
CU2rCU: A CUDA-to-rCUDA Converter

Master’s Thesis in Software Engineering, Formal Methods
and Information Systems

Department of Information System and Computation

Author: Carlos Reaño
Advisors: Federico Silla and Germán Vidal

June 26, 2012

Acknowledgements

This master’s thesis would not have been possible without the help of several
people who, in one way or another, have contributed to its preparation and
completion.

First and foremost, my entire gratitude to my advisors, Federico Silla and
Germán Vidal, whose guidance has been essential to carry out this work.

Antonio J. Peña, Rafael Mayo, and Enrique S. Quintana-Ort́ı, of Univer-
sitat Jaume I (UJI) at Castelló, for their valuable assistance.

My colleagues in the Parallel Architectures Group (GAP) of Universitat
Politècnica de València (UPV), for their moral support.

Last but not the least, my family and friends, for their patience.

Thank you all so much.

i

ii ACKNOWLEDGEMENTS

Abstract

GPUs are being increasingly embraced by the high performance computing
and computational communities as an effective way of considerably reducing
application execution time by accelerating significant parts of their codes.
For that purpose, NVIDIA is developing since 2006 a new technology called
CUDA (Compute Unified Device Architecture) which leverages the paral-
lel compute engine in NVIDIA GPUs to solve many complex computational
problems in a more efficient way than it could be done on a regular CPU.

However, despite the extraordinary computing capabilities of GPUs, their
adoption in current HPC clusters may present certain negative side-effects.
In particular, to ease job scheduling in these platforms, a GPU is usually
attached to every node of the cluster. In addition to increasing acquisition
costs, this configuration favors that GPUs may frequently remain idle, as ap-
plications usually do not fully utilize them. Furthermore, idle GPUs consume
non-negligible amounts of energy, which translates into very poor energy ef-
ficiency during idle cycles.

rCUDA (remote CUDA) was recently developed as a software solution
to address these concerns. Specifically, it is a middleware that allows trans-
parently sharing a reduced number of CUDA-compatible GPUs among the
nodes in a cluster. rCUDA thus increases the GPU-utilization rate, at the
same time that allows to simplify job scheduling. While the initial prototype
versions of rCUDA demonstrated its functionality, they also revealed several
concerns related with usability and performance. With respect to usability,
the rCUDA framework was limited by its lack of support for the CUDA ex-
tensions to the C language. Thus, it was necessary to manually convert the
original CUDA source code into C plain code functionally identical but that
does not include such extensions.

For such purpose, in this document we present a new component of the
rCUDA suite that allows an automatic transformation of any CUDA source

iii

iv ABSTRACT

code into plain C code, so that it can be effectively accommodated within
the rCUDA technology.

Contents

Acknowledgements i

Abstract iii

1 Introduction 1

2 Background 7

2.1 CUDA: Compute Unified Device Architecture 7

2.2 rCUDA: Remote CUDA . 11

2.3 Source-to-source Transformation Tools 15

2.3.1 The LLVM Compiler Infrastructure 16

2.3.2 Clang: a C Language Family Frontend for LLVM . . . 16

3 CU2rCU: A CUDA-to-rCUDA Converter 21

3.1 The Need of a CUDA-to-rCUDA Converter 21

3.2 Interaction with Clang . 24

3.3 CU2rCU Source Transformations 25

3.3.1 Function and Variable Types Qualifiers 26

3.3.2 Kernel Calls . 27

3.3.3 Kernel Names . 27

3.3.4 CUDA Symbols . 29

3.3.5 C++ API Routines . 31

3.3.6 Texture and Surface Declarations 32

3.3.7 Texture and Surface Functions 34

3.3.8 CUDA Symbol Functions 36

3.3.9 Kernel Functions . 37

3.3.10 Included Files . 38

3.4 Compilation Flow . 38

3.5 CU2rCU Installation and Deployment 39

v

vi CONTENTS

4 Evaluation 45
4.1 NVIDIA GPU Computing SDK 45
4.2 LAMMPS Molecular Dynamics Simulator 48
4.3 Compilation Time . 48

5 Conclusions 51

List of Tables

4.1 NVIDIA GPU Computing SDK Conversion Statistics 46
4.2 LAMMPS Conversion Statistics 49
4.3 Comparison of CUDA and rCUDA Compilation Phases 50

vii

viii LIST OF TABLES

List of Figures

1.1 Execution time for a matrix-matrix product in several scenarios. 4

2.1 Floating-point operations per second for the CPU and GPU. . 8
2.2 Memory bandwidth for the CPU and GPU. 8
2.3 CUDA Architecture Programming Interface. 9
2.4 Overview of the rCUDA architecture. 12
2.5 Example of the proprietary communications protocol used within

rCUDA. 13
2.6 Bandwidth between CPU and remote GPU for several scenar-

ios: NVIDIA GeForce 9800 and Mellanox ConnectX-2 cards. . 14
2.7 Execution time for a matrix product executed in a GPU versus

CPU computation. 14

3.1 CUDA-to-rCUDA conversion process. 25
3.2 CUDA-to-rCUDA converter detailed view. 25
3.3 CUDA compilation flow. 40
3.4 rCUDA compilation flow. 41
3.5 Initial state of file to be converted. 43
3.6 State after having copied the CU2RCU.bash script. 43
3.7 Execution of the CU2RCU.bash script for converting file sample.cu.

. 44
3.8 State after having run the CU2RCU.bash script. 44
3.9 File created after having run the CU2RCU.bash script. 44

4.1 CUDA SDK compilation time compared with CU2rCU conver-
sion plus compilation time. 47

4.2 LAMMPS USER-CUDA nvcc compilation time compared with
CU2rCU conversion plus compilation time. 49

ix

x LIST OF FIGURES

Chapter 1

Introduction

Due to the high computational cost of current compute-intensive applica-
tions, many scientists view graphic processing units (GPUs) as an efficient
means of reducing the execution time of their applications. High-end GPUs
include an extraordinary large amount of small computing units along with
a high bandwidth to their private on-board memory. Therefore, it is no sur-
prising that applications exhibiting a large ratio of arithmetic operations per
data item can leverage the huge potential of these hardware accelerators.

In GPU-accelerated applications, high performance is usually attained
by off-loading the computationally intensive parts of applications for their
execution in these devices. To achieve this, programmers have to specify
which portion of their codes will be executed on the CPU and which func-
tions (or kernels) will be off-loaded to the GPU. Fortunately, there have been
many attempts during the last years aimed at exploiting the massive paral-
lelism of GPUs, leading to noticeable improvements in the programmability
of these hybrid CPU-GPU environments. Programmers are now assisted by
libraries and frameworks, like CUDA [1] or OpenCL [2] among many oth-
ers, that tackle this separation process. As a result, the use of GPUs for
general-purpose computing (or GPGPU, from General-Purpose computation
on GPUs) has accelerated the deployment of these devices in areas as diverse
as computational algebra [3], finance [4], health-care equipment [5], compu-
tational fluid dynamics [6], chemical physics [7], or image analysis [8], to
name only a few. Moreover, the GPU technology mainly targets the gam-
ing market, leading to high GPU manufacturing volumes, thus presenting
a very favorable performance/cost ratio. The net result is that GPUs are
being adopted as an effective way of reducing the time-to-solution for many
different applications and are therefore becoming an appealing and consol-
idated choice for the application of high performance computing (HPC) to

1

2 CHAPTER 1. INTRODUCTION

computational sciences.

The approach currently used in HPC facilities to leverage GPUs consists
in including one or more accelerators per cluster node. Although this con-
figuration is appealing from a raw performance perspective, it is not efficient
from a power consumption point of view as a single GPU may well consume
25% of the total power required by an HPC node. Besides, in this class of
systems, it is quite unlikely that all the GPUs in the cluster will be used
100% of the time, as very few applications feature such an extreme degree of
data-parallelism. Nevertheless, even idle GPUs consume large amounts of en-
ergy. In summary, attaching a GPU to all the nodes in an HPC cluster is far
away from the green computing spirit, instead being highly energy inefficient.

On the other hand, reducing the amount of accelerators present in a
cluster so that their utilization is increased is a less costly and more ap-
pealing solution that would additionally reduce both the contribution of the
electricity bill to the total cost of ownership (TCO) and the environmental
impact of GPGPU through a lower power consumption. However, a config-
uration where only a limited number of the nodes in the cluster have a GPU
presents some difficulties, as it requires a global scheduler to map (distribute)
jobs to GPU nodes according to their acceleration needs, thus making this
new and more power efficient configuration harder to be efficiently managed.
Moreover, this configuration does not really address the low GPU utilization
unless the global scheduler can share GPUs among several applications, a
detail that noticeably increases the complexity of these schedulers.

A better solution to deal with a cluster configuration having less GPUs
than nodes is virtualization. Hardware virtualization has recently become
a commonly accepted approach to improve TCO as it reduces acquisition,
maintenance, administration, space, and energy costs of HPC and datacenter
facilities [9]. With GPU virtualization, GPUs are installed only in some of the
nodes, to be later shared across the cluster. In this manner, the nodes having
GPUs become acceleration servers that grant GPGPU services to the rest of
the cluster. With this approach, the scheduling concerns mentioned above
are avoided, as now tasks can be dispatched to any node independently of
their hardware needs while, at the same time, accelerators are shared among
applications, thus increasing GPU utilization. This approach can be further
evolved by enhancing the global schedulers so that GPU servers are put into
low-power sleeping modes as long as their acceleration features are not re-
quired, thus noticeably increasing energy efficiency. Furthermore, instead of
attaching a GPU to each acceleration server, GPUs could be consolidated

3

in dedicated servers that would additionally present different amounts of ac-
celerators, so that some kind of granularity is provided to the scheduling
algorithms in order to better adjust the powered resources to the workload
present at any moment in the system. If the global schedulers are further
enhanced so that they accommodate GPU task migration, then this archi-
tecture would adhere to the green computing paradigm, as the amount of
energy consumed at any moment by the accelerators would be the minimum
required for the workload being served.

