech-
niques, such as planning, often have pretty high complexities. Because of this,
optimal techniques must often be set aside in favour of others that return improved
solutions in a reasonable amount of time. This favours the implementation of reac-
tive and demand-driven transportation systems. We take these facts into account in
our contributions. Although orchestrated by a distributed coordination algorithm
combined with planning, the system in Chapter 4 can solve complex scenarios in
a time reasonable enough to organise a fleet of vehicles. In other proposals, such
as those of Chapters 5 and 7, the systems have static and dynamic modes of op-
eration. This allows us to accommodate travel requests made in advance in an
optimal way. In contrast, requests arriving in real-time are scheduled by faster,
often greedy algorithms.

Finally, we want to comment on some limitations of the modelling with self-
interested transport agents. As detailed in Chapters 4 and 5, we allow agents to
plan their actions according to their private goals. This capability includes showing
interest in particular transportation tasks. A specific task may be unattractive to the
whole fleet because of its features (location, duration). In such cases, no vehicle
would aim to complete it, and the user who issued it would be denied service.
This interaction must be considered when using self-interested modelling for real-
world applications, including mechanisms that ensure unattractive tasks are still
allocated.
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Conclusions and Future Work

The preceding chapters have detailed the aims and development of this thesis and
discussed the results. This concluding chapter aims to contextualise the signifi-
cance of the research findings, underscoring their potential impact on road trans-
portation enhancement and beyond. To begin with, a summary of the work con-
ducted in each part of the thesis is presented. Following, possible future directions
of our research are discussed. Firstly, extensions in the field of transportation are
assessed. Secondly, we indicate various areas to which our proposals could be
applied, emphasising their value as artificial intelligence solutions.

9.1 Conclusions

The increasing complexity of modern societies motivates the scientific community
to seek intelligent solutions to fundamental problems. One of such problems is
road transportation, whose social impact is critical. The presented thesis project
had as its primary objective the proposal of solutions for the improvement of road
transportation. Such an improvement considers three different points of view con-
cerning the transportation service’s operation. The operator perspective prioritises
the cost-effectiveness of the service. The user perspective concerns their experi-
ence when using the service, usually called service quality. Finally, the sustain-
ability perspective involves the environmental impact of the transportation itself.
Integrating three improvement goals in our research has allowed us to produce
insightful results.
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Road transportation enhancement was approached through the development of
computation and artificial intelligence solutions for the task allocation and coordi-
nation of these systems. Part of our efforts have been focused on the reproduction
and execution of transportation systems in virtual environments. Then, because of
the strong relationship of transportation systems to the characteristics of the area
in which they operate, our work faced research on urban and rural areas indepen-
dently.

First, a simulation framework has been developed and validated, subsequently
being used to create realistic scenarios for all the experimentation in our research.
This contribution includes synthetic data generation algorithms that operate using
real information from the area where the transport system will be deployed. The
scenarios produced by the generators are coded for its use by the SimFleet sim-
ulator, which has been adapted to each specific work, allowing us to extract the
relevant metrics.

With regard to urban transportation, previous literature indicated the need for
open and dynamic fleets with a greater capacity to react to changes. Moreover,
the growing environmental concern justified giving greater importance to the sus-
tainability of the services. We contributed to enhancing road transportation by
proposing two differently-purposed systems orchestrated by open, decentralised
fleets of self-interested agents. The self-interested modelling was exploited by an
urban delivery service whose drivers were motivated to operate faster and more
sustainably, avoiding congested roads and lowering power consumption .This pro-
posal was validated by simulating the electric vehicle delivery service in a real
city. The fleet vehicles could recharge their batteries in various electric charging
stations. If the simultaneous power consumption got past a threshold, the power
network would get congested. Tests were run with different numbers of packages,
fleet sizes and power congestion costs. The results certified that our coordination
algorithm reduced delivery time and proved congestion could be avoided by ad-
justing its costs. On the other hand, demand-responsive transportation (DRT) sup-
ported by shared vehicles was proposed as a sustainable, cost-effective alternative
to traditional transportation services, furnishing a responsive system that supplies
user-tailored displacements. Our already tested distributed coordination algorithm
was applied to organise the operation of a fleet of 8-passenger vehicles. The trans-
portation was performed on-demand, but the service would group travellers with
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compatible journeys in the same vehicle. With this, we successfully combined the
flexibility of taxis and the sustainability of shared transport into a single service.

Finally, concerning rural interurban transportation, a deep dive into the related
publications revealed the need for flexible quality public transportation, underscor-
ing the importance of its cost-effectiveness. The systems and techniques developed
for the case of urban transportation were adapted to rural areas’ features, orches-
trating centralised systems but preserving the principles of dynamicity and sustain-
ability. A DRT system was proposed as a flexible and reliable public transporta-
tion alternative for rural settlements. An insertion-search algorithm performed the
system’s passenger-vehicle pairings, implementing task allocation for minimised
travelling time. This proposal was validated by a case study over a real rural area,
illustrating the simulation’s utility to test various fleet configurations.