In order to enable a disruptive power-efficient proposal for HPC deploy-
ments, the rCUDA framework has been recently developed [10, 11, 12]. This
technology employs a client-server middleware. The rCUDA client is exe-
cuted in every node of the cluster, whereas the rCUDA server is executed
only in those nodes equipped with GPU(s). The client software resembles
a real GPU to applications, although in practice it is only the front-end to
a virtual one. In this rCUDA configuration, when an application requests
acceleration services, it will contact the client software, which will forward
the acceleration request to a cluster node owning the real GPU. There, the
rCUDA server will process the request and contact the GPU so that it per-
forms the required action. Upon completion, the rCUDA server will usually
send back the corresponding results, which will be delivered to the applica-
tion by the rCUDA client. The application will not become aware that it is
dealing with a virtualized GPU instead of its real instance.

Previous work in [10, 11, 12] mainly focused on demonstrating that using
remote CUDA devices is feasible. Nevertheless, three main concerns quickly
arose during the completion of those studies:

• The usability of the rCUDA framework was limited by its lack of sup-
port to the CUDA C extensions. As it will be thoroughly exposed
in Chapter 3, this is due to the fact that the CUDA Runtime library
includes several hidden and undocumented functions used by these ex-
tensions. One easy way to address this issue would require NVIDIA
to provide the needed support by opening the full API (application
programming interface) and the required documentation for those cur-
rently internal-use-only functions. Unfortunately, commercial reasons
hinder disclosing the entire API. Therefore, in order to avoid the use of
these undocumented functions, the rCUDA framework only supports
the plain CUDA C API, so far making necessary to rewrite those lines
of the application source files that make use of the CUDA C extensions.
In the case of the CUDA SDK examples, up to 12.7% of the lines of

4 CHAPTER 1. INTRODUCTION

Local GPU

Myrinet

10G IB

10G Eth

GigaEth

Local CPU

0

20

40

60

80

100

120

4096
6144

8192
10240

12288
14336

16384
18432

Ti
m

e
 (

s)

Matrix dimension

Figure 1.1: Execution time for a matrix-matrix product in several scenarios:
a GPU local to the host executing the product; rCUDA on top of Myrinet,
InfiniBand, and Ethernet networks; a general-purpose multi-core CPU local
to the host executing the product. Nodes equipped with 2 x Quad-Core
Intel(R) Xeon(R) E5520. The GPU is an NVIDIA Tesla C1060.

code had to be modified. For applications comprising large amounts
of source code, manually performing this process may be painful and
error-prone.

• The use of remote GPUs in rCUDA reduces performance. In this so-
lution, the available bandwidth between the main memory of the node
demanding GPU services and the remote GPU memory is constrained
by that of the network connecting client and server (note that network
bandwidth is usually lower than that of the PCI-Express –PCIe– bus
connecting the GPU and the network interface in the server node.) This
limitation in bandwidth between client and server noticeably reduces
rCUDA’s performance, as clearly reported in Figure 1.1, that depicts
the execution time for a matrix-matrix multiplication in different sce-
narios.

• Finally, the third concern is related with CUDA itself, which is an
ongoing technology from NVIDIA with new versions being eventually

5

released. As the rCUDA virtualization solution aims at being compat-
ible with the latest release, it must evolve to support the new CUDA
versions. In this regard, the work presented in [10, 11, 12] supported
the now obsolete CUDA 2 and 3 versions. After those initial versions
of rCUDA, NVIDIA released CUDA 4, with significant changes with
respect to prior versions. Therefore, rCUDA had to be upgraded in
order to support the new functionality introduced in the last version of
CUDA.

In this document we present how we have addressed the first of these three
concerns, enriching rCUDA with a complementary tool, CU2rCU, to automat-
ically analyze the application source code in order to find which lines of code
must be modified so that the original code is adapted to the requirements of
rCUDA. This tool automatically performs the required changes without the
intervention of a programmer.

The rest of this document is organized as follows:

• Chapter 2 gives an overview of the CUDA architecture, introduces
the rCUDA technology and presents several frameworks for source-
to-source transformation.

• Chaper 3 describes and analyzes the CU2rCU tool.

• Chapter 4 shows the different experiments carried out to evaluate CU2rCU.

• Chapter 5 summarizes the conclusions of this work and also presents
future developments.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter provides an overview of the CUDA architecture (Section 2.1),
introduces the rCUDA technology (Section 2.2) and presents several frame-
works for source-to-source transformation (Section 2.3).

2.1 CUDA: Compute Unified Device Archi-

tecture

Nowadays, due to the increasing demand of computing resources required
from GPUs (Graphics Processor Units), important progress in their develop-
ment has been made [13], leading to devices with large computational horse-
power and high memory bandwidth, as illustrated in Figures 2.1 and 2.2.

Figure 2.1 presents how using GPUs it is possible to achieve, in some
cases, a theoretical rate of floating-point operations per second until 8 times
greater than the one obtained using the most powerful CPUs in 2010. At
the same time, Figure 2.2 shows that the theoretical memory bandwidth for
the GPU is 6 times greater than the one corresponding to the CPU also in
2010, despite the increasing improvements made on the latter to ameliorate it.

The advances made in GPUs have allowed to use them in order to im-
prove the throughput of High Performance Computing (HPC) clusters. For
that matter, NVIDIA is developing since 2006 a new technology called CUDA
(Compute Unified Device Architecture) which leverages the parallel compute
engine in NVIDIA GPUs to solve many complex computational problems in
a more efficient way than on a CPU.

CUDA introduces a new parallel programming model and instruction set

7

8 CHAPTER 2. BACKGROUND

Jan-03 May-04 Aug-05 Jan-07 Jul-08 Feb-09 Oct-09 Dec-09 Mar-10
0

200

400

600

800

1000

1200

1400

1600

1800

Intel CPU Single Precision

NVIDIA GPU Single Precision

Intel CPU Double Precision

NVIDIA GPU Double Precision

T
h

e
o

re
tic

a
l G

F
L

O
P

/s

Figure 2.1: Floating-point operations per second for the CPU and GPU.

Jan-03 May-04 Aug-05 Jan-07 Jul-08 Feb-09 Oct-09 Dec-09 Mar-10
0

20

40

60

80

100

120

140

160

180

200

CPU

GPU

T
h

e
o

re
tic

a
l G

B
/s

Figure 2.2: Memory bandwidth for the CPU and GPU.

2.1. CUDA: COMPUTE UNIFIED DEVICE ARCHITECTURE 9

architecture. It also provides a software environment that allows developers
to use C and other languages as a high-level programming language. As
illustrated by Figure 2.3, CUDA enables the user application to access its
architecture via these high level programming languages. Other supported
languages are C++, Fortran, Java, Python, and the Microsoft .NET Frame-
work.

CUDA Architecture

C C++ Fortran …

Application

Figure 2.3: CUDA Architecture Programming Interface.

CUDA programs are compiled with the NVIDIA nvcc compiler [19],
which looks for fragments of GPU code within the program and compiles
them separately from the CPU code. The following piece of code shows an
example of a simple program written in CUDA which adds two vectors, A
and B, of size N and stores the result into vector C1:

1 // Device code (executed in the GPU)
2 // ‘ ‘ g l o b a l ’ ’ f unc t i on s are u s u a l l y r e f e r r e d as
3 // ‘ ‘ k e rn e l s ’ ’ .
4 g l o b a l void VecAdd(const f loat ∗ A, const f loat ∗ B,
5 f loat ∗ C, int N)
6 {
7 int i = blockDim . x ∗ blockIdx . x + threadIdx . x ;
8 i f (i < N)
9 C[i] = A[i] + B[i] ;

10 }

12 // Host code (executed in the CPU)
13 int main (int argc , char∗∗ argv)
14 {
15 int N = 50000;

1Full code for this example can be found in the vectorAdd code sample of the NVIDIA
GPU Computing SDK [21].

10 CHAPTER 2. BACKGROUND

16 s i z e t s i z e = N ∗ s izeof (f loat) ;

18 // A l l o ca t e v e c t o r s in hos t memory (CPU)
19 f loat ∗h A = (f loat ∗) mal loc (s i z e) ;
20 f loat ∗h B = (f loat ∗) mal loc (s i z e) ;
21 f loat ∗h C = (f loat ∗) mal loc (s i z e) ;

23 // I n i t i a l i z e input v e c t o r s wi th random f l o a t
24 // en t r i e s .
25 RandomInit (h A , N) ;
26 RandomInit (h B , N) ;

28 // A l l o ca t e v e c t o r s in dev i c e memory (GPU)
29 f loat ∗ d A , ∗d B , ∗d C ;
30 cudaMalloc ((void ∗∗)&d A , s i z e) ;
31 cudaMalloc ((void ∗∗)&d B , s i z e) ;
32 cudaMalloc ((void ∗∗)&d C , s i z e) ;

34 // Copy v e c t o r s from hos t memory (CPU) to dev i c e
35 // memory (GPU)
36 cudaMemcpy(d A , h A , s i z e , cudaMemcpyHostToDevice) ;
37 cudaMemcpy(d B , h B , s i z e , cudaMemcpyHostToDevice) ;

39 // Invoke k e rne l VecAdd (w i l l be executed in the
40 // GPU) .
41 int threadsPerBlock = 256 ;
42 int blocksPerGrid =
43 (N + threadsPerBlock − 1) / threadsPerBlock ;
44 VecAdd<<<blocksPerGrid , threadsPerBlock>>>(d A , d B ,
45 d C , N) ;

47 // Copy r e s u l t from dev i c e memory to hos t memory ,
48 // h C conta ins the r e s u l t in hos t memory
49 cudaMemcpy(h C , d C , s i z e , cudaMemcpyDeviceToHost) ;

51 // Free dev i c e memory (GPU)
52 cudaFree (d A) ;
53 cudaFree (d B) ;
54 cudaFree (d C) ;

56 // Free hos t memory (CPU)
57 f r e e (h A) ;
58 f r e e (h B) ;

2.2. RCUDA: REMOTE CUDA 11

59 f r e e (h C) ;
60 }

In the first place, it is defined the function VecAdd, referred to as kernel
in the CUDA terminology. This function or kernel is executed in the GPU.
Next, in the main function, data to be used by kernels running on the GPU
must be properly allocated (lines 30-32) and copied into the GPU memory
space (lines 36-37). Then, the kernel is executed or launched in the CUDA
terminology (lines 44-45). Once the kernel has finished, the results must be
copied again from the GPU memory space to the CPU memory space (line
49). Finally, the memory allocated in the GPU memory space must be free
(lines 52-53).

Note that in the example above, the kernel VecAdd, as opposed to func-
tions running in the CPU, is implicitly executed several times in parallel by
different CUDA threads. Thus, the same function is applied to different data
at the same time, taking benefit from the CUDA architecture.

2.2 rCUDA: Remote CUDA

As it has already been commented, the approach currently in use in HPC
facilities to leverage GPUs consisting in including one or more accelerators
per cluster node presents several disadvantages, mainly:

• High power consumption

• Low GPU utilization

• High acquisition cost

In order to overcome these concerns the rCUDA framework was devel-
oped. rCUDA is a software which grants applications transparent access to
GPUs installed in remote nodes, so that they are not aware of being access-
ing an external device. This framework is organized following a client-server
distributed architecture, as shown in Figure 2.4.

The client middleware is contacted by the application demanding GPGPU
services, both (the client middleware and the application) running in the
same cluster node. The rCUDA client presents to the application the very
same interface as the regular NVIDIA CUDA Runtime API. Upon reception

12 CHAPTER 2. BACKGROUND

Application

Communication layer

rCUDA client library

Communication layer CUDA libraries

rCUDA daemon

Hardware

Software

Client Server

Network GPU

Figure 2.4: Overview of the rCUDA architecture.

of a request from the application, the client middleware processes it and for-
wards the corresponding requests to the rCUDA server middleware, which
is running in a remote node. In turn, the server interprets the requests and
performs the required processing by accessing the real GPU to execute the
corresponding command. Once the GPU has completed the execution of the
requested operation, the results are gathered by the rCUDA server, which
sends them back to the client middleware. There, the output is finally for-
warded to the demanding application. Notice that in this approach GPUs
are concurrently shared among several demanding applications by using dif-
ferent rCUDA server processes to support different remote executions over
independent GPU contexts. This feature is the one that allows us to achieve
high GPU utilization.

The communication between rCUDA clients and (GPU) servers is car-
ried out via a customized application-level protocol that leverages the net-
work available in the cluster. Figure 2.5 shows an example of the protocol
implemented in the rCUDA framework for a generic request. This example
illustrates how a kernel execution request is forwarded from client to server,
as well as the dataset used as its input. The retrieval of the output dataset
is also displayed.

The most recent version of the rCUDA framework targets the Linux op-
erating system, supporting the same Linux distributions as NVIDIA CUDA,
which are: Fedora 14, Redhat 5.5 and 6.0, Ubuntu 10.04 and 11.04, Open-
Suse 11.2 and Suse Server 11 SP1. This last version of rCUDA supports

2.2. RCUDA: REMOTE CUDA 13

GPU-module
CUDA_result_code

cudaMalloc, size
CUDA_result_code

device_pointer

cudaMemcpy, device_pointer, size, hostToDevice
data

CUDA_result_code

cudaLaunch, kernel_name, execution_stack
CUDA_result_code

cudaMemcpy, device_pointer, size, deviceToHost

CUDA_result_code
data

cudaFree, device_pointer

CUDA_result_code

close()

1

rC
U

D
A

 c
lie

nt
 e

ng
in

e

C
U

D
A

 4
 R

un
tim

e
A

P
I

A
pp

lic
at

io
n

de
m

an
di

ng
 G

P
U

 s
er

vi
ce

s

rC
U

D
A

 s
er

ve
r

en
gi

ne

C
U

D
A

 4
 R

un
tim

e
Li

br
a

ry
 a

nd
 D

riv
er

G
P

U

2

3

4

5

6

7

Figure 2.5: Example of the proprietary communications protocol used within
rCUDA: (1) initialization, (2) memory allocation on the remote GPU, (3)
CPU to GPU memory transfer of the input data, (4) kernel execution, (5)
GPU to CPU memory transfer of the results, (6) GPU memory release, and
(7) communication channel closing and server process finalization.

the CUDA Runtime API version 4, except for graphics-related CUDA capa-
bilities, as this particular class of features are rarely of interest in the HPC
environment. However, they are planned to be supported on future releases,
as they could be useful in cloud computing, for example to virtualize desk-
tops or for cloud gaming.

In general, the performance achieved by rCUDA is expected to be lower
than that of the original CUDA, as with rCUDA the GPU is farther away
from the invoking application than with CUDA, thus introducing some over-
head. Figure 2.6 shows the effective bandwidth attained in memory copy
operations to remote GPUs through different interconnects and communica-
tion modules. These results, translated into the execution of an application,

14 CHAPTER 2. BACKGROUND

0

500

1000

1500

2000

2500

3000

rCUDA 1Gbps rCUDA IPoIB rCUDA IBV

99%

55%

97%

100%

55%

94%

B
an

d
w

id
th

 (
M

B
/s

)

To GPU From GPU

Figure 2.6: Bandwidth between CPU and remote GPU for several scenarios:
NVIDIA GeForce 9800 and Mellanox ConnectX-2 cards.

lead to an efficient remote GPU usage with negligible overheads when com-
pared to local GPU acceleration; see Figure 2.7 for the particular example of
a matrix-matrix product. Compared with traditional CPU computing, the
figure also shows that computing the product on a remote GPU is notice-
ably faster than its computation using the 8 general-purpose CPU cores of a
computing node employing a highly-tuned HPC library.

0 10 20 30 40

CPU

rCUDA

CUDA

100%

26%

25%

Execution time (secs.)

Figure 2.7: Execution time for a matrix product executed in an NVIDIA
Tesla C2050 versus CPU computation on 2 x Quad-Core Intel Xeon E5520
employing GotoBlas 2. Matrices of 13,824x13,824 single-precision floating
point elements.

2.3. SOURCE-TO-SOURCE TRANSFORMATION TOOLS 15

In the same way as it happens in the example shown in Figure 2.7, the
performance of applications using rCUDA is often noticeably higher than
that provided by computations on regular CPUs. Taking into account the
flexibility provided by rCUDA, in addition to the reduction in energy and
acquisition costs it enables, rCUDA’s benefits overcome the small overhead
it introduces.

2.3 Source-to-source Transformation Tools

As noted in previous sections, the rCUDA framework is limited by its lack of
support for the CUDA extensions to the C language. Thus, before executing
a CUDA program in the rCUDA framework, it is necessary to manually con-
vert the original CUDA source code into C plain code functionally identical
but that does not include such extensions.

In order to implement the automatic tool that transforms source code
employing CUDA extensions into plain C code, a source-to-source transfor-
mation framework has been leveraged. Different options for this class of
source transformations are available nowadays, from simple pattern string
replacement tools to frameworks which parse the source code into an Ab-
stract Syntax Tree (AST) and transform the code using that information.
Given that our tool needs to do complex transformations involving semantic
C++ code information, we have selected the latter.

There are several open source frameworks which leverage complex source
transformations, below we detail some of the most popular:

• ROSE [14] is an open source compiler infrastructure to build source-to-
source program transformation and analysis tools for large-scale For-
tran 77/95/2003, C, C++, OpenMP, and UPC applications. It is par-
ticularly well suited for building custom tools for static analysis, pro-
gram optimization, arbitrary program transformation, domain-specific
optimizations, complex loop optimizations, performance analysis, and
cyber-security.

• GCC [15], the GNU Compiler Collection, includes front-ends for C,
C++, Objective-C, Fortran, Java, Ada, and Go, as well as libraries for
these languages (libstdc++, libgcj,...). GCC could be used to perform
a preprocessing of GNU C source code, but it would be necessary other
tool to perform the automated transformation.

16 CHAPTER 2. BACKGROUND

• Clang [16], one of the primary sub-projects of LLVM [18], is a C lan-
guage family compiler which aims, among others, at providing a plat-
form for building source code level tools, including source-to-source
transformation frameworks. Below we detail both: the LLVM project
and the Clang sub-project.

Between them, we have chosen Clang because, on the one hand, it is
widely-used and, on the other hand, it explicitly supports programs written
in CUDA. Moreover there are some converters of CUDA source code that are
also based on Clang, such as CU2CL [17], which converts source from CUDA
to OpenCL [2].

2.3.1 The LLVM Compiler Infrastructure

The LLVM Project [18] is a collection of modular and reusable compiler
and toolchain technologies. It began as a research project at the University
of Illinois, with the goal of providing a modern, SSA-based (Static Single
Assignment) compilation strategy capable of supporting both static and dy-
namic compilation of arbitrary programming languages. Since then, LLVM
has grown to be an umbrella project consisting of a number of different sub-
projects, many of which are being used in production by a wide variety of
commercial and open source projects as well as being widely used in aca-
demic research.

As it has been said, Clang is one of the primary sub-projects of LLVM. It
is an “LLVM native” C/C++/Objective-C compiler, which aims to deliver
fast compiles, useful error and warning messages and to provide a platform
for building great source level tools such as source analysis or source-to-source
transformation tools.

2.3.2 Clang: a C Language Family Frontend for LLVM

As it is explained in [16], the main goal of the Clang project is to create
a new C, C++, Objective C and Objective C++ front-end for the LLVM
compiler. Some additional goals for the project include the following (the
most relevant for the project will be further detailed next):

• End-User Features:

– Fast compiles and low memory use.

– Expressive diagnostics.

2.3. SOURCE-TO-SOURCE TRANSFORMATION TOOLS 17

– GCC compatibility.

• Utility and Applications:

– Modular library-based architecture.

– Support diverse clients (refactoring, static analysis, code genera-
tion, etc.).

– Allow tight integration with IDEs (Integrated Development Envi-
ronments).

– Use the LLVM BSD (Berkeley Software Distribution) License.

• Internal Design and Implementation:

– A real-world, production quality compiler.

– A simple and hackable code base.

– A single unified parser for C, Objective C, C++, and Objective
C++.

– Conformance with C/C++/ObjC and their variants.

End-User Features

A major focus of Clang developers is to make it fast, light and scalable. Thus,
the Clang front-end is significantly quicker than GCC and uses less memory.
Moreover, Clang developers maintains that the clean framework-based de-
sign of Clang allows for many features to be possible that, otherwise, would
be very difficult in other systems. For example, incremental compilation,
multithreading, intelligent caching, etc.

In addition to being fast and functional, Clang developers say that it
aims to be user friendly. They enforce it in several ways, e.g., by making
the diagnostics information (error and warning messages) generated by the
compiler as useful as possible.