9.2 Future Work

The objective of this thesis represents an ongoing goal. It has been fulfilled in the
scope of the thesis but may continue to be pursued in our future research. Below we
discuss possible research directions in various topics. First, extensions to the work
carried out in transportation simulation and enhancement are commented. Then,
we highlight other application areas to which our solutions could be adapted.

The challenge of data sourcing is an impediment to most transportation en-
hancement research. In this respect, we believe more powerful techniques should
be explored to generate synthetic data consistent with real data. With the help of
machine learning, we could build models that learn patterns of demand location
and movement of people and vehicles in cities. These models would provide ini-
tially acceptable mobility data generation for different cities. However, it would
also be possible to re-train them with data specific to the city to be tested, improv-
ing their generalisation capacity. This line of work would improve transportation
by upgrading its modelling and simulation.

Keeping the focus on the field of transportation simulation, we would like to
improve the proposed framework to achieve a multimodal simulation platform.
Such a platform would allow us to build scenarios where different modes of trans-
portation systems provide services and interact among them. Throughout the the-
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sis, the different chapters have introduced various techniques for the allocation of
travel requests to fleet vehicles, the planning of vehicle routes and schedules and,
finally, the coordination of the operation of each vehicle. Those techniques, as il-
lustrated by the systems of Chapters 5 and 7, are prepared to work statically, with
already known travel demand, but also dynamically, allocating incoming requests.
The platform would integrate all of these solutions as building blocks to reproduce
a diversity of road transportation services, allowing to test many configurations.
In addition, we would also include infrastructure distribution algorithms into the
framework, making it a more complete research aid. Ideally, this platform could be
adapted to a chosen geographical area where different system configurations could
be tested.

Several of the algorithms that we developed for our proposals have the potential
to be adapted to application fields beyond transportation. From a general perspec-
tive, their purposes are task and resource allocation (Chapters 5 and 7), and agent
planning and coordination (Chapter 4). We highlight automated warehouses and
smart agriculture crops among the many possible application fields. Multi-agent
systems often reproduce these areas, as they have a series of robots that perform
various tasks. Automated warehouses perform the movement of inventory with
physical robots. On the other hand, in smart agriculture, sensorised robots are be-
ing used to check product quality. Both this fields require solutions to model a
shared environment, allocate tasks to agents and coordinate their execution.

Beginning with task allocation, Chapters 5 and 7 present passenger-vehicle as-
signment methods that could be adapted to distribute goals among robots in a cen-
tralised or decentralised manner. Such a distribution would be guided by the defi-
nition of a global optimisation function. Moreover, these algorithms are designed
to operate both statically and dynamically, assigning already determined tasks and
dealing with newly received assignments. Adapted to automated warehouses, the
algorithms could distribute tasks consisting of the relocation of specific packages
to each of the robots in the fleet.

Regarding the coordination of agent execution, the architecture presented in
Chapter 4 could be employed in applications with decentralised fleets of robots
to distributively coordinate their actions. In addition, if the robots had different
purposes, self-interested modelling could be applied, allowing them to choose their
tasks through decentralised task allocation. This architecture requires a mechanism
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for each agent to plan their actions. Such planning, in turn, implies that each agent
needs to estimate data such as the time needed to complete its action. Because
of that, we proposed its implementation in a highly connected smart city, where
updated information is shared continuously. The elements of this proposal can be
adapted to the automated warehouses and smart crops, as the movement of the
robots must be coordinated for a safe and efficient completion of their tasks.

Our most recent publications have the digitisation of rural areas as a general
goal. The proposals in Part IV contribute to smart rural mobility and are framed in
the ongoing research project Coordinated Intelligent Services for Adaptive Smart
Areas (COSASS). As discussed above, this thesis has produced results that could
be applied to the tasks in the COSASS project.Work packages in the project are
also interested in techniques for coordinating shared resources. Chapter 4 intro-
duces a modelling of a city as a shared scenario in which agents compete for re-
sources. The planning of each agent’s action is guided by their utility function. In
turn, such a function considers the usage of resources, thus motivating the agents
to avoid their congestion. The principles followed to design such a domain could
be adapted to rural smart areas to explore solutions to this challenge.

In conclusion, while aiming at improving road transportation, this thesis project
has produced results that can be applied to a number of currently relevant research
areas. This emphasises the value of our contributions beyond the field of trans-
portation by contextualising them as practical optimisation techniques in the fields
of artificial intelligence and multi-agent systems.
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