Utility and Applications

A major design concept for Clang is its use of a library-based architecture. In
this design, various parts of the front-end can be cleanly divided into separate
libraries which can then be mixed up for different needs and uses. In addition,
the library-based approach encourages good interfaces and makes it easier for
new developers to get involved (because they only need to understand small
pieces of the big picture). Currently, clang is divided into the following
libraries and tool:

18 CHAPTER 2. BACKGROUND

• libsupport - Basic support library. It provides many underlying li-
braries and data-structures, including command line option processing,
various containers and a system abstraction layer, which is used for file
system access.

• libsystem - System abstraction library. The library’s purpose is to
shield LLVM from the differences between operating systems for the
few services LLVM needs from the operating system.

• libbasic - This library contains a number of low-level utilities for track-
ing and manipulating source buffers, locations within the source buffers,
diagnostics, tokens, target abstraction, and information about the sub-
set of the language being compiled for.

• libast - Provides classes to represent the C AST, the C type system,
builtin functions, and various helpers for analyzing and manipulating
the AST (visitors, pretty printers, etc).

• liblex - Lexing and preprocessing, identifier hash table, pragma han-
dling, tokens, and macro expansion.

• libparse - Parsing. This library invokes coarse-grained “Actions” pro-
vided by the client (e.g. libsema builds ASTs) but knows nothing about
ASTs or other client-specific data structures.

• libsema - Semantic Analysis. This provides a set of parser actions to
build a standardized AST for programs.

• libcodegen - Lower the AST to LLVM IR (Intermediate Representation)
for optimization and code generation.

• librewrite - Editing of text buffers (important for code rewriting trans-
formation, like refactoring).

• libanalysis - Static analysis support.

• clang - A driver program, client of the libraries at various levels.

Internal Design and Implementation

Clang is designed to be a real-world, production quality compiler, that means
being high performance, solid, bug free, and being used by a broad range of
people.

2.3. SOURCE-TO-SOURCE TRANSFORMATION TOOLS 19

With regard to its implementation, Clang is the “C Language Family
Front-end”, which means it intends to support the most popular members of
the C family (C, Objective C, C++, and Objective C++). Clang is based
on the idea that the right parsing technology for this class of languages is
a hand-built recursive-descent parser. Because it is plain C++ code, Clang
developers hold that recursive descent makes it very easy for new developers
to understand the code, easily supports ad-hoc rules and other strange hacks
required by C/C++, and makes it straight-forward to implement diagnostics
and error recovery.

In addition, Clang developers believe that implementing C/C++/ObjC
in a single unified parser makes the end result easier to maintain and evolve
than maintaining a separate C and C++ parser which must be bugfixed and
maintained independently of each other.

20 CHAPTER 2. BACKGROUND

Chapter 3

CU2rCU: A CUDA-to-rCUDA
Converter

This chapter describes in detail the need for a CUDA-to-rCUDA source-to-
source converter and presents the tool developed for that purpose, CU2rCU,
describing also how to use it.

3.1 The Need of a CUDA-to-rCUDA Con-

verter

A CUDA program can be viewed as a regular C program where some of its
functions have to be executed by the GPU (also referred to as device) instead
of the traditional CPU (also known as host).

Programmers control the CPU-GPU interaction via the CUDA API,
which aims at easing GPGPU programming. This API includes CUDA ex-
tensions to the C language which are constructs following a specific syntax
designed to make CUDA programming more accessible, usually leading to
fewer lines of source code than its plain C equivalent (although both codes
tend to look quite similar). Nevertheless, once the constructs from the CUDA
extensions to C are internally translated by the NVIDIA CUDA compiler to
plain C, both codes are equivalent.

The following piece of code shows an example of a “hello world” program
in CUDA. In this example, the functions cudaMalloc (line 13), cudaMemcpy
(lines 15 and 19) and cudaFree (line 21) belong to the plain C API of CUDA,
whereas the kernel launch sentence in line 17 uses the syntax provided by
the CUDA extensions:

21

22 CHAPTER 3. CU2RCU: A CUDA-TO-RCUDA CONVERTER

1 #include <cuda . h>
2 #include <s t d i o . h>

4 // Device code
5 g l o b a l void hel loWorld (char∗ s t r) {
6 // GPU ta s k s .
7 }

9 // Host code
10 int main (int argc , char ∗∗ argv) {
11 char h s t r [] = ‘ ‘ He l l o World ! ’ ’ ;
12 // . . .
13 cudaMalloc ((void ∗∗)&d st r , s i z e) ;
14 // copy the s t r i n g to the dev i c e
15 cudaMemcpy(d s t r , h s t r , s i z e , cudaMemcpyHostToDevice) ;
16 // launch the k e rne l
17 helloWorld<<< BLOCKS, THREADS >>>(d s t r) ;
18 // r e t r i e v e the r e s u l t s from the dev i c e
19 cudaMemcpy(h s t r , d s t r , s i z e , cudaMemcpyDeviceToHost) ;
20 // . . .
21 cudaFree (d s t r) ;
22 p r i n t f (‘ ‘% s \n ’ ’ , s t r) ;
23 return 0 ;
24 }

As mentioned before, CUDA programs are compiled with the NVIDIA
nvcc compiler [19], which looks for fragments of GPU code within the pro-
gram and compiles them separately from the CPU code.

Moreover, during the compilation of a CUDA program, references to
structures and functions not made public in the CUDA documentation are
automatically inserted into the CPU code. These undocumented functions
impair the creation of tools which need to replace the original CUDA Runtime
Library from NVIDIA. There exist a few solutions, e.g. GPU Ocelot [20],
which overcome this limitation by implementing their own versions of these
internals, inferring the original functionality. However, this may easily render
a behaviour that is not fully compliant with the original library. Further-
more, the stability of these approaches is hampered as the specification of
the internals of these undocumented functions is easily subject to change

3.1. THE NEED OF A CUDA-TO-RCUDA CONVERTER 23

without prior notification from NVIDIA.

To overcome these problems, we have decided not supporting these undoc-
umented functions in rCUDA, offering instead a compile-time work-around
which avoids their use. Notice that avoiding the use of these undocumented
functions requires bypassing nvcc for CPU code generation, as this compiler
automatically inserts references to them into the host code. Therefore, the
CPU code in a CUDA program should be directly derived to a regular C
compiler (e.g., GNU gcc). On the other side, since a plain C compiler can-
not deal with the CUDA extensions to C, they should be unextended back
to plain C. As manually performing these changes for large programs is a
tedious, sometimes error-prone task, we have developed, within the work
presented in this report, an automatic tool which modifies a CUDA source
code employing CUDA extensions and transforms it into its plain C equiv-
alent. In this way, in order to be compiled for execution within the rCUDA
framework, a given CUDA source code is split into the following two parts:

• Host code: executed on the host and compiled with a backend com-
piler such as GNU gcc (for either C or C++ languages), after being
transformed.

• Device code: executed on the device and compiled with the nvcc com-
piler (this part will be further detailed later).

Coming back to the previous “hello world” CUDA example, the next
code shows the transformation of the kernel call in line 17 of the previous
code employing the extended syntax into plain C (lines 20-24 of the following
code):

1 #include <cuda . h>
2 #include <s t d i o . h>

4 #define ALIGN UP(o f f s e t , a l i g n) (o f f s e t) = \
5 ((o f f s e t) + (a l i g n) − 1) & ?((a l i g n) − 1)

7 // Device code
8 g l o b a l void hel loWorld (char∗ s t r) {
9 // GPU ta s k s .

10 }

12 // Host code
13 int main (int argc , char ∗∗ argv) {

24 CHAPTER 3. CU2RCU: A CUDA-TO-RCUDA CONVERTER

14 char h s t r [] = ‘ ‘ He l l o World ! ’ ’ ;
15 // . . .
16 cudaMalloc ((void ∗∗)&d st r , s i z e) ;
17 // copy the s t r i n g to the dev i c e
18 cudaMemcpy(d s t r , h s t r , s i z e , cudaMemcpyHostToDevice) ;
19 // launch the k e rne l
20 cudaConf igureCal l (BLOCKS, THREADS) ;
21 int o f f s e t = 0 ;
22 ALIGN UP(o f f s e t , a l i g n o f (d s t r)) ;
23 cudaSetupArgument(&d st r , s izeof (d s t r) , o f f s e t) ;
24 cudaLaunch (‘ ‘ he l loWorld ’ ’) ;
25 // r e t r i e v e the r e s u l t s from the dev i c e
26 cudaMemcpy(h s t r , d s t r , s i z e , cudaMemcpyDeviceToHost) ;
27 // . . .
28 cudaFree (d s t r) ;
29 p r i n t f (‘ ‘% s \n ’ ’ , s t r) ;
30 return 0 ;
31 }

In the kernel call employing the extended syntax, firstly, grid and block
dimensions are specified (line 20). Next, the only argument of the kernel is
set (line 23). Finally, the kernel is launched (line 24). The rest of the code
will be the same as in the first code shown for the example.

In order to separately generate CPU and GPU code, we leverage an nvcc

feature which allows to extract and compile only the device code from a
CUDA program and generate a binary file containing only the GPU code.
In the host code, once the CUDA extensions to C have been transformed
into code using only the plain C CUDA API, we generate the corresponding
binary file with a backend C compiler. Notice that prior to using a regular
C compiler, the GPU code should additionally be removed. Notice also that
nvcc does not need the CPU code to be removed from the original source
code to generate the binary file with only the GPU code. The separation
and transformation process is graphically illustrated in Figure 3.1.

3.2 Interaction with Clang

In order to implement the automatic tool that transforms source code em-
ploying CUDA extensions into plain C code, a source-to-source transforma-
tion framework has been leveraged. As explained in Section 2.3 of Chapter 2,

3.3. CU2RCU SOURCE TRANSFORMATIONS 25

CUDA
Program
(Device +

Host
Code)

Device
Code

Host
Code

NVCC

Converter GCC

Figure 3.1: CUDA-to-rCUDA conversion process.

we have chosen Clang for this purpose.

Figure 3.2 shows how the developed converter interacts with Clang. The
input to the converter are CUDA source files containing device and host code
with CUDA extensions, as explained in the previous section. The Clang
driver (a compiler driver providing access to the Clang compiler and tools)
parses those files generating an AST. After that, the Clang plugin that we
have developed, CU2rCU, uses the information provided by the AST and the
libraries contained in the Clang framework to perform the needed transfor-
mations, generating new source files which only contain host code employing
the plain C syntax. Notice that during the conversion process our CU2rCU

tool is able to automatically analyze user source files included by the input
files to be converted (sentence #include <...>), also converting them when
required.

CUDA
Program
(Device +

Host Code)

Converter

Host Code

Clang
Driver

AST CU2rCU

Clang
Framework

Figure 3.2: CUDA-to-rCUDA converter detailed view.

3.3 CU2rCU Source Transformations

As explained in the preceding sections, our converter transforms the original
source code written in CUDA into code using only the plain C API, unextend-

26 CHAPTER 3. CU2RCU: A CUDA-TO-RCUDA CONVERTER

ing CUDA C extensions, and removing device code. The transformations to
be carried out, which will be detailed next, concerns to:

• Function and Variable Types Qualifiers

• Kernel Calls

• Kernel Names

• CUDA Symbols

• C++ API Routines

– Texture and Surface Declarations

– Texture and Surface Functions

– CUDA Symbol Functions

– Kernel Functions

3.3.1 Function and Variable Types Qualifiers

CUDA extends C language [13] with the following function type qualifiers:

• __device__

• __global__

• __host__

• __noinline__

• __forceinline__

And with the following variable type qualifiers:

• __device__

• __constant__

• __shared__

• __restrict__

All of them, except the __host__ qualifier, refer to functions/variables
which execute on the device. So the transformation consists on removing
these functions and variables, excluding __host__ functions, which are not
removed.

3.3. CU2RCU SOURCE TRANSFORMATIONS 27

3.3.2 Kernel Calls

As specified in [13], the functions declared with the __global__ qualifier,
also called kernels, are executed on the device (that is why we remove them,
as explained in previous section). However, these kind of functions are only
callable from the host and, therefore, just removing them would lead to er-
rors in the source code. So, additional transformations are required.

Consequently, a kernel call from the host employing CUDA C extension,
that is, using an expression of the form1:

1 functionName <tparameter 1 , . . . , tparameter n>
2 <<< Dg, Db[, Ns [, S]] >>>
3 (parameter 1 , . . . , parameter n) ;

must be transformed in order to use the plain C API as follows:

1 cudaConf igureCal l (Dg , Db[, Ns [, S]]) ;
2 int o f f s e t = 0 ;
3 setupArgument (parameter 1 , &o f f s e t) ;
4 setupArgument (. . . , &o f f s e t) ;
5 setupArgument (parameter n , &o f f s e t) ;
6 cudaLaunch (‘ ‘ MangledKernelName ’ ’) ;

The function setupArgument() is provided by the rCUDA framework
(the header rCUDA_util.h is automatically included in the source code by our
CU2rCU tool). It is a wrapper of the plain C API function cudaSetupArgument()

and, hence, it just simplifies the inserted code by avoiding the need to ex-
plicitly handle argument offsets.

3.3.3 Kernel Names

In the cudaLaunch() call inserted in the previous transformation, the man-
gled kernel name must be used if it is not a function with external C linkage.
Otherwise, the kernel name as written must be used. For instance, if we have
the following kernel declaration:

1From now on, arguments between square brackets “[argument]” means that they are
optional.

28 CHAPTER 3. CU2RCU: A CUDA-TO-RCUDA CONVERTER

g l o b a l void i n c r ement ke rne l (int∗ x , int y) ;

its mangled name should be used when launching this kernel:

cudaLaunch (‘ ‘ Z16 inc r ement ke rne lP i i ’ ’) ;

However, if the kernel is declared with external C linkage:

extern ‘ ‘C ’ ’
g l o b a l void i n c r ement ke rne l (int∗ x , int y) ;

the original kernel name has to be used instead:

cudaLaunch (‘ ‘ i n c r ement ke rne l ’ ’) ;

Determining the mangled kernel name becomes a complex task when
there are kernel template declarations with type dependent arguments. For
example, for the kernel template declaration:

template<class TData> g l o b a l void t e s tKerne l (
TData ∗d odata , TData ∗ d idata , int numElements) ;

the mangled kernel name used to launch it depends on the type of TData:

i f ((typeid (TData) == typeid (unsigned char))) {
cudaLaunch (‘ ‘ Z10testKerne l IhEvPT S1 i ’ ’) ;

} else i f ((typeid (TData) == typeid (unsigned short))) {
cudaLaunch (‘ ‘ Z10testKerne l I tEvPT S1 i ’ ’) ;

} else i f ((typeid (TData) == typeid (unsigned int))) {
cudaLaunch (‘ ‘ Z10tes tKerne l I jEvPT S1 i ’ ’) ;

}

The task is even more complex if the call to a kernel template is inside a
function template, as for instance:

3.3. CU2RCU SOURCE TRANSFORMATIONS 29

template<class TData> g l o b a l void t e s tKerne l (
TData ∗d odata , TData ∗ d idata , int numElements) ;

template<class TData> void runTest (void) {
. . .
t e s tKerne l<TData><<<64, 256>>>(

(TData ∗) d odata ,
(TData ∗) d idata ,
numElements

) ;
. . .

}

In both cases, the complexity lies in finding out in what types TData

will be specialized. For this, it is necessary to parse all the code and, after
collecting all possible specializations, return back to the kernel call in order
to rewrite it properly.

3.3.4 CUDA Symbols

When using CUDA symbols as function arguments, they can be either a
variable declared in the device code or a character string naming a variable
that was declared in the device code. As the device code has been removed,
only the second option becomes feasible. For this reason, those occurrences
that fall into the first category have to be transformed.

The following functions of the CUDA Runtime API [1] use CUDA sym-
bols:

cudaMemcpyToSymbol (symbol , src , count [, o f f s e t [, kind]]) ;

cudaMemcpyToSymbolAsync (symbol , src , count , o f f s e t ,
kind [, stream]) ;

cudaMemcpyFromSymbol (dst , symbol , count [, o f f s e t [,
kind]]) ;

cudaMemcpyFromSymbolAsync (dst , symbol , count , o f f s e t ,
kind [, stream]) ;

30 CHAPTER 3. CU2RCU: A CUDA-TO-RCUDA CONVERTER

If the argument symbol is not a character string, it must be converted to
such variable type. In general, this transformation just consists in putting it
in quotation marks as follows:

cudaMemcpyToSymbol (‘ ‘ symbol ’ ’ , s rc , count [, o f f s e t [,
kind]]) ;

cudaMemcpyToSymbolAsync (‘ ‘ symbol ’ ’ , s rc , count , o f f s e t ,
kind [, stream]) ;

cudaMemcpyFromSymbol (dst , ‘ ‘ symbol ’ ’ , count [, o f f s e t [,
kind]]) ;

cudaMemcpyFromSymbolAsync (dst , ‘ ‘ symbol ’ ’ , count ,
o f f s e t , kind [, stream]) ;

For instance, in the following function call:

c o n s t a n t f loat symbol [2 5 6] ;
f loat s r c [2 5 6] ;
cudaMemcpyToSymbol (symbol , src , s izeof (f loat) ∗256) ;

the argument symbol has to be surrounded by quotation marks to transform
it into a character string:

cudaMemcpyToSymbol (‘ ‘ symbol ’ ’ , s rc , s izeof (f loat) ∗256) ;

It must be taken into account that the argument symbol could also be
a macro definition; in that case, the result of this macro must be used. For
example, in the following function call:

#define MY PREFIX prx
#define MY VAR TO STR(var) #var
#define MY VAR TO STR2(var) MY VAR TO STR(var)
#define MYCONST(var) (MY VAR TO STR2(MY PREFIX) ‘ ‘ ’ ’

MY VAR TO STR2(var))

c o n s t a n t f loat symbol [2 5 6] ;
f loat s r c [2 5 6] ;

3.3. CU2RCU SOURCE TRANSFORMATIONS 31

cudaMemcpyToSymbol (MYCONST(symbol) , s rc ,
s izeof (f loat) ∗256) ;

is the result of the macro MY_CONST what has to be surrounded by quotation
marks:

cudaMemcpyToSymbol (‘ ‘ prx symbol ’ ’ , s rc ,
s izeof (f loat) ∗256) ;

3.3.5 C++ API Routines

Similarly to the CUDA C extensions, in order to use the C++ high level
API functions from the CUDA Runtime API [1], an application needs to be
compiled with the nvcc compiler. However, as within the rCUDA framework
the application source code needs to be compiled with a GNU compiler, we
need to transform these functions.

C++ API routines are just wrappers of the CUDA Runtime API functions
which just simplify the code by avoiding the need to explicitly informing or
casting some arguments. Thus, C++ API routines could be seen as a high-
level API and the CUDA Runtime API as a low-level API. For example, the
following code using the low-level API [13]:

texture<f loat , cudaTextureType2D ,
cudaReadModeElementType> texRef ;

t ex tureRe f e r ence ∗ texRefPtr ;
cudaGetTextureReference(&texRefPtr , ‘ ‘ texRef ’ ’) ;
cudaChannelFormatDesc channelDesc ;
cudaGetChannelDesc(&channelDesc , cuArray) ;
cudaBindTextureToArray (texRefPtr , cuArray , &channelDesc) ;

it is equivalent to the following one using the high-level API:

texture<f loat , cudaTextureType2D ,
cudaReadModeElementType> texRef ;

cudaBindTextureToArray (texRef , cuArray) ;

32 CHAPTER 3. CU2RCU: A CUDA-TO-RCUDA CONVERTER

The difference is that in the first version the function call to cudaBindTex-
tureToArray() refers to a function from the CUDA Runtime API and the
second version to one of the C++ API routines.

In Sections 3.3.6, 3.3.7, 3.3.8 and 3.3.9 are detailed the transformations
related with C++ API routines.

3.3.6 Texture and Surface Declarations

CUDA [13] supports a subset of the texturing hardware that GPUs use for
graphics to access texture and surface memory. In this section, and the fol-
lowing ones, we refer to textures and surfaces as variables which reference
texture and surface memory.

Textures declared using the C++ API, that is:

texture<T, [texType [, mode]]> textureName ;

must be transformed as follows:

t ex tureRe f e r ence ∗ textureName ;
cudaGetTextureReference ((const t ex tureRe f e r ence

∗∗)&textureName ,
‘ ‘ textureName ’ ’) ;

A consequence of this transformation is that texture variables become point-
ers, and access to their attributes such as:

textureName . a t t r i b u t e = value ;

will now result in:

textureName−>a t t r i b u t e = value ;

The same transformations explained for CUDA textures apply to CUDA
surfaces. Thus:

3.3. CU2RCU SOURCE TRANSFORMATIONS 33

sur face<T[, dim]> surfaceName ;

changes into:

su r f a c eRe f e r enc e ∗ surfaceName ;
cudaGetSurfaceReference ((const su r f a c eRe f e r enc e

∗∗)&surfaceName ,
‘ ‘ surfaceName ’ ’) ;

And access to their attributes:

surfaceName . a t t r i b u t e = value ;

turns into:

surfaceName−>a t t r i b u t e = value ;

Note that the calls to cudaGetTextureReference() and cudaGetSurface-
Reference() are only necessary before using the texture/surface for the first
time. Furthermore, textures and surfaces can only be declared as global vari-
ables. Thus, the previous function calls could not be inserted after declaring
the texture/surface. For instance:

1 texture<f loat , 2> tex ;

3 int main (int argc , char argv)
4 {
5 . . .
6 // s e t t e x t u r e a t t r i b u t e s
7 tex . normal ized = true ;
8 tex . f i l t e rMode = cudaFi lterModeLinear ;
9 tex . addressMode [0] = cudaAddressModeClamp ;

10 tex . addressMode [1] = cudaAddressModeClamp ;
11 . . .
12 }

will be transformed into:

34 CHAPTER 3. CU2RCU: A CUDA-TO-RCUDA CONVERTER

1 t ex tureRe f e r ence ∗ tex ;

3 int main (int argc , char argv)
4 {
5 . . .
6 // s e t t e x t u r e a t t r i b u t e s
7 cudaGetTextureReference ((const t ex tureRe f e r ence ∗∗)

&tex , ‘ ‘ tex ’ ’) ;
8 tex−>normal ized = true ;
9 tex−>f i l t e rMode = cudaFi lterModeLinear ;

10 tex−>addressMode [0] = cudaAddressModeClamp ;
11 tex−>addressMode [1] = cudaAddressModeClamp ;
12 . . .
13 }

In addition to have changed the access to the texture attributes, it has been
necessary to call cudaGetTextureReference() before using the texture (line
7).

3.3.7 Texture and Surface Functions

In this section are detailed the conversions done to function calls that manage
textures and surfaces.

cudaBindTexture

When binding a memory area to a texture using the C++ API routine:

cudaBindTexture (o f f s e t , tex , devPtr [, desc] [, s i z e]) ;

if argument desc is not present, we must inform it:

cudaBindTexture (o f f s e t , tex , devPtr , &tex−>channelDesc [,
s i z e]) ;

Moreover, if desc is present and its type is const struct cudaChannel-
FormatDesc, it must be transformed into type const struct cudaChannel-
FormatDesc *, that is:

3.3. CU2RCU SOURCE TRANSFORMATIONS 35

cudaBindTexture (o f f s e t , tex , devPtr , desc [, s i z e]) ;

becomes:

cudaBindTexture (o f f s e t , tex , devPtr , &desc [, s i z e]) ;

cudaBindTexture2D

Similar transformations must be applied when binding a 2D memory area to
a texture:

cudaBindTexture2D (o f f s e t , tex , devPtr [, desc] , width ,
height , p i t ch) ;

If the argument desc is not informed, the transformed code will be the fol-
lowing:

cudaBindTexture2D (o f f s e t , tex , devPtr ,
tex−>channelDesc , width , height , p i t ch) ;

If desc is informed and its type is const struct cudaChannelFormatDesc,
then the new code will be:

cudaBindTexture2D (o f f s e t , tex , devPtr , &desc , width ,
height , p i t ch) ;

cudaBindTextureToArray

In a similar way, when binding an array to texture:

cudaBindTextureToArray (tex , array [, desc]) ;

If the argument desc is not present, it must be informed:

36 CHAPTER 3. CU2RCU: A CUDA-TO-RCUDA CONVERTER

cudaChannelFormatDesc desc ;
cudaGetChannelDesc(&desc , array) ;
cudaBindTextureToArray (tex , array , &desc) ;

If desc is present and its type is const struct cudaChannelFormatDesc,
it must be transformed into const struct cudaChannelFormatDesc *:

cudaBindTextureToArray (tex , array , &desc) ;

cudaBindSurfaceToArray

In the same way, when binding an array to a surface:

cudaBindSurfaceToArray (sur f , array [, desc]) ;

If the argument desc is not present, it must be informed:

cudaChannelFormatDesc desc ;
cudaGetChannelDesc(&desc , array) ;
cudaBindSurfaceToArray (sur f , array , &desc) ;

If desc is present and its type is const struct cudaChannelFormatDesc,
it must be transformed into const struct cudaChannelFormatDesc *:

cudaBindSurfaceToArray (sur f , array , &desc) ;

3.3.8 CUDA Symbol Functions

The same transformations explained in Section 3.3.4 apply for functions:

cudaGetSymbolAddress (devPtr , symbol) ;

and:

cudaGetSymbolSize (s i z e , symbol) ;

3.3. CU2RCU SOURCE TRANSFORMATIONS 37

This means that, in a general way, if the argument symbol is not a char-
acter string, it must be transformed as follows:

cudaGetSymbolAddress (devPtr , ‘ ‘ symbol ’ ’) ;

and:

cudaGetSymbolSize (s i z e , ‘ ‘ symbol ’ ’) ;

As explained in Section 3.3.4, note that if symbol is a macro definition,
what must be quoted is the result of this macro.

3.3.9 Kernel Functions

When referring to a kernel in the host code, we must use a character string
with the kernel name to avoid the use of the CUDA C extensions. For this
reason, when using one of the following C++ API routines:

cudaFuncSetCacheConfig (funct ion , cacheConf ig) ;

cudaLaunch (func t i on) ;

cudaFuncGetAttributes (at t r , f unc t i on) ;

if the argument function is not a character string, we must transform them
as follows:

cudaFuncSetCacheConfig (‘ ‘ functionName ’ ’ , cacheConf ig) ;

cudaLaunch (‘ ‘ functionName ’ ’) ;

cudaFuncGetAttributes (at t r , ‘ ‘ functionName ’ ’) ;

As in kernel calls explained in Section 3.3.3, note that the argument
functionName must be the mangled function name if it is not a function
with external, C linkage.

38 CHAPTER 3. CU2RCU: A CUDA-TO-RCUDA CONVERTER

3.3.10 Included Files

In general, included files must be parsed in order to have all the necessary
information to properly apply all the transformations described in previous
sections. In particular, every time a CUDA user included file is found, as for
example:

#include ‘ ‘ u s e r c u d a f i l e . cu ’ ’
#include ‘ ‘ u se r cuda header . cuh ’ ’

these CUDA files, in addition to be parsed, must also be transformed. How-
ever, if the CUDA files have already been transformed during the conversion
of other file(s) in which they where also included, the job must not be re-
peated. This leads to save time during the conversion process.

3.4 Compilation Flow

This section presents the resulting rCUDA compilation flow after integrating
the CU2rCU converter within the rCUDA framework, comparing it with the
original CUDA compilation flow.

On the one hand, in Figure 3.3 we can see the original CUDA compila-
tion flow with the NVIDIA nvcc compiler [19]. The states named cudafe,
cudafe++, filehash, nvopencc, ptxas and fatbin refer to calls to NVIDIA
internal compilation tools, while the ones named gcc refer to calls to the
GNU compiler. Notice that all these calls are automatically performed by
the nvcc compiler and, therefore, they are transparent to users. As can be
seen, the input program, input.cu, is separated into host code and device
code. During the process, the device code is transformed into binary code
and embedded into the previously separated host code. Finally, the host
code with the binary device code embedded is compiled with gcc, generating
an executable which also has the binary device code embedded.

On the other hand, Figure 3.4 shows the rCUDA compilation flow. Ini-
tially, we apply to the input program the CU2rCU converter to obtain its
equivalent source code using only plain C and without device code. From
this converted code, we get an executable which have references to device
code stored in an external repository. This external repository of device
code is generated by nvcc, which has an option for specifying a concrete
compilation phase, instead of executing the whole process. In this case, we

3.5. CU2RCU INSTALLATION AND DEPLOYMENT 39

use the compilation phase called “fatbin”, which only compiles the device
code from the input program, generating an external repository with it.

3.5 CU2rCU Installation and Deployment

In this section we will show how to install and use the CU2rCU converter on
Unix-like systems. There is no support for other platforms.

As it has been explained in previous sections, CU2rCU uses Clang’s facil-
ity for providing a plugin. To install CU2rCU properly we must follow the
following steps.

Step 1: Installing LLVM and Clang

In order to install CU2rCU, first we have to install the LLVM Compiler In-
frastructure and its Clang sub-project. There are two ways of doing this:

• Download Clang binaries, version 3.0, from http://llvm.org/releases/

download.html#3.0 and extract them in the desired directory. These
binaries also include LLVM.

• Download Clang source code and build it following the instructions
given in Section Get Started from Clang webpage http://clang.llvm.
org/get_started.html.

Step 2: Installing CU2RCU

Once we have installed Clang, we get the CU2rCU software, which is dis-
tributed with the rCUDA framework, place it in the chosen directory and edit
the file named Makefile. In this file, we modify the variable called LLVM_PATH

indicating the path where Clang has been installed. For instance, if we have
installed Clang in the following path ‘‘home/user/clang+llvm-3.0’’, we
will set as follows the LLVM_PATH variable:

LLVMPATH := home/ user / c lang+llvm−3.0

Then, we run the Makefile from the path where it is placed to build
the plugin. For example, if we have extracted CU2rCU software in the path
‘‘home/user/CU2rCU’’, then we open a terminal, change to that directory
and type command make.

http://llvm.org/releases/download.html#3.0
http://llvm.org/releases/download.html#3.0
http://clang.llvm.org/get_started.html
http://clang.llvm.org/get_started.html

40 CHAPTER 3. CU2RCU: A CUDA-TO-RCUDA CONVERTER

nvcc

input.cu

gcc 1

cudafe 1

gcc 2

cudafe 2

gcc 3

gcc 4

cudafe++ filehash

nvopencc

ptxas

fatbin

gcc 5

gcc 6

output (host code with

embedded device code)

host code

device code

Figure 3.3: CUDA compilation flow.

3.5. CU2RCU INSTALLATION AND DEPLOYMENT 41

output

(host code)

 nvcc

input.cu

gcc 1

cudafe++

gcc 2

cudafe 1

gcc 3

cudafe 2

nvopencc

ptxas

fatbin

output.fatbin (external

device code repository)

gcc 4

cu2rcu

gcc 5

Figure 3.4: rCUDA compilation flow.

42 CHAPTER 3. CU2RCU: A CUDA-TO-RCUDA CONVERTER

Step 3: Using CU2RCU

Once the plugin has been installed, we can start using it. We can run it from
a terminal using the following command:

1 $ c lang −cc1 \
2 −load $ (LLVMPATH)/Debug+Asse r t s / l i b /libCU2RCU . so \
3 −plugin−arg−pla in−CUDA <arguments> \
4 −plug in p la in−CUDA \
5 −I /$ (CUDA INSTALL PATH)/ inc lude / \
6 −D CUDACC < f i l e s t o b e c o n v e r t e d>

Where valid <arguments> in line 3 are:

• ‘help’: prints help about the plugin.

• ‘verbose’: prints modifications made by the plugin to the original
source file.

The files to which apply the converter are specified in <files_to_be_converted>,
line 6. LLVM_PATH (line 2) and CUDA_INSTALL_PATH (line 5) are respectively
the paths to LLVM and CUDA installation directories.

Apart from the CU2rCU converter, an script has also been developed to
simplify its deployment: CU2RCU.bash. It is also distributed with the rest of
the converter software. As it will be shown next, it is only necessary to exe-
cute this script with the same files that we would compile with the NVIDIA
nvcc compiler as parameters. Thus, the use of the converter becomes into
invoking this script with files to be converting as arguments, that is:

$ bash CU2RCU. bash < f i l e s t o b e c o n v e r t e d>

Example Of Use

To illustrate the entire process in order to convert and compile a CUDA pro-
gram, we are going to use a simple example. Initially, we have a CUDA pro-
gram called sample.cu which is located at the following path: ‘‘home/Carpe-
ta personal/sample’’. In Figure 3.5 we can see the initial state.

3.5. CU2RCU INSTALLATION AND DEPLOYMENT 43

Figure 3.5: Initial state of file to be converted.

Figure 3.6: State after having copied the CU2RCU.bash script.

Next, we copy the script CU2RCU.bash which is distributed with the con-
verter in that path, as shown in Figure 3.6.

Then, we open a terminal, move to the directory where our file is located,
and execute the CU2RCU.bash script, which will print a message informing of
the result of the conversion. In Figure 3.7 it can be seen the script output
after a successful conversion.

Now, in the directory where our source file is located, it has been created a
new directory called ‘‘CU2RCU’’, as illustrated in Figure 3.8. Inside this new
directory the new converted file has been created, which is called in the same
way as the original file but with a new extension if needed (‘‘.cu.cpp’’
for ‘‘.cu’’ files, and ‘‘.cuh.h’’ for the ‘‘.cuh’’ ones, the rest of file
extensions do not change). Figure 3.9 shows the created file in our sample.

44 CHAPTER 3. CU2RCU: A CUDA-TO-RCUDA CONVERTER

Figure 3.7: Execution of the CU2RCU.bash script for converting file
sample.cu.

Figure 3.8: State after having run the CU2RCU.bash script.

Figure 3.9: File created after having run the CU2RCU.bash script.

Chapter 4

Evaluation

This chapter describes the experiments carried out to evaluate the new
CU2rCU tool. In order to test it, we have used sample codes from the NVIDIA
GPU Computing SDK [21] (experiments shown next in Section 4.1) and pro-
duction codes from the LAMMPS Molecular Dynamics Simulator [22] (tests
presented below in Section 4.2).

4.1 NVIDIA GPU Computing SDK

Our first experiments dealt with a number of examples from the NVIDIA
GPU Computing SDK, which contains simple code samples which covers a
wide range of applications and techniques using CUDA. Table 4.1 shows the
time required for their conversion. Notice that conversion time shown in this
section have been gathered in an iterative way so that a given compilation (or
conversion) has been repeated until the standard deviation of the measured
time was lower than 5%. This will also apply for compilation time shown
later in this section.

In the experiment we employed a desktop platform equipped with an
Intel(R) Core(TM) 2 DUO E6750 processor (2.66GHz, 2GB RAM) and a
GeForce GTX 590 GPU, running the Linux OS (Ubuntu 10.04). Table 4.1
also reports the amount of lines of the original application code, as well as
the number of lines modified by our tool.

The total amount of time required for the automatic conversion of all
these examples, 10.68 seconds, compared with the time spent on a manual
conversion by an expert from the rCUDA team, 31.5 hours, clearly shows the

45

46 CHAPTER 4. EVALUATION

Table 4.1: NVIDIA GPU Computing SDK Conversion Statistics

Lines
CUDA SDK Sample Time (s) CUDA Modified/Added

Code No. %
alignedTypes 0.259 186 32 17.20
asyncAPI 0.191 78 6 7.69
bandwidthTest 0.407 708 0 0.00
BlackScholes 0.364 281 13 4.63
clock 0.196 75 8 10.67
concurrentKernels 0.196 100 11 11.00
convolutionSeparable 0.591 319 18 5.64
cppIntegration 0.685 129 12 9.30
dwtHaar1D 0.221 266 11 4.14
fastWalshTransform 0.360 241 20 8.30
FDTD3d 1.082 860 13 1.52
inlinePTX 0.351 91 6 6.60
matrixMul 0.394 272 34 12.50
mergeSort 0.917 1124 105 9.34
scalarProd 0.358 138 10 7.25
scan 0.548 359 26 7.24
simpleAtomicIntrinsics 0.367 211 6 2.84
simpleMultiCopy 0.202 211 22 10.43
simpleTemplates 0.211 241 13 5.39
simpleVoteIntrinsics 0.196 222 19 8.56
SobolQRNG 1.278 10586 8 0.08
sortingNetworks 0.761 571 70 12.26
template 0.357 97 7 7.22
vectorAdd 0.192 88 8 9.09

4.1. NVIDIA GPU COMPUTING SDK 47

A
T

A
P

B
T

B
S

C
L

C
K

C
S

C
I

D
H

F
W

F
D

IP
M

M
M

S
S

P
S

C
S

A
S

M
S

T
S

V
S

Q
S

N
T

E
V

A
0,

0

0,
5

1,
0

1,
5

2,
0

2,
5

O
rig

in
a

l C
o

m
p

ila
tio

n
C

o
n

ve
rs

io
n

 +
 C

o
m

p
ila

tio
n

C
U

D
A

 S
D

K
 S

a
m

p
le

Time (s)

F
ig

u
re

4.
1:

C
U

D
A

S
D

K
co

m
p
il
at

io
n

ti
m

e
co

m
p
ar

ed
w

it
h
C
U
2
r
C
U

co
n
ve

rs
io

n
p
lu

s
co

m
p
il
at

io
n

ti
m

e.

48 CHAPTER 4. EVALUATION

benefits of using the converter.

Moreover, we have compared the time spent in the compilation of the
original CUDA source code of the SDK samples with the time spent in their
conversion and subsequent compilation of the converted code by our tool.
Results are shown in Figure 4.1, demonstrating that the time of converting
the original code and later compiling it is similar to the compilation time of
the original sources. In Section 4.3 we will discuss these results.

4.2 LAMMPS Molecular Dynamics Simula-

tor

After having successfully tested the converter with NVIDIA SDK codes, we
have evaluated it on a real-world production code: the LAMMPS Molecular
Dynamics Simulator. LAMMPS is a classic molecular dynamics code which
can be used to model atoms or, more generically, as a parallel particle simula-
tor at the atomic, meso, or continuum scale. The entire application comprises
more than 300,000 lines of code distributed over 30 packages. Some of those
packages are written for CUDA, such as GPU or USER-CUDA, which are
mutually exclusive.

We have evaluated our tool against the USER-CUDA package, with over
14,000 lines of code. Table 4.2 shows the results of the conversion. The time
spent by an expert from the rCUDA team to adapt the original code was two
weeks with full time dedication. Again, the benefits of using the converter
are clearly proved.

Compilation time of the original LAMMPS source code is compared with
conversion plus compilation time in Figure 4.2, showing that they are simi-
lar. In this case, the time spent in conversion and compilation is separately
shown in order to point out that the conversion process produces a smaller
compilation time of the converted code, thus compensating each other. In
the next section we explain these results.

4.3 Compilation Time

After having tested the converter, we have noticed that the time of convert-
ing the original code with CU2rCU and later compiling it with nvcc and gcc

is similar to the compilation time of the original sources with nvcc. This

4.3. COMPILATION TIME 49

Table 4.2: LAMMPS Conversion Statistics

Lines
LAMMPS Package Time (s) CUDA Modified/Added

Code No. %
USER-CUDA 6.910 14742 1409 9.56

0

50

100

Ti
m

e
 (

s)

Lammps USER-CUDA Package

Code
Conversion
Time
Compilation
Converted
Code
Compilation
Original
Code

Figure 4.2: LAMMPS USER-CUDA nvcc compilation time compared with
CU2rCU conversion plus compilation time.

section is intended to further analyze this fact.

In Section 3.4 we have seen the CUDA and the rCUDA compilation flows
in Figures 3.3 and 3.4. Now, in Table 4.3 we present a comparison of the
compilation phases in both compilation flows in terms of how many times
each tool is used in each phase. The CU2rCU compilation phase could be
seen as the gcc one because we are really calling to Clang, which is also a
C compiler. Therefore, we could say that in both flows, the gcc compila-
tion phase is actually executed six times. In the CU2rCU compilation phase
we must also take into account that, apart from compilation time, we are
doing source transformations, which also take time. In the rCUDA compila-
tion flow, this time is compensated by (1) not requiring the filehash phase,
present only in the CUDA flow, and by (2) the fact that Clang is quicker
than GCC. That explains why the whole time spent is similar in both cases.

In order to clarify this, we have formulated it using mathematical ex-

50 CHAPTER 4. EVALUATION

Table 4.3: Comparison of CUDA and rCUDA Compilation Phases

Times each phase is executed
Compilation Phase CUDA rCUDA
cu2rcu 0 1
gcc 6 5
cudafe 2 2
cudafe++ 1 1
filehash 1 0
nvopencc 1 1
ptxas 1 1
fatbin 1 1

pressions. Thus, Expression 4.1 represents the CUDA compilation flow and
Expression 4.2 the rCUDA one.

CUDA compilation = (6× gcc) + (2× cudafe) +
(1× cudafe++) + (1× filehash) +
(1× nvopencc) + (1× ptxas) +
(1× fatbin)

(4.1)

rCUDA compilation = (1× cu2rcu) + (5× gcc) +
(2× cudafe) + (1× cudafe++) +
(1× nvopencc) + (1× ptxas) +
(1× fatbin)

=∗ (transformations) + (6× gcc) +
(2× cudafe) + (1× cudafe++) +
(1× nvopencc) + (1× ptxas) +
(1× fatbin)

' CUDA compilation

∗cu2rcu = (transformations) + (1× clang) +
' (transformations) + (1× gcc)

(4.2)

Chapter 5

Conclusions

In this document we have provided an overview of the rCUDA framework,
which enables the concurrent use of CUDA-compatible devices remotely.
During this review, we have pointed out the following three main concerns
of rCUDA:

• The usability of the rCUDA framework was limited.

• The use of remote GPUs in rCUDA reduces performance.

• rCUDA must evolve to support new CUDA versions.

As it was explained at the beginning of this document, the aim of this
report was addressing the first one of these three concerns, that is, the us-
ability of the rCUDA framework.

In the first place, we have explained that the usability of the rCUDA
framework was initially limited by its lack of support for the CUDA C exten-
sions. Thus, our framework only supported the plain CUDA C API, making
necessary to rewrite those lines of the original application source files that
make use of the CUDA C extensions.

To solve this limitation we have developed CU2rCU, a CUDA-to-rCUDA
converter. CU2rCU is a complementary tool to rCUDA which enables lever-
aging rCUDA for any CUDA application. It automatically analyzes the
application source code in order to find which lines of code must be modified
so that the original code is adapted to the requirements of rCUDA. This tool
automatically performs the required changes, without the intervention of a
programmer.

51

52 CHAPTER 5. CONCLUSIONS

For performing the source code conversions we have used Clang, one of
the primary sub-projects of LLVM. Clang is a C language family compiler
which aims, among others, at providing a platform for building source code
level tools, including source-to-source transformation frameworks.

Moreover, an script has also been developed to simplify the task of apply-
ing the CU2rCU converter, being only necessary to execute this script with the
same files that we would compile with NVIDIA nvcc compiler as parameters.

In order to evaluate the new CU2rCU tool, we have used sample codes
from the NVIDIA GPU Computing SDK and production codes from the
LAMMPS Molecular Dynamics Simulator, obtaining in both cases success-
ful results. The NVIDIA SDK contains simple code samples which cover a
wide range of applications and techniques, while LAMMPS is a real-world
production code with a considerable length. The large size of the LAMMPS
codes proves the feasibility of our tool.

In addition to test the correct operation of our tool, we have also mea-
sured the time employed using it in combination with the rCUDA framework
in order to achieve an executable, and compared this time with the one spent
using the CUDA environment for the same purpose. We have seen that in
both cases the time was similar and we have also analyzed the reasons.

As future work, it is planned that the CU2rCU tool is integrated into the
compilation flow, so that rCUDA users can effectively replace the call to
NVIDIA’s nvcc compiler with the CU2rCU command, which will internally
make use of the backend compilers after analyzing and adapting the source
code files.

Bibliography

[1] NVIDIA, “The NVIDIA CUDA API Reference Manual”, NVIDIA, 2011.

[2] A. Munshi, Ed., OpenCL 1.0 Specification. Khronos OpenCL Working
Group, 2009.

[3] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, E. S. Quintana-Ort́ı,
and G. Quintana-Ort́ı, “Exploiting the capabilities of modern GPUs for
dense matrix computations”, Concurr. Comput. : Pract. Exper., vol. 21,
no. 18, pp. 2457–2477, 2009.

[4] A. Gaikwad and I. M. Toke, “GPU based sparse grid technique for solv-
ing multidimensional options pricing PDEs”, in Proceedings of the 2nd
Workshop on High Performance Computational Finance, D. Daly, M.
Eleftheriou, J. E. Moreira, and K. D. Ryu, Eds. ACM, Nov. 2009.

[5] S. S. Stone, J. P. Haldar, S. C. Tsao, W. Hwu, Z.P . Liang, and B.
P. Sutton, “Accelerating advanced MRI reconstructions on GPUs”, in
Proceedings of the 2008 conference on Computing Frontiers (CF’08), pp.
261–272. ACM, New York, 2008.

[6] E. H. Phillips, Y. Zhang, R. L. Davis, and J. D. Owens, “Rapid aerody-
namic performance prediction on a cluster of graphics processing units”,
in Proceedings of the 47th AIAA Aerospace Sciences Meeting, no. AIAA
2009-565, Jan. 2009.

[7] D. P. Playne and K. A. Hawick, “Data parallel three- dimensional Cahn-
Hilliard field equation simulation on GPUs with CUDA”, in International
Conference on Parallel and Distributed Processing Techniques and Ap-
plications, H. R. Arabnia, Ed., 2009, pp. 104–110.

[8] Y. C. Luo and R. Duraiswami, “Canny edge detection on NVIDIA
CUDA”, in Computer Vision on GPU, 2008.

[9] R. Figueiredo, P. A. Dinda, J. Fortes: Guest editors’ introduction: “Re-
source virtualization renaissance”. Computer 38(5), pp. 28–31, 2005

53

54 BIBLIOGRAPHY

[10] J. Duato, F. D. Igual, R. Mayo, A. J. Peña, E. S. Quintana-Ort́ı, and
F. Silla, “An efficient implementation of GPU virtualization in high per-
formance clusters”, in Euro-Par 2009 Workshops, ser. LNCS, vol. 6043,
2010, pp. 385–394.

[11] J. Duato, A. J. Peña, F. Silla, R. Mayo and E. S. Quintana-Ort́ı, “Per-
formance of CUDA Virtualized Remote GPUs in High Performance Clus-
ters”, in International Conference on Parallel Processing 2011, pp. 365–
374, 2011.

[12] J. Duato, A. J. Peña, F. Silla, J. C. Fernández, R. Mayo and E. S.
Quintana-Ort́ı, “Enabling CUDA Acceleration within Virtual Machines
using rCUDA”, in International Conference on High Performance Com-
puting 2011, Bangalore, 2011.

[13] NVIDIA, “The NVIDIA CUDA C Programming Guide”, NVIDIA, 2011.

[14] D. Quinlan and T. Panas and C. Liao, “ROSE”, online:
http://rosecompiler.org/, last access: June 2012.

[15] Free Software Foundation, Inc. , “GCC, the GNU Compiler Collection”,
online: http://gcc.gnu.org/, last access: June 2012.

[16] LLVM, “Clang: a C language family frontend for LLVM”, online:
http://clang.llvm.org/, last access: June 2012.

[17] G. Martinez and W. Feng and M. Gardner, “CU2CL: A CUDA-
to-OpenCL Translator for Multi- and Many-core Architectures”, on-
line: http://eprints.cs.vt.edu/archive/00001161/01/CU2CL.pdf, last ac-
cess: June 2012.

[18] LLVM, “The LLVM Compiler Infrastructure”, online: http://llvm.org/,
last access: June 2012.

[19] NVIDIA, “The NVIDIA CUDA Compiler Driver NVCC”, NVIDIA,
2011.

[20] N. Farooqui, A. Kerr, G. Diamos, and Y. Gregory, “A framework for dy-
namically instrumenting GPU compute applications within GPU Ocelot”,
in Proceedings of the Fourth Workshop on General Purpose Processing
on Graphics Processing Units, ACM, New York, 2011.

[21] NVIDIA, “The NVIDIA GPU Computing SDK”, NVIDIA, 2011.

BIBLIOGRAPHY 55

[22] Sandia National Labs, “LAMMPS Molecular Dynamics Simulator”, on-
line: http://lammps.sandia.gov/, last access: June 2012.

[23] Semantic Designs, Incorporated, “The DMS
Software Reengineering Toolkit”, online:
http://www.semanticdesigns.com/Products/DMS/DMSToolkit.html,
last access: June 2012.

[24] Q. Yi, “POET: a scripting language for applying parameterized source-
to-source program transformations”, in Software: Practice and Experi-
ence, vol. 42, pp. 675-706, 2012.

[25] G. Rudy, M. Khan, M. Hall, C. Chen, and J. Chame, “A Programming
Language Interface to Describe Transformations and Code Generation”,
in Lecture Notes in Computer Science, vol. 6548, pp. 136-150, 2011.

[26] E. Visser, “Program Transformation with Stratego/XT”, in Lecture
Notes in Computer Science, vol. 3016, pp. 315-349, 2004.

[27] G. Necula, S. McPeak, S. Rahul, and W. Weimer, “CIL: Intermediate
Language and Tools for Analysis and Transformation of C Programs”, in
Lecture Notes in Computer Science, vol. 2304, pp. 209-265, 2002.

[28] LLVM, “The Clang Compiler User’s Manual”, online:
http://clang.llvm.org/docs/UsersManual.html, last access: June
2012.

[29] LLVM, “The LLVM Programmer’s Manual”, online:
http://llvm.org/docs/ProgrammersManual.html, last access: June
2012.

	Acknowledgements
	Abstract
	Introduction
	Background
	CUDA: Compute Unified Device Architecture
	rCUDA: Remote CUDA
	Source-to-source Transformation Tools
	The LLVM Compiler Infrastructure
	Clang: a C Language Family Frontend for LLVM

	CU2rCU: A CUDA-to-rCUDA Converter
	The Need of a CUDA-to-rCUDA Converter
	Interaction with Clang
	CU2rCU Source Transformations
	Function and Variable Types Qualifiers
	Kernel Calls
	Kernel Names
	CUDA Symbols
	C++ API Routines
	Texture and Surface Declarations
	Texture and Surface Functions
	CUDA Symbol Functions
	Kernel Functions
	Included Files

	Compilation Flow
	CU2rCU Installation and Deployment

	Evaluation
	NVIDIA GPU Computing SDK
	LAMMPS Molecular Dynamics Simulator
	Compilation Time

	Conclusions